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Abstract

We introduce the notion of universal parameters as a method for generating the trusted
parameters for many schemes from just a single trusted setup. In such a scheme a trusted setup
process will produce universal parameters U . These parameters can then be combined with the
description, d(·) of any particular cryptographic setup algorithm to produce parameters pd that
can be used by the cryptographic system associated with d. We give a solution in the random
oracle model based on indistinguishability obfuscation.
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1 Introduction

Many cryptographic systems rely on the trusted generation of common parameters to be used by par-
ticipants. There are several types of reasons for using such parameters. For example, many cutting
edge cryptographic protocols rely on the generation of a common reference string.1 Constructions
for other primitives such as aggregate signatures [BGLS03] or batch verifiable signatures [CHP12]
require all users to choose their public keys using the same algebraic group structure. Finally,
common parameters are sometimes for convenience and efficiency — such as when generating an
EC-DSA public signing key, one can choose the elliptic curve parameters from a standard set and
avoid the cost of completely fresh selection.

In most of these systems it is extremely important to make sure that the parameters were indeed
generated in a trustworthy manner and failure to do so often results in total loss of security. In
cryptographic protocols that explicitly create a common reference string it is obvious how and
why a corrupt setup results in loss in security. In other cases security breaks are more subtle. A
prominent recent example is the case of the elliptic curves parameters standardized in NIST Special
Publications 800-90 [NIS12] for the Dual Elliptic Curve Deterministic Random Bit Generator (Dual
EC) used in RSA’s BSAFE product. Based on news articles [LPS13, BBG13, PLS13] that reported
the Snowden leaks, it is speculated that these parameters may have been chosen with a trapdoor
that allows subversion of the system. Recent research has shown [CFN+14] that such trapdoors can
lead to practical exploits.

Given these threats it is important to establish a trusted setup process that engenders the confidence
of all users, even though users will often have competing interests and different trust assumptions.
Realizing such trust is challenging and requires a significant amount of investment. For example,
we might try to find a single trusted authority to execute the process. Alternatively, we might try
to gather different parties that represent different interests and have them jointly execute a trusted
setup algorithm using secure multiparty computation. For example, one could imagine gathering
disparate parties ranging from the Electronic Frontier Foundation, to large corporations, to national
governments.

Pulling together such a trusted process requires a considerable investment. While we typically
measure the costs of cryptographic processes in terms of computational and storage costs, the
organizational overhead of executing a trusted setup may often be the most significant barrier to
adoption of a new cryptographic system. Given the large number of current and future cryposystems,
it is difficult to imagine that a carefully executed trusted setup can be managed for each one of
these. In this work we attempt to address this problem by asking an ambitious question:

Can a single trusted setup output a set of universal parameters,
which can (securely) serve all cryptographic protocols?

Ideally, we want a universal setup process, that when executed will produce what we refer to as
universal parameters. Suppose a group of users wishes to use a certain protocol, where d is the

1 Several cryptographic primitives (e.g. NIZKs) are realizable using only a common random string and thus only
need access to a trusted random source for setup. However, many cutting edge constructions need to use a common
reference string that is setup by some private computation. For example, the recent two-round MPC protocol of Garg
et. al. [GGHR14] uses a trusted setup phase that generates public parameters drawn from a nontrivial distribution,
where the randomness underlying the specific parameter choice needs to be kept secret.
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description of the setup algorithm. Any member of the group can use the universal parameters
and d to (deterministically) compute the shared parameters for the scheme in question. We refer
to these as the induced parameters. If the universal parameters were securely generated, then the
induced parameters should be “as good as” if there were directly derived from a trusted setup.2

Our Approach. We now describe our approach. We begin with a high level overview of the
definition we wish to satisfy; details of the definition are in Section 3. In our system there is a
universal parameter generation algorithm, UniversalGen, which is called with a security parameter
1n and randomness r. The output of this algorithm will be a set of universal parameters U . In
addition, there is a second algorithm InduceGen which takes as input universal parameters U and
the (circuit) description of a setup algorithm, d, and outputs the induced parameters pd.

We model security as an ideal/real game. In the real game an attacker will receive a set of
universal parameters U produced from the universal parameter generation algorithm. Next, it
will query an oracle on multiple setup algorithm descriptions d1, . . . , dq and iteratively gets back
pi = InduceGen(U, di) for i = 1, . . . , q. In the ideal world the attacker will first get a set of uni-
versal parameters U as before. However, when he queries on di the challenger will reply back with
pi = di(ri) for fresh randomness ri. (Since the universal parameter generation algorithm is deter-
ministic we only let a particular d value be queried once without loss of generality.) A scheme is
secure if no poly-time attacker can distinguish between the real and ideal game with non-negligible
advantage after observing their transcripts. 3

To make progress toward our eventual solution we begin by considering a relaxed security notion.
We relax the definition in two ways: (1) we consider where the attacker makes only a single query to
the oracle and (2) he commits to the query statically (a.k.a. selectively) before seeing the universal
parameters U . While this security notion is too weak to satisfy our long term goals, developing a
solution will serve as step towards our final solution and provide insights.

We achieve this selective and bounded notion of security by using indistinguishability obfuscation by
applying punctured programming [SW14] techniques. In our solution we consider setup programs
to all come from a polynominal circuit family of size `(λ), where each setup circuit d takes in m(λ)
bits and outputs parameters of k(λ) bits. The polynomials of `,m, k are fixed for a class of systems;
we often will drop the dependence on λ when it is clear from context.

The construction and proof is a fairly straightforward use of the Sahai-Waters [SW14] punctured
programming methodology. The UniversalGen algorithm will first choose a puncturable pseudo
random function (PRF) key K for function F where F (K, ·) takes as input a circuit description
d and outputs parameters p ∈ {0, 1}k. The universal parameters are created as an obfuscation
of a program that on input d computes and output d(F (K, d)). To prove security we perform a
hybrid argument between the real and ideal games in the 1-bounded and selective model. First,
we puncture out d∗, the single program that the attacker queried on, from K to get the punctured
key K(d∗). We change the parameters to be an obfuscation of the program which uses K(d∗) to

2There are some cryptosystems such as Identity-Based Encryption [Sha85, BF03] where an authority will run a
setup algorithm that generates public parameters as well as some secret parameters that it uses later on. (E.g., to
generate IBE private keys.) In this work we are only interested in a trusted setup that produces common parameters
and then requires no further intervention.

3In our actual formalization in Section 3 we state the games differs slightly, however, the above description will
suffice for this discussion.
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compute the program for any d 6= d∗. And for d = d∗ we simply hardwire in the output z where
z = d(1n, F (K, d)). This computation is functionally equivalent to the original program — thus
indistinguishability of this step from the previous follows from indistinguishability obfuscation. In
this next step, we change the hardwired value from to d(r) for freshly chosen randomness r ∈ {0, 1}m.
This completes the transition to the ideal game.

Achieving Adaptive Security. We now turn our attention to achieving our original goal of
universal parameter generation for adaptive security. While selective security might be sufficient
in some limited situations, the adaptive security notion covers many plausible real world attacks.
For instance, suppose a group of people perform a security analysis and agree to use a certain
cryptographic protocol and its corresponding setup algorithm. However, for any one algorithm
there will be a huge number of functionally equivalent implementations. In a real life setting an
attacker could choose one of these implementations based on the universal parameters and might
convince the group to use this one. A selectively secure system is not necessarily secure against
such an attack, while this is captured by the adaptive model.

Obtaining a solution for our original security definition will be significantly more difficult. We first
make a trivial observation that no standard model proof can satisfy our definition. The reasons
for such are akin to those for non-committing encryption [Nie02] — once universal parameters of a
fixed polynomial size are fixed, it is not possible for a standard model proof to make an unbounded
number of parameters consistent with the already-fixed universal parameters. For this reason we
turn our attention to proofs in the random oracle model, where such limitations can be overcome,
and meaningful security guarantees can be achieved.

A tempting idea is to simply replace the puncturable PRF call from our last construction with a
call to a hash function modeled as a random oracle. However, this is problematic. When applying
the random oracle heuristic we will model the hash function as a oracle, yet at the same time we
will need its code for creating the obfuscated program — thus arriving at an impasse. Therefore
we need to consider a solution where random oracle calls are only possible outside of obfuscated
programs. This complicates matters considerably, since the obfuscated program then has no way of
knowing whether a setup program d is connected to a particular hash output4.

A new proof technique: delayed backdoor programming. To solve our problem we develop
a novel way of allowing what we call “delayed backdoor programming” using a random oracle. In
our construction users will be provided with universal parameters which consists of an obfuscated
program U (produced from UniversalGen) as well as a hash function H modeled as a random
oracle and use these to determine the induced parameters parameters for a particular protocol.

Let’s begin by seeing how UniversalGen creates a program, P , that will be obfuscated to create U .
The program will actually follow a similar structure to the Encryption algorithm from the Sahai-
Waters deniable encryption solution. The program consists of two main stages. In the first stage,
the program takes its input w and checks to see if it encodes a “hidden trigger” using secret key
information. This step will either output a string x ∈ {0, 1}n or it will output ⊥ to indicate failure.
For a uniformly randomly chosen string w, this step will fail to decode with very high probability

4 Recently, Hofheinz [Hof14] also applied obfuscation in the random oracle model in the context of building
constrained PRFs and needed to develop techniques for using an external hash output. However, his goals and
methods diverge from ours.
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since trigger values are encoded sparsely. Moreover, without the secret information it should be
difficult to distinguish a hidden trigger value from a uniformly sampled string. At this point if the
decoding succeeds the program will simply output x.

Otherwise it will move into its second stage. At this point the program will compute randomness
r = F (K,w) for a puncturable PRF F . Now instead of directly computing the induced parameters
we add a level of indirection. The program will next run the Setup algorithm for a one-bounded
universal parameter generation scheme — in particular it could call the scheme we just illustrated
above. 5 Now the recently generated 1-bounded universal parameters Uw are output.

We now show how to generate a set of induced parameters by executing InduceGen(U, d). The
algorithm will first call H(d) = w. Next, it will compute Uw = U(w). Finally, it obtains the induced
parameters by computing pd = Uw(d). The extra level of indirection is critical for obtaining our
proof of security.

We now overview how our proof of security proceeds. At the highest level the goal of our proof
is to construct a sequence of hybrids where parameter generation is “moved” from being directly
computed by the second stage of U (as in the real game) to where the parameters for setup algorithm
d are being programmed in by the first stage hidden trigger mechanism via the input w = H(d).
Any poly-time algorithm A will make at most a polynomial number Q = Q(λ) (unique) queries
d1, . . . , dQ to the random oracle with RO outputs w1, . . . , wQ. We will perform a hybrid of Q outer
steps where at outer step i we move from using Uwi to compute the induced parameters for di, to
having the induced parameter for di being encoded in wi itself.

Let’s zoom in on one of these transitions. We note that the reduction algorithm will first choose the
output wi of the i-th (unique) random oracle query call randomly, but decide it before the universal
parameters U are published. The first step uses punctured programming techniques to replace
the normal computation of the 1-time universal parameters Uwi with a hardwired and randomly
sampled value for Uwi . However, this value must still be programmed ahead of time when the
universal parameters U is set and cannot be specialized to di, which is known to the reduction only
when a random oracle call is made later.

In our next step we prepare a “hand-off” operation where we move the source of the one time
parameters Uwi to the hidden trigger. In the prior step of the hybrid the string wi and one time
universal parameters U ′ = Uwi were chosen independently. In the next hybrid step6 we first choose
U ′ independently and then set wi to be a hidden trigger encoding of U ′. At this point on calling
U(wi) the program will get Uwi = U ′ from the Stage 1 hidden trigger detection and never proceed
to Stage 2. Since the second stage is no longer used, we can use obfuscation security to return
to the normal point where U ′ is no longer hardwired in — thus freeing up the a-priori-bounded
“hardwiring resources” for future outer hybrid steps.

Interestingly, all proof steps to this point were independent of the actual program di. We observe
that this fact is essential to our proof since the reduction was able to choose ahead of time and
program the “setup program neutral” one-time parameters Uwi ahead of time into U which had to
be published well before di was known. However, at this point Uwi comes programmed in from the

5 In our construction of Section 5 we actually directly put our one bounded scheme into the construction. However,
we believe this can be be adapted to work for any one bounded scheme.

6This is actually performed by a sequence of smaller steps in our proof. We simplify to bigger steps in this
overview.
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random oracle output which is after the call to H(di) was made. Therefore we will be able to use
our previous techniques from the selective case to move Uwi(di) to the ideally generated parameters
di(r), but only after the oracle call H(di) is made.

We believe our “delayed backdoor programming” technique may be useful in other situations where
an unbounded number of backdoors are needed in a program of fixed size.

2 Preliminaries

2.1 Indistinguishability Obfuscation and PRFs

In this section, we define indistinguishability obfuscation, and variants of pseudo-random functions
(PRFs) that we will make use of. All variants of PRFs that we consider will be constructed from
one-way functions.

Indistinguishability Obfuscation. The definition below is adapted from [GGH+13]; the main
difference with previous definitions is that we uncouple the security parameter from the circuit size
by directly defining indistinguishability obfuscation for all circuits:

Definition 1 (Indistinguishability Obfuscator (iO)). A uniform PPT machine iO is called an
indistinguishability obfuscator for circuits if the following conditions are satisfied:

◦ For all security parameters λ ∈ N, for all circuits C, for all inputs x, we have that

Pr[C ′(x) = C(x) : C ′ ← iO(λ,C)] = 1

◦ For any (not necessarily uniform) PPT adversaries Samp, D, there exists a negligible function
α such that the following holds: if Pr[|C0| = |C1| and ∀x,C0(x) = C1(x) : (C0, C1, σ) ←
Samp(1λ)] > 1− α(λ), then we have:

∣∣∣Pr
[
D(σ, iO(λ,C0)) = 1 : (C0, C1, σ)← Samp(1λ)

]
−Pr

[
D(σ, iO(λ,C1)) = 1 : (C0, C1, σ)← Samp(1λ)

]∣∣∣ ≤ α(λ)

Such indistinguishability obfuscators for circuits were constructed under novel algebraic hardness
assumptions in [GGH+13].

