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Abstract. WhirlBob is an Authenticated Encryption with Associated
Data (AEAD) algorithm derived from the first round CAESAR candi-
date StriBob and the Whirlpool hash algorithm. As with StriBob, the
reduced-size Sponge design has a strong provable security link with a
standardized hash algorithm. The new design utilizes only the LPS or ρ
keying half of Whirlpool in a flexible domain-separated BLNK Sponge
mode and increases the number of rounds from 10 to 12 as a counter-
measure against Rebound Distinguishing attacks. The Whirlpool and
WhirlBob 8× 8 - bit S-Box is constructed from 4× 4 - bit “MiniBoxes”.
We report on a fast constant-time SIMD implementation technique that
keeps full miniboxes in registers and accesses them via SIMD shuffles.
This is an efficient countermeasure against AES-style cache timing side-
channel attacks and we have implemented it on Intel SSSE3 and ARM
NEON targets. Another main advantage of WhirlBob over StriBob (and
most other AEADs) is its greatly reduced implementation footprint on
resource-constrained platforms. On many low-end microcontrollers the
total software footprint of π+BLNK = WhirlBob AEAD is less than half
a kilobyte. We also report an FPGA implementation of WhirlBob. The
implementation requires 4,946 logic units for a single round of WhirlBob,
which compares favorably to 7,972 required for Keccak/Keyak on the
same platform.The relatively small hardware gate count is also reflected
as efficient bitsliced straight-line implementations, especially on pure 64-
bit platforms. We finally present some discussion and analysis on the re-
lationships between WhirlBob, Whirlpool, the Russian GOST Streebog
hash, and the recent draft Russian Encryption Standard Kuznyechik.

Keywords: Authenticated Encryption, Sponge designs, Timing Attacks, Whirlpool,
Streebog, StriBob, CAESAR Project.

1 Introduction

WhirlBob 1.0 is an Authenticated Encryption with Associated Data (AEAD)
algorithm based on the CAESAR candidate StriBob [52, 53] and NESSIE Final
Portfolio [39] hash function Whirlpool 3.0 [4].
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Fig. 1. A simplified view of a Sponge-based AEAD. Padded Secret Key, Nonce, and
Associated Authenticated Data - all represented by du words - are first “absorbed” into
the state. The π permutation is then also used to encrypt data pi into ciphertext ci
(or vice versa) and finally to “squeeze” out a Message Authentication Code hi.

AEAD algorithms and modes such as GCM [42] provide both confidentiality
and integrity protection, typically in a single pass, thus eliminating the require-
ment for a MAC algorithm such as HMAC [43]. This has clear advantages for
performance and implementation footprint.

2 Motivation: Security Goals and Parameters

WhirlBob uses StriBob’s BLNK Sponge AEAD mode and parameters without
modification. Outside the CAESAR context, BLNK can be also used in a wider
set of applications, even to build entire secure lightweight protocol suites [50].

A sponge mode requires only a single cryptographic component; an unkeyed
cryptographic permutation π (See Figure 1). As with other provable Sponge
modes, we assume that π is indistinguishable from a random permutation. This
work focuses on π permutation design and implementation – for BLNK padding
details and analysis we refer to [29, 50, 53].

The StriBob CAESAR [53] candidate is derived from the Russian GOST
hash standard Streebog [23]. In close examination Streebog appears to be mod-
eled after the Whirlpool hash [4], with substantial modifications. StriBob and
WhirlBob only differ in the particular numerical selections for tables C, S, and
L. The code of 64-bit reference implementation is essentially unchanged. These
components, L ◦ P ◦ S or the “LPS permutation” is derived directly from that
of Whirlpool for WhirlBob. Both StriBob and WhirlBob have 12 rounds.

One of our aims is to allow the same secure LPS implementation core (such
as a special instruction of an SoC CPU in a mobile or IoT device) to be used
for unkeyed hashing according to the Whirlpool standard. This is useful in ap-
plications that require certificate signature processing. The corresponding stan-
dardized, Miyagushi-Preneel hash functions Streebog and Whirlpool require two
(or more) times as much as state and processes data in bigger chunks when
compared to StriBob and WhirlBob. Our BLNK Sponge mode also supports
randomized hashing and MACing without encryption. Our Sponge variants are
slightly faster than the original hashes, yet have a provable security relation.



