
How to Generate and use Universal Samplers

Dennis Hofheinz ∗
Karlsruher Institut für Technologie

Dennis.Hofheinz@kit.edu

Tibor Jager
Ruhr-Universität Bochum

Tibor.Jager@rub.de

Dakshita Khurana †
UCLA

Center for Encrypted Functionalities
dakshita@cs.ucla.edu

Amit Sahai †
UCLA

Center for Encrypted Functionalities
sahai@cs.ucla.edu

Brent Waters ‡
University of Texas at Austin

Center for Encrypted Functionalities
bwaters@cs.utexas.edu

Mark Zhandry §
Stanford University

Center for Encrypted Functionalities
mzhandry@gmail.com

Abstract

The random oracle is an idealization that allows us to model a hash function as an oracle that will
output a uniformly random string given any input. We introduce the notion of a universal sampler
scheme that extends the notion of a random oracle, to a method of sampling securely from arbitrary
distributions.

We describe several applications that provide a natural motivation for this notion; these include
generating the trusted parameters for many schemes from just a single trusted setup. We further demon-
strate the versatility of universal samplers by showing how they give rise to simple constructions of
identity-based encryption and multiparty key exchange. In particular, we construct adaptively secure
non-interactive multiparty key exchange in the random oracle model based on indistinguishability obfus-
cation; obtaining the first known construction of adaptively secure NIKE without complexity leveraging.

We give a solution that shows how to transform any random oracle into a universal sampler scheme,
based on indistinguishability obfuscation. At the heart of our construction and proof is a new technique
we call “delayed backdoor programming” that we believe will have other applications.
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1 Introduction
Many cryptographic systems rely on the trusted generation of common parameters to be used by participants.
There may be several reasons for using such parameters. For example, many cutting edge cryptographic
protocols rely on the generation of a common reference string.1 Constructions for other primitives such
as aggregate signatures [BGLS03] or batch verifiable signatures [CHP12] require all users to choose their
public keys using the same algebraic group structure. Finally, common parameters are sometimes used for
convenience and efficiency — such as when generating an EC-DSA public signing key, one can choose the
elliptic curve parameters from a standard set and avoid the cost of completely fresh selection.

In most of these systems it is extremely important to make sure that the parameters were indeed generated
in a trustworthy manner, and failure to do so often results in total loss of security. In cryptographic protocols
that explicitly create a common reference string it is obvious how and why a corrupt setup results in loss
of security. In other cases, security breaks are more subtle. A prominent recent example is the case of the
elliptic curve parameters standardized in NIST Special Publications 800-90 [NIS12] for the Dual Elliptic
Curve Deterministic Random Bit Generator (Dual EC) used in RSA’s BSAFE product. Based on news
articles [BBG13, LPS13, PLS13] that reported the Snowden leaks, it is speculated that these parameters may
have been chosen with a trapdoor that allows subversion of the system. Recent research has shown [CFN+14]
that such trapdoors can lead to practical exploits.

Given these threats it is important to establish a trusted setup process that engenders the confidence of
all users, even though users will often have competing interests and different trust assumptions. Realizing
such trust is challenging and requires a significant amount of investment. For example, we might try to
find a single trusted authority to execute the process. Alternatively, we might try to gather different parties
that represent different interests and have them jointly execute a trusted setup algorithm using secure
multiparty computation. For instance, one could imagine gathering disparate parties ranging from the
Electronic Frontier Foundation, to large corporations, to national governments.

Pulling together such a trusted process requires a considerable investment. While we typically measure
the costs of cryptographic processes in terms of computational and communication costs, the organizational
overhead of executing a trusted setup may often be the most significant barrier to adoption of a new crypto-
graphic system. Given the large number of current and future cryposystems, it is difficult to imagine that a
carefully executed trusted setup can be managed for each one of these. In this work we attempt to address
this problem by asking an ambitious question:

Can a single trusted setup output a set of trusted parameters,
which can (securely) serve all cryptographic protocols?

Universal Sampler Schemes. To solve the above problem we need a cryptographic primitive that allows
us to (freshly) sample from an arbitrary distribution. We call such a primitive a universal sampler scheme. In
such a system there will exist a function, Sample, which takes as input a polynomial sized circuit description,
d, and outputs a sample p = d(x) for some x. Intuitively, p should “look like” it was freshly sampled from the
distribution induced by the function d. That is from an attack algorithm’s perspective it should look like a
call to the Sample algorithm induces a fresh sample by first selecting a random string x and then outputting
d(x), but keeping x hidden. (We will return to a formal definition shortly.)

Perhaps the most natural comparison of our notion is to the random oracle model put forth in the
seminal work of Bellare and Rogaway [BR93]. Here a function H is (heuristically) modeled as an oracle that
when called on a certain input will output a fresh sample of a random string x. The random oracle model
has had a tremendous impact on the development of cryptography and several powerful techniques such as
“programming” and “rewinding” have been used to leverage its power. However, functions modeled as random
oracles are inherently limited to sampling random strings. Our work explores the power of a primitive that is

1 Several cryptographic primitives (e.g. NIZKs) are realizable using only a common random string and thus only need
access to a trusted random source for setup. However, many cutting edge constructions need to use a common reference string
that is setup by some private computation. For example, the recent two-round MPC protocol of Garg et al. [GGHR14] uses a
trusted setup phase that generates public parameters drawn from a nontrivial distribution, where the randomness underlying
the specific parameter choice needs to be kept secret.
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“smarter” and can do this for any distribution.2 Indeed, our main result is a transformation: we show how to
transform any ordinary random oracle into a universal sampler scheme, by making use of indistinguishability
obfuscation applied to a function that interacts with the outputs of a random oracle – our construction does
not obfuscate a random oracle itself, which would be problematic to model in a theoretically reasonable way.

On Random Oracles, Universal Samplers and Instantiation.

An important question in our work is how to view universal samplers, given that our security model requires
a random oracle for realization. We again turn to the history of the random oracle model for perspective.

The random oracle model itself is a well-defined and rigorous model of computation. While it is obvious
that a hash function cannot actually be a random oracle, a cryptographic primitive that utilizes a hash
function in place of the random oracle, and is analyzed in the random oracle model, might actually lead
to a secure realization of that primitive. While it is possible to construct counterexamples [CGH04], most
schemes created in practice utilizing the hash function in place of a random oracle appear to be resilient
to attacks. Furthermore, the random oracle model is often a first step of exploring new frontiers of new
primitives, where the heuristic implementation using a concrete hash function might later be replaced by a
standard model construction.

A paragon example is the Boneh-Franklin [BF01] identity-based encryption scheme. In a pioneering work,
Boneh-Franklin demonstrated the first feasible candidate for IBE as well as opened up the community to the
power of pairing-based cryptography. Their analysis required the use of the random oracle model to explore
this frontier, however, many subsequent works leveraged their ideas but were able to remove the random
oracle.

Likewise, the notion of universal samplers can be thought of as giving rise to a new “Universal Sampler
Model” – a powerful tool to allow one to explore new primitives. As stated earlier, we view universal
samplers as a next generation of the random oracle model. We stress that unlike the random oracle model,
where heuristic constructions of cryptographic hash functions preceded the random oracle model, before our
work there were not even heuristic constructions of universal samplers. Our work goes further, and gives a
candidate whose security can be rigorously analyzed in the random oracle model.

Our work and subsequent work give examples of the power of the universal sampler model. For example,
prior to our work obtaining even weak notions of adaptivity for NIKE required extremely cumbersome
schemes and proofs, whereas universal samplers give an extremely simple and intuitive solution, detailed
in Appendix 7. Thus, we argue that having universal samplers in the toolkit facilitates the development
of new primitives by allowing for very intuitive constructions (as evidenced in subsequent works [HKW15,
HKKW14]). Then for those unhappy with RO, more work and sweat could perhaps yield standard model
schemes, in part inspired by the universal sampler-based construction. Indeed, this can be evidenced in
a subsequent paper constructing Universal Signature Aggregators [HKW15], where universal samplers are
invoked to obtain a simple and intuitive construction, which is subsequently modified to obtain a construction
in the standard model (which utilizes construction ideas explored using the sampler model).

Last, but not least, in various settings where only a bounded number of secure samples are required
(including a subsequent work [LLC15]), the use of universal samplers is a useful tool for obtaining standard
model solutions.

1.1 Our Technical Approach
We now describe our approach. We begin with a high level overview of the definition we wish to satisfy; details
of the definition are in Section 3. In our system there is a universal sampler parameter generation algorithm,
Setup, which is invoked with security parameter 1λ and randomness r. The output of this algorithm are the

2We note that random oracles are often used as a tool to help sample from various distributions. For example, we might
use them to select a prime. In RSA full domain hash signatures [BR96], they are used to select a group element in Z∗N . This
sampling occurs as a two step process. First, the function H is used to sample a fresh string x which is completely visible to the
attacker. Then there is some post processing phase such as taking x (mod N) to sample an integer mod N. In the literature this
is often described as one function for the sake of brevity. However, the distinction between sampling with a universal sampler
scheme and applying post processing to a random oracle output is very important.
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universal sampler parameters U . In addition, there is a second algorithm Sample which takes as input the
parameters U and the (circuit) description of a setup algorithm, d, and outputs the induced parameters pd.3

We model security as an ideal/real game. In the real game an attacker will receive the parameters U
produced from the universal parameter generation algorithm. Next, it will query an oracle on multiple
setup algorithm descriptions d1, . . . , dq and iteratively get back pi = Sample(U, di) for i = 1, . . . , q. In the
ideal world the attacker will first get the universal sampler parameters U , as before. However, when he
queries on di the challenger will reply back with pi = di(ri) for fresh randomness ri. (Since the universal
parameter generation algorithm is deterministic we only let a particular d value be queried once without loss
of generality.) A scheme is secure if no poly-time attacker can distinguish between the real and ideal game
with non-negligible advantage after observing their transcripts4.

To make progress toward our eventual solution we begin with a relaxed security notion. We relax the
definition in two ways: (1) we consider a setting where the attacker makes only a single query to the oracle
and (2) he commits to the query statically (a.k.a. selectively) before seeing the sampler parameters U . While
this security notion is too weak for our long term goals, developing a solution will serve as step towards our
final solution and provide insights.

In the selective setting, in the ideal world, it will be possible to program U to contain the output corre-
sponding the attacker’s query. Given this insight, it is straightforward to obtain the selective and bounded
notion of security by using indistinguishability obfuscation and applying punctured programming [SW14]
techniques. In our construction we consider setup programs to all come from a polynominal circuit family
of size `(λ), where each setup circuit d takes in input m(λ) bits and outputs parameters of k(λ) bits. The
polynomials of `,m, k are fixed for a class of systems; we often will drop the dependence on λ when it is
clear from context.