PRF variants. We first consider some simple types of constrained PRFs [BW13, BGI13, KPTZ13],
where a PRF is only defined on a subset of the usual input space. We focus on puncturable PRFs,
which are PRFs that can be defined on all bit strings of a certain length, except for any polynomial-
size set of inputs:
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Definition 2. A puncturable family of PRFs F is given by a triple of Turing Machines KeyF ,
PunctureF , and EvalF , and a pair of computable functions n(·) and m(·), satisfying the following
conditions:

◦ [Functionality preserved under puncturing] For every PPT adversary A such that A(1λ)
outputs a set S ⊆ {0, 1}n(λ), then for all x ∈ {0, 1}n(λ) where x /∈ S, we have that:

Pr
[
EvalF (K,x) = EvalF (KS , x) : K ← KeyF (1λ),KS = PunctureF (K,S)

]
= 1

◦ [Pseudorandom at punctured points] For every PPT adversary (A1, A2) such that A1(1λ)
outputs a set S ⊆ {0, 1}n(λ) and state σ, consider an experiment where K ← KeyF (1λ) and
KS = PunctureF (K,S). Then we have∣∣∣Pr

[
A2(σ,KS , S,EvalF (K,S)) = 1

]
− Pr

[
A2(σ,KS , S, Um(λ)·|S|) = 1

]∣∣∣ = negl(λ)

where EvalF (K,S) denotes the concatenation of EvalF (K,x1)), . . . ,EvalF (K,xk)) where S =
{x1, . . . , xk} is the enumeration of the elements of S in lexicographic order, negl(·) is a neg-
ligible function, and U` denotes the uniform distribution over ` bits.

For ease of notation, we write F (K,x) to represent EvalF (K,x). We also represent the punctured
key PunctureF (K,S) by K(S).

The GGM tree-based construction of PRFs [GGM84] from one-way functions are easily seen to yield
puncturable PRFs, as recently observed by [BW13, BGI13, KPTZ13]. Thus we have:

Theorem 1. [GGM84, BW13, BGI13, KPTZ13] If one-way functions exist, then for all efficiently
computable functions n(λ) and m(λ), there exists a puncturable PRF family that maps n(λ) bits to
m(λ) bits.

3 Definitions

In this section, we describe our definitional framework for universal parameter schemes. The es-
sential property of a universal parameter scheme is that given the universal parameters, and given
any program d that generates parameters from randomness (subject to certain size constraints, see
below), it should be possible for any party to use the universal parameters and the description of
d to obtain induced parameters that look like the parameters that d would have generated given
uniform and independent randomness.

We will consider two definitions – a simpler definition promising security for a single arbitrary but
fixed protocol, and a more complex definition promising security in a strong adaptive sense against
many protocols chosen after the universal parameters are fixed. All our security definitions follow
a “Real World” vs. “Ideal World” paradigm.

Before we proceed to our definitions, we will first set up some notation and conventions that all our
definitions will respect:
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◦ We will consider programs d that are bounded in the following ways: Note that we will use
d to refer to both the program, and the description of the program. Below, `(λ),m(λ), and
k(λ) are all computable polynomials. The description of d is as an `(λ)-bit string describing a
circuit7 implementing d. The program d takes as input m(λ) bits of randomness, and outputs
parameters of length k(λ) bits. Without loss of generality, we assume that `(λ) ≥ λ and
m(λ) ≥ λ. When context is clear, we omit the dependence on the security parameter λ.
The quantities (`,m, k) are bounds that are set during the setup of the universal parameter
scheme.

◦ We enforce that every `-bit description of d yields a circuit mapping m bits to k bits; this can
be done by replacing any invalid description with a default circuit satisfying these properties.

◦ We will sometimes refer to the program d that generates parameters as a “protocol”. This is
to emphasize that d is designed to generate parameters for some protocol.

A universal parameter scheme consists of two algorithms:

(1) The first randomized algorithm UniversalGen takes as input a security parameter 1λ and
outputs universal parameters U .

(2) The second algorithm InduceGen takes as input universal parameters U and a circuit d of size
at most `, and outputs induced parameters pd.

Intuition. Before giving formal definitions, we will now describe the intuition behind our def-
initions. We want to formulate security definitions that guarantee that induced parameters are
indistinguishable from honestly generated parameters to an arbitrary interactive system of adver-
sarial and honest parties.

We first consider an “ideal world,” where a trusted party, on input a program description d, simply
outputs d(rd) where rd is independently chosen true randomness, chosen once and for all for each
given d. In other words, if F is a truly random function, then the trusted party outputs d(F (d)).
In this way, if any party asks for the parameters corresponding to a specific program d, they are all
provided with the same honestly generated value. This corresponds precisely to the shared trusted
public parameters model in which protocols are typically constructed.

In the real world, however, all parties would only have access to the trusted universal parameters.
Parties would use the universal parameters to derive induced parameters for any specific program
d. Following the ideal/real paradigm, we would like to argue that for any adversary that exists in
the real world, there should exist an equivalently successful adversary in the ideal world. However,
the general scenario of an interaction between multiple parties, some malicious and some honest,
interacting in an arbitrary security game would be cumbersome to model in a definition. To avoid
this, we note that the only way that honest parties ever use the universal parameters is to execute
the parameter derivation algorithm using the universal parameters and some program descriptions
d (corresponding to the protocols in which they participate) to obtain derived parameters, which
these honest parties then use in their interactions with the adversary.

7Note that if we assume iO for Turing Machines, then we do not need to restrict the size of the description of d.
Candidates for iO for Turing Machines were given by [ABG+13, BCP14].
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Thus, instead of modeling these honest parties explicitly, we can “absorb” them into the adversary, as
we now explain: We will require that for every real-world adversaryA, there exists a simulator S that
can provide simulated universal parameters U to the adversary such that these simulated universal
parameters U actually induce the completely honestly generated parameters d(F (d)) created by the
trusted party: in other words, that InduceGen(U, d) = d(F (d)). Note that since honest parties are
instructed to simply honestly compute induced parameters, this ensures that honest parties in the
ideal world would obtain these completely honestly generated parameters d(F (d)). Thus, we do not
need to model the honest parties explicitly – the adversary A can internally simulate any honest
parties. By the condition we impose on the simulation, these honest parties would have the correct
view in the ideal world.

Selective (and bounded) vs. Adaptive (and unbounded) Security. We explore two nat-
ural formulations of the simulation requirement. The simpler variant is the selective case, where
we require that the adversary declare at the start a single program d∗ on which it wants the ideal
world simulator to enforce equality between the honestly generated parameters d∗(F (d∗)) and the
induced parameters InduceGen(U, d∗). This simpler variant has two advantages: First, it is achiev-
able in the standard model. Second, it is achieved by natural and simple construction based on
indistinguishability obfuscation.

However, ideally, we would like our security definition to capture a scenario where universal param-
eters U are set, and then an adversary can potentially adaptively choose a program d for generating
parameters for some adaptively chosen application scenario. For example, there may be several
plausible implementations of a program to generate parameters, and an adversary could influence
which specific program description d is used for a particular protocol. Note, however, that such an
adaptive scenario is trivially impossible to achieve in the standard model: there is no way that a sim-
ulator can publish universal parameters U of polynomial size, and then with no further interaction
with the adversary, force InduceGen(U, d∗) = d∗(F (d∗)) for a d∗ chosen after U has already been
declared. This impossibility is very similar to the trivial impossibility for reusable non-interactive
non-committing public-key encryption [Nie02] in the plain model. Such causality problems can be
addressed, however, in the random-oracle model. As discussed in the introduction, the sound use
of the random oracle model together with obfuscation requires care: we do not assume that the
random oracle itself can be obfuscated, which presents an intriguing technical challenge.

Furthermore, we would like our universal parameters to be useful to obtain induced parameters for
an unbounded number of other application scenarios. We formulate and achieve such an adaptive
unbounded definition of security in the random oracle model.

3.1 Selective One-Time Universal Parameters

We now proceed to our first formal definition, of a selective one-time secure universal parameter
scheme.

Definition 3 (Selectively-Secure One-Time Universal Parameters Scheme). Let `(λ),m(λ), k(λ)
be efficiently computable polynomials. A pair of efficient algorithms (UniversalGen, InduceGen)
is a selectively-secure one-time universal parameters scheme if there exists an efficient algorithm
SimUGen such that:
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◦ There exists a negligible function negl such that for all circuits d of length `, taking m bits of
input, and outputting k bits, and for all strings pd ∈ {0, 1}k, we have that:

Pr[InduceGen(SimUGen(1λ, d, pd), d) = pd] = 1− negl(λ)

◦ For every efficient adversary A = (A1,A2), where A2 outputs one bit, there exists a negligible
function negl such that the following holds. Consider the following two experiments:

The experiment Real(1λ) is as follows:

1. (d∗, σ)← A1(1λ)

2. Output A2(UniversalGen(1λ), σ).

The experiment Ideal(1λ) is as follows:

1. (d∗, σ)← A1(1λ)

2. Choose r uniformly from {0, 1}m.
3. Let pd = d∗(r).

4. Output A2(SimUGen(1λ, d∗, pd), σ).

Then we have: ∣∣Pr[Real(1λ) = 1]− Pr[Ideal(1λ) = 1]
∣∣ = negl(λ)

3.2 Adaptively Secure Universal Parameters

We now proceed to define universal parameter schemes for the adaptive setting in the random oracle
model. Our definition will also handle an unbounded number of induced parameters simultaneously.
Recall that in the random oracle model, the indistinguishability obfuscation cannot obfuscate cir-
cuits that call the random oracle. Thus, the random oracle can only be used outside of obfuscated
programs.

Definition 4 (Adaptively-Secure Universal Parameters Scheme). Let `(λ),m(λ), k(λ) be efficiently
computable polynomials. A pair of efficient oracle algorithms (UniversalGen, InduceGen) is an
adaptively-secure universal parameters scheme if there exist efficient interactive Turing Machines
SimUGen, SimRO such that:

◦ We define an admissible adversary A to be an efficient interactive Turing Machine that outputs
one bit, with the following input/output behavior:

– A initially takes as input a security parameter and a universal parameter U .

– A can send a message (RO, x) corresponding to a random oracle query. In response, A
expects to receive the output of the random oracle on input x.

– A can send a message (params, d), where d is a circuit of length `, taking m bits of
input, and outputting k bits. The adversary does not expect any response to this mes-
sage. Instead, upon sending this message, A is required to honestly compute pd =
InduceGen(U, d), making use of any additional random oracle queries, and A appends
(d, pd) to an auxiliary tape.

9



Remark. Intuitively, (params, d) messages correspond to an honest party seeking pa-
rameters generated by program d. Recall that A is meant to internalize the behavior of
honest parties.

◦ Consider the following two experiments:

The experiment Real(1λ) is as follows:

1. Throughout this experiment, a random oracle H is implemented by assigning random
outputs to each unique query made to H.

2. U ← UniversalGenH(1λ)

3. A(1λ, U) is executed, where every message of the form (RO, x) receives the response H(x).

4. Upon termination of A, the output of the experiment is the final output of the execution
of A.

The experiment Ideal(1λ) is as follows:

1. A truly random function F that maps ` bits to m bits is implemented by assigning random
m-bit outputs to each unique query made to F . Throughout this experiment, a Parameters
Oracle O is implemented as follows: On input d, where d is a circuit of length `, taking
m bits of input, and outputting k bits, O outputs d(F (d)).

2. (U, τ) ← SimUGen(1λ). Here, SimUGen can make arbitrary queries to the Parameters
Oracle O.

3. A(1λ, U) and SimRO(τ) begin simultaneous execution. Messages for A or SimRO are
handled as follows:

– Whenever A sends a message of the form (RO, x), this is forwarded to SimRO, which
produces a response to be sent back to A.

– SimRO can make any number of queries to the Parameter Oracle O.
– Finally, after A sends any message of the form (params, d), the auxiliary tape of A

is examined until an entry of the form (d, pd) is added to it. At this point, if pd is
not equal to d(F (d)), then experiment aborts and we say that an “Honest Parameter
Violation” has occurred. Please note that this is the only way that the experiment
Ideal can abort. If the adversary “aborts”, then we consider this to simply induce
an output of zero by the adversary, not an abort of the Ideal experiment.

4. Upon termination of A, the output of the experiment is the final output of the execution
of A.

We require that for every efficient admissible adversary A, there exists a negligible function
negl such that the following two conditions hold:

Pr[Ideal(1λ) aborts] < negl(λ)

and

∣∣Pr[Real(1λ) = 1]− Pr[Ideal(1λ) = 1]
∣∣ = negl(λ)
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4 Selective One-Time Universal Parameters

In this section, we prove the following theorem:

Theorem 2 (Selective One-Time Universal Parameters). If indistinguishability obfuscation and
one-way functions exist, then there exists a selectively secure one-time universal parameters scheme,
according to Definition 3.

The required Selective One-Time Universal Parameters Scheme consists of programs UniversalGen
and InduceGen.

◦ UniversalGen(1λ) first samples the key K for a PRF that takes ` bits as input and outputs
m bits. It then sets Universal Parameters U to be an indistinguishability obfuscation of the
program8 Selective-Single-Parameters in Figure 1. It outputs U .

◦ InduceGen(U, d) runs the program U on input d to generate and output U(d).

Selective-Single-Parameters

Constant: PRF key K.
Input: Program description d.

1. Output d(F (K, d)). Recall that d is a program description which outputs k bits.

Figure 1: Program Selective-Single-Parameters

8Appropriately padded to the maximum of the size of itself and Program Selective-Single-Parameters: 2
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4.1 Hybrids

We prove security by a sequence of hybrid arguments, starting with the original experiment Hybrid0

in the Real World and replacing the output at d∗ with an external Parameters in the final hybrid
(Ideal World). We denote changes between subsequent hybrids using red underlined font.

Each hybrid below is an experiment that takes as input 1λ. The final output of each hybrid
experiment is the output produced by the adversary when it terminates.

Hybrid0:

◦ The adversary picks protocol description d∗ and sends it to the challenger.

◦ The challenger picks PRF key K and sends the adversary an iO of the program9 Selective-
Single-Parameters in Figure 2.

◦ The adversary queries the program on input d∗ to obtain the Parameters.

Selective-Single-Parameters

Constant: PRF key K.
Input: Program description d.

1. Output d(F (K, d)). Recall that d is a program description which outputs k bits.

Figure 2: Program Selective-Single-Parameters

Hybrid1:

◦ The adversary picks protocol description d∗ and sends it to the challenger.

◦ The challenger picks PRF key K, sets f∗ = d∗(F (K, d∗)), punctures K at d∗ and sends the
adversary an iO of the program10 Selective-Single-Parameters: 2 in Figure 3.

◦ The adversary queries the program on input d∗ to obtain the Parameters.

Selective-Single-Parameters: 2

Constant: PRF key K{d∗}, d∗, f∗.
Input: Program description d.

1. If d = d∗ output f∗.

2. Output d(F (K, d)). Recall that d is a program description which outputs k bits.

Figure 3: Program Selective-Single-Parameters: 2

9Appropriately padded to the maximum of the size of itself and Program Selective-Single-Parameters: 2
10Appropriately padded to the maximum of the size of itself and Program Selective-Single-Parameters
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Hybrid2:

◦ The adversary picks protocol description d∗ and sends it to the challenger.