All security parameters remain unmodified from StriBob. As with StriBob,
we have an b = 512 bit state, which is split to r = 256 - bit rate “block size” and
c ≈ 254 - bit capacity, which is the secret state. According to theorems such as
those given in [29, 53] this is sufficient for k = 192 - bit secret key security level
when less than 264 bits are processed under same key and nonce pair. For the
standard variant nonce length is fixed at n = 128 bits.

3 WhirlBob

Despite having almost equivalent speed and size on generic 64-bit platforms, the
size and performance characteristics of StriBob and WhirlBob differ significantly
on various implementation platforms such as FPGA, low-end microcontrollers,
SIMD systems, and in bitslicing implementations.

We only give an abbreviated description of WhirlBob’s 512×512 - bit keyless
π permutation as the computation follows exactly the operation of the internal
key schedule of Whirlpool 3.0 [4]. The only modification is that the number
of rounds is increased from R = 10 to R = 12. The key schedule operation is
effectively equivalent to the “internal block cipher” W . Blocks of eight bytes
from the S-Box are used as partial round keys Ci, as in Whirlpool.

WhirlBob’s permutation π is indeed highly similar to AES. In case of StriBob,
the “Russian 512-bit block AES” permutation had to be somewhat laboriously
uncovered from the structure (see Section 4.3), but the particularities and history
of Whirlpool make the connection immediately obvious.

The 512-bit state is typically written as a matrix of 8× 8 bytes. To compute
π(x0) = x12 we iterate

xi+1 = L(P (S(xi)))⊕ Ci

where, if we use the original AES-style notation, S is equivalent to SubBytes, P
corresponds to ShiftColumns, L to MixRows, followed by AddRoundKey.

3.1 Lightweight Reference Implementation

The entire byte-oriented implementation of π fits onto a single page; See Ap-
pendix A. Remarkably, in addition to π, only the S-Box wbob_sbox[256] (See
Section 3.2) together with minimal BLNK logic are required for full AEAD im-
plementation. On most microcontrollers WhirlBob’s entire software footprint
is in the 500B range. Slightly more is required for a shared secret handshake
protocol and two-way secure BLINKER protocol [50].

This is a significant improvement over StriBob, which typically needs almost
2kB. StriBob is also much slower and larger on low-end microcontrollers due
to the “heavy” MDS matrix. The reference implementation is written for com-
pactness and clarity; it is not optimal when it comes to speed or size. We refer
to section 7.3 of [4] for techniques that greatly reduce the number of XORs re-
quired, resulting in increased processing speed. Additional tables will be required
and this will increase the overall implementation size.



Table 1. Three 4 × 4 miniboxes that are used to build the 8 × 8 S-Box in Whirlpool
and WhirlBob 1.0. We may revise these for CAESAR Round 2.

x 0 1 2 3 4 5 6 7 8 9 A B C D E F
E(x) 1 B 9 C D 6 F 3 E 8 7 4 A 2 5 0

E−1(x) F 0 D 7 B E 5 A 9 2 C 1 3 4 8 6
R(x) 7 C B D E 4 9 F 6 3 8 A 2 5 1 0

Whirlpool ISO Standard trace test vectors have been used to verify the cor-
rectness of this π implementation, up to R=10 (Appendix B). One simply ob-
serves the keying “line” of these traces and ignores the encryption “line”. We
offer the listing of Appendix A as WhirlBob v1 π Reference implementation.
(Please note the system of algorithm designations at the end of Section 5.)

3.2 Impact of New S-Box Structure on Implementations

Whirlpool’s S-Box design utilizes three 4×4 - bit “miniboxes” given in Table 1: E,
E−1, and R. Figure 2 shows how these are used to construct the 8×8 - bit S-Box.
This computation can even be performed on the fly on 4-bit microcontrollers.
FPGA implementations save a significant number of LUTs by explicitly utilizing
the 4-bit structure rather than implementing a general 8× 8 lookup table.