The Setup algorithm will first choose a puncturable pseudo random function (PRF) key K for function
F where F (K, ·) takes as input a circuit description d and outputs parameters p ∈ {0, 1}k. The universal
sampler parameters are created as an obfuscation of a program that on input d computes and output
d(F (K, d)). To prove security we perform a hybrid argument between the real and ideal games in the 1-
bounded and selective model. First, we puncture out d∗, the single program that the attacker queried on,
from K to get the punctured key K(d∗). We change the parameters to be an obfuscation of the program
which uses K(d∗) to compute the program for any d 6= d∗. And for d = d∗ we simply hardwire in the output
z where z = d(1λ, F (K, d)). This computation is functionally equivalent to the original program — thus
indistinguishability of this step from the previous follows from indistinguishability obfuscation. In this next
step, we change the hardwired value to d(r) for freshly chosen randomness r ∈ {0, 1}m. This completes the
transition to the ideal game.

Achieving Adaptive Security. We now turn our attention to achieving our original goal of universal
sampler generation for adaptive security. While selective security might be sufficient in some limited situa-
tions, the adaptive security notion covers many plausible real world attacks. For instance, suppose a group
of people perform a security analysis and agree to use a certain cryptographic protocol and its corresponding
setup algorithm. However, for any one algorithm there will be a huge number of functionally equivalent
implementations. In a real life setting an attacker could choose one of these implementations based on the
universal sampler parameters and might convince the group to use this one. A selectively secure system is
not necessarily secure against such an attack, while this is captured by the adaptive model.

Obtaining a solution in the adaptive unbounded setting will be significantly more difficult. Recall that
we consider a setting where a random oracle may be augmented by a program to obtain a universal sampler
scheme for arbitrary distributions5. Indeed, for uniformly distributed samples, our universal sampler scheme
will imply a programmable random oracle.

A tempting idea is to simply replace the puncturable PRF call from our last construction with a call to a
hash function modeled as a programmable random oracle. This solution is problematic: what does it mean

3Note that compared to our previous informal description, this more formal description of Sample takes an additional input
U — the actual parameters — as input.

4In the formalization in Section 3 we state the games slightly differently, however, the above description suffices for this
discussion.

5Note that once the universal sampler parameters of a fixed polynomial size are given out, it is not possible for a standard
model proof to make an unbounded number of parameters consistent with the already-fixed universal sampler parameters.
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to obfuscate an oracle-aided circuit? It is not clear how to model this notion without yielding an impossi-
bility result even within the random oracle model, since the most natural formulation of indistinguishability
obfuscation for random-oracle-aided circuits would yield VBB obfuscation, a notion that is known to be
impossible to achieve [BGI+01]. In particular, Goldwasser and Rothblum [GR07] also showed a family of
random-oracle-aided circuits that are provably impossible to indistinguishably obfuscate. However, these
impossibilities only show up when we try to obfuscate circuits that make random oracle calls. Therefore we
need to obtain a solution where random oracle calls are only possible outside of obfuscated programs. This
complicates matters considerably, since the obfuscated program then has no way of knowing whether a setup
program d is connected to a particular hash output.

A new proof technique: delayed backdoor programming. To solve this problem we develop a novel
way of allowing what we call “delayed backdoor programming” using a random oracle. In our construction,
users will be provided with universal sampler parameters which consist of an obfuscated program U (produced
from Setup) as well as a hash function H modeled as a random oracle. Users will use these overall parameters
to determine the induced samples. We will use the notion of “hidden triggers” [SW14] that loosely corresponds
to information hidden in an otherwise pseudorandom string, that can only be recovered using a secret key.

Let’s begin by seeing how Setup creates a program, P , that will be obfuscated to create U . The program
takes an input w (looking ahead, this input w will be obtained by a user as a result of invoking the random
oracle on his input distribution d). The program consists of two main stages. In the first stage, the program
checks to see if w encodes a “hidden trigger” using secret key information. If it does, this step will output the
“hidden trigger” x ∈ {0, 1}n, and the program P will simply output x. However, for a uniformly randomly
chosen string w, this step will fail to decode with very high probability, since trigger values are encoded
sparsely. Moreover, without the secret information it will be difficult to distinguish an input w containing a
hidden trigger value from a uniformly sampled string.

If decoding is unsuccessful, P will move into its second stage. It will compute randomness r = F (K,w)
for a puncturable PRF F . Now instead of directly computing the induced samples using r, we add a level
of indirection. The program will run the Setup algorithm for a 1-bounded universal parameter generation
scheme using randomness r — in particular the program P could call the 1-bounded selective scheme we
just illustrated above6. The program P then outputs the 1-bounded universal sampler parameters Uw.

In order to generate an induced sample by executing Sample(U, d) on an input distribution d, the algorithm
first calls the random oracle to obtain H(d) = w. Next, it runs the program U to obtain output program
Uw = U(w). Finally, it obtains the induced parameters by computing pd = Uw(d). The extra level of
indirection is critical to our proof of security.

We now give an overview of the proof of security. At the highest level the goal of our proof is to construct
a sequence of hybrids where parameter generation is “moved” from being directly computed by the second
stage of U (as in the real game) to where the parameters for setup algorithm d are being programmed in
by the first stage hidden trigger mechanism via the input w = H(d). Any poly-time algorithm A will make
at most a polynomial number Q = Q(λ) (unique) queries d1, . . . , dQ to the random oracle with RO outputs
w1, . . . , wQ. We perform a hybrid of Q outer steps where at outer step i we move from using Uwi

to compute
the induced parameters for di, to having the induced parameter for di being encoded in wi itself.

Let’s zoom in on the ith transition for input distribution di. The first hybrid step uses punctured
programming techniques to replace the normal computation of the 1-time universal sampler parameters Uwi

inside the program, with a hardwired and randomly sampled value Uwi
= U ′. These techniques require

making changes to the universal sampler parameter U . Since U is published before the adversary queries the
random oracle on distribution di, note that we cannot “program” U to specialize to di.

The next step7 involves a “hand-off” operation where we move the source of the one time parameters U ′
to the trigger that will be hidden inside the random oracle output wi, instead of using the hardwired value
U ′ inside the program. This step is critical to allowing an unbounded number of samples to be programmed
into the universal sampler scheme via the random oracle. Essentially, we first choose U ′ independently and
then set wi to be a hidden trigger encoding of U ′. At this point on calling U(wi) the program will get
Uwi = U ′ from the Stage 1 hidden trigger detection and never proceed to Stage 2. Since the second stage is

6 In our construction of Section 5 we directly use our 1-bounded scheme inside the construction. However, we believe our
construction can be be adapted to work for any one bounded scheme.

7This is actually performed by a sequence of smaller steps in our proof. We simplify to bigger steps in this overview.

4



no longer used, we can use iO security to return to the situation where U ′ is no longer hardwired into the
program — thus freeing up the a-priori-bounded “hardwiring resources” for future outer hybrid steps.

Interestingly, all proof steps to this point were independent of the actual program di. We observe that
this fact is essential to our proof since the reduction was able to choose and program the one-time parameters
U ′ ahead of time into U which had to be published well before di was known. However, now Uwi

= U ′ comes
programmed in to the random oracle output wi obtained as a result of the call to H(di). At this point, the
program U ′ needs to be constructed only after the oracle call H(di) has been made and thus di is known
to the challenger. We can now use our techniques from the selective setting to force U ′(di) to output the
ideally generated parameters di(r) for distribution di.

We believe our “delayed backdoor programming” technique may be useful in other situations where an
unbounded number of backdoors are needed in a program of fixed size.

1.2 Applications of Universal Samplers
Universal setup. Our notion of arbitrary sampling allows for many applications. For starters let’s return
to the problem of providing a master setup for all cryptographic protocols. Using a universal sampler scheme
this is quite simple. One will simply publish the universal sampler U ← Setup(1λ), for security parameter
λ. Then if subsequently a new scheme is developed that has a trusted setup algorithm d, everyone can agree
to use p = Sample(U, d) as the scheme’s parameters.

We can also use universal sampler schemes as a technical tool to build applications as varied as identity-
based encryption (IBE), non-interactive key exchange (NIKE), and broadcast encryption (BE) schemes. We
note that our goal is not to claim that our applications below are the “best” realizations of such primitives, but
more to demonstrate the different and perhaps surprising ways a universal sampler scheme can be leveraged.

From the public-key to the identity-based setting. As a warmup, we show how to transport cryp-
tographic schemes from the public-key setting to the identity-based setting using universal samplers. For
instance, consider a public-key encryption (PKE) scheme PKE = (PKGen,PKEnc,PKDec). Intuitively, to
obtain an IBE scheme IBE from PKE, we use one PKE instance for each identity id of IBE.

A first attempt to do so would be to publish a description of U as the master public key of IBE, and then
to define a public key pk id for identity id as pk id = Sample(U, did), where did is the algorithm that first
generates a PKE key-pair (pk , sk)← PKGen(1λ) and then outputs pk . (Furthermore, to distinguish the keys
for different identities, did contains id as a fixed constant that is built into its code, but not used.) This
essentially establishes a “virtual” public-key infrastructure in the identity-based setting.

Encryption to an identity id can then be performed using PKEnc under public key pk id . However, at this
point, it is not clear how to derive individual secret keys sk id that would allow to decrypt these ciphertexts.
(In fact, this first scheme does not appear to have any master secret key to begin with.)

Hence, as a second attempt, we add a “master PKE public key” pk ′ from a chosen-ciphertext secure PKE
scheme to IBE’s master public key. Furthermore, we set (pk id , c

′
id) = Sample(U, did) for the algorithm did

that first samples (pk , sk) ← PKGen(1λ), then encrypts sk under pk ′ via c′ ← PKEnc′(pk ′, sk), and finally
outputs (pk , c′). This way, we can use sk ′ as a master trapdoor to extract sk from c′id and thus extract
individual user secret keys.

We will show that this construction yields a selectively-secure IBE scheme once the used universal sampler
scheme is selectively secure and the underlying PKE schemes are secure. Intuitively, during the analysis,
we will substitute the user public key pk id∗ for the challenge identity id∗ with a freshly generated PKE
public key, and we will substitute the corresponding c′id∗ with a random ciphertext. This allows to embed
an externally given PKE public key pk∗, and thus to use PKE’s security.

Non-interactive key exchange and broadcast encryption. We provide a very simple construction of
a multiparty non-interactive key exchange (NIKE) scheme. In an n-user NIKE scheme, a group of n parties
wishes to agree on a shared random key k without any communication. User i derives k from its own secret
key and the public keys of the other parties. (Since we are in the public-key setting, each party chooses its
key-pair and publishes its public key.) Security demands that k look random to any party not in the group.