◦ The challenger picks PRF key K, picks x← {0, 1}m, sets f∗ = d∗(x), punctures K at d∗ and
sends the adversary an iO of the program11 Selective-Single-Parameters: 2 in Figure 4.

◦ The adversary queries the program on input d∗ to obtain the Parameters.

Selective-Single-Parameters: 2

Constant: PRF key K{d∗}, d∗, f∗.
Input: Program description d.

1. If d = d∗ output f∗.

2. Output d(F (K, d)). Recall that d is a program description which outputs k bits.

Figure 4: Program Selective-Single-Parameters: 2

Hybrid3:

◦ This hybrid describes how SimUGen works.

◦ The adversary picks protocol description d∗ and sends it to the challenger.

◦ The challenger executes SimUGen(1λ, d∗), which does the following: It picks PRF key K,
sets f∗ = pd for externally obtained Parameters pd, punctures K at d∗ and outputs an iO of
the program12 Selective-Single-Parameters: 2 in Figure 5. This is then sent to the adversary.

◦ The adversary queries the program on input d∗ to obtain the Parameters.

Selective-Single-Parameters: 2

Constant: PRF key K{d∗}, d∗, f∗.
Input: Program description d.

1. If d = d∗ output f∗.

2. Output d(F (K, d)). Recall that d is a program description which outputs k bits.

Figure 5: Program Selective-Single-Parameters: 2

11Appropriately padded to the maximum of the size of itself and Program Selective-Single-Parameters
12Appropriately padded to the maximum of the size of itself and Program Selective-Single-Parameters
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4.2 Indistinguishability of the Hybrids

To prove Theorem 2, it suffices to prove the following claims,

Claim 1. Hybrid0(1λ) and Hybrid1(1λ) are computationally indistinguishable.

Proof. Hybrid0 and Hybrid1 are indistinguishable by security of iO, since the programs Selective-
Single-Parameters and Selective-Single-Parameters: 2 are functionally equivalent.

Suppose not, then there exists a distinguisher D1 that distinguishes between the two hybrids. This
can be used to break security of the iO via the following reduction to distinguisher D.

D acts as challenger in the experiment of Hybrid0. He activates the adversary D1 to obtain input d∗

which he passes to the iO Samp algorithm. He also picks PRF key K and passes it to Samp. Samp
on input d∗ computes f∗ = d∗(F (K, d∗)). Next, it samples circuit C0 = Selective-Single-Parameters
according to Figure 2 and C1 = Selective-Single-Parameters: 2 according to Figure 3 with inputs
d∗, f∗. He pads the circuits in order to bring them to equal size. It is easy to see that these circuits
are functionally equivalent. Next, Samp gives circuit Cx = iO(C0) or Cx = iO(C1) to D.

D continues the experiment of Hybrid1 except that he sends the obfuscated circuit Cx instead
of the obfuscation of Selective-Single-Parameters to the adversary D1. Since D1 has significant
distinguishing advantage, there exists a polynomial p(·) such that,∣∣∣Pr

[
D1(Hybrid0) = 1

]
− Pr

[
D1(Hybrid1) = 1

]∣∣∣ ≥ 1/p(λ).

We note that Hybrid0 and Hybrid1 correspond exactly to Cx being C0 and C1 respectively, thus we
can just have D echo the output of D1 such that the following is true, for α(·) = 1/p(·)∣∣∣Pr

[
D(σ, iO(n,C0)) = 1 : (C0, C1, σ)← Samp(1λ)

]
−Pr

[
D(σ, iO(n,C1)) = 1 : (C0, C1, σ)← Samp(1λ)

]∣∣∣ ≥ α(λ)

Claim 2. Hybrid0(1λ) and Hybrid1(1λ) are computationally indistinguishable.

Proof. Hybrid1 and Hybrid2 are indistinguishable by security of the punctured PRF K{d∗}.

Suppose they are not, then consider an adversary D2 who distinguishes between these hybrids with
significant advantage.

This adversary can be used to break selective security of the punctured PRF K via the following re-
duction algorithm to distinguisher D, that first gets the protocol d∗ after activating the distinguisher
D2.

The PRF challenger gives the challenge a to the PRF attacker D, which is either the output of the
PRF at d∗ or is set uniformly at random in {0, 1}m. D sets f∗ = d∗(a) and continues the experiment
of Hybrid1 against D2.

14



Then, there exists polynomial p(·) such that∣∣∣Pr
[
D2(Hybrid2) = 1

]
− Pr

[
D2(Hybrid2) = 1

]∣∣∣ ≥ 1/p(λ).

If D2 predicts Hybrid1, then a is the output of the punctured PRF K at d∗. If D2 predicts Hybrid2,
then a was chosen uniformly at random. Therefore, we can just have D echo the output of D2 such
that ∣∣∣Pr

[
D(F (K{d∗}, d∗)) = 1

]
− Pr

[
D(y ← {0, 1}n) = 1

]∣∣∣ ≥ 1/p(λ).

Claim 3. Hybrid2(1λ) and Hybrid3(1λ) are identical.

Proof. Hybrid2 and Hybrid3 are identical since x is sampled uniformly at random in {0, 1}n.

Claim 4.
Pr[InduceGen(SimUGen(1λ, d, pd), d) = pd] = 1

Proof. This follows from inspection of our construction, therefore condition (1) in Definition 3 is
fulfilled.
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5 Adaptively Secure Universal Parameters

In this section, we prove the following theorem:

Theorem 3 (Adaptively Secure Universal Parameters). If indistinguishability obfuscation and in-
jective PRGs exist, then there exists an adaptively secure universal parameters scheme, according to
Definition 4, in the Random Oracle Model.

We now describe a scheme that fulfills the conditions of Theorem 3. This scheme consists of
algorithms UniversalGen and InduceGen.

◦ UniversalGen(1λ) first samples PRF keys K1,K2,K
′
2 and then sets Universal Parameters U

to be an indistinguishability obfuscation of the program Adaptive-Parameters 13, Figure 6.

The program takes as input a value u, where |u| = n2 and a value v such that |v| = n, both
obtained as the output of a random oracle H on input d. Here, n is defined to be the size of an
iO of program14 PK3 is n. As such, n will be some fixed polynomial in the security parameter
λ. The key to our proof is to instantiate the random oracle H appropriately to generate the
Parameters for any protocol description d.

Denote by F
(n)
1 = {F 1,0

1 , F 1,1
1 , F 2,0

1 , F 2,1
1 . . . Fn,01 , Fn,11 } a sequence of 2n puncturable PRF’s

that each take n-bit inputs and output n bits. For some key sequence {K1,0
1 ,K1,1

1 ,K2,0
1 ,K2,1

1 . . .

Kn,0
1 ,Kn,1

1 }, denote the combined key byK(n)
1 . Then, on a n-bit input v1, denote the combined

output of the function F
(n)
1 using key K(n)

1 by F (n)
1 (K(n)

1 , v1). Note that the length of this
combined output is 2n2.

Denote by F2 a puncturable PRF that takes inputs of n2 + n bits and outputs n1 bits, where
n1 is the size of the key K3 for the program PK3 in Figure 7. In particular, n1 = λ. Denote
by F ′2 another puncturable PRF that takes inputs of n2 +n bits and outputs n2 bits, where n2

is the size of the randomness r used by the iO given the program PK3 in Figure 7. Denote by
F3 another puncturable PRF that takes inputs of ` bits and outputs m bits. Denote by PRG
an injective length-doubling pseudo-random generator that takes inputs of n bits and outputs
2n bits.

Notem is the size of uniform randomness accepted by d(·), k is the size of parameters generated
by d(·).

◦ InduceGen(U, d) queries the random oracle H to obtain (u, v) = H(d). It then runs the
program U generated by UniversalGen(1λ) on input (u, v) to obtain as output the obfuscated
program P . It now runs this program P on input d to obtain the required parameters.

13Note that this program must be padded appropriately to equal the maximum of the size of itself and other
corresponding programs in various hybrids, as described in the next section.

14Appropriately padded to the maximum of the size of itself and P ′K3,p∗j ,d∗j
in future hybrids
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Adaptive-Parameters

Constants: PRF keys K(n)
1 , K2,K

′
2.

Input: Program hash u = u[1], . . . , u[n], v.

1. Compute F1(K(n)
1 , v) = (y1,0, y1,1), . . . , (y1,0, y1,1).

2. For i = 1, . . . , n, if u[i] = yi,0 set xi = 0 else if u[i] = yi,1 set xi = 1 else set xi = ⊥

3. If x ∈ {0, 1}n (i.e. no ⊥s), output x.

4. Else set K3 = F2(K2, u|v), r = F2(K ′2, u|v). Output P = iO(PK3 ; r) of the program a PK3 of
Figure 7.

aAppropriately padded to the maximum of the size of itself and P ′K3,p∗j ,d∗j
in future hybrids

Figure 6: Program Adaptive-Parameters

PK3

Constant: PRF key K3.
Input: Program description d.

1. Output d(F3(K3, d)). Recall that d is a program description which outputs k bits.

Figure 7: Program PK3



5.1 Security Game and Hybrids

We first convert the admissible adversary A - that is allowed to send any message (RO, x) or
(params, d) - and construct a modified adversary, such that whenever A sends message (params, d),
our modified adversary sends message (RO, d) and then sends message (params, d).

We prove security against this modified adversary. Note that it suffices to prove the security of our
scheme with respect to such modified adversaries because this transformation does not change the
output of the adversary in any way (that is, the modified adversary is functionally equivalent to
the previous adversary). Because the modified adversary always provides protocol description d to
the random oracle, our proof will not directly deal with messages of the form (params, d) and it will
suffice to deal only with messages (RO, d) sent by the adversary.

We now prove, via a sequence of polynomial hybrids, that algorithms UniversalGen and InduceGen
satisfy the security requirements of Definition 4 in the Random Oracle Model. We begin with Hybrid0

corresponding to the real world in the security game described above. Suppose the adversary makes
q(λ) queries to the random oracle H, for some polynomial q(·). The argument proceeds via the se-
quence of hybrids Hybrid0,Hybrid1,1,Hybrid1,2, . . .Hybrid1,13, Hybrid2,1, Hybrid2,2 . . .Hybrid2,13 . . .Hybridq(λ),13,
each of which we prove to be indistinguishable from the previous one. We define Hybrid0,13 for con-
venience in our proof. The final hybrid Hybridq(λ),13 corresponds to the ideal world in the security
game described above, and contains (implicitly) descriptions of SimUGen, SimRO as required in Def-
inition 4.

We start by describing Hybrid0 and then describe Hybrids,1, Hybrids,2, . . .Hybrids,13 for s ∈ [q(λ)].
We denote changes between subsequent hybrids using red underlined font. We also add an intuition
behind why the hybrids should be indistinguishable. Detailed proofs can be found in the next
section. In the following experiments, the challenger chooses PRF keys K(n)

1 ,K2 and K ′2 for PRF’s
F

(n)
1 , F2 and F ′2.

Each hybrid below is an experiment that takes as input 1λ. The final output of each hybrid
experiment is the output produced by the adversary when it terminates.
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Hybrid0 :

◦ The challenger pads the program Adaptive-Parameters in Figure 8 to be the maximum of the
size of itself and all corresponding programs (Adaptive-Parameters: 2, Adaptive-Parameters:
3) in the following hybrids. Next, he sends the obfuscation of the program in Figure 8 to the
adversary.
◦ Set j = 0. While the adversary is making queries to random oracle, increment j and repeat:

1. Let the adversary query to the random oracle be on protocol description d∗j .
2. The challenger sets the output of the random oracle, u∗j ← {0, 1}n

2
, v∗j ← {0, 1}n.

◦ The adversary then outputs a single bit b′.

Adaptive-Parameters

Constants: PRF keys K(n)
1 , K2,K

′
2.

Input: Program hash u = u[1], . . . , u[n], v.
1. Compute F1(K(n)

1 , v) = (y1,0, y1,1), . . . , (yn,0, yn,1).
2. For i = 1, . . . , n, if u[i] = yi,0 set xi = 0 else if u[i] = yi,1 set xi = 1 else set xi = ⊥
3. If x ∈ {0, 1}n (i.e. no ⊥s), output x.
4. Else set K3 = F2(K2, u|v), r = F2(K ′2, u|v). Output iO(PK3 ; r) of the programa PK3 of

Figure 9.

aAppropriately appended to the maximum of the size of itself and P ′K3,p∗j ,d∗j
in future hybrids

Figure 8: Program Adaptive-Parameters

PK3

Constant: PRF key K3.
Input: Program description d.

1. Output d(F3(K3, d)). Recall that d is a program description which outputs k bits.

Figure 9: Program PK3
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Hybrids−1,13 :

◦ The challenger pads the program Adaptive-Parameters in Figure 10 appropriately 15 and sends
an iO of the program to the adversary.
◦ Set j = 0. While the adversary is making queries to random oracle, increment j and repeat:

1. Let the adversary query to the random oracle be on protocol description d∗j .
2. If j < s, the challenger sets the output of the random oracle, v∗j ← {0, 1}n.

He sets K3 ← {0, 1}n, e′ ← {0, 1}n. He queries the oracle to obtain the Parameters p∗j
and sets g = iO(P ′K3,p∗j ,d

∗
j
, e′) (See Figure 12). For all b ∈ {0, 1} and i ∈ [1, n], he sets

(y∗1,0, y
∗
1,1), . . . , (y∗n,0, y

∗
n,1) = F1(K(n)

1 , v∗j ), u
∗
j [i] = y∗i,gi

, where gi is the ith bit of g.

3. If j ≥ s, the challenger sets the output of the random oracle, u∗j ← {0, 1}n
2
, v∗j ← {0, 1}n.

◦ The adversary then outputs a single bit b′.

Adaptive-Parameters

Constants: PRF keys K(n)
1 , K2,K

′
2.

Input: Program hash u = u[1], . . . , u[n], v.
1. Compute F1(K(n)

1 , v) = (y1,0, y1,1), . . . , (yn,0, yn,1).
2. For i = 1, . . . , n, if u[i] = yi,0 set xi = 0 else if u[i] = yi,1 set xi = 1 else set xi = ⊥
3. If x ∈ {0, 1}n (i.e. no ⊥s), output x.
4. Else set K3 = F2(K2, u|v), r = F2(K ′2, u|v). Output iO(PK3 ; r) of the programa PK3 of

Figure 11.

aAppropriately appended to the maximum of the size of itself and P ′K3,p∗j ,d∗j

Figure 10: Program Adaptive-Parameters

PK3

Constant: PRF key K3.
Input: Program description d.