Note that these small S-Boxes can often fit into a single register and accessed
via constant-time shifts, thus enabling constant-time implementation.

The byte-oriented 8 × 64 = 512 - bit state can be rapidly split into eight
64-bit registers. The parallelism evident in Figure 2 helps to speed up bitsliced
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Fig. 2. The 8× 8 - bit S-Box is constructed from 4× 4 - bit “miniboxes”.



implementation. We see that for 2/3 of the time, the S-Box has effectively two
independent 4-bit execution paths. Interleaving these may greatly reduce wait
states due to the superscalar architecture employed by most modern CPUs.

Appendix B of the current 2003 Whirlpool specification [4] gives listings
with 14-16 instructions/gates for each of the miniboxes (if ANDN instruction is
allowed).

3.3 Constant-Time Implementation

Due largely in part to Whirlpool’s S-Box structure and generous parallelism, it
is well suited for high speed, constant-time implementation on Single Instruc-
tion Multiple Data (SIMD) architectures. Here we focus on ARM’s NEON as
the reference architecture since the state layout fits the registers nicely, but also
consider Intel’s SSSE3 as another explicit example. The goal is to improve per-
formance, while at the same time avoiding memory-resident table lookups that
cause execution time to depend on the data cache state and thus algorithm state
(the crux of cache timing attacks).

Related work in this area includes simulated ISA extensions to a RISC archi-
tecture for parallel table lookups to speed up Whirlpool [25]. These extensions
are then used to build essentially a hardware-assisted analogue of the traditional
T tables software implementation – storing the state in rows and issuing a single
instruction to perform 8 parallel lookups from the 8-bit S-Box input to the 64-bit
linear layer output and XOR-summing the results, repeated for each row. AES
[24] and Anubis [17] can also take advantage of SSSE3’s variable byte shuffle
instruction for fast and secure implementations.

NEON has 32×64 - bit SIMD registers and SSSE3 16×128 - bit. We store the
state column-wise (one column per NEON register, two columns per SSSE3 regis-
ter), i.e. byte position j of register i contains the state byte in column i and row j.
The SubBytes step is not sensitive to this ordering, but both ShiftColumns and
MixRows are. Since both of these architectures feature variable byte shuffle in-
structions (vtbl.u8 for NEON and pshufb for SSSE3), implementing SubBytes
is a direct translation of Figure 2 to these instructions. This amounts to 40
NEON shuffles and half as many SSSE3 shuffles. For ShiftColumns, NEON
uses vext for byte-wise register rotation and SSSE3 pshufb with constant rota-
tion distances since each register holds two columns. For MixRows we use the row
formula from the Whirlpool specification [4, Sec. 7.3] where the multiplications
by x are a simple left shift (native on NEON, integer addition on SSSE3) and
conditional XOR (operand masked by signed right shift on NEON, comparison
on SSSE3). The formula is fairly symmetric around even and odd byte positions
– while NEON implements it as written with 24 multiplications, SSSE3 slightly
rearranges a few registers to parallelize across the full 128-bit register width and
use half as many multiplications.

3.4 Implementation Summary

We currently have six implementations of the cryptographic π permutation.



Fig. 3. WhirlBob was implemented on the FPGA logic fabric of Xilix Zynq 7010. The
implementation integrates with the AXI bus of ARM Cortex A9 on the SoC chip.

– C 8-bit: This is the minimal reference implementation which is optimized
for clarity and low-resource platforms, corresponding to Appendix A.

– C 64-bit: Standard speed-optimized implementation for most platforms,
utilizing large lookup tables. Apart from Whirlpool-derived tables, equiva-
lent to the implementation of STRIBOBr1.

– C Bitsliced: Straight-line, fully bitsliced implementation without data-
dependent branches or lookups. Resistant to timing attacks.

– NEON Intrinsics: Fast constant-time version that avoids table lookups by
storing 4× 4 - bit miniboxes in SIMD registers.

– SSSE3 Intrinsics: Similar but for 128-bit SIMD registers.
– Verilog 12-cycle: This is the hardware reference implementation. Source

code is about 350 lines. Additional logic is required for AXI Bus integration.