We construct a NIKE scheme from a universal sampler scheme and a PKE scheme PKE = (PKGen,PKEnc,PKDec)
as follows: the public parameters are the universal samplers U . Each party chooses a keypair (pk , sk) ←

5



PKGen(1λ). A shared key K among n parties with public keys from the set S = {pk1, . . . , pkn} is derived as
follows. First, each party computes (c1, . . . , cn) = Sample(U, dS), where dS is the algorithm that chooses a
random key k, and then encrypts it under each pk i to ci (i.e., using ci ← PKEnc(pk i, k)). Furthermore, dS
contains a description of the set S, e.g., as a comment. (This ensures that different sets S imply different
algorithms dS and thus different independently random Sample outputs.) Obviously, the party with secret
key sk i can derive k from ci. On the other hand, we show that k remains hidden to any outsiders, even in
an adaptive setting, assuming the universal sampler scheme is adaptively secure, and the encryption scheme
is (IND-CPA) secure.

We also give a variant of the protocol that has no setup at all. Roughly, we follow Boneh and Zhandry [BZ14]
and designate one user as the “master party” who generates and publishes the universal sampler parameters
along with her public key. Unfortunately, as in [BZ14], the basic conversion is totally broken in the adaptive
setting. However, we make a small change to our protocol so that the resulting no-setup scheme does have
adaptive security. This is in contrast to [BZ14], which required substantial changes to the scheme, achieved
only a weaker semi-static security, and only obtained security though complexity leveraging.

Not only is our scheme the first adaptively-secure multiparty NIKE without any setup, but it is the
first to achieve adaptive security even among schemes with trusted setup, and it is the first to achieve any
security beyond static security without relying on complexity leveraging. One trade-off is that our scheme
is only proved secure in the random oracle model, whereas [BZ14, Rao14] are proved secure in the standard
model. Nevertheless, we note that adaptively secure NIKE with polynomial loss to underlying assumptions
is not known to be achievable outside of the random oracle model unless one makes very strong adaptive
(non-falsifiable) assumptions [Rao14].

Finally, using an existing transformation of Boneh and Zhandry [BZ14], we also obtain a new adaptive
distributed broadcast encryption scheme from our NIKE scheme.

Other work leveraging universal sampler schemes. Subsequent, to the initial posting of our paper
two other papers have applied universal sampler schemes. Hohenberger, Koppula and Waters [HKW15] used
universal samplers to achieve adaptive security without complexity leveraging for a new notion they called
universal signature aggregators. Hofheinz, Kamath, Koppula and Waters [HKKW14] showed how to build
adaptively secure constrained PRFs [BW13, BGI13, KPTZ13], for any circuits, using universal parameters as
a key ingredient. All previous constructions were only selectively secure, or required complexity leveraging.

1.3 Organization of the Paper
In Section 2, we overview indistinguishability obfuscation and puncturable PRFs, the main technical tools
required for our constructions. In Section 3, we define our notion of universal sampler schemes. We give a
realization and prove security for a single-use selectively secure scheme in Section 4. In Section 5, we give the
construction and prove security for our main notion of an unbounded adaptively secure universal samplers.
Our applications to IBE and NIKE are detailed in Appendices 6 and 7.

2 Preliminaries

2.1 Indistinguishability Obfuscation and PRFs
In this section, we define indistinguishability obfuscation, and variants of pseudo-random functions (PRFs)
that we will make use of. All variants of PRFs that we consider will be constructed from one-way functions.

Indistinguishability Obfuscation. The definition below is adapted from [GGH+13]; the main difference
with previous definitions is that we uncouple the security parameter from the circuit size by directly defining
indistinguishability obfuscation for all circuits:

Definition 1 (Indistinguishability Obfuscator (iO)). A uniform PPT machine iO is called an indistin-
guishability obfuscator for circuits if the following conditions are satisfied:
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◦ For all security parameters λ ∈ N, for all circuits C, for all inputs x, we have that

Pr[C ′(x) = C(x) : C ′ ← iO(λ,C)] = 1

◦ For any (not necessarily uniform) PPT adversaries Samp, D, there exists a negligible function α such
that the following holds: if Pr[|C0| = |C1| and ∀x,C0(x) = C1(x) : (C0, C1, σ)← Samp(1λ)] > 1−α(λ),
then we have:

∣∣∣Pr
[
D(σ, iO(λ,C0)) = 1 : (C0, C1, σ)← Samp(1λ)

]
−Pr

[
D(σ, iO(λ,C1)) = 1 : (C0, C1, σ)← Samp(1λ)

]∣∣∣ ≤ α(λ)

Such indistinguishability obfuscators for circuits were constructed under novel algebraic hardness as-
sumptions in [GGH+13].

PRF variants. We first consider some simple types of constrained PRFs [BW13, BGI13, KPTZ13], where
a PRF is only defined on a subset of the usual input space. We focus on puncturable PRFs, which are PRFs
that can be defined on all bit strings of a certain length, except for any polynomial-size set of inputs:

Definition 2. A puncturable family of PRFs F is given by a triple of Turing Machines KeyF , PunctureF ,
and EvalF , and a pair of computable functions n(·) and m(·), satisfying the following conditions:

◦ [Functionality preserved under puncturing] For every PPT adversary A such that A(1λ) outputs
a set S ⊆ {0, 1}n(λ), then for all x ∈ {0, 1}n(λ) where x /∈ S, we have that:

Pr
[
EvalF (K,x) = EvalF (KS , x) : K ← KeyF (1λ),KS = PunctureF (K,S)

]
= 1

◦ [Pseudorandom at punctured points] For every PPT adversary (A1, A2) such that A1(1λ) out-
puts a set S ⊆ {0, 1}n(λ) and state σ, consider an experiment where K ← KeyF (1λ) and KS =
PunctureF (K,S). Then we have∣∣∣Pr

[
A2(σ,KS , S,EvalF (K,S)) = 1

]
− Pr

[
A2(σ,KS , S, Um(λ)·|S|) = 1

]∣∣∣ = negl(λ)

where EvalF (K,S) denotes the concatenation of EvalF (K,x1)), . . . ,EvalF (K,xk)) where S = {x1, . . . , xk}
is the enumeration of the elements of S in lexicographic order, negl(·) is a negligible function, and U`
denotes the uniform distribution over ` bits.

For ease of notation, we write F (K,x) to represent EvalF (K,x). We also represent the punctured key
PunctureF (K,S) by K(S).

The GGM tree-based construction of PRFs [GGM84] from one-way functions are easily seen to yield
puncturable PRFs, as recently observed by [BW13, BGI13, KPTZ13]. Thus we have:

Theorem 1. [GGM84, BW13, BGI13, KPTZ13] If one-way functions exist, then for all efficiently com-
putable functions n(λ) and m(λ), there exists a puncturable PRF family that maps n(λ) bits to m(λ) bits.

3 Definitions
In this section, we describe our definitional framework for universal sampler schemes. The essential property
of a universal sampler scheme is that given the sampler parameters, and given any program d that generates
samples from randomness (subject to certain size constraints, see below), it should be possible for any party
to use the sampler parameters and the description of d to obtain induced samples that look like the samples
that d would have generated given uniform and independent randomness.

We will consider two definitions – a simpler definition promising security for a single arbitrary but fixed
protocol, and a more complex definition promising security in a strong adaptive sense against many protocols
chosen after the sampler parameters are fixed. All our security definitions follow a “Real World” vs. “Ideal
World” paradigm. Before we proceed to our definitions, we will first set up some notation and conventions:
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◦ We will consider programs d that are bounded in the following ways: Note that we will use d to refer to
both the program, and the description of the program. Below, `(λ),m(λ), and k(λ) are all computable
polynomials. The description of d is as an `(λ)-bit string describing a circuit8 implementing d. The
program d takes as input m(λ) bits of randomness, and outputs samples of length k(λ) bits. Without
loss of generality, we assume that `(λ) ≥ λ and m(λ) ≥ λ. When context is clear, we omit the
dependence on the security parameter λ. The quantities (`,m, k) are bounds that are set during the
setup of the universal sampler scheme.

◦ We enforce that every `-bit description of d yields a circuit mapping m bits to k bits; this can be done
by replacing any invalid description with a default circuit satisfying these properties.

◦ We will sometimes refer to the program d that generates samples as a “protocol”. This is to emphasize
that d can be used to generate arbitrary parameters for some protocol.

A universal parameter scheme consists of two algorithms:

(1) The first randomized algorithm Setup takes as input a security parameter 1λ and outputs sampler
parameters U .

(2) The second algorithm Sample takes as input sampler parameters U and a circuit d of size at most `,
and outputs induced samples pd.

Intuition. Before giving formal definitions, we will now describe the intuition behind our definitions.
We want to formulate security definitions that guarantee that induced samples are indistinguishable from
honestly generated samples to an arbitrary interactive system of adversarial and honest parties.

We first consider an “ideal world,” where a trusted party, on input a program description d, simply
outputs d(rd) where rd is independently chosen true randomness, chosen once and for all for each given
d. In other words, if F is a truly random function, then the trusted party outputs d(F (d)). In this way,
if any party asks for samples corresponding to a specific program d, they are all provided with the same
honestly generated value. This corresponds precisely to the shared trusted public parameters model in which
protocols are typically constructed.

In the real world, however, all parties would only have access to the trusted sampler parameters. Parties
would use the sampler parameters to derive induced samples for any specific program d. Following the
ideal/real paradigm, we would like to argue that for any adversary that exists in the real world, there should
exist an equivalently successful adversary in the ideal world. However, the general scenario of an interaction
between multiple parties, some malicious and some honest, interacting in an arbitrary security game would
be cumbersome to model in a definition. To avoid this, we note that the only way that honest parties ever
use the sampler parameters is to execute the sample derivation algorithm using the sampler parameters and
some program descriptions d (corresponding to the protocols in which they participate) to obtain derived
samples, which these honest parties then use in their interactions with the adversary.

Thus, instead of modeling these honest parties explicitly, we can “absorb” them into the adversary, as we
now explain: We will require that for every real-world adversaryA, there exists a simulator S that can provide
simulated sampler parameters U to the adversary such that these simulated sampler parameters U actually
induce the completely honestly generated samples d(F (d)) created by the trusted party: in other words,
that Sample(U, d) = d(F (d)). Note that since honest parties are instructed to simply honestly compute
induced samples, this ensures that honest parties in the ideal world would obtain these completely honestly
generated samples d(F (d)). Thus, we do not need to model the honest parties explicitly – the adversary
A can internally simulate any (set of) honest parties. By the condition we impose on the simulation, these
honest parties would have the correct view in the ideal world.