1. Output d(F3(K3, d)). Recall that d is a program description which outputs k bits.

Figure 11: Program PK3

P ′K3,p∗j ,d∗j

Constants: PRF key K3{d∗j}, d∗j , p∗j .
Input: Program description d.

1. If d = d∗j output p∗j .
2. Else output d(F3(K3, d)). Recall that d is a program description which outputs k bits.

Figure 12: Program P ′K3,p∗j ,d
∗
j

15To the maximum of the size of itself and all corresponding programs (Adaptive-Parameters: 2, Adaptive-
Parameters: 3) in the previous and following hybrids.
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Hybrids,1 :

◦ The challenger sets v∗s ← {0, 1}n, u∗s ← {0, 1}n
2 . He sets (y∗1,0, y

∗
1,1), . . . , (y∗n,0, y

∗
n,1) = F1(K(n)

1 , v∗s).
Then, for all b ∈ {0, 1}, he sets z∗i,b = PRG(y∗i,b) for i ∈ [1, n].
He pads the program Adaptive-Parameters: 2 in Figure 13 appropriately 16 and sends an iO
of the program to the adversary.
◦ Set j = 0. While the adversary is making queries to random oracle, increment j and repeat:

1. Let the adversary query to the random oracle be on protocol description d∗j .
2. If j < s, the challenger sets the output of the random oracle, v∗j ← {0, 1}n.

He sets K3 ← {0, 1}n, e′ ← {0, 1}n. He queries the oracle to obtain the Parameters p∗j
and sets g = iO(P ′K3,p∗j ,d

∗
j
, e′) (See Figure 15). For all b ∈ {0, 1} and i ∈ [1, n], he sets

(y∗1,0, y
∗
1,1), . . . , (y∗n,0, y

∗
n,1) = F1(K(n)

1 , v∗j ), u
∗
j [i] = y∗i,gi

, where gi is the ith bit of g.
3. If j > s, the challenger sets the output of the random oracle, u∗j ← {0, 1}n

2
, v∗j ← {0, 1}n.

◦ The adversary then outputs a single bit b′.

Adaptive-Parameters: 2

Constants: v∗s , PRF key K
(n)
1 {v∗s}, K2,K

′
2, z∗i,b for i ∈ [1, n] and b ∈ {0, 1}

Input: Program hash u = u[1], . . . , u[n], v.
1. If v = v∗s then for i = 1, . . . , n do

If PRG(u[i]) = z∗i,0 let xi = 0, if PRG(u[i]) = z∗i,1 let xi = 1, else xi = ⊥.
Go to step 4.

2. Compute F1(K(n)
1 , v) = (y1,0, y1,1), . . . , (yn,0, yn,1).

3. For i = 1, . . . , n, if u[i] = yi,0 set xi = 0 else if u[i] = yi,1 set xi = 1 else set xi = ⊥
4. If x ∈ {0, 1}n (i.e. no ⊥s), output x.
5. Else set K3 = F2(K2, u|v), r = F2(K ′2, u|v). Output iO(PK3 ; r) of the programa PK3 of

Figure 14.

aAppropriately appended to the maximum of the size of itself and P ′K3,p∗j ,d∗j

Figure 13: Program Adaptive-Parameters

PK3

Constant: PRF key K3.
Input: Program description d.

1. Output d(F3(K3, d)). Recall that d is a program description which outputs k bits.

Figure 14: Program PK3

P ′K3,p∗j ,d∗j

Constants: PRF key K3{d∗j}, d∗j , p∗j .
Input: Program description d.

1. If d = d∗j output p∗j .
2. Else output d(F3(K3, d)). Recall that d is a program description which outputs k bits.

Figure 15: Program P ′K3,p∗j ,d
∗
j

Intuitively, indistinguishable from Hybrids−1,13 by iO between Adaptive-Parameters: -2.

16To the maximum of the size of itself and all corresponding programs (Adaptive-Parameters, Adaptive-Parameters:
3) in the previous and following hybrids.
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Hybrids,2 :

◦ The challenger sets v∗s ← {0, 1}n, u∗s ← {0, 1}n
2 . For all b ∈ {0, 1}, i ∈ [1, n], he sets y∗i,b ← {0, 1}

n.
Then, for all b ∈ {0, 1}, he sets z∗i,b = PRG(y∗i,b) for i ∈ [1, n].
He pads the program Adaptive-Parameters: 2 in Figure 16 appropriately 17 and sends an iO
of the program to the adversary.
◦ Set j = 0. While the adversary is making queries to random oracle, increment j and repeat:

1. Let the adversary query to the random oracle be on protocol description d∗j .
2. If j < s, the challenger sets the output of the random oracle, v∗j ← {0, 1}n.

He sets K3 ← {0, 1}n, e′ ← {0, 1}n. He queries the oracle to obtain the Parameters p∗j
and sets g = iO(P ′K3,p∗j ,d

∗
j
, e′) (See Figure 18). For all b ∈ {0, 1} and i ∈ [1, n], he sets

(y∗1,0, y
∗
1,1), . . . , (y∗n,0, y

∗
n,1) = F1(K(n)

1 , v∗j ), u
∗
j [i] = y∗i,gi

, where gi is the ith bit of g.
3. If j > s, the challenger sets the output of the random oracle, u∗j ← {0, 1}n

2
, v∗j ← {0, 1}n.

◦ The adversary then outputs a single bit b′.

Adaptive-Parameters: 2

Constants: v∗s , PRF key K(n)
1 {v∗s}, K2,K

′
2, z∗i,b for i ∈ [1, n] and b ∈ {0, 1}

Input: Program hash u = u[1], . . . , u[n], v.
1. If v = v∗s then for i = 1, . . . , n do

If PRG(u[i]) = z∗i,0 let xi = 0, if PRG(u[i]) = z∗i,1 let xi = 1, else xi = ⊥.
Go to step 4.

2. Compute F1(K(n)
1 , v) = (y1,0, y1,1), . . . , (yn,0, yn,1).

3. For i = 1, . . . , n, if u[i] = yi,0 set xi = 0 else if u[i] = yi,1 set xi = 1 else set xi = ⊥
4. If x ∈ {0, 1}n (i.e. no ⊥s), output x.
5. Else set K3 = F2(K2, u|v), r = F2(K ′2, u|v). Output iO(PK3 ; r) of the programa PK3 of

Figure 17.

aAppropriately appended to the maximum of the size of itself and P ′K3,p∗j ,d∗j

Figure 16: Program Adaptive-Parameters

PK3

Constant: PRF key K3.
Input: Program description d.

1. Output d(F3(K3, d)). Recall that d is a program description which outputs k bits.

Figure 17: Program PK3

P ′K3,p∗j ,d∗j

Constants: PRF key K3{d∗j}, d∗j , p∗j .
Input: Program description d.

1. If d = d∗j output p∗j .
2. Else output d(F3(K3, d)). Recall that d is a program description which outputs k bits.

Figure 18: Program P ′K3,p∗j ,d
∗
j

Intuitively, indistinguishable from Hybrids,1 by security of punctured PRF key K(n)
1 {v∗s}.

17To the maximum of the size of itself and all corresponding programs (Adaptive-Parameters, Adaptive-Parameters:
3) in the previous and following hybrids.
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Hybrids,3 :

◦ The challenger sets v∗s ← {0, 1}n, u∗s ← {0, 1}n
2 . For all b ∈ {0, 1}, i ∈ [1, n], he sets z∗i,b ← {0, 1}

2n.
He pads the program Adaptive-Parameters: 2 in Figure 19 appropriately 18 and sends an iO
of the program to the adversary.
◦ Set j = 0. While the adversary is making queries to random oracle, increment j and repeat:

1. Let the adversary query to the random oracle be on protocol description d∗j .
2. If j < s, the challenger sets the output of the random oracle, v∗j ← {0, 1}n.

He sets K3 ← {0, 1}n, e′ ← {0, 1}n. He queries the oracle to obtain the Parameters p∗j
and sets g = iO(P ′K3,p∗j ,d

∗
j
, e′) (See Figure 21). For all b ∈ {0, 1} and i ∈ [1, n], he sets

(y∗1,0, y
∗
1,1), . . . , (y∗n,0, y

∗
n,1) = F1(K(n)

1 , v∗j ), u
∗
j [i] = y∗i,gi

, where gi is the ith bit of g.
3. If j > s, the challenger sets the output of the random oracle, u∗j ← {0, 1}n

2
, v∗j ← {0, 1}n.

◦ The adversary then outputs a single bit b′.

Adaptive-Parameters: 2

Constants: v∗s , PRF keys K(n)
1 {v∗s}, K2,K

′
2, z∗i,b for i ∈ [1, n] and b ∈ {0, 1}

Input: Program hash u = u[1], . . . , u[n], v.
1. If v = v∗s then for i = 1, . . . , n do

If PRG(u[i]) = z∗i,0 let xi = 0, if PRG(u[i]) = z∗i,1 let xi = 1, else xi = ⊥.
Go to step 4.

2. Compute F1(K(n)
1 , v) = (y1,0, y1,1), . . . , (yn,0, yn,1).

3. For i = 1, . . . , n, if u[i] = yi,0 set xi = 0 else if u[i] = yi,1 set xi = 1 else set xi = ⊥
4. If x ∈ {0, 1}n (i.e. no ⊥s), output x.
5. Else set K3 = F2(K2, u|v), r = F2(K ′2, u|v). Output iO(PK3 ; r) of the programa PK3 of

Figure 20.

aAppropriately appended to the maximum of the size of itself and P ′K3,p∗j ,d∗j

Figure 19: Program Adaptive-Parameters

PK3

Constant: PRF key K3.
Input: Program description d.

1. Output d(F3(K3, d)). Recall that d is a program description which outputs k bits.

Figure 20: Program PK3

P ′K3,p∗j ,d∗j

Constants: PRF key K3{d∗j}, d∗j , p∗j .
Input: Program description d.

1. If d = d∗j output p∗j .
2. Else output d(F3(K3, d)). Recall that d is a program description which outputs k bits.

Figure 21: Program P ′K3,p∗j ,d
∗
j

Intuitively, indistinguishable from Hybrids,2 by security of the PRG.

18To the maximum of the size of itself and all corresponding programs (Adaptive-Parameters, Adaptive-Parameters:
3) in the previous and following hybrids.
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Hybrids,4 :

◦ The challenger sets v∗s ← {0, 1}n, u∗s ← {0, 1}n
2 . For all b ∈ {0, 1}, i ∈ [1, n], he sets z∗i,b ←

{0, 1}2n. He sets e = F2(K2, u
∗
s|v∗s) and e′ = F ′2(K ′2, u

∗
s|v∗s). Next, he sets g = iO(Pe, e′).

He pads the program Adaptive-Parameters: 3 in Figure 22 appropriately 19 and sends an iO
of the program to the adversary.
◦ Set j = 0. While the adversary is making queries to random oracle, increment j and repeat:

1. Let the adversary query to the random oracle be on protocol description d∗j .
2. If j < s, the challenger sets the output of the random oracle, v∗j ← {0, 1}n.

He sets K3 ← {0, 1}n, e′ ← {0, 1}n. He queries the oracle to obtain the Parameters p∗j
and sets g = iO(P ′K3,p∗j ,d

∗
j
, e′) (See Figure 24). For all b ∈ {0, 1} and i ∈ [1, n], he sets

(y∗1,0, y
∗
1,1), . . . , (y∗n,0, y

∗
n,1) = F1(K(n)

1 , v∗j ), u
∗
j [i] = y∗i,gi

, where gi is the ith bit of g.
3. If j > s, the challenger sets the output of the random oracle, u∗j ← {0, 1}n

2
, v∗j ← {0, 1}n.

◦ The adversary then outputs a single bit b′.

Adaptive-Parameters: 3

Constants: v∗s , u∗s, g, PRF keys K(n)
1 {v∗s}, K2{u∗s|v∗s}, K ′2{u∗s|v∗s}, z∗i,b for i ∈ [1, n] and b ∈ {0, 1}

Input: Program hash u = u[1], . . . , u[n], v.
1. If u = u∗s and v = v∗s output g and stop.
2. If v = v∗s then for i = 1, . . . , n do

If PRG(u[i]) = z∗i,0 let xi = 0, if PRG(u[i]) = z∗i,1 let xi = 1, else xi = ⊥.
Go to step 4.

3. Compute F1(K(n)
1 , v) = (y1,0, y1,1), . . . , (yn,0, yn,1).

4. For i = 1, . . . , n, if u[i] = yi,0 set xi = 0 else if u[i] = yi,1 set xi = 1 else set xi = ⊥
5. If x ∈ {0, 1}n (i.e. no ⊥s), output x.
6. Else set K3 = F2(K2, u|v), r = F2(K ′2, u|v). Output iO(PK3 ; r) of the programa PK3 of

Figure 23.

aAppropriately appended to the maximum of the size of itself and P ′K3,p∗j ,d∗j

Figure 22: Program Adaptive-Parameters

PK3

Constant: PRF key K3.
Input: Program description d.

1. Output d(F3(K3, d)). Recall that d is a program description which outputs k bits.

Figure 23: Program PK3

P ′K3,p∗j ,d∗j

Constants: PRF key K3{d∗j}, d∗j , p∗j .
Input: Program description d.

1. If d = d∗j output p∗j .
2. Else output d(F3(K3, d)). Recall that d is a program description which outputs k bits.

Figure 24: Program P ′K3,p∗j ,d
∗
j

Intuitively, indistinguishable from Hybrids,3 by iO between Adaptive-Parameters:2-3.

19To the maximum of the size of itself and all corresponding programs (Adaptive-Parameters, Adaptive-Parameters:
3) in the previous and following hybrids.
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Hybrids,5 :

◦ The challenger sets v∗s ← {0, 1}n, u∗s ← {0, 1}n
2 . For all b ∈ {0, 1}, i ∈ [1, n], he sets z∗i,b ←

{0, 1}2n. He sets e← {0, 1}n and e′ = F ′2(K ′2, u
∗
s|v∗s). Next, he sets g = iO(Pe, e′).

He pads the program Adaptive-Parameters: 3 in Figure 25 appropriately 20 and sends an iO
of the program to the adversary.
◦ Set j = 0. While the adversary is making queries to random oracle, increment j and repeat:

1. Let the adversary query to the random oracle be on protocol description d∗j .
2. If j < s, the challenger sets the output of the random oracle, v∗j ← {0, 1}n.

He sets K3 ← {0, 1}n, e′ ← {0, 1}n. He queries the oracle to obtain the Parameters p∗j
and sets g = iO(P ′K3,p∗j ,d

∗
j
, e′) (See Figure 27). For all b ∈ {0, 1} and i ∈ [1, n], he sets

(y∗1,0, y
∗
1,1), . . . , (y∗n,0, y

∗
n,1) = F1(K(n)

1 , v∗j ), u
∗
j [i] = y∗i,gi

, where gi is the ith bit of g.
3. If j > s, the challenger sets the output of the random oracle, u∗j ← {0, 1}n

2
, v∗j ← {0, 1}n.