Software Implementations. The first three implementations use only C99,
and are hence easily portable. The 64-bit reference implementation is almost
exactly as fast as OpenSSL’s Whirlpool on the same platform. See Table 2 for
implementation metrics. We also have various embedded implementations.

Hardware Implementation. The hardware implementation has been proven
on FPGA (Figure 3). The SÆHI proposal reports total post place-and-route
utilization on Artix-7 of 4,946 logic units for a single round of WhirlBob, which
compares favorably to 7,972 required for Keccak/Keyak [51]. Throughput is
roughly 2 MB/s for each MHz.

3.5 Comparison with Other AEAD Schemes.

At the time of writing (Q3/2014) the dominant AEAD scheme is the Galois /
Counter Mode (GCM) for the AES block cipher [40, 42], which is recommended
for use with TLS, SSH and IPSec protocols by NSA as part of “Suite B” [18,



Table 2. Comparing software implementations of WhirlBob’s π.

Metric and Target Speed Footprint Source
MB/sec Code Data C lines

Single Core of 2.8GHz Core i7 860
8-bit C99 Reference 4.6311 326 256 97
64-bit C99 Reference 95.368 1942 16512 128
Bitsliced C99 Reference 30.856 4592 768 345
SSSE3 (Constant-Time) 123.15 1290 1152 256

BeagleBone Black 1.0GHz Cortex-A8
8-bit C99 Reference 0.8288 352 256 97
64-bit C99 Reference 3.3435 6524 16512 128
Bitsliced C99 Reference 1.4353 15704 768 345
NEON (Constant-Time) 9.2084 1528 1072 320

26, 45, 54]. GCM message authentication is based on polynomial evaluation in
the finite field GF(2128). The required multiplication can be exceedingly slow
on lightweight platforms. An LFSR-style implementation of a 128 × 128 - bit
multiplication will require thousands of cycles on 8-bit targets.

It is often more efficient to use the CCM [41, 58] double-mode of operation
on lightweight platforms, since implementing a full extra AES operation can be
faster than the finite field multiplication operation. CCM and GCM are currently
the only two FIPS - standardized authenticated modes. The performance char-
acteristics of AES-CCM AEAD can be expected to be very similar to WhirlBob
due to their structural similarities and relative data bandwidth:

– WhirlBob: 12 rounds with 64 S-Boxes for 256 bits of data.
– AES-192-CCM: 2× 12 rounds with 16 S-Boxes for 128 bits of data.

There are additional (patented) AES modes which will be faster on 8-bit
platforms – such as AES-OTR [37] and AES-OCB [31], and dozens of others.
Virtually all block cipher modes offer lower levels of integrity protection (264 level
even for 128-bit tags) and are not directly usable in wider Sponge applications
such as non-randomized hashing.

At the time of writing (Q3/2014) only unoptimized reference implementa-
tions are available for most CAESAR candidates [19], making fair performance
comparisons difficult. Furthermore, no other CAESAR candidate is targeted at
192-bit security level apart from AES modes. Little attention has been paid to
8-bit or hardware implementations.

We note that leading full-featured Sponge candidates, directly SHA3 / Kec-
cak - based Ketje [11] and Keyak [12] have significantly slower reference imple-
mentation than StriBob and Whirlbob (Table 3). WhirlBob falls very signifi-
cantly from candidates such as NORX [3] and MORUS [59], which have been
designed specifically with 64-bit targets in mind. Our proposal can claim a more
conservative security margin when compared to these candidates, however.



Table 3. Relative performance of some CAESAR candidates on the AMD64 reference
system in SUPERCOP testing (smaller number indicates faster speed).