Selective (and bounded) vs. Adaptive (and unbounded) Security. We explore two natural formu-
lations of the simulation requirement. The simpler variant is the selective case, where we require that the
adversary declare at the start a single program d∗ on which it wants the ideal world simulator to enforce

8Note that if we assume iO for Turing Machines, then we do not need to restrict the size of the description of d. Candidates
for iO for Turing Machines were given by [ABG+13, BCP14].
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equality between the honestly generated samples d∗(F (d∗)) and the induced samples Sample(U, d∗). This
simpler variant has two advantages: First, it is achievable in the standard model. Second, it is achieved by
natural and simple construction based on indistinguishability obfuscation.

However, ideally, we would like our security definition to capture a scenario where sampler parameters U
are set, and then an adversary can potentially adaptively choose a program d for generating samples for some
adaptively chosen application scenario. For example, there may be several plausible implementations of a
program to generate samples, and an adversary could influence which specific program description d is used
for a particular protocol. Note, however, that such an adaptive scenario is trivially impossible to achieve in
the standard model: there is no way that a simulator can publish sampler parameters U of polynomial size,
and then with no further interaction with the adversary, force Sample(U, d∗) = d∗(F (d∗)) for a d∗ chosen
after U has already been declared. This impossibility is very similar to the trivial impossibility for reusable
non-interactive non-committing public-key encryption [Nie02] in the plain model. Such causality problems
can be addressed, however, in the random-oracle model. As discussed in the introduction, the sound use of
the random oracle model together with obfuscation requires care: we do not assume that the random oracle
itself can be obfuscated, which presents an intriguing technical challenge.

Furthermore, we would like our sampler parameters to be useful to obtain induced samples for an un-
bounded number of other application scenarios. We formulate and achieve such an adaptive unbounded
definition of security in the random oracle model.

3.1 Selective One-Time Universal Samplers
We now formally define a selective one-time secure universal sampler scheme.

Definition 3 (Selectively-Secure One-Time Universal Sampler Scheme). Let `(λ),m(λ), k(λ) be efficiently
computable polynomials. A pair of efficient algorithms (Setup, Sample) where Setup(1λ)→ U, Sample(U, d)→
pd, is a selectively-secure one-time universal sampler scheme if there exists an efficient algorithm SimUGen

such that:

◦ There exists a negligible function negl(·) such that for all circuits d of length `, taking m bits of input,
and outputting k bits, and for all strings pd ∈ {0, 1}k, we have that:

Pr[Sample(SimUGen(1λ, d, pd), d) = pd] = 1− negl(λ)

◦ For every efficient adversary A = (A1,A2), where A2 outputs one bit, there exists a negligible function
negl(·) such that ∣∣Pr[Real(1λ) = 1]− Pr[Ideal(1λ) = 1]

∣∣ = negl(λ) (1)

where the experiments Real and Ideal are defined below (σ denotes auxiliary information).

The experiment Real(1λ) is as follows: The experiment Ideal(1λ) is as follows:
– (d∗, σ)← A1(1λ). – (d∗, σ)← A1(1λ).
– Output A2(Setup(1λ), σ). – Choose r uniformly from {0, 1}m.

– Let pd = d∗(r).
– Output A2(SimUGen(1λ, d∗, pd), σ).

3.2 Adaptively Secure Universal Samplers
We now define universal sampler schemes for the adaptive setting in the random oracle model, handling an
unbounded number of induced samples simultaneously. We do not assume obfuscation of circuits that call
the random oracle. Thus, we allow the random oracle to be used only outside of obfuscated programs.

Definition 4 (Adaptively-Secure Universal Sampler Scheme). Let `(λ),m(λ), k(λ) be efficiently computable
polynomials. A pair of efficient oracle algorithms (Setup, Sample) where SetupH(1λ)→ U, SampleH(U, d)→
pd is an adaptively-secure universal sampler scheme if there exist efficient interactive Turing Machines
SimUGen, SimRO such that for every efficient admissible adversary A, there exists a negligible function negl(·)
such that the following two conditions hold:∣∣Pr[Real(1λ) = 1]− Pr[Ideal(1λ) = 1]

∣∣ = negl(λ) and Pr[Ideal(1λ) aborts] < negl(λ),
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where admissible adversaries, the experiments Real and Ideal and our (non-standard) notion of the Ideal

experiment aborting, are described below.

◦ An admissible adversary A is an efficient interactive Turing Machine that outputs one bit, with the
following input/output behavior:

– A initially takes input security parameter λ and sampler parameters U .

– A can send a message (RO, x) corresponding to a random oracle query. In response, A expects to
receive the output of the random oracle on input x.

– A can send a message (sample, d), where d is a circuit of length `, taking m bits of input, and
outputting k bits. The adversary does not expect any response to this message. Instead, upon
sending this message, A is required to honestly compute pd = Sample(U, d), making use of any
additional RO queries, and A appends (d, pd) to an auxiliary tape.
Remark. Intuitively, (sample, d) messages correspond to an honest party seeking a sample gen-
erated by program d. Recall that A is meant to internalize the behavior of honest parties.

◦ The experiment Real(1λ) is as follows:

1. Throughout this experiment, a random oracle H is implemented by assigning random outputs to
each unique query made to H.

2. U ← SetupH(1λ)

3. A(1λ, U) is executed, where every message of the form (RO, x) receives the response H(x).

4. The output of the experiment is the final output of the execution of A(which is a bit b ∈ {0, 1}).

◦ The experiment Ideal(1λ) is as follows:

1. A truly random function F that maps ` bits to m bits is implemented by assigning random m-bit
outputs to each unique query made to F . Throughout this experiment, a Samples Oracle O is
implemented as follows: On input d, where d is a circuit of length `, taking m bits of input, and
outputting k bits, O outputs d(F (d)).

2. (U, τ)← SimUGen(1λ). Here, SimUGen can make arbitrary queries to the Samples Oracle O.
3. A(1λ, U) and SimRO(τ) begin simultaneous execution. Messages for A or SimRO are handled as:

– Whenever A sends a message of the form (RO, x), this is forwarded to SimRO, which produces
a response to be sent back to A.

– SimRO can make any number of queries to the Samples Oracle O.
– Finally, after A sends a message of the form (sample, d), the auxiliary tape of A is examined

until A adds an entry of the form (d, pd) to it. At this point, if pd 6= d(F (d)), the experiment
aborts and we say that an “Honest Sample Violation” has occurred. Note that this is the only
way that the experiment Ideal can abort9. In this case, if the adversary itself “aborts”, we
consider this to be an output of zero by the adversary, not an abort of the experiment itself.

4. The output of the experiment is the final output of the execution of A (which is a bit b ∈ {0, 1}).

4 Selective One-Time Universal Samplers
In this section, we show the following:

Theorem 2 (Selective One-Time Universal Samplers). If indistinguishability obfuscation and one-way func-
tions exist, then there exists a selectively secure one-time universal sampler scheme, according to Definition 3.

The required Selective One-Time Universal Sampler Scheme consists of programs Setup and Sample.
9 Specifically, since an admissible adversary only honestly computes samples and adds them to its tape, an honest sample

violation in the ideal world indicates that the simulator did not force the correct samples d(F (d)) created by the trusted party.
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◦ Setup(1λ) first samples the key K for a PRF that takes ` bits as input and outputs m bits. It then
sets Sampler Parameters U to be an indistinguishability obfuscation of the program10 Selective-Single-
Samples in Figure 1. It outputs U .

◦ Sample(U, d) runs the program U on input d to generate and output U(d).

Selective-Single-Samples

Constant: PRF key K.
Input: Program description d.

1. Output d(F (K, d)).
Recall that d is a program description which outputs k bits.

Figure 1: Program Selective-Single-Samples

Next, we prove security of this scheme.

4.1 Hybrids
We prove security by a sequence of hybrids, starting with the original experiment Hybrid0 in the Real World
and replacing the output at d∗ with an external sample in the final hybrid (Ideal World). Each hybrid is an
experiment that takes as input 1λ. The output of each hybrid is the adversary’s output when it terminates.
We denote changes between subsequent hybrids using red underlined font.

Hybrid0:

◦ The adversary picks protocol description d∗ and sends it to the challenger.

◦ The challenger picks PRF key K and sends the adversary an iO of the program11 Selective-Single-
Samples in Figure 2.

◦ The adversary queries the program on input d∗ to obtain the sample.

Selective-Single-Samples

Constant: PRF key K.
Input: Program description d.

1. Output d(F (K, d)).
Recall that d is a program description which outputs k bits.

Figure 2: Program Selective-Single-Samples

Hybrid1:

◦ The adversary picks protocol description d∗ and sends it to the challenger.

◦ The challenger picks PRF key K, sets f∗ = d∗(F (K, d∗)), punctures K at d∗ and sends the adversary
an iO of the program12 Selective-Single-Samples: 2 in Figure 3.

◦ The adversary queries the program on input d∗ to obtain the sample.

10Appropriately padded to the maximum of the size of itself and Program Selective-Single-Samples: 2
11Appropriately padded to the maximum of the size of itself and Program Selective-Single-Samples: 2.
12Appropriately padded to the maximum of the size of itself and Program Selective-Single-Samples.
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Selective-Single-Samples: 2

Constant: PRF key K{d∗}, d∗, f∗.
Input: Program description d.

1. If d = d∗ output f∗.

2. Output d(F (K, d)). Recall that d is a program description which outputs k bits.

Figure 3: Program Selective-Single-Samples: 2

Hybrid2:

◦ The adversary picks protocol description d∗ and sends it to the challenger.

◦ The challenger picks PRF key K, picks x← {0, 1}m, sets f∗ = d∗(x), punctures K at d∗ and sends the
adversary an iO of the program13 Selective-Single-Samples: 2 in Figure 4.

◦ The adversary queries the program on input d∗ to obtain the sample.

Selective-Single-Samples: 2

Constant: PRF key K{d∗}, d∗, f∗.
Input: Program description d.

1. If d = d∗ output f∗.

2. Output d(F (K, d)). Recall that d is a program description which outputs k bits.

Figure 4: Program Selective-Single-Samples: 2

Hybrid3:

◦ This hybrid describes how SimUGen works.

◦ The adversary picks protocol description d∗ and sends it to the challenger.

◦ The challenger executes SimUGen(1λ, d∗), which does the following: It picks PRF keyK, sets f∗ = pd for
externally obtained sample pd, punctures K at d∗ and outputs an iO of the program14 Selective-Single-
Samples: 2 in Figure 5. This is then sent to the adversary.