◦ The adversary then outputs a single bit b′.

Adaptive-Parameters: 3

Constants: v∗s , u∗s, g, PRF keys K(n)
1 {v∗s}, K2{u∗s|v∗s}, K ′2{u∗s|v∗s}, z∗i,b for i ∈ [1, n] and b ∈ {0, 1}

Input: Program hash u = u[1], . . . , u[n], v.
1. If u = u∗s and v = v∗s output g and stop.
2. If v = v∗s then for i = 1, . . . , n do

If PRG(u[i]) = z∗i,0 let xi = 0, if PRG(u[i]) = z∗i,1 let xi = 1, else xi = ⊥.
Go to step 4.

3. Compute F1(K(n)
1 , v) = (y1,0, y1,1), . . . , (yn,0, yn,1).

4. For i = 1, . . . , n, if u[i] = yi,0 set xi = 0 else if u[i] = yi,1 set xi = 1 else set xi = ⊥
5. If x ∈ {0, 1}n (i.e. no ⊥s), output x.
6. Else set K3 = F2(K2, u|v), r = F2(K ′2, u|v). Output iO(PK3 ; r) of the programa PK3 of

Figure 26.

aAppropriately appended to the maximum of the size of itself and P ′K3,p∗j ,d∗j

Figure 25: Program Adaptive-Parameters

PK3

Constant: PRF key K3.
Input: Program description d.

1. Output d(F3(K3, d)). Recall that d is a program description which outputs k bits.

Figure 26: Program PK3

P ′K3,p∗j ,d∗j

Constants: PRF key K3{d∗j}, d∗j , p∗j .
Input: Program description d.

1. If d = d∗j output p∗j .
2. Else output d(F3(K3, d)). Recall that d is a program description which outputs k bits.

Figure 27: Program P ′K3,p∗j ,d
∗
j

Intuitively, indistinguishable from Hybrids,4 by security of punctured PRF key K2{u∗s|v∗s}.
20To the maximum of the size of itself and all corresponding programs (Adaptive-Parameters, Adaptive-Parameters:

3) in the previous and following hybrids.
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Hybrids,6 :

◦ The challenger sets v∗s ← {0, 1}n, u∗s ← {0, 1}n
2 . For all b ∈ {0, 1}, i ∈ [1, n], he sets z∗i,b ←

{0, 1}2n. He sets e← {0, 1}n and e′ ← {0, 1}n. Next, he sets g = iO(Pe, e′).
He pads the program Adaptive-Parameters: 3 in Figure 28 appropriately 21 and sends an iO
of the program to the adversary.
◦ Set j = 0. While the adversary is making queries to random oracle, increment j and repeat:

1. Let the adversary query to the random oracle be on protocol description d∗j .
2. If j < s, the challenger sets the output of the random oracle, v∗j ← {0, 1}n.

He sets K3 ← {0, 1}n, e′ ← {0, 1}n. He queries the oracle to obtain the Parameters p∗j
and sets g = iO(P ′K3,p∗j ,d

∗
j
, e′) (See Figure 30). For all b ∈ {0, 1} and i ∈ [1, n], he sets

(y∗1,0, y
∗
1,1), . . . , (y∗n,0, y

∗
n,1) = F1(K(n)

1 , v∗j ), u
∗
j [i] = y∗i,gi

, where gi is the ith bit of g.
3. If j > s, the challenger sets the output of the random oracle, u∗j ← {0, 1}n

2
, v∗j ← {0, 1}n.

◦ The adversary then outputs a single bit b′.

Adaptive-Parameters: 3

Constants: v∗s , u∗s, g, PRF keys K(n)
1 {v∗s}, K2{u∗s|v∗s}, K ′2{u∗s|v∗s}, z∗i,b for i ∈ [1, n] and b ∈ {0, 1}

Input: Program hash u = u[1], . . . , u[n], v.
1. If u = u∗s and v = v∗s output g and stop.
2. If v = v∗s then for i = 1, . . . , n do

If PRG(u[i]) = z∗i,0 let xi = 0, if PRG(u[i]) = z∗i,1 let xi = 1, else xi = ⊥.
Go to step 4.

3. Compute F1(K(n)
1 , v) = (y1,0, y1,1), . . . , (yn,0, yn,1).

4. For i = 1, . . . , n, if u[i] = yi,0 set xi = 0 else if u[i] = yi,1 set xi = 1 else set xi = ⊥
5. If x ∈ {0, 1}n (i.e. no ⊥s), output x.
6. Else set K3 = F2(K2, u|v), r = F2(K ′2, u|v). Output iO(PK3 ; r) of the programa PK3 of

Figure 29.

aAppropriately appended to the maximum of the size of itself and P ′K3,p∗j ,d∗j

Figure 28: Program Adaptive-Parameters

PK3

Constant: PRF key K3.
Input: Program description d.

1. Output d(F3(K3, d)). Recall that d is a program description which outputs k bits.

Figure 29: Program PK3

P ′K3,p∗j ,d∗j

Constants: PRF key K3{d∗j}, d∗j , p∗j .
Input: Program description d.

1. If d = d∗j output p∗j .
2. Else output d(F3(K3, d)). Recall that d is a program description which outputs k bits.

Figure 30: Program P ′K3,p∗j ,d
∗
j

Intuitively, indistinguishable from Hybrids,5 by security of punctured PRF key K ′2{u∗s|v∗s}.
21To the maximum of the size of itself and all corresponding programs (Adaptive-Parameters, Adaptive-Parameters:

3) in the previous and following hybrids.
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Hybrids,7 :
◦ The challenger sets v∗s ← {0, 1}n. He sets e ← {0, 1}n and e′ ← {0, 1}n. Next, he sets g =
iO(Pe, e′). For all i ∈ [1, n], he sets y∗i,gi

← {0, 1}n, u∗s[i] = y∗i,gi
, z∗i,gi

= PRG(y∗i,gi
) and z∗i,ḡi

←
{0, 1}2n, where gi is the ith bit of g and ḡi = 1− gi.
He pads the program Adaptive-Parameters: 2 in Figure 31 appropriately 22 and sends an iO
of the program to the adversary.
◦ Set j = 0. While the adversary is making queries to random oracle, increment j and repeat:

1. Let the adversary query to the random oracle be on protocol description d∗j .
2. If j < s, the challenger sets the output of the random oracle, v∗j ← {0, 1}n.

He sets K3 ← {0, 1}n, e′ ← {0, 1}n. He queries the oracle to obtain the Parameters p∗j
and sets g = iO(P ′K3,p∗j ,d

∗
j
, e′) (See Figure 33). For all b ∈ {0, 1} and i ∈ [1, n], he sets

(y∗1,0, y
∗
1,1), . . . , (y∗n,0, y

∗
n,1) = F1(K(n)

1 , v∗j ), u
∗
j [i] = y∗i,gi

, where gi is the ith bit of g.
3. If j > s, the challenger sets the output of the random oracle, u∗j ← {0, 1}n

2
, v∗j ← {0, 1}n.

◦ The adversary then outputs a single bit b′.

Adaptive-Parameters: 2

Constants: v∗s , g, PRF keys K(n)
1 {v∗s}, K2, K ′2, z∗i,b for i ∈ [1, n] and b ∈ {0, 1}

Input: Program hash u = u[1], . . . , u[n], v.
1. If v = v∗s then for i = 1, . . . , n do

If PRG(u[i]) = z∗i,0 let xi = 0, if PRG(u[i]) = z∗i,1 let xi = 1, else xi = ⊥.
Go to step 4.

2. Compute F1(K(n)
1 , v) = (y1,0, y1,1), . . . , (yn,0, yn,1).

3. For i = 1, . . . , n, if u[i] = yi,0 set xi = 0 else if u[i] = yi,1 set xi = 1 else set xi = ⊥
4. If x ∈ {0, 1}n (i.e. no ⊥s), output x.
5. Else set K3 = F2(K2, u|v), r = F2(K ′2, u|v). Output iO(PK3 ; r) of the programa PK3 of

Figure 32.

aAppropriately appended to the maximum of the size of itself and P ′K3,p∗j ,d∗j

Figure 31: Program Adaptive-Parameters: 2

PK3

Constant: PRF key K3.
Input: Program description d.

1. Output d(F3(K3, d)). Recall that d is a program description which outputs k bits.

Figure 32: Program PK3

P ′K3,p∗j ,d∗j

Constants: PRF key K3{d∗j}, d∗j , p∗j .
Input: Program description d.

1. If d = d∗j output p∗j .
2. Else output d(F3(K3, d)). Recall that d is a program description which outputs k bits.

Figure 33: Program P ′K3,p∗j ,d
∗
j

Intuitively, indistinguishable from Hybrids,6 by iO between Adaptive-Parameters:3-2.

22To the maximum of the size of itself and all corresponding programs (Adaptive-Parameters, Adaptive-Parameters:
3) in the previous and following hybrids.
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Hybrids,8 :
◦ The challenger sets v∗s ← {0, 1}n. He sets e ← {0, 1}n and e′ ← {0, 1}n. Next, he sets g =
iO(Pe, e′). For all b ∈ {0, 1}, i ∈ [1, n], he sets y∗i,b ← {0, 1}

n, u∗s[i] = y∗i,gi
, z∗i,gi

= PRG(y∗i,gi
)

and z∗i,ḡi
= PRG(y∗i,ḡi

), where gi is the ith bit of g and ḡi = 1− gi.
He pads the program Adaptive-Parameters: 2 in Figure 34 appropriately 23 and sends an iO
of the program to the adversary.
◦ Set j = 0. While the adversary is making queries to random oracle, increment j and repeat:

1. Let the adversary query to the random oracle be on protocol description d∗j .
2. If j < s, the challenger sets the output of the random oracle, v∗j ← {0, 1}n.

He sets K3 ← {0, 1}n, e′ ← {0, 1}n. He queries the oracle to obtain the Parameters p∗j
and sets g = iO(P ′K3,p∗j ,d

∗
j
, e′) (See Figure 36). For all b ∈ {0, 1} and i ∈ [1, n], he sets

(y∗1,0, y
∗
1,1), . . . , (y∗n,0, y

∗
n,1) = F1(K(n)

1 , v∗j ), u
∗
j [i] = y∗i,gi

, where gi is the ith bit of g.
3. If j > s, the challenger sets the output of the random oracle, u∗j ← {0, 1}n

2
, v∗j ← {0, 1}n.

◦ The adversary then outputs a single bit b′.

Adaptive-Parameters: 2

Constants: v∗s , g, PRF keys K(n)
1 {v∗s}, K2, K ′2, z∗i,b for i ∈ [1, n] and b ∈ {0, 1}

Input: Program hash u = u[1], . . . , u[n], v.
1. If v = v∗s then for i = 1, . . . , n do

If PRG(u[i]) = z∗i,0 let xi = 0, if PRG(u[i]) = z∗i,1 let xi = 1, else xi = ⊥.
Go to step 4.

2. Compute F1(K(n)
1 , v) = (y1,0, y1,1), . . . , (yn,0, yn,1).

3. For i = 1, . . . , n, if u[i] = yi,0 set xi = 0 else if u[i] = yi,1 set xi = 1 else set xi = ⊥
4. If x ∈ {0, 1}n (i.e. no ⊥s), output x.
5. Else set K3 = F2(K2, u|v), r = F2(K ′2, u|v). Output iO(PK3 ; r) of the programa PK3 of

Figure 35.

aAppropriately appended to the maximum of the size of itself and P ′K3,p∗j ,d∗j

Figure 34: Program Adaptive-Parameters: 2

PK3

Constant: PRF key K3.
Input: Program description d.

1. Output d(F3(K3, d)). Recall that d is a program description which outputs k bits.

Figure 35: Program PK3

P ′K3,p∗j ,d∗j

Constants: PRF key K3{d∗j}, d∗j , p∗j .
Input: Program description d.

1. If d = d∗j output p∗j .
2. Else output d(F3(K3, d)). Recall that d is a program description which outputs k bits.

Figure 36: Program P ′K3,p∗j ,d
∗
j

Intuitively, indistinguishable from Hybrids,7 by security of the PRG.

23To the maximum of the size of itself and all corresponding programs (Adaptive-Parameters, Adaptive-Parameters:
3) in the previous and following hybrids.
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Hybrids,9 :
◦ The challenger sets v∗s ← {0, 1}n. He sets e ← {0, 1}n and e′ ← {0, 1}n. Next, he sets
g = iO(Pe, e′). For all b ∈ {0, 1}, i ∈ [1, n], he sets (y∗1,0, y

∗
1,1), . . . , (y∗n,0, y

∗
n,1) = F1(K(n)

1 , v∗s),
u∗s[i] = y∗i,gi

, z∗i,b = PRG(y∗i,b), where gi is the i
th bit of g.

He pads the program Adaptive-Parameters: 2 in Figure 37 appropriately 24 and sends an iO
of the program to the adversary.
◦ Set j = 0. While the adversary is making queries to random oracle, increment j and repeat:

1. Let the adversary query to the random oracle be on protocol description d∗j .
2. If j < s, the challenger sets the output of the random oracle, v∗j ← {0, 1}n.

He sets K3 ← {0, 1}n, e′ ← {0, 1}n. He queries the oracle to obtain the Parameters p∗j
and sets g = iO(P ′K3,p∗j ,d

∗
j
, e′) (See Figure 39). For all b ∈ {0, 1} and i ∈ [1, n], he sets

(y∗1,0, y
∗
1,1), . . . , (y∗n,0, y

∗
n,1) = F1(K(n)

1 , v∗j ), u
∗
j [i] = y∗i,gi

, where gi is the ith bit of g.
3. If j > s, the challenger sets the output of the random oracle, u∗j ← {0, 1}n

2
, v∗j ← {0, 1}n.

◦ The adversary then outputs a single bit b′.
Adaptive-Parameters: 2

Constants: v∗s , g, PRF keys K(n)
1 {v∗s}, K2, K ′2, z∗i,b for i ∈ [1, n] and b ∈ {0, 1}

Input: Program hash u = u[1], . . . , u[n], v.
1. If v = v∗s then for i = 1, . . . , n do

If PRG(u[i]) = z∗i,0 let xi = 0, if PRG(u[i]) = z∗i,1 let xi = 1, else xi = ⊥.
Go to step 4.