MORUS 1280 - 128 [59] 0.09
NORX 64-4-1 [3] 0.19
ASCON-128n [22] 0.89
WhirlBob Intel SSSE3 Constant-Time 1.00
WhirlBob and StriBob 64-bit Reference 1.26
Lake Keyak [12] 2.23
Ketje Sr. [11] 4.25
PRIMATES (HANUMAN, GIBBON, APE) [2] 50+

Source: http://bench.cr.yp.to/web-impl/amd64-titan0-crypto_aead.html

4 Security Analysis and Design Notes

Most of the security arguments and proofs offered for StriBob in [53] also apply
unmodified to the new proposal, as those proofs are based on an indistinguishably
arguments of the π permutation and a simple theorem (Thm. 1, Sec. 3.3. in [53])
that loosely ties the Miyagushi-Preneel mode [38, 48] with the indistinguishably
of π. A random-indistinguishable π and appropriate padding rules are sufficient
to construct Sponge-based hashes [6], Tree Hashes [10], MACs [9], Authenticated
Encryption (AE) algorithms [8, 12], and pseudorandom extractors (SHAKEs,
PRFs, and PRNGs) [7, 44].

4.1 Side-Channel and Implementation Attacks
Due to the minibox structure, we may load the 4 × 4 - bit tables in registers
and access them via constant-time shuffles on Intel SSSE3 and ARM NEON
SIMD targets (as noted in Section 3.3). Whirlpool is also relatively well suited
for bitsliced implementation due to its particular S-Box and MDS design (as
noted in Section 3.2).

Being unconditional straight-line code without data-dependent table lookups,
bitsliced and byte shuffling implementations are effective countermeasures against
cache timing attacks, which are effective against cryptographic primitives with
large tables such as AES [1, 5, 47, 57].

A non-bitsliced implementation of the S-Box on Whirlpool, Streebog, or Stri-
Bob on 64-bit platforms typically requires lookup tables of up to 8× 256× 8 =
16384B. Even though this size easily fits into the Level 2 cache of any 64-bit sys-
tem, one may see that timing attacks are possible as L2 caches are not always
shared even between different execution cores within a single CPU unit. This is
due to the process switching operation of most 64-bit operating systems.

4.2 Historical Modifications to Whirlpool
Whirlpool has received a significant amount of analysis in the almost 15 years
since its original publication. Whirlpool was the only hash function in the final



NESSIE portfolio in addition to SHA-2 hashes [39]. Whirlpool has also been
standardized by ISO as part of ISO/IEC 10118-3:2004 [27].

Our design is based on Whirlpool 3.0. The amended MDS matrix used by
current (’03) Whirlpool is also used by WhirlBob as a countermeasure to the
structural observations given in [55].

Whirlpool was found to be vulnerable to a Rebound Distinguisher [32, 33, 36].
That 2188 attack applies to the 10-round variant; our 12-round version should
offer a comfortable security margin, especially as our security target is 2192. The
way the round constants are derived from the S-Box allows this change to be
made in a straightforward manner.

4.3 Notes on the origins of Streebog, Kuznyechik, and StriBob

The GOST R 34.11-2012 “Streebog” standard text [23] does not describe the
linear step as a 8 × 8 matrix-vector multiplication with GF(28) elements like
the StriBob spec [53], but as a 64 × 64 binary matrix multiplication. One can
see that 8 × 8 × 8 = 512 bits are required to describe the former, but 64 ×
64 = 4096 bits are required for the latter. The more effective description was
discovered by Kazymorov and Kazymorova in [30] by exhaustively testing all 30
irreducible polynomial basis, revealing an AES-like MDS structure. The origin
of the particular numerical values of that MDS matrix and round constants is
still a mystery. They do not appear to offer avenues for size or performance
optimization like those in Whirlpool 3.0 and WhirlBob do.

The 8-bit S-Box used by StriBob was directly lifted from Streebog so that
hardware and software components developed for Streebog could be shared or
recycled when implementing StriBob. The same S-Box is also used by the very
recently proposed Russian Encryption Standard “Kuznyechik” [56].

Not much about the particular design criteria of the Streebog S-Box has been
published. That S-Box was apparently selected at least 5 years ago as Streebog
already appeared in RusCrypto ’10 proceedings [35]. We can easily observe that
it offers reasonable resistance against basic methods of cryptanalysis. Its dif-
ferential bound [13] is P = 8

256 and best linear approximation [34] holds with
P = 28

128 . There does not seem to be any exploitable algebraic weaknesses. These
are the exact same bounds as can be found for the Whirlpool S-Box, but fall
clearly short from the bounds of the AES S-Box.