◦ The adversary queries the program on input d∗ to obtain the sample.

Selective-Single-Samples: 2

Constant: PRF key K{d∗}, d∗, f∗.
Input: Program description d.

1. If d = d∗ output f∗.

2. Output d(F (K, d)). Recall that d is a program description which outputs k bits.

Figure 5: Program Selective-Single-Samples: 2

13Appropriately padded to the maximum of the size of itself and Program Selective-Single-Samples.
14Appropriately padded to the maximum of the size of itself and Program Selective-Single-Samples.
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4.2 Indistinguishability of the Hybrids
To prove Theorem 2, it suffices to prove the following claims,

Claim 1. Hybrid0(1λ) and Hybrid1(1λ) are computationally indistinguishable.

Proof. Hybrid0 and Hybrid1 are indistinguishable by security of iO, since the programs Selective-Single-
Samples and Selective-Single-Samples: 2 are functionally equivalent. Suppose not, then there exists a distin-
guisher D1 that distinguishes between the two hybrids. This can be used to break security of the iO via the
following reduction to distinguisher D.
D acts as challenger in the experiment of Hybrid0. He activates the adversary D1 to obtain input d∗ which

he passes to the iO Samp algorithm. He also picks PRF key K and passes it to Samp. Samp on input d∗
computes f∗ = d∗(F (K, d∗)). Next, it samples circuit C0 = Selective-Single-Samples according to Figure 2
and C1 = Selective-Single-Samples: 2 according to Figure 3 with inputs d∗, f∗. He pads the circuits in order
to bring them to equal size. It is easy to see that these circuits are functionally equivalent. Next, Samp gives
circuit Cx = iO(C0) or Cx = iO(C1) to D.
D continues the experiment of Hybrid1 except that he sends the obfuscated circuit Cx instead of the ob-

fuscation of Selective-Single-Samples to the adversary D1. Since D1 has significant distinguishing advantage,
there exists a polynomial p(·) such that,

∣∣∣Pr
[
D1(Hybrid0) = 1

]
− Pr

[
D1(Hybrid1) = 1

]∣∣∣ ≥ 1/p(λ).

We note that Hybrid0 and Hybrid1 correspond exactly to Cx being C0 and C1 respectively, thus we can
just have D echo the output of D1 such that the following is true, for α(·) = 1/p(·)∣∣∣Pr

[
D(σ, iO(n,C0)) = 1 : (C0, C1, σ)← Samp(1λ)

]
−Pr

[
D(σ, iO(n,C1)) = 1 : (C0, C1, σ)← Samp(1λ)

]∣∣∣ ≥ α(λ)

Claim 2. Hybrid1(1λ) and Hybrid2(1λ) are computationally indistinguishable.

Proof. Hybrid1 and Hybrid2 are indistinguishable by security of the punctured PRF K{d∗}. Suppose they are
not, then consider an adversary D2 who distinguishes between these hybrids with significant advantage.

This adversary can be used to break selective security of the punctured PRF K via the following reduction
algorithm to distinguisher D, that first gets the protocol d∗ after activating the distinguisher D2. The PRF
challenger gives the challenge a to the PRF attacker D, which is either the output of the PRF at d∗ or is
set uniformly at random in {0, 1}m. D sets f∗ = d∗(a) and continues the experiment of Hybrid1 against D2.
Then,

∣∣∣Pr
[
D2(Hybrid1) = 1

]
− Pr

[
D2(Hybrid2) = 1

]∣∣∣ ≥ 1/p(λ) for some polynomial p(·).
If D2 predicts Hybrid1, then a is the output of the punctured PRF K at d∗. If D2 predicts Hybrid2, then

a was chosen uniformly at random. Therefore, we can just have D echo the output of D2 such that∣∣∣Pr
[
D(F (K{d∗}, d∗)) = 1

]
− Pr

[
D(y ← {0, 1}n) = 1

]∣∣∣ ≥ 1/p(λ).

Claim 3. Hybrid2(1λ) and Hybrid3(1λ) are identical.

Proof. Hybrid2 and Hybrid3 are identical since x is sampled uniformly at random in {0, 1}n.

Claim 4. Pr[Sample(SimUGen(1λ, d, pd), d) = pd] = 1

Proof. This follows from inspection of our construction, therefore condition (1) in Definition 3 is fulfilled.
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5 Adaptively Secure Universal Samplers
Theorem 3 (Adaptively Secure Universal Samplers). If indistinguishability obfuscation and one way func-
tions exist, then there exists an adaptively secure universal sampler scheme, according to Definition 4, in the
Random Oracle Model.

Our scheme consists of algorithms Setup and Sample, defined below. We use injective PRGs which can
be obtained from indistinguishability obfuscation and one-way functions using [BPW15].

◦ Setup(1λ, r) first samples PRF keys K1,K2,K
′
2 and then sets Sampler Parameters U to be an indis-

tinguishability obfuscation of the program Adaptive-Samples 15, Figure 6. The first three steps in the
program look for “hidden triggers” and extract an output if a trigger is found, the final step represents
the normal operation of the program (when no triggers are found).

The program takes as input a value u, where |u| = n2 and v where |v| = n, such that u||v is obtained as
the output of a random oracleH on input d. Here, n is the size of an iO of program16 PK3

(Figure 7). As
such, n will be some fixed polynomial in the security parameter λ. The key to our proof is to instantiate
the random oracle H appropriately to generate the sample for any input protocol description d.

Denote by F (n)
1 = {F 1,0

1 , F 1,1
1 , F 2,0

1 , F 2,1
1 . . . Fn,01 , Fn,11 } a sequence of 2n puncturable PRF’s that each

take n-bit inputs and output n bits. For some key sequence {K1,0
1 ,K1,1

1 ,K2,0
1 ,K2,1

1 . . .Kn,0
1 ,Kn,1

1 },
denote the combined key by K

(n)
1 . Then, on a n-bit input v1, denote the combined output of the

function F (n)
1 using key K(n)

1 by F (n)
1 (K

(n)
1 , v1). Note that the length of this combined output is 2n2.

Denote by F2 a puncturable PRF that takes inputs of (n2 + n) bits and outputs n1 bits, where n1 is
the size of the key K3 for the program PK3

in Figure 7. In particular, n1 = λ. Denote by F ′2 another
puncturable PRF that takes inputs of (n2 + n) bits and outputs n2 bits, where n2 is the size of the
randomness r used by the iO given the program PK3 in Figure 7. Denote by F3 another puncturable
PRF that takes inputs of ` bits and outputs m bits. Denote by PRG an injective length-doubling
pseudo-random generator that takes inputs of n bits and outputs 2n bits.

Here m is the size of uniform randomness accepted by d(·), k is the size of samples generated by d(·).

◦ Sample(U, d) queries the random oracle H to obtain (u, v) = H(d). It then runs the program U
generated by Setup(1λ) on input (u, v) to obtain as output the obfuscated program P . It now runs
this program P on input d to obtain the required samples.

Adaptive-Samples

Constants: PRF keys K(n)
1 , K2,K

′
2.

Input: Program hash u = u[1], . . . , u[n], v.

1. Compute F1(K
(n)
1 , v) = (y1,0, y1,1), . . . , (y1,0, y1,1).

2. For i = 1, . . . , n, if u[i] = yi,0 set xi = 0 else if u[i] = yi,1 set xi = 1 else set xi = ⊥
3. If x ∈ {0, 1}n (i.e. no ⊥s), output x.

4. Else set K3 = F2(K2, u|v), r = F2(K
′
2, u|v). Output P = iO(PK3 ; r) of the program

a PK3 of Figure 7.

aAppropriately padded to the maximum of the size of itself and P ′
K3,p

∗
j ,d
∗
j
in future hybrids

Figure 6: Program Adaptive-Samples

5.1 Overview of the Security Game and Hybrids
We convert any admissible adversary A - that is allowed to send any message (RO, x) or (params, d) - and
construct a modified adversary, such that whenever A sends message (params, d), our modified adversary

15This program must be padded appropriately to maximum of the size of itself and other corresponding programs in various
hybrids, as described in the next section.

16Appropriately padded to the maximum of the size of itself and P ′
K3,p

∗
j ,d
∗
j
in future hybrids
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PK3

Constant: PRF key K3.
Input: Program description d.

1. Output d(F3(K3, d)). Recall that d is a program description which outputs k bits.

Figure 7: Program PK3

sends message (RO, d) and then sends message (params, d). It suffices to prove the security of our scheme
with respect to such modified adversaries because this modified adversary is functionally equivalent to the
admissible adversary. Because the modified adversary always provides protocol description d to the random
oracle, our proof will not directly deal with messages of the form (params, d) and it will suffice to handle
only messages (RO, d) sent by the adversary.

We prove via a sequence of hybrids, that algorithms Setup and Sample satisfy the security require-
ments of Definition 4 in the Random Oracle Model. Hybrid0 corresponds to the real world in the security
game described above. Suppose the adversary makes q(λ) queries to the random oracle H, for some poly-
nomial q(·). The argument proceeds via the sequence Hybrid0,Hybrid1,1,Hybrid1,2, . . .Hybrid1,13, Hybrid2,1,
. . .Hybrid2,13 . . .Hybridq(λ),13, each of which we prove to be indistinguishable from the previous one. We de-
fine Hybrid0 ≡ Hybrid0,13 for convenience. The final hybrid Hybridq(λ),13 corresponds to the ideal world in the
security game described above, and contains (implicitly) descriptions of SimUGen, SimRO as required in Defi-
nition 4. For brevity, we only describe Hybrid0 and Hybrids,13 for a generic s ∈ q(λ) in this section. We also
give a short overview of how the sequence of hybrids progresses. The complete sequence of hybrids along with
complete indistinguishability arguments, beginning with Hybrid0 and then Hybrids,1, Hybrids,2, . . .Hybrids,13

for a generic s ∈ [q(λ)], can be found in the next sections.
In the following experiments, the challenger chooses PRF keys K(n)

1 ,K2 and K ′2 for PRFs F (n)
1 , F2 and

F ′2. Each hybrid is an experiment that takes input 1λ. The output of any hybrid experiment denotes the
output of the adversary upon termination. Changes between hybrids are denoted using red underlined font.

Hybrid0 :

◦ The challenger pads the program Adaptive-Samples in Figure 6 to be the maximum of the size of itself
and all corresponding programs (Adaptive-Samples: 2, Adaptive-Samples: 3) in other hybrids. Next,
he sends the obfuscation of the program in Figure 6 to the adversary.

◦ Set j = 0. While the adversary queries the RO, increment j and repeat:
1. Let the adversary query the random oracle on protocol description d∗j .
2. The challenger sets the output of the RO, (u∗j , v

∗
j )← {0, 1}n2+n.