2. Compute F1(K(n)
1 , v) = (y1,0, y1,1), . . . , (yn,0, yn,1).

3. For i = 1, . . . , n, if u[i] = yi,0 set xi = 0 else if u[i] = yi,1 set xi = 1 else set xi = ⊥
4. If x ∈ {0, 1}n (i.e. no ⊥s), output x.
5. Else set K3 = F2(K2, u|v), r = F2(K ′2, u|v). Output iO(PK3 ; r) of the programa PK3 of

Figure 38.

aAppropriately appended to the maximum of the size of itself and P ′K3,p∗j ,d∗j

Figure 37: Program Adaptive-Parameters: 2

PK3

Constant: PRF key K3.
Input: Program description d.

1. Output d(F3(K3, d)). Recall that d is a program description which outputs k bits.

Figure 38: Program PK3

P ′K3,p∗j ,d∗j

Constants: PRF key K3{d∗j}, d∗j , p∗j .
Input: Program description d.

1. If d = d∗j output p∗j .
2. Else output d(F3(K3, d)). Recall that d is a program description which outputs k bits.

Figure 39: Program P ′K3,p∗j ,d
∗
j

Intuitively, indistinguishable from Hybrids,8 by security of punctured PRF key K(n)
1 {d∗s}.

24To the maximum of the size of itself and all corresponding programs (Adaptive-Parameters, Adaptive-Parameters:
3) in the previous and following hybrids.
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Hybrids,10 :

◦ The challenger pads the program Adaptive-Parameters in Figure 40 appropriately 25 and sends
an iO of the program to the adversary.
◦ Set j = 0. While the adversary is making queries to random oracle, increment j and repeat:

1. Let the adversary query to the random oracle be on protocol description d∗j .
2. If j < s, the challenger sets the output of the random oracle, v∗j ← {0, 1}n.

He sets K3 ← {0, 1}n, e′ ← {0, 1}n. He queries the oracle to obtain the Parameters p∗j
and sets g = iO(P ′K3,p∗j ,d

∗
j
, e′) (See Figure 42). For all b ∈ {0, 1} and i ∈ [1, n], he sets

(y∗1,0, y
∗
1,1), . . . , (y∗n,0, y

∗
n,1) = F1(K(n)

1 , v∗j ), u
∗
j [i] = y∗i,gi

, where gi is the ith bit of g.
3. If j = s, the challenger sets v∗j ← {0, 1}n. He sets e ← {0, 1}n and e′ ← {0, 1}n. Next,

he sets g = iO(Pe, e′). For all i ∈ [1, n], he sets (y∗1,0, y
∗
1,1), . . . , (y∗n,0, y

∗
n,1) = F1(K(n)

1 , v∗j ),
u∗j [i] = y∗i,gi

, where gi is the ith bit of g.
4. If j > s, the challenger sets the output of the random oracle, u∗j ← {0, 1}n

2
, v∗j ← {0, 1}n.

◦ The adversary then outputs a single bit b′.

Adaptive-Parameters

Constants: PRF keys K(n)
1 , K2,K

′
2.

Input: Program hash u = u[1], . . . , u[n], v.
1. Compute F1(K(n)

1 , v) = (y1,0, y1,1), . . . , (yn,0, yn,1).
2. For i = 1, . . . , n, if u[i] = yi,0 set xi = 0 else if u[i] = yi,1 set xi = 1 else set xi = ⊥
3. If x ∈ {0, 1}n (i.e. no ⊥s), output x.
4. Else set K3 = F2(K2, u|v), r = F2(K ′2, u|v). Output iO(PK3 ; r) of the programa PK3 of

Figure 41.

aAppropriately appended to the maximum of the size of itself and P ′K3,p∗j ,d∗j

Figure 40: Program Adaptive-Parameters

PK3

Constant: PRF key K3.
Input: Program description d.

1. Output d(F3(K3, d)). Recall that d is a program description which outputs k bits.

Figure 41: Program PK3

P ′K3,p∗j ,d∗j

Constants: PRF key K3{d∗j}, d∗j , p∗j .
Input: Program description d.

1. If d = d∗j output p∗j .
2. Else output d(F3(K3, d)). Recall that d is a program description which outputs k bits.

Figure 42: Program P ′K3,p∗j ,d
∗
j

Intuitively, indistinguishable from Hybrids,9 by iO security between Adaptive-Parameters: 2 and
Adaptive-Parameters.

25To the maximum of the size of itself and all corresponding programs (Adaptive-Parameters: 2, Adaptive-
Parameters: 3) in the previous and following hybrids.
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Hybrids,11 :

◦ The challenger pads the program Adaptive-Parameters in Figure 43 appropriately 26 and sends
an iO of the program to the adversary.
◦ Set j = 0. While the adversary is making queries to random oracle, increment j and repeat:

1. Let the adversary query to the random oracle be on protocol description d∗j .
2. If j < s, the challenger sets the output of the random oracle, v∗j ← {0, 1}n.

He sets K3 ← {0, 1}n, e′ ← {0, 1}n. He queries the oracle to obtain the Parameters p∗j
and sets g = iO(P ′K3,p∗j ,d

∗
j
, e′) (See Figure 45). For all b ∈ {0, 1} and i ∈ [1, n], he sets

(y∗1,0, y
∗
1,1), . . . , (y∗n,0, y

∗
n,1) = F1(K(n)

1 , v∗j ), u
∗
j [i] = y∗i,gi

, where gi is the ith bit of g.
3. If j = s, the challenger sets v∗s ← {0, 1}n. He sets e ← {0, 1}n and e′ ← {0, 1}n. Next,

he sets p∗j = d∗j (F3(e, d∗j )), g = iO(P ′e,p∗j ,d∗j , e
′) (See Figure 45). For all i ∈ [1, n], he sets

(y∗1,0, y
∗
1,1), . . . , (y∗n,0, y

∗
n,1) = F1(K(n)

1 , v∗j ), u
∗
j [i] = y∗i,gi

, where gi is the ith bit of g.
4. If j > s, the challenger sets the output of the random oracle, u∗j ← {0, 1}n

2
, v∗j ← {0, 1}n.

◦ The adversary then outputs a single bit b′.

Adaptive-Parameters

Constants: PRF keys K(n)
1 , K2,K

′
2.

Input: Program hash u = u[1], . . . , u[n], v.
1. Compute F1(K(n)

1 , v) = (y1,0, y1,1), . . . , (yn,0, yn,1).
2. For i = 1, . . . , n, if u[i] = yi,0 set xi = 0 else if u[i] = yi,1 set xi = 1 else set xi = ⊥
3. If x ∈ {0, 1}n (i.e. no ⊥s), output x.
4. Else set K3 = F2(K2, u|v), r = F2(K ′2, u|v). Output iO(PK3 ; r) of the programa PK3 of

Figure 44.

aAppropriately appended to the maximum of the size of itself and P ′K3,p∗j ,d∗j

Figure 43: Program Adaptive-Parameters

PK3

Constant: PRF key K3.
Input: Program description d.

1. Output d(F3(K3, d)). Recall that d is a program description which outputs k bits.

Figure 44: Program PK3

P ′K3,p∗j ,d∗j

Constants: PRF key K3{d∗j}, d∗j , p∗j .
Input: Program description d.

1. If d = d∗j output p∗j .
2. Else output d(F3(K3, d)). Recall that d is a program description which outputs k bits.

Figure 45: Program P ′K3,p∗j ,d
∗
j

Intuitively, indistinguishable from Hybrids,10 by security of iO between programs PK3 and P ′K3,d∗,p∗
.

26To the maximum of the size of itself and all corresponding programs (Adaptive-Parameters: 2, Adaptive-
Parameters: 3) in the previous and following hybrids.
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Hybrids,12 :

◦ The challenger pads the program Adaptive-Parameters in Figure 46 appropriately 27 and sends
an iO of the program to the adversary.
◦ Set j = 0. While the adversary is making queries to random oracle, increment j and repeat:

1. Let the adversary query to the random oracle be on protocol description d∗j .
2. If j < s, the challenger sets the output of the random oracle, v∗j ← {0, 1}n.

He sets K3 ← {0, 1}n, e′ ← {0, 1}n. He queries the oracle to obtain the Parameters p∗j
and sets g = iO(P ′K3,p∗j ,d

∗
j
, e′) (See Figure 48). For all b ∈ {0, 1} and i ∈ [1, n], he sets

(y∗1,0, y
∗
1,1), . . . , (y∗n,0, y

∗
n,1) = F1(K(n)

1 , v∗j ), u
∗
j [i] = y∗i,gi

, where gi is the ith bit of g.
3. If j = s, the challenger sets v∗s ← {0, 1}n. He sets e ← {0, 1}n and e′ ← {0, 1}n. Next,

he sets x′ ← {0, 1}m, p∗j = d∗j (x
′), g = iO(P ′e,p∗j ,d∗j , e

′) (See Figure 48). For all i ∈ [1, n],

he sets (y∗1,0, y
∗
1,1), . . . , (y∗n,0, y

∗
n,1) = F1(K(n)

1 , v∗j ), u
∗
j [i] = y∗i,gi

, where gi is the ith bit of g.
4. If j > s, the challenger sets the output of the random oracle, u∗j ← {0, 1}n

2
, v∗j ← {0, 1}n.

◦ The adversary then outputs a single bit b′.

Adaptive-Parameters

Constants: PRF keys K(n)
1 , K2,K

′
2.

Input: Program hash u = u[1], . . . , u[n], v.
1. Compute F1(K(n)

1 , v) = (y1,0, y1,1), . . . , (yn,0, yn,1).
2. For i = 1, . . . , n, if u[i] = yi,0 set xi = 0 else if u[i] = yi,1 set xi = 1 else set xi = ⊥
3. If x ∈ {0, 1}n (i.e. no ⊥s), output x.
4. Else set K3 = F2(K2, u|v), r = F2(K ′2, u|v). Output iO(PK3 ; r) of the programa PK3 of

Figure 47.

aAppropriately appended to the maximum of the size of itself and P ′K3,p∗j ,d∗j

Figure 46: Program Adaptive-Parameters

PK3

Constant: PRF key K3.
Input: Program description d.

1. Output d(F3(K3, d)). Recall that d is a program description which outputs k bits.

Figure 47: Program PK3

P ′K3,p∗j ,d∗j

Constants: PRF key K3{d∗j}, d∗j , p∗j .
Input: Program description d.

1. If d = d∗j output p∗j .
2. Else output d(F3(K3, d)). Recall that d is a program description which outputs k bits.

Figure 48: Program P ′K3,p∗j ,d
∗
j

Intuitively, indistinguishable from Hybrids,11 by security of punctured PRF key K3 = e{d∗s}.

27To the maximum of the size of itself and all corresponding programs (Adaptive-Parameters: 2, Adaptive-
Parameters: 3) in the previous and following hybrids.
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Hybrids,13 :

◦ The challenger pads the program Adaptive-Parameters in Figure 49 appropriately 28 and sends
an iO of the program to the adversary.
◦ Set j = 0. While the adversary is making queries to random oracle, increment j and repeat:

1. Let the adversary query to the random oracle be on protocol description d∗j .
2. If j < s, the challenger sets the output of the random oracle, v∗j ← {0, 1}n.

He sets K3 ← {0, 1}n, e′ ← {0, 1}n. He queries the oracle to obtain the Parameters p∗j
and sets g = iO(P ′K3,p∗j ,d

∗
j
, e′) (See Figure 51). For all b ∈ {0, 1} and i ∈ [1, n], he sets

(y∗1,0, y
∗
1,1), . . . , (y∗n,0, y

∗
n,1) = F1(K(n)

1 , v∗j ), u
∗
j [i] = y∗i,gi

, where gi is the ith bit of g.
3. If j = s, the challenger sets v∗s ← {0, 1}n. He sets e ← {0, 1}n and e′ ← {0, 1}n.

He queries the oracle to obtain the Parameters p∗j and sets g = iO(P ′e,p∗j ,d∗j , e
′) (See Fig-

ure 51). For all i ∈ [1, n], he sets (y∗1,0, y
∗
1,1), . . . , (y∗n,0, y

∗
n,1) = F1(K(n)

1 , v∗j ), u
∗
j [i] = y∗i,gi

,
where gi is the ith bit of g.

4. If j > s, the challenger sets the output of the random oracle, u∗j ← {0, 1}n
2
, v∗j ← {0, 1}n.

◦ The adversary then outputs a single bit b′.

Adaptive-Parameters

Constants: PRF keys K(n)
1 , K2,K

′
2.

Input: Program hash u = u[1], . . . , u[n], v.
1. Compute F1(K(n)

1 , v) = (y1,0, y1,1), . . . , (yn,0, yn,1).
2. For i = 1, . . . , n, if u[i] = yi,0 set xi = 0 else if u[i] = yi,1 set xi = 1 else set xi = ⊥
3. If x ∈ {0, 1}n (i.e. no ⊥s), output x.
4. Else set K3 = F2(K2, u|v), r = F2(K ′2, u|v). Output iO(PK3 ; r) of the programa PK3 of

Figure 50.

aAppropriately appended to the maximum of the size of itself and P ′K3,p∗j ,d∗j

Figure 49: Program Adaptive-Parameters

PK3

Constant: PRF key K3.
Input: Program description d.

1. Output d(F3(K3, d)). Recall that d is a program description which outputs k bits.

Figure 50: Program PK3

P ′K3,p∗j ,d∗j

Constants: PRF key K3{d∗j}, d∗j , p∗j .
Input: Program description d.

1. If d = d∗j output p∗j .
2. Else output d(F3(K3, d)). Recall that d is a program description which outputs k bits.

Figure 51: Program P ′K3,p∗j ,d
∗
j

This is identical to Hybrids,12.

28To the maximum of the size of itself and all corresponding programs (Adaptive-Parameters: 2, Adaptive-
Parameters: 3) in the previous and following hybrids.
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Note that Hybridq(λ),13 is the Ideal World and it describes how SimUGen and SimRO work in the first
and second bullet points above, respectively.
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5.2 Indistinguishability of the Hybrids

To establish Theorem 3, it suffices to prove the following claims,

Claim 5. Hybrid0(1λ) and Hybrid0,13(1λ) are identical.

Proof. Hybrid0 and Hybrids−1,13 are identical by inspection.

Claim 6. For s ∈ [q(λ)], Hybrids−1,13(1λ) and Hybrids,1(1λ) are computationally indistinguishable.

Proof. Hybrids−1,13 and Hybrids,1 are indistinguishable by security of iO between Adaptive-Parameters
and Adaptive-Parameters: 2.

It is easy to observe that the programs Adaptive-Parameters and Adaptive-Parameters:2 are func-
tionally equivalent for inputs v 6= v∗s . Moreover, even on input v = v∗s , such that
(z∗1,0, z

∗
1,1), . . . , (z∗n,0, z

∗
n,1) = PRG(F (K(n)

1 , v∗s)), the functionality of both circuits is identical if the
PRG is injective.