The Rijndael AES S-Box is constructed from finite field inversion x−1 op-
eration in GF(28) (inspired by the Nyberg construction [46]) and an affine bit
transform that serves as a countermeasure against, among other things, Inter-
polation Attacks [28] on the AES predecessor SHARK [49]. We refer to [21] for
more information about the AES design process.

We had brief informal discussions with some members of the Streebog and
Kuznyechik design team at the CTCrypt ’14 workshop (05-06 June 2014, Moscow
RU). Their recollection was that the aim was to choose a “randomized” S-Box
that meets the basic differential, linear, and algebraic requirements. Random-
ization was simply iterated until a “good enough” permutation was found. This
was seen as an effective countermeasure against yet-unknown attacks. At the



time of Streebog S-Box selection (before 2010’s) the emergence of allegedly ef-
fective AES Algebraic Attacks such as [20] was a major concern for much of the
symmetric cryptographic community. Hence it was felt appropriate to avoid too
much algebraic structure in either the S-Box or MDS matrix while also ensuring
necessary resistance against known attacks such as DC and LC. Algebraic attack
attempts of this type against AES have since largely fizzled out, so we feel confi-
dent that the Whirlpool S-Box should be sufficient for our claimed security level,
especially as it offers significantly better speeds in bitsliced implementations.

One is left with the impression that Streebog is a “whitened” or randomized
copy of the original Whirlpool design. Despite its partially unknown origins and
relative shortcomings on some implementation targets, we consider StriBob to
be a more secure algorithm than WhirlBob if appropriately implemented. Indeed
some of the more successful attacks on AES and Whirlpool have been based on
their deep structural self-similarities and simplistic key schedules [14–16].

5 Conclusions

We have introduced the WhirlBob 1.0 authenticated encryption algorithm, a
variant of the StriBob first round CAESAR candidate. The new proposal loans
its key components from the Whirlpool 3.0 hash function, modifying it into
a Sponge AEAD. WhirlBob has extremely small implementation footprint on
resource-limited software and hardware platforms – typically under half a kilo-
byte. The reference implementation fits onto a single page of Appendix A.

The hardware-optimized design of Whirlpool components also gives Whirl-
Bob efficient bitsliced and SIMD byte shuffling implementations. These are ef-
fective countermeasure against cache timing attacks, which are a concern against
AES. The b = 8 × 64 - bit state size is particularly suitable for bitslicing of a
byte-oriented algorithm on 64-bit platforms and byte slicing for SIMD platforms.

We also discussed the design choices for the S-Box and other components used
in the Streebog hash and Kuznyechik cipher, which are standards or becoming
standards for the Russian security market.

However WhirlBob has superb implementation characteristics on SIMD and
lightweight platforms. Furthermore WhirlBob offers provable security assurance
through its security reduction to the well-analyzed Whirlpool hash. Further-
more, the RAM requirement of WhirlBob AEAD is only half of that required
by Whirlpool.

Note on designations. This document describes WhirlBob 1.0, which corre-
sponds to Whirlpool 3.0’s components. Should STRIBOB be selected for the
second round of the CAESAR competition, a WhirlBob tweak will be desig-
nated STRIBOBr2d2 (Round 2, Design 2) a.k.a. WhirlBob 2.0 and may differ
from this description. The original StriBob based on Streebog components will be
designated STRIBOBr2d1 (Round 2, Design 1.) The current official first round
algorithm designation is STRIBOBr1 [53].
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A WhirlBob 1.0 π “8-bit” Reference Implementation