◦ The adversary then outputs a single bit b′.

Hybrids,13 :

◦ The challenger pads the program Adaptive-Samples in Figure 8 appropriately 17 and sends an iO of
the program to the adversary.

◦ Set j = 0. While the adversary queries the RO, increment j and repeat:
1. Let the adversary query the random oracle on protocol description d∗j .
2. If j ≤ s, the challenger sets the output of the random oracle, v∗j ← {0, 1}n. He sets K3 ← {0, 1}n,
e′ ← {0, 1}n. He queries the oracle to obtain the sample p∗j and sets g = iO(P ′K3,p∗j ,d

∗
j
, e′) (See Figure 10).

For all b ∈ {0, 1} and i ∈ [1, n], he sets (y∗1,0, y
∗
1,1), . . . , (y∗n,0, y

∗
n,1) = F1(K

(n)
1 , v∗j ), u∗j [i] = y∗i,gi ,

where gi is the ith bit of g.
3. If j > s, challenger sets the RO output, (u∗j , v

∗
j )← {0, 1}n2+n.

◦ The adversary then outputs a single bit b′.

Note that Hybridq(λ),13 is the Ideal World and it describes how SimUGen and SimRO work in the first and
second bullet points above, respectively.

17To the maximum of the size of itself and all corresponding programs in the other hybrids.
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Adaptive-Samples

Constants: PRF keys K(n)
1 , K2,K

′
2.

Input: Program hash u = u[1], . . . , u[n], v.

1. Compute F1(K
(n)
1 , v) = (y1,0, y1,1), . . . , (yn,0, yn,1).

2. For i = 1, . . . , n, if u[i] = yi,0 set xi = 0 else if u[i] = yi,1 set xi = 1 else set xi = ⊥
3. If x ∈ {0, 1}n (i.e. no ⊥s), output x.
4. Else set K3 = F2(K2, u|v), r = F2(K

′
2, u|v). Output iO(PK3 ; r) of the programa PK3 of Figure 9.

aAppropriately padded to the maximum size of itself and P ′
K3,p

∗
j ,d
∗
j

Figure 8: Program Adaptive-Samples

PK3

Constant: PRF key K3. Input: Program description d.

1. Output d(F3(K3, d)).

Figure 9: Program PK3

P ′K3,p
∗
j ,d
∗
j

Constants: PRF key K3{d∗j}, d∗j , p∗j . Input: Program description d.

1. If d = d∗j output p∗j .
2. Else output d(F3(K3, d)).

Figure 10: Program P ′K3,p∗j ,d
∗
j

From Hybrids−1,13 to Hybrids,13.
We outline changes from Hybrids−1,13 to Hybrids,13 for a generic s ∈ [1, q], where we program the universal
sampler U to output external parameters on the sth query of the adversary. Our proof comprises of two
main steps: hardwiring a fresh single-use program into the random oracle output for the sth query, and
then hardwiring the external parameters into this single-use program. First, we give a brief overview of our
sequence of hybrids. The complete hybrids and indistinguishability arguments are in the next subsection.

First step. Let the sth random oracle query of the adversary be on input d∗s. We first use punctured
programming to hardwire computation corresponding to input d∗s into the Adaptive-Samples program. To
do this, Hybrids,1 we set z∗ = PRG(PRF(K1, v

∗
s )) for v∗s fixed uniformly at random in reply to random oracle

query d∗s, and add a check at the beginning of the main program such that for v = v∗s , if u[i] = z∗i,b, the
program sets xi = b. At this point, since we have hardwired computation on v∗s , it is safe to puncture the
PRF key K1 in the program at v∗s while retaining functionality. We argue indistinguishability via iO because
of functional equivalence.

In Hybrids,2, the output of PRF F1 on uniformly chosen fixed input v∗s can be replaced with random,
by security of the puncturable PRF. Next, by security of the PRG, the entire string z∗ is set uniformly at
random. This step “deactivates” the extra check we just added, because with overwhelming probability, z∗
will lie outside the image of the PRG. Once this is done, for u∗s and v∗s both fixed uniformly at random
as random oracle response to query d∗s, in Hybrids,4 we can set e = F2(K2, u

∗
s|v∗s ), e′ = F ′2(K ′2, u

∗
s|v∗s ),

g = iO(Pe, e
′) and add an initial check in the main program: if input u = u∗s and v = v∗s , then output g and

exit. Simultaneously, we can puncture the keys K2 and K ′2 in the main program. At this point, we have
hardwired Adaptive-Samples to output g on input values (u∗s, v

∗
s ), obtained from the RO on input d∗s.

In Hybrids,5 and Hybrids,6 we generate the values e, e′ uniformly at random instead of the output of the
punctured PRF F2 and F ′2. This will be needed in the Step 2 when we program the single-use parameters.

Since the (bounded size) Adaptive-Samples must be programmable for an unbounded number of samples,
we must now move the hardwired single-use paramters g from the Adaptive-Samples program to a hidden
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trigger encoding in the output of the random oracle, u∗s. Specifically, this is done by setting for all i ∈
[1, n], z∗i,gi = PRG(u∗s[i]) in Hybrids,7. Once u∗s has been programmed appropriately to encode the value g,
hardwiring g into the program becomes redundant.

This allows us to seal back the punctured keys, un-hardwire g from the program and return to the original
program Adaptive-Samples in a sequence of hybrids, Hybrids,8 to Hybrids,10 which reverse our sequence of
operations from Hybrids,1 to Hybrids,3. Now, Hybrids,10 is identical to Hybrids−1,13 except for a trapdoor
that has been programmed into the random oracle output u∗s, which generates specific selective single-use
parameters.

Second Step. At this point, it is easy (following the same sequence of hybrids as the selective single-use
case) to force the single-use parameters that were programmed into u∗s to output external parameters p∗s,
via hybrids Hybrids,11 to Hybrids,13, and we are done.

5.2 Complete Hybrids

Hybrid0 :

◦ The challenger pads the program Adaptive-Samples in Figure 11 to be the maximum of the size of itself
and all corresponding programs (Adaptive-Samples: 2, Adaptive-Samples: 3) in the following hybrids.
Next, he sends the obfuscation of the program in Figure 11 to the adversary.

◦ Set j = 0. While the adversary queries the RO (random oracle), increment j and repeat:

1. Let the adversary query the random oracle on protocol description d∗j .
2. The challenger sets the output of the random oracle, (u∗j , v

∗
j )← {0, 1}n2+n.

◦ The adversary then outputs a single bit b′.

Adaptive-Samples

Constants: PRF keys K(n)
1 , K2,K

′
2.

Input: Program hash u = u[1], . . . , u[n], v.

1. Compute F1(K
(n)
1 , v) = (y1,0, y1,1), . . . , (yn,0, yn,1).

2. For i = 1, . . . , n, if u[i] = yi,0 set xi = 0 else if u[i] = yi,1 set xi = 1 else set xi = ⊥
3. If x ∈ {0, 1}n (i.e. no ⊥s), output x.
4. Else set K3 = F2(K2, u|v), r = F2(K

′
2, u|v). Output iO(PK3 ; r) of the programa PK3 of Figure 12.

aAppropriately appended to the maximum of the size of itself and P ′
K3,p

∗
j ,d
∗
j
in future hybrids

Figure 11: Program Adaptive-Samples

PK3

Constant: PRF key K3.
Input: Program description d.

1. Output d(F3(K3, d)). Recall that d is a program description which outputs k bits.

Figure 12: Program PK3
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Hybrids−1,13 :

◦ The challenger pads the program Adaptive-Samples in Figure 13 appropriately and sends an iO of the
program to the adversary.

◦ Set j = 0. While the adversary queries the RO, increment j and repeat:

1. Let the adversary query the random oracle on protocol description d∗j .
2. If j < s, the challenger sets the output of the random oracle, v∗j ← {0, 1}n. He sets K3 ← {0, 1}n,
e′ ← {0, 1}n. He queries the oracle to obtain the sample p∗j and sets g = iO(P ′K3,p∗j ,d

∗
j
, e′) (See Figure 15).

For all b ∈ {0, 1} and i ∈ [1, n], he sets (y∗1,0, y
∗
1,1), . . . , (y∗n,0, y

∗
n,1) = F1(K

(n)
1 , v∗j ), u∗j [i] = y∗i,gi ,

where gi is the ith bit of g.
3. If j ≥ s, the challenger sets the output of the RO, u∗j , v∗j

$←{0, 1}n2+n.

◦ The adversary then outputs a single bit b′.

Adaptive-Samples

Constants: PRF keys K(n)
1 , K2,K

′
2.

Input: Program hash u = u[1], . . . , u[n], v.

1. Compute F1(K
(n)
1 , v) = (y1,0, y1,1), . . . , (yn,0, yn,1).

2. For i = 1, . . . , n, if u[i] = yi,0 set xi = 0 else if u[i] = yi,1 set xi = 1 else set xi = ⊥
3. If x ∈ {0, 1}n (i.e. no ⊥s), output x.
4. Else set K3 = F2(K2, u|v), r = F2(K

′
2, u|v). Output iO(PK3 ; r) of the programa PK3 of Figure 14.

aAppropriately appended to the max size of itself and P ′
K3,p

∗
j ,d
∗
j

Figure 13: Program Adaptive-Samples

PK3

Constant: PRF key K3. Input: Program description d.

1. Output d(F3(K3, d)).

Figure 14: Program PK3

P ′K3,p
∗
j ,d
∗
j

Constants: PRF key K3{d∗j}, d∗j , p∗j . Input: Program description d.

1. If d = d∗j output p∗j .
2. Else output d(F3(K3, d)).

Figure 15: Program P ′K3,p∗j ,d
∗
j
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Hybrids,1 :

◦ The challenger sets v∗s ← {0, 1}n, u∗s ← {0, 1}n
2

. He sets (y∗1,0, y
∗
1,1), . . . , (y∗n,0, y

∗
n,1) = F1(K

(n)
1 , v∗s ).

Then, for all b ∈ {0, 1}, i ∈ [1, n], he sets z∗i,b = PRG(y∗i,b). He sends an iO of the program Adaptive-Samples: 2
in Figure 16 padded appropriately, to the adversary.

◦ Set j = 0. While the adversary queries the RO, increment j and repeat:

1. Let the adversary query the random oracle on protocol description d∗j .
2. If j < s, the challenger sets the output of the RO, v∗j ← {0, 1}n.