Therefore, the obfuscated circuits must be indistinguishable by security of iO. Suppose they are not,
then consider an adversary D1 who distinguishes between these hybrids with significant advantage.

D1 can be used to break selective security of the indistinguishability obfuscation (according to Def-
inition 1) via the following reduction to iO distinguisher D. D acts as challenger in the experiment
of Hybrids−1,13. The iO challenger Samp(1λ) first activates the distinguisher D, which samples input
v∗s ← {0, 1}n and passes it to Samp.

The iO challenger on input v∗s samples circuits C0 = Adaptive-Parameters and C1 = Adaptive-
Parameters: 2 with (z∗1,0, z

∗
1,1), . . . , (z∗n,0, z

∗
n,1) = PRG(F (K(n)

1 , v∗s)). We note that the condition
Pr[∀x,C0(x) = C1(x) : (C0, C1, σ) ← Samp(1λ)] > 1 − α(λ) is trivially satisfied for all auxiliary
information σ and all negligible functions α(·), since the circuits are always functionally equivalent.

The iO challenger then sends Cx = iO(n,C0) or Cx = iO(n,C1) to the adversary D. D then acts
as challenger against D1 in the distinguishing game between Hybrids−1,13 and Hybrids,1. He follows
the Hybrids−1,13 game, such that he sets the circuit to the obfuscated circuit Cx. Since D1 has
significant distinguishing advantage, there exists a polynomial p(·) such that,∣∣∣Pr

[
D1(Hybrids−1,13) = 1

]
− Pr

[
D1(Hybrids,1) = 1

]∣∣∣ ≥ 1/p(λ).

We note that Hybrids−1,13 and Hybrids,1 correspond exactly to Cx being C0 and C1 respectively,
thus we can just have D echo the output of D1 such that the following is true, for α(·) = 1/p(·)∣∣∣Pr

[
D(σ, iO(n,C0)) = 1 : (C0, C1, σ)← Samp(1λ)

]
−Pr

[
D(σ, iO(n,C1)) = 1 : (C0, C1, σ)← Samp(1λ)

]∣∣∣ ≥ α(λ)

In other words, if D1 predicts Hybrids−1,13, then the obfuscation Cx is that of Adaptive-Parameters,
and if it predicts Hybrids,1, then the obfuscation Cx is that of Adaptive-Parameters:2 with
(z∗1,0, z

∗
1,1), . . . , (z∗n,0, z

∗
n,1) = PRG(F (K(n)

1 , v∗s)).
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Claim 7. For s ∈ [q(λ)], Hybrids,1(1λ) and Hybrids,2(1λ) are computationally indistinguishable.

Proof. Hybrids,1 and Hybrids,2 are indistinguishable by security of puncturable PRF K
(n)
1 .

Suppose they are not, then consider an adversary D2 who distinguishes between these hybrids with
significant advantage. This adversary can be used to break selective security of the punctured PRF

K
(n)
1 (more precisely, at least one of the punctured PRF’s in the sequence K(n)

1 ) via the following
reduction algorithm, that first gets the protocol hash v∗s from the distinguisher D2.

Consider a sequence of 2n+ 1 sub-hybrids, such for i ≤ n, the ith sub-hybrid Hybrids,1,i, is the same
as Hybrids,1 except that:
For i < n, ∀j ≤ i, yj,0 ← {0, 1}n. Also ∀i < j ≤ n, yj,0 = PRF(Kj,0

1 , v∗s) and ∀j > n, yj,1 =
PRF(Kj,0

1 , v∗s).

For i > n, ∀j ≤ n, yj,0 ← {0, 1}n, ∀n < j ≤ i, yj−n,1 ← {0, 1}n and ∀j > i, yj−n,1 = PRF(Kj,1
1 , v∗s).

Note that Hybrids,1,0 ≡ Hybrids,1 and Hybrids,1,2n ≡ Hybrids,2.

Then, there exists some j ∈ [0, 2n−1] such thatD2 distinguishes between Hybrids,1,j and Hybrids,1,j+1

with significant advantage.

Assume without loss of generality that j < n (arguments for j > n will follow similarly), then D2

can be used to break selective security of the punctured PRF Kj+1,0
1 via the following reduction

algorithm, that first gets the protocol hash v∗s from the distinguisher D2.

The PRF attacker submits v∗s to the PRF challenger and receives the punctured PRF Kj+1,0
1 ({v∗s})

and the challenge a, which is either chosen uniformly at random or is the output of the PRF at
v∗s . The PRF attacker continues the experiment of Hybrids,1,j as challenger, except that he sets
y∗j+1,0 = a.

Then, there exists polynomial p(·) such that∣∣∣Pr
[
D2(Hybrids,1,j) = 1

]
− Pr

[
D2(Hybrids,1,j+1) = 1

]∣∣∣ ≥ 1/2np(λ).

If D2 predicts Hybrids,1,j , then a is the output of the PRF Kj+1,0
1 at v∗s . If D2 predicts Hybrids,1,j+1,

then a was chosen uniformly at random.

Therefore, we can just have D echo the output of D2 such that∣∣∣Pr
[
D(y = PRF(Kj+1,0

1 {v∗s}, v∗s)) = 1
]
− Pr

[
D(y ← {0, 1}n) = 1

]∣∣∣ ≥ 1/2np(λ).
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Claim 8. For s ∈ [q(λ)], Hybrids,2(1λ) and Hybrids,3(1λ) are computationally indistinguishable.

Proof. Hybrids,2 and Hybrids,3 are indistinguishable by security of the PRG.

Suppose they are not, then consider an adversary D3 who distinguishes between these hybrids with
significant advantage.

Now, consider a sequence of 2n+ 1 sub-hybrids, where the ith sub-hybrid Hybrids,2,i is identical to
Hybrids,2 except that:
For i ≤ n, then ∀j ≤ i, z∗j,0 ← {0, 1}n, ∀i < j ≤ n, z∗j,0 = PRG(y∗) for y∗ ← {0, 1}n, ∀j > n, z∗j−n,1 =
PRG(y∗) for y∗ ← {0, 1}n.
For i > n, then ∀j < n, z∗j,0,← {0, 1}n, ∀n < j < i, z∗j−n,1 ← {0, 1}n and ∀j ≥ i, z∗j−n,1 = PRG(y∗)
for y∗ ← {0, 1}n. Note that Hybrids,2,0 ≡ Hybrids,2 and Hybrids,2,2n ≡ Hybrids,3.

Then, there exists some j ∈ [0, 2n−1] such thatD3 distinguishes between Hybrids,2,j and Hybrids,2,j+1

with significant advantage. But we show that if this is true, then D3 can be used to break security
of the PRG via the following reduction.

D is a distinguisher of the PRG security game which takes a PRG challenge a, setting z∗j+1,0 = a if
j < n and z∗j+1−n,1 = a if j ≥ n. It then continues the rest of the experiment of Hybrids,2,j as the
challenger for D3.

Then, there exists polynomial p(·) such that∣∣∣Pr
[
D3(Hybrids,2,j) = 1

]
− Pr

[
D3(Hybrids,2,j+1) = 1

]∣∣∣ ≥ 1/2np(λ).

If a was the output of a PRG, then we are in Hybrids,2,j . If a was chosen as a random string, then
we are in Hybrids,2,j+1.

Therefore, we can just have D echo the output of D10 such that∣∣∣Pr
[
D(PRG(y) for y ← {0, 1}n) = 1

]
− Pr

[
D(y ← {0, 1}2n) = 1

]∣∣∣ ≥ 1/2np(λ).
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Claim 9. For s ∈ [q(λ)], Hybrids,3(1λ) and Hybrids,4(1λ) are computationally indistinguishable.

Proof. Hybrids,3 and Hybrids,4 are indistinguishable by security of iO between Adaptive-Parameters:
2 and Adaptive-Parameters: 3.

It is easy to see that Adaptive-Parameters: 2 and Adaptive-Parameters: 3 are functionally equiv-
alent on all inputs other than (u∗s, v

∗
s). Moreover, on input v∗s , note that the condition in Step

1 is never satisfied in Adaptive-Parameters: 2 except with probability 2−n, since z∗ is chosen at
random. Therefore, the output of Adaptive-Parameters: 2 on input (u∗s, v

∗
s) is an iO of the pro-

gram PPRF(K2,u∗s |v∗s ) using randomness PRF(K ′2, u
∗
s|v∗s). On input (u∗s, v

∗
s), the output of Adaptive-

Parameters: 3 (which is g) is therefore the same as that of Adaptive-Parameters: 2.

Since their functionality is exactly identical on all inputs, both obfuscated circuits must be indistin-
guishable by security of iO. Suppose they are not, then consider an adversary D4 who distinguishes
between these hybrids with significant advantage.

This adversary can be used to break selective security of the indistinguishability obfuscation (ac-
cording to Definition 1) via the following reduction to iO distinguisher D. Samp(1λ) first activates
the distinguisher D. D picks (u∗s, v

∗
s) uniformly at random and passes them to Samp.

The iO challenger Samp(1λ) on input (u∗s, v
∗
s) picks z∗i,b ← {0, 1}2n for all i ∈ [1, n], b ∈ {0, 1}.

He then samples circuits C0 = Adaptive-Parameters: 2 and C1 = Adaptive-Parameters: 3 setting
g appropriately. We note that the condition Pr[∀x,C0(x) = C1(x) : (C0, C1, σ) ← Samp(1λ)] >
1− α(λ) is trivially satisfied for α(λ) = 2−n.

The iO challenger then sends Cx = iO(n,C0) or Cx = iO(n,C1) to the adversary D. D then acts
as challenger against D4 in the distinguishing game between Hybrids,3 and Hybrids,4. He follows the
Hybrids,3 game, such that he sets the circuit to the obfuscated circuit Cx. Since D4 has significant
distinguishing advantage, there exists a polynomial p(·) such that,∣∣∣Pr

[
D4(Hybrids,3) = 1

]
− Pr

[
D4(Hybrids,4) = 1

]∣∣∣ ≥ 1/p(λ).

We note that Hybrids,3 and Hybrids,4 correspond exactly to Cx being C0 and C1 respectively, thus
we can just have D echo the output of D4 such that the following is true, for α(·) = 1/p(·)∣∣∣Pr

[
D(σ, iO(n,C0)) = 1 : (C0, C1, σ)← Samp(1λ)

]
−Pr

[
D(σ, iO(n,C1)) = 1 : (C0, C1, σ)← Samp(1λ)

]∣∣∣ ≥ α(λ)

In other words, if D4 predicts Hybrids,3, then the obfuscation Cx is that of Adaptive-Parameters: 2,
and if it predicts Hybrids,4, then the obfuscation Cx is that of Adaptive-Parameters: 3.
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Claim 10. For s ∈ [q(λ)], Hybrids,4(1λ) and Hybrids,5(1λ) are computationally indistinguishable.

Proof. Hybrids,4 and Hybrids,5 are indistinguishable by security of the puncturable PRF K2. Suppose
they are not, then consider an adversary D5 who distinguishes between these hybrids with significant
advantage. This adversary can be used to break selective security of the punctured PRF K2 via
the following reduction algorithm to distinguisher D, that first gets the protocol hash (u∗s, v

∗
s) after

activating the distinguisher D5.

The PRF attacker D gives (u∗s, v
∗
s) to the PRF challenger. The attacker receives the punctured PRF

key K2{u∗s|v∗s} and the challenge a, which is either chosen uniformly at random or is the output of
the PRF at u∗s|v∗s . The PRF attacker continues the experiment of Hybrids,4 as challenger, except
that he uses the same (u∗s, v

∗
s) and sets e = a.

Then, there exists polynomial p(·) such that∣∣∣Pr
[
D5a(Hybrids,4) = 1

]
− Pr

[
D5a(Hybrids,5) = 1

]∣∣∣ ≥ 1/p(λ).

If D5 predicts Hybrids,4, then a is the output of the punctured PRF K2 at u∗s|v∗s . If D5 predicts
Hybrids,5, then a was chosen uniformly at random. Therefore, we can just have D echo the output
of D5 such that∣∣∣Pr

[
D(PRF(K2({v∗s |u∗s}), v∗s |u∗s)) = 1

]
− Pr

[
D(y ← {0, 1}n1) = 1

]∣∣∣ ≥ 1/p(λ).
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Claim 11. For s ∈ [q(λ)], Hybrids,5(1λ) and Hybrids,6(1λ) are computationally indistinguishable.

Proof. Hybrids,5 and Hybrids,6 are indistinguishable by security of the puncturable PRF K ′2. Suppose
they are not, then consider an adversary D6 who distinguishes between these hybrids with significant
advantage. This adversary can be used to break selective security of the punctured PRF K ′2 via
the following reduction algorithm to distinguisher D, that first gets the protocol hash (u∗s, v

∗
s) after

activating the distinguisher D6.

The PRF attacker D gives (u∗s, v
∗
s) to the PRF challenger. The attacker receives the punctured PRF

key K ′2({u∗s|v∗s}) and the challenge a, which is either chosen uniformly at random or is the output
of the PRF at u∗s|v∗s . The PRF attacker continues the experiment of Hybrids,5 as challenger, except
that he uses the same u∗s, v∗s and sets e′ = a.

Then, there exists polynomial p(·) such that∣∣∣Pr
[
D6(Hybrids,5) = 1

]
− Pr

[
D6(Hybrids,6) = 1

]∣∣∣ ≥ 1/p(λ).

If D6 predicts Hybrids,5, then a is the output of the punctured PRF K2 at u∗s|v∗s . If D6 predicts
Hybrids,6, then a was chosen uniformly at random. Therefore, we can just have D echo the output
of D6 such that∣∣∣Pr

[
D(PRF(K2({v∗s |u∗s}), v∗s |u∗s) = 1

]
− Pr

[
D(y ← {0, 1}n2) = 1

]∣∣∣ ≥ 1/p(λ).
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Claim 12. For s ∈ [q(λ)], Hybrids,6(1λ) and Hybrids,7(1λ) are computationally indistinguishable.

Proof. Hybrids,6 and Hybrids,7 are indistinguishable by security of iO between Adaptive-Parameters:
2 and Adaptive-Parameters: 3.

Suppose they are not, then consider an adversary D7 who distinguishes between these hybrids
with significant advantage. We will use D7 to break security of iO via the following reduction to
distinguisher D, which acts as challenger for D7.

Samp(1λ) first activates the distinguisher D. D sets u∗s ← {0, 1}n, v∗s according to Hybrids,7 and
gives (u∗s, v

∗
s) to Samp. D also gives punctured PRF keys K1,K2,K

′
2 at points v∗s , u∗s|v∗s respectively,

along with e, e′ ← {0, 1}n, g = iO(Pe; e′) and z∗i,b ← {0, 1}2n for all i ∈ [1, n], b ∈ {0, 1}. Samp then
samples circuit C0 = Adaptive-Parameters: 3 with the values of z∗, g set as above.