This ANSI C function implements the WhirlBob 512× 512-bit π permutation.
void wbob_pi(uint8_t st[64]) // WhirlBob Pi
{

int r, i, j;
uint8_t t[64], x, *pt;

for (r = 0; r < 12; r++) { // 12 rounds
for (i = 0; i < 64; i++) {

t[(i & 7) + ((i + (i << 3)) & 070)] = // P
wbob_sbox[st[i]]; // S

}
// The round constants C comes from the S-box
pt = (uint8_t *) &wbob_sbox[8 * r];
for (i = 0; i < 8; i++)

st[i] = pt[i]; // C in first 8
for (i = 8; i < 64; i++)

st[i] = 0; // zero the rest

// Apply the circular , low weight MDS matrix
for (i = 0; i < 64; i += 8) {

pt = &st[i]; // start of row
for (j = 0; j < 8; j++) {

x = t[i + j]; // Circular MDS
pt[j & 7] ^= x; // 01
pt[(j + 1) & 7] ^= x; // 01
pt[(j + 3) & 7] ^= x; // 01
pt[(j + 5) & 7] ^= x;
pt[(j + 7) & 7] ^= x;
// x <- 02
x = (x << 1) ^ (x & 0x80 ? 0x1D : 0x00);
pt[(j + 6) & 7] ^= x; // 02
// x <- 04
x = (x << 1) ^ (x & 0x80 ? 0x1D : 0x00);
pt[(j + 2) & 7] ^= x; // 04
pt[(j + 5) & 7] ^= x; // 01 + 04 = 05
// x <- 08
x = (x << 1) ^ (x & 0x80 ? 0x1D : 0x00);
pt[(j + 4) & 7] ^= x; // 08
pt[(j + 7) & 7] ^= x; // 01 + 08 = 09

}
}

}
}



B Test Vectors

B.1 The 12-round π transform

These are derived from ISO Test vectors of Whirlpool 3.0. We give the input x0

and results after 1, 10 (as in Whirlpool), and full 12 rounds of processing.

x0 =



77 38 E1 B5 41 A0 36 EA
45 8D 50 F8 0F A0 1C 44
72 88 CE 97 D1 A0 DC F0
16 95 FF D6 E7 1D 09 25
33 BE 30 9F 01 2A 59 09
72 91 14 59 5F 08 6E 76
07 18 AF E3 65 BC 09 DE
B6 AF A1 80 BC EC 2A 98


x1 =



1A 78 4D 7D BD 4C 17 E6
27 31 10 AA 63 C5 9E 25
7A 2E B7 48 C4 5D E0 23
6D 0D 61 9F 6C 1D 80 AE
01 A2 D5 6E DB 41 D9 A0
E9 06 4C D1 27 95 FA 86
77 62 31 BC B4 4E C6 01
6F CD BC 98 10 78 6F EC



x10 =



B4 74 E1 56 96 31 B9 6C
21 A1 B6 33 CC 89 68 1A
B1 97 25 86 7B 2B 3F 09
4C 73 C7 62 93 A8 15 CF
55 15 C0 C0 9A 05 05 16
23 44 8D 8D D3 5F B3 6E
7E 6C 2D 37 12 D0 F3 3E
CE B8 04 F2 8D 9F C9 99


x12 =



3F 72 C2 60 EE 28 EF EA
42 8E B5 3A FB 8A 33 A2
03 E4 72 31 90 A5 1A D3
3E 68 E6 46 FC 94 3C C7
80 42 9E 2E CB 32 75 93
30 AA E2 21 21 C8 99 ED
86 1E 06 9E 91 1F 89 6C
D2 99 EC 7E E9 0B 01 10


The last entry corresponds to the final output π(x0) = x12.

B.2 Authenticated Encryption

Inputs are plain ASCII.

K = "192-bit Secret Key value" (24 Bytes)
N = "Nonces Used Once" (16 Bytes)
A = "AAD Test Vector Exact Block 32 B" (32 Bytes)
P = "2 Block Test Vector for stribob192r2d2" (38 Bytes)

Authenticated ciphertext has 38 message bytes + 16 for MAC = 54 (0x36) bytes:

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF
C = 59 9C 5F 69 7F 16 30 07 B4 D5 52 30 24 0C 2B 7B |0x

0A 93 4E 4C 63 19 4F AC EA 2D D5 4E BD 05 61 2C |1x
19 92 47 FC A1 97 AE AE 71 0F 0D ED 3E 56 5B D0 |2x
26 FE 20 F6 4A 4F |3x

For BLNK padding technical implementation details, see [53].