He sets K3 ← {0, 1}n, e′ ← {0, 1}n. He queries the oracle to obtain the sample p∗j and sets g =
iO(P ′K3,p∗j ,d

∗
j
, e′) (See Figure 18). For all b ∈ {0, 1} and i ∈ [1, n], he sets (y∗1,0, y

∗
1,1), . . . , (y∗n,0, y

∗
n,1) =

F1(K
(n)
1 , v∗j ), u∗j [i] = y∗i,gi , where gi is the i

th bit of g.
3. If j > s, the challenger sets the output of the RO, u∗j , v∗j

$←{0, 1}n2+n.

◦ The adversary then outputs a single bit b′.

Adaptive-Samples: 2

Constants: v∗s , PRF key K
(n)
1 {v∗s}, K2,K

′
2, z∗i,b for i ∈ [1, n] and b ∈ {0, 1}

Input: Program hash u = u[1], . . . , u[n], v.

1. If v = v∗s then for i = 1, . . . , n do
If PRG(u[i]) = z∗i,0 let xi = 0, if PRG(u[i]) = z∗i,1 let xi = 1, else xi = ⊥.
Go to step 4.

2. Compute F1(K
(n)
1 , v) = (y1,0, y1,1), . . . , (yn,0, yn,1).

3. For i = 1, . . . , n, if u[i] = yi,0 set xi = 0 else if u[i] = yi,1 set xi = 1 else set xi = ⊥
4. If x ∈ {0, 1}n (i.e. no ⊥s), output x.
5. Else set K3 = F2(K2, u|v), r = F2(K

′
2, u|v). Output iO(PK3 ; r) of the programa PK3 of Figure 17.

aAppropriately appended to the maximum of the size of itself and P ′
K3,p

∗
j ,d
∗
j

Figure 16: Program Adaptive-Samples: 2

PK3

Constant: PRF key K3.
Input: Program description d.

1. Output d(F3(K3, d)). Recall that d is a program description which outputs k bits.

Figure 17: Program PK3

P ′K3,p
∗
j ,d
∗
j

Constants: PRF key K3{d∗j}, d∗j , p∗j .
Input: Program description d.

1. If d = d∗j output p∗j .
2. Else output d(F3(K3, d)). Recall that d is a program description which outputs k bits.

Figure 18: Program P ′K3,p∗j ,d
∗
j

Intuitively, indistinguishable from Hybrids−1,13 by iO between Adaptive-Samples, Adaptive-Samples: -2.
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Hybrids,2 :

◦ The challenger sets v∗s ← {0, 1}n, u∗s ← {0, 1}n
2

. For all b ∈ {0, 1}, i ∈ [1, n], he sets y∗i,b ← {0, 1}
n.

For all b ∈ {0, 1}, he sets z∗i,b = PRG(y∗i,b) for i ∈ [1, n]. He pads the program Adaptive-Samples: 2 in
Figure 19 appropriately and sends an iO of the program to the adversary.

◦ Set j = 0. While the adversary queries the RO, increment j and repeat:

1. Let the adversary query the RO on protocol description d∗j .
2. If j < s, the challenger sets the output of the random oracle, v∗j ← {0, 1}n.

He sets K3 ← {0, 1}n, e′ ← {0, 1}n. He queries the oracle to obtain the sample p∗j and sets g =
iO(P ′K3,p∗j ,d

∗
j
, e′) (See Figure 21). For all b ∈ {0, 1} and i ∈ [1, n], he sets (y∗1,0, y

∗
1,1), . . . , (y∗n,0, y

∗
n,1) =

F1(K
(n)
1 , v∗j ), u∗j [i] = y∗i,gi , where gi is the i

th bit of g.
3. If j > s, the challenger sets the output of the random oracle, (u∗j , v

∗
j )← {0, 1}n2+n.

◦ The adversary then outputs a single bit b′.

Adaptive-Samples: 2

Constants: v∗s , PRF key K
(n)
1 {v∗s}, K2,K

′
2, z∗i,b for i ∈ [1, n] and b ∈ {0, 1}

Input: Program hash u = u[1], . . . , u[n], v.

1. If v = v∗s then for i = 1, . . . , n do
If PRG(u[i]) = z∗i,0 set xi = 0, if PRG(u[i]) = z∗i,1 set xi = 1, else xi = ⊥.
Go to step 4.

2. Compute F1(K
(n)
1 , v) = (y1,0, y1,1), . . . , (yn,0, yn,1).

3. For i = 1, . . . , n, if u[i] = yi,0 set xi = 0 else if u[i] = yi,1 set xi = 1 else set xi = ⊥
4. If x ∈ {0, 1}n (i.e. no ⊥s), output x.
5. Else set K3 = F2(K2, u|v), r = F2(K

′
2, u|v). Output iO(PK3 ; r) of the programa PK3 of Figure 20.

aAppropriately appended to the maximum of the size of itself and P ′
K3,p

∗
j ,d
∗
j

Figure 19: Program Adaptive-Samples

PK3

Constant: PRF key K3.
Input: Program description d.

1. Output d(F3(K3, d)). Recall that d is a program description which outputs k bits.

Figure 20: Program PK3

P ′K3,p
∗
j ,d
∗
j

Constants: PRF key K3{d∗j}, d∗j , p∗j .
Input: Program description d.

1. If d = d∗j output p∗j .
2. Else output d(F3(K3, d)). Recall that d is a program description which outputs k bits.

Figure 21: Program P ′K3,p∗j ,d
∗
j

Intuitively, indistinguishable from Hybrids,1 by security of punctured PRF key K(n)
1 {v∗s}.
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Hybrids,3 :

◦ The challenger sets v∗s ← {0, 1}n, u∗s ← {0, 1}n
2

. For all b ∈ {0, 1}, i ∈ [1, n], he sets z∗i,b ← {0, 1}
2n.

He pads the program Adaptive-Samples: 2 in Figure 22 appropriately and sends an iO of the program
to the adversary.

◦ Set j = 0. While the adversary queries the RO, increment j and repeat:

1. Let the adversary query the RO on protocol description d∗j .
2. If j < s, the challenger sets the output of the RO, v∗j ← {0, 1}n.

He sets K3 ← {0, 1}n, e′ ← {0, 1}n. He queries the oracle to obtain the sample p∗j and sets g =
iO(P ′K3,p∗j ,d

∗
j
, e′) (See Figure 24). For all b ∈ {0, 1} and i ∈ [1, n], he sets (y∗1,0, y

∗
1,1), . . . , (y∗n,0, y

∗
n,1) =

F1(K
(n)
1 , v∗j ), u∗j [i] = y∗i,gi , where gi is the i

th bit of g.
3. If j > s, the challenger sets the output of the random oracle, (u∗j , v

∗
j )← {0, 1}n2+n.

◦ The adversary then outputs a single bit b′.

Adaptive-Samples: 2

Constants: v∗s , PRF keys K(n)
1 {v∗s}, K2,K

′
2, z∗i,b for i ∈ [1, n] and b ∈ {0, 1}

Input: Program hash u = u[1], . . . , u[n], v.

1. If v = v∗s then for i = 1, . . . , n do
If PRG(u[i]) = z∗i,0 let xi = 0, if PRG(u[i]) = z∗i,1 let xi = 1, else xi = ⊥.
Go to step 4.

2. Compute F1(K
(n)
1 , v) = (y1,0, y1,1), . . . , (yn,0, yn,1).

3. For i = 1, . . . , n, if u[i] = yi,0 set xi = 0 else if u[i] = yi,1 set xi = 1 else set xi = ⊥
4. If x ∈ {0, 1}n (i.e. no ⊥s), output x.
5. Else set K3 = F2(K2, u|v), r = F2(K

′
2, u|v). Output iO(PK3 ; r) of the programa PK3 of Figure 23.

aAppropriately appended to the maximum of the size of itself and P ′
K3,p

∗
j ,d
∗
j

Figure 22: Program Adaptive-Samples

PK3

Constant: PRF key K3.
Input: Program description d.

1. Output d(F3(K3, d)). Recall that d is a program description which outputs k bits.

Figure 23: Program PK3

P ′K3,p
∗
j ,d
∗
j

Constants: PRF key K3{d∗j}, d∗j , p∗j .
Input: Program description d.

1. If d = d∗j output p∗j .
2. Else output d(F3(K3, d)). Recall that d is a program description which outputs k bits.

Figure 24: Program P ′K3,p∗j ,d
∗
j

Intuitively, indistinguishable from Hybrids,2 by security of the PRG.

21



Hybrids,4 :

◦ The challenger sets v∗s ← {0, 1}n, u∗s ← {0, 1}n
2

. For all b ∈ {0, 1}, i ∈ [1, n], he sets z∗i,b ← {0, 1}
2n.

He sets e = F2(K2, u
∗
s|v∗s ) and e′ = F ′2(K ′2, u

∗
s|v∗s ). Next, he sets g = iO(Pe, e

′). He pads the program
Adaptive-Samples: 3 in Figure 25 appropriately and sends an iO of the program to the adversary.

◦ Set j = 0. While the adversary queries the RO, increment j and repeat:

1. Let the adversary query the RO on protocol description d∗j .
2. If j < s, the challenger sets the output of the random oracle, v∗j ← {0, 1}n.

He sets K3 ← {0, 1}n, e′ ← {0, 1}n. He queries the oracle to obtain the sample p∗j and sets g =
iO(P ′K3,p∗j ,d

∗
j
, e′) (See Figure 27). For all b ∈ {0, 1} and i ∈ [1, n], he sets (y∗1,0, y

∗
1,1), . . . , (y∗n,0, y

∗
n,1) =

F1(K
(n)
1 , v∗j ), u∗j [i] = y∗i,gi , where gi is the i

th bit of g.
3. If j > s, the challenger sets the output of the random oracle, (u∗j , v

∗
j )← {0, 1}n2+n.

◦ The adversary then outputs a single bit b′.

Adaptive-Samples: 3

Constants: v∗s , u∗s , g, PRF keys K(n)
1 {v∗s}, K2{u∗s |v∗s}, K′2{u∗s |v∗s}, z∗i,b for i ∈ [1, n] and b ∈ {0, 1}

Input: Program hash u = u[1], . . . , u[n], v.

1. If u = u∗s and v = v∗s output g and stop.
2. If v = v∗s then for i = 1, . . . , n do

If PRG(u[i]) = z∗i,0 let xi = 0, if PRG(u[i]) = z∗i,1 let xi = 1, else xi = ⊥.
Go to step 4.