Samp also samples circuit C1 = Adaptive-Parameters: 2 except by setting z∗i,gi
= PRG(u∗s[i]) (but

setting z∗i,ḡi
← {0, 1}2n).

The circuits C0 and C1 are easily seen to be functionally equivalent for v 6= v∗s and for (u = u∗s, v =
v∗s). We note that if z∗ are chosen uniformly at random, the condition in step 2 is possibly satisfied
in circuit C0 with probability only 2−n by security of the length-doubling PRG. Moreover, even
in circuit C1, this condition will only be satisfied on input u∗s corresponding to v∗s except with
probability 2−n by security of the length-doubling PRG and by injectivity of the PRG. Therefore,
the condition Pr[∀x,C0(x) = C1(x) : (C0, C1, σ) ← Samp(1λ)] > 1 − α(λ) is met for all auxiliary
information σ and α(λ) = 2−(n−1).

The iO adversary D obtains challenge circuit Cx = iO(n,C0) or Cx = iO(n,C1) from the iO
challenger.

D then acts as challenger against D7 in the distinguishing game between Hybrids,6 and Hybrids,7.
He follows the Hybrids,7 game, such that he sends to D7, the obfuscated circuit Cx.

Since D7 has significant distinguishing advantage, there exists a polynomial p(·) such that,∣∣∣Pr
[
D7(Hybrids,6) = 1

]
− Pr

[
D7(Hybrids,7) = 1

]∣∣∣ ≥ 1/p(λ).

We note that Hybrids,6 and Hybrids,7 correspond exactly to Cx being C0 and C1 respectively, thus
we can just have D echo the output of D7 such that the following is true, for α(·) = 1/p(·)∣∣∣Pr

[
D(σ, iO(n,C0)) = 1 : (C0, C1, σ)← Samp(1λ)

]
−Pr

[
D(σ, iO(n,C1)) = 1 : (C0, C1, σ)← Samp(1λ)

]∣∣∣ ≥ α(λ)

In other words, if D7 predicts Hybrids,6, then the obfuscation Cx is that of Adaptive-Parameters: 3,
and if it predicts Hybrids,7, then the obfuscation Cx is that of Adaptive-Parameters: 2.
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Claim 13. For s ∈ [q(λ)], Hybrids,7(1λ) and Hybrids,8(1λ) are computationally indistinguishable.

Proof. Hybrids,7 and Hybrids,8 are indistinguishable by security of the PRG.

Suppose they are not, then consider an adversary D8 that distinguishes between these hybrids with
significant advantage.

Now, consider a sequence of n + 1 sub-hybrids, where the ith sub-hybrid Hybrids,7,i for i ∈ [0, n] is
identical to Hybrids,7 except that:
For all j ≤ i, z∗j,ḡj

= PRG(y∗) for y∗ ← {0, 1}n, and for all j > i, z∗j,ḡj
← {0, 1}2n.

Note that Hybrids,7,0 ≡ Hybrids,7 and Hybrids,7,n ≡ Hybrids,8.

Then, there exists some j ∈ [0, n−1] such that D8 distinguishes between Hybrids,7,j and Hybrids,7,j+1

with significant advantage. But we show that if this is true, then D8 can be used to break security
of the PRG via the following reduction.

D is a distinguisher of the PRG security game which takes a PRG challenge a, setting z∗j+1, ¯gj+1
= a.

Note that he can do this since the seed of the PRG, y∗j,ḡj
is not used anywhere else. He then continues

the rest of the experiment of Hybrids,7,j as the challenger for D8.

Then, there exists polynomial p(·) such that∣∣∣Pr
[
D8(Hybrids,7,j) = 1

]
− Pr

[
D8(Hybrids,7,j+1) = 1

]∣∣∣ ≥ 1/2np(λ).

If a was the output of a PRG, then we are in Hybrids,7,j . If a was chosen as a random string, then
we are in Hybrids,7,j+1.

Therefore, we can just have D echo the output of D8 such that∣∣∣Pr
[
D(PRG(y) for y ← {0, 1}n) = 1

]
− Pr

[
D(y ← {0, 1}2n) = 1

]∣∣∣ ≥ 1/np(λ).
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Claim 14. For s ∈ [q(λ)], Hybrids,8(1λ) and Hybrids,9(1λ) are computationally indistinguishable.

Proof. Hybrids,8 and Hybrids,9 are indistinguishable by security of the puncturable PRF K
(n)
1 .

Suppose they are not, then consider an adversary D9 who distinguishes between these hybrids with
significant advantage.

Now consider a sequence of 2n+ 1 sub-hybrids, such for i ≤ n, the ith sub-hybrid Hybrids,8,i, is the
same as Hybrids,8 except that:
For i < n, ∀j ≤ i, yj,0 = PRF(Kj,0

1 , v∗s). Also ∀i < j ≤ n, yj,0 ← {0, 1}n and ∀j, yj,1 ← {0, 1}n.

For i > n, ∀j, yj,0 = PRF(Kj,0
1 , v∗s), ∀j ≤ i, yj−n,1 = PRF(Kj,1

1 , v∗s) and ∀j > i, yj−n,1 ← {0, 1}n.

Note that Hybrids,8,0 ≡ Hybrids,8 and Hybrids,8,2n ≡ Hybrids,9.

Then, there exists some j ∈ [0, 2n−1] such thatD9 distinguishes between Hybrids,8,j and Hybrids,8,j+1

with significant advantage.

Assume without loss of generality that j < n (arguments for j > n will follow similarly), then D9

can be used to break selective security of the punctured PRF Kj+1,0
1 via the following reduction

algorithm, that first gets the protocol v∗s from the distinguisher D9.

The PRF attackerD submits v∗s to the PRF challenger and receives the punctured PRFKj+1,0
1 ({v∗s})

and the challenge a, which is either chosen uniformly at random or is the output of the PRF at v∗s .
Then D continues the experiment of Hybrids,8,j as challenger, except that he sets y∗j+1,0 = a, and
programs u∗s[j + 1] to y∗j+1,0 if p∗s,j+1 = 0.

Then, there exists polynomial p(·) such that∣∣∣Pr
[
D9(Hybrids,8,j) = 1

]
− Pr

[
D9(Hybrids,8,j+1) = 1

]∣∣∣ ≥ 1/2np(λ).

If D9 predicts Hybrids,8,j , then a was chosen uniformly at random. If D9 predicts Hybrids,8,j+1, then
a is the output of the PRF Kj+1,0

1 at v∗s . Therefore, we can just have D echo the output of D9 such
that ∣∣∣Pr

[
D(y = PRF(Kj+1,0

1 {v∗s}, v∗s)) = 1
]
− Pr

[
D(y ← {0, 1}n) = 1

]∣∣∣ ≥ 1/2np(λ).
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Claim 15. For s ∈ [q(λ)], Hybrids,9(1λ) and Hybrids,10(1λ) are computationally indistinguishable.

Proof. Hybrids,9 and Hybrids,10 are indistinguishable by security of iO between circuits Adaptive-
Parameters: 2 and Adaptive-Parameters.

It is easy to observe that the circuits Adaptive-Parameters: 2 and Adaptive-Parameters are function-
ally equivalent on all inputs v 6= v∗. Moreover, even on input v = v∗s , such that (z∗1,0, z

∗
1,1), . . . , (z∗n,0, z

∗
n,1) =

PRG(F (K(n)
1 , v∗s)), the functionality of both circuits is identical if the PRG is injective.

The, the iO of both circuits must be indistinguishable. Suppose not, then consider an adversary
D10 who distinguishes between these hybrids with significant advantage.

This adversary can be used to break selective security of the indistinguishability obfuscation (accord-
ing to Definition 1) via the following reduction to distinguisher D, which acts as challenger to distin-
guisher D10. D samples v∗s ← {0, 1}n and gives v∗s , (z∗1,0, z

∗
1,1), . . . , (z∗1,0, z

∗
1,1) = PRG(F1(K(n)

1 , v∗s))
to the iO challenger Samp(1λ).

Samp on input v∗s samples circuits C0 = Adaptive-Parameters: 2 and C1 = Adaptive-Parameters
with (z∗1,0, z

∗
1,1), . . . , (z∗n,0, z

∗
n,1) = PRG(F1(K(n)

1 , v∗s)). We note that the condition Pr[∀x,C0(x) =
C1(x) : (C0, C1, σ)← Samp(1λ)] > 1− α(λ) is trivially satisfied for all auxiliary information σ and
all negligible functions α(·), since the circuits are always functionally equivalent.

The iO challenger then sends Cx = iO(n,C0) or Cx = iO(n,C1) to the adversary D. D then acts as
challenger against D10 in the distinguishing game between Hybrids,9 and Hybrids,10. He follows the
Hybrids,9 game, such that he sets the circuit to the obfuscated circuit Cx. Since D10 has significant
distinguishing advantage, there exists a polynomial p(·) such that,∣∣∣Pr

[
D1(Hybrids,9) = 1

]
− Pr

[
D1(Hybrids,10) = 1

]∣∣∣ ≥ 1/p(λ).

We note that Hybrids,9 and Hybrids,10 correspond exactly to Cx being C0 and C1 respectively, thus
we can just have D echo the output of D1 such that the following is true, for α(·) = 1/p(·)∣∣∣Pr

[
D(σ, iO(n,C0)) = 1 : (C0, C1, σ)← Samp(1λ)

]
−Pr

[
D(σ, iO(n,C1)) = 1 : (C0, C1, σ)← Samp(1λ)

]∣∣∣ ≥ α(λ)

In other words, if D10 predicts Hybrids,9, then the obfuscation Cx is that of Adaptive-Parameters:
2 with (z∗1,0, z

∗
1,1), . . . , (z∗n,0, z

∗
n,1) = PRG(F (K(n)

1 , v∗s)), and if it predicts Hybrids,10, then the obfus-
cation Cx is that of Adaptive-Parameters.
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Claim 16. For s ∈ [q(λ)], Hybrids,10(1λ) and Hybrids,11(1λ) are computationally indistinguishable.

Proof. Hybrids,10 and Hybrids,11 are indistinguishable by security of iO between circuits PK3 and
P ′K3,p∗s ,d

∗
s
, if p∗s = d∗s(PRF(K3, d

∗
s)). Note that the circuits are functionally equivalent for this setting

of p∗s.

Suppose these hybrids are not indistinguishable, then consider an adversary D11 who distinguishes
between these hybrids with significant advantage.

This adversary can be used to break selective security of the indistinguishability obfuscation (ac-
cording to Definition 1) via the following reduction to distinguisher D, which acts as challenger in
the experiment of Hybrids,10 until it obtains d∗s from the distinguisher D11 which it passes to the iO
challenger, along with p∗s = d∗s(PRF(K3, d

∗
s)).

Samp(1λ) on input d∗s, p∗s samples circuits C0 = PK3 and C1 = P ′K3,p∗s ,d
∗
s
.

We note that the condition Pr[∀x,C0(x) = C1(x) : (C0, C1, σ) ← Samp(1λ)] > 1 − α(λ) is always
met since the circuits are functionally equivalent.

The iO adversary D then obtains Cx = iO(n,C0) or Cx = iO(n,C1). He continues as challenger in
the distinguishing game between Hybrids,10 and Hybrids,11. He follows the Hybrids,10 game, except
that he sets g to the obfuscated circuit Cx. Since D11 has significant distinguishing advantage, there
exists a polynomial p(·) such that,∣∣∣Pr

[
D11(Hybrids,10) = 1

]
− Pr

[
D11(Hybrids,11) = 1

]∣∣∣ ≥ 1/p(λ).

We note that Hybrids,10 and Hybrids,11 correspond exactly to Cx being C0 and C1 respectively, we
can just have D echo the output of D11 such that the following is true, for α(·) = 1/p(·)∣∣∣Pr

[
D(σ, iO(n,C0)) = 1 : (C0, C1, σ)← Samp(1λ)

]
−Pr

[
D(σ, iO(n,C1)) = 1 : (C0, C1, σ)← Samp(1λ)

]∣∣∣ ≥ α(λ)

In other words, if D11 predicts Hybrids,10, then the obfuscation Cx is that of PK3 , and if it predicts
Hybrids,11, then the obfuscation Cx is that of P ′K3,p∗s ,d

∗
s
.
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Claim 17. For s ∈ [q(λ)], Hybrids,11(1λ) and Hybrids,12(1λ) are computationally indistinguishable.

Proof. Hybrids,11 and Hybrids,12 are indistinguishable by security of the puncturable PRF keyK3 = e.

Suppose they are not, then consider an adversary D12 who distinguishes between these hybrids with
significant advantage. This adversary can be used to break selective security of the punctured PRF
key K3 via the following reduction to distinguisher D.

The PRF attacker D begins the experiment of Hybrids,11 and continues it until the hybrid adversary
makes a random oracle query d∗s. D passes d∗s to the PRF challenger. The PRF challenger gives D
the punctured PRF key K3({d∗s}) and the challenge a, which is either chosen uniformly at random
or is the output of the PRF at d∗s. The PRF attacker continues the experiment of Hybrids,11 as
challenger, except that he sets p∗s = d∗s(a).

Then, there exists polynomial p(·) such that∣∣∣Pr
[
D12(Hybrids,11) = 1

]
− Pr

[
D12(Hybrids,12) = 1

]∣∣∣ ≥ 1/p(λ).

If D12 predicts Hybrids,11, then a is the output of the punctured PRF K3 at d∗s. If D12 predicts
Hybrids,12, then a was chosen uniformly at random. Therefore, we can just have D echo the output
of D12 such that∣∣∣Pr

[
D(PRF(K3({d∗s}), d∗s)) = 1

]
− Pr

[
D(y ← {0, 1}m) = 1

]∣∣∣ ≥ 1/p(λ).
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Claim 18. For s ∈ [q(λ)], Hybrids,12(1λ) and Hybrids,13(1λ) are identical.

Proof. Hybrids,12 and Hybrids,13 are identical when x′ is sampled uniformly at random in {0, 1}m.

5.3 No Honest Parameter Violations

Claim 19.
Pr[Ideal(1λ) aborts] = 0

Proof. Note that whenever the adversary queries H on any input d, in the final hybrid we set
(u, v) = H(d) to output the externally specified parameters. This can be verified by a simple
observation of InduceGen.

Therefore, because of our construction, an “Honest Parameter Violation” never occurs in the ideal
world for any d sent to the random oracle. That is, condition (1) in Definition 4 is always satisfied.
In other words,

Pr[Ideal(1λ) aborts] = 0

.
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