3. Compute F1(K
(n)
1 , v) = (y1,0, y1,1), . . . , (yn,0, yn,1).

4. For i = 1, . . . , n, if u[i] = yi,0 set xi = 0 else if u[i] = yi,1 set xi = 1 else set xi = ⊥
5. If x ∈ {0, 1}n (i.e. no ⊥s), output x.
6. Else set K3 = F2(K2, u|v), r = F2(K

′
2, u|v). Output iO(PK3 ; r) of the programa PK3 of Figure 26.

aAppropriately appended to the maximum of the size of itself and P ′
K3,p

∗
j ,d
∗
j

Figure 25: Program Adaptive-Samples

PK3

Constant: PRF key K3.
Input: Program description d.

1. Output d(F3(K3, d)). Recall that d is a program description which outputs k bits.

Figure 26: Program PK3

P ′K3,p
∗
j ,d
∗
j

Constants: PRF key K3{d∗j}, d∗j , p∗j .
Input: Program description d.

1. If d = d∗j output p∗j .
2. Else output d(F3(K3, d)). Recall that d is a program description which outputs k bits.

Figure 27: Program P ′K3,p∗j ,d
∗
j

Intuitively, indistinguishable from Hybrids,3 by iO between Adaptive-Samples:2 and Adaptive-Samples:3.
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Hybrids,5 :

◦ The challenger sets v∗s ← {0, 1}n, u∗s ← {0, 1}n
2

. For all b ∈ {0, 1}, i ∈ [1, n], he sets z∗i,b ← {0, 1}
2n.

He sets e← {0, 1}n and e′ = F ′2(K ′2, u
∗
s|v∗s ). Next, he sets g = iO(Pe, e

′).
He pads the program Adaptive-Samples: 3 in Figure 28 appropriately and sends an iO of the program
to the adversary.

◦ Set j = 0. While the adversary is making queries to random oracle, increment j and repeat:

1. Let the adversary query the RO on protocol description d∗j .
2. If j < s, the challenger sets the output of the RO, v∗j ← {0, 1}n.

He sets K3 ← {0, 1}n, e′ ← {0, 1}n. He queries the oracle to obtain the sample p∗j and sets g =
iO(P ′K3,p∗j ,d

∗
j
, e′) (See Figure 30). For all b ∈ {0, 1} and i ∈ [1, n], he sets (y∗1,0, y

∗
1,1), . . . , (y∗n,0, y

∗
n,1) =

F1(K
(n)
1 , v∗j ), u∗j [i] = y∗i,gi , where gi is the i

th bit of g.
3. If j > s, the challenger sets the output of the random oracle, (u∗j , v

∗
j )← {0, 1}n2+n.

◦ The adversary then outputs a single bit b′.

Adaptive-Samples: 3

Constants: v∗s , u∗s , g, PRF keys K(n)
1 {v∗s}, K2{u∗s |v∗s}, K′2{u∗s |v∗s}, z∗i,b for i ∈ [1, n] and b ∈ {0, 1}

Input: Program hash u = u[1], . . . , u[n], v.

1. If u = u∗s and v = v∗s output g and stop.
2. If v = v∗s then for i = 1, . . . , n do

If PRG(u[i]) = z∗i,0 let xi = 0, if PRG(u[i]) = z∗i,1 let xi = 1, else xi = ⊥.
Go to step 4.

3. Compute F1(K
(n)
1 , v) = (y1,0, y1,1), . . . , (yn,0, yn,1).

4. For i = 1, . . . , n, if u[i] = yi,0 set xi = 0 else if u[i] = yi,1 set xi = 1 else set xi = ⊥
5. If x ∈ {0, 1}n (i.e. no ⊥s), output x.
6. Else set K3 = F2(K2, u|v), r = F2(K

′
2, u|v). Output iO(PK3 ; r) of the programa PK3 of Figure 29.

aAppropriately appended to the maximum of the size of itself and P ′
K3,p

∗
j ,d
∗
j

Figure 28: Program Adaptive-Samples

PK3

Constant: PRF key K3.
Input: Program description d.

1. Output d(F3(K3, d)). Recall that d is a program description which outputs k bits.

Figure 29: Program PK3

P ′K3,p
∗
j ,d
∗
j

Constants: PRF key K3{d∗j}, d∗j , p∗j .
Input: Program description d.

1. If d = d∗j output p∗j .
2. Else output d(F3(K3, d)). Recall that d is a program description which outputs k bits.

Figure 30: Program P ′K3,p∗j ,d
∗
j

Intuitively, indistinguishable from Hybrids,4 by security of punctured PRF key K2{u∗s|v∗s}.
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Hybrids,6 :

◦ The challenger sets v∗s ← {0, 1}n, u∗s ← {0, 1}n
2

. For all b ∈ {0, 1}, i ∈ [1, n], he sets z∗i,b ← {0, 1}
2n.

He sets e← {0, 1}n and e′ ← {0, 1}n. Next, he sets g = iO(Pe, e
′).

He pads the program Adaptive-Samples: 3 in Figure 31 appropriately and sends an iO of the program
to the adversary.

◦ Set j = 0. While the adversary queries the RO, increment j and repeat:

1. Let the adversary query the RO on protocol description d∗j .
2. If j < s, the challenger sets the output of the RO, v∗j ← {0, 1}n.

He sets K3 ← {0, 1}n, e′ ← {0, 1}n. He queries the oracle to obtain the sample p∗j and sets g =
iO(P ′K3,p∗j ,d

∗
j
, e′) (See Figure 33). For all b ∈ {0, 1} and i ∈ [1, n], he sets (y∗1,0, y

∗
1,1), . . . , (y∗n,0, y

∗
n,1) =

F1(K
(n)
1 , v∗j ), u∗j [i] = y∗i,gi , where gi is the i

th bit of g.
3. If j > s, the challenger sets the output of the random oracle, (u∗j , v

∗
j )← {0, 1}n2+n.

◦ The adversary then outputs a single bit b′.

Adaptive-Samples: 3

Constants: v∗s , u∗s , g, PRF keys K(n)
1 {v∗s}, K2{u∗s |v∗s}, K′2{u∗s |v∗s}, z∗i,b for i ∈ [1, n] and b ∈ {0, 1}

Input: Program hash u = u[1], . . . , u[n], v.

1. If u = u∗s and v = v∗s output g and stop.
2. If v = v∗s then for i = 1, . . . , n do

If PRG(u[i]) = z∗i,0 let xi = 0, if PRG(u[i]) = z∗i,1 let xi = 1, else xi = ⊥.
Go to step 4.

3. Compute F1(K
(n)
1 , v) = (y1,0, y1,1), . . . , (yn,0, yn,1).

4. For i = 1, . . . , n, if u[i] = yi,0 set xi = 0 else if u[i] = yi,1 set xi = 1 else set xi = ⊥
5. If x ∈ {0, 1}n (i.e. no ⊥s), output x.
6. Else set K3 = F2(K2, u|v), r = F2(K

′
2, u|v). Output iO(PK3 ; r) of the programa PK3 of Figure 32.

aAppropriately appended to the maximum of the size of itself and P ′
K3,p

∗
j ,d
∗
j

Figure 31: Program Adaptive-Samples

PK3

Constant: PRF key K3.
Input: Program description d.

1. Output d(F3(K3, d)). Recall that d is a program description which outputs k bits.

Figure 32: Program PK3

P ′K3,p
∗
j ,d
∗
j

Constants: PRF key K3{d∗j}, d∗j , p∗j .
Input: Program description d.

1. If d = d∗j output p∗j .
2. Else output d(F3(K3, d)). Recall that d is a program description which outputs k bits.

Figure 33: Program P ′K3,p∗j ,d
∗
j

Intuitively, indistinguishable from Hybrids,5 by security of punctured PRF key K ′2{u∗s|v∗s}.
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Hybrids,7 :

◦ The challenger sets v∗s ← {0, 1}n. He sets e ← {0, 1}n and e′ ← {0, 1}n. Next, he sets g = iO(Pe, e
′).

For all i ∈ [1, n], he sets y∗i,gi ← {0, 1}
n, u∗s[i] = y∗i,gi , z

∗
i,gi

= PRG(y∗i,gi), z
∗
i,ḡi
← {0, 1}2n, where gi is

the ith bit of g and ḡi = 1− gi.
He pads the program Adaptive-Samples: 2 in Figure 34 appropriately and sends an iO of the program
to the adversary.

◦ Set j = 0. While the adversary queries the RO, increment j and repeat:

1. Let the adversary query the RO on protocol description d∗j .
2. If j < s, the challenger sets the output of the RO, v∗j ← {0, 1}n.

He sets K3 ← {0, 1}n, e′ ← {0, 1}n. He queries the oracle to obtain the sample p∗j and sets g =
iO(P ′K3,p∗j ,d

∗
j
, e′) (See Figure 36). For all b ∈ {0, 1} and i ∈ [1, n], he sets (y∗1,0, y

∗
1,1), . . . , (y∗n,0, y

∗
n,1) =

F1(K
(n)
1 , v∗j ), u∗j [i] = y∗i,gi , where gi is the i

th bit of g.
3. If j > s, the challenger sets the output of the random oracle, (u∗j , v

∗
j )← {0, 1}n2+n.

◦ The adversary then outputs a single bit b′.

Adaptive-Samples: 2

Constants: v∗s , g, PRF keys K(n)
1 {v∗s}, K2, K′2, z∗i,b for i ∈ [1, n] and b ∈ {0, 1}

Input: Program hash u = u[1], . . . , u[n], v.

1. If v = v∗s then for i = 1, . . . , n do
If PRG(u[i]) = z∗i,0 let xi = 0, if PRG(u[i]) = z∗i,1 let xi = 1, else xi = ⊥.
Go to step 4.

2. Compute F1(K
(n)
1 , v) = (y1,0, y1,1), . . . , (yn,0, yn,1).

3. For i = 1, . . . , n, if u[i] = yi,0 set xi = 0 else if u[i] = yi,1 set xi = 1 else set xi = ⊥
4. If x ∈ {0, 1}n (i.e. no ⊥s), output x.
5. Else set K3 = F2(K2, u|v), r = F2(K

′
2, u|v). Output iO(PK3 ; r) of the programa PK3 of Figure 35.

aAppropriately appended to the maximum of the size of itself and P ′
K3,p

∗
j ,d
∗
j

Figure 34: Program Adaptive-Samples: 2

PK3

Constant: PRF key K3.
Input: Program description d.

1. Output d(F3(K3, d)). Recall that d is a program description which outputs k bits.

Figure 35: Program PK3

P ′K3,p
∗
j ,d
∗
j

Constants: PRF key K3{d∗j}, d∗j , p∗j .
Input: Program description d.

1. If d = d∗j output p∗j .
2. Else output d(F3(K3, d)). Recall that d is a program description which outputs k bits.

Figure 36: Program P ′K3,p∗j ,d
∗
j

Intuitively, indistinguishable from Hybrids,6 by iO between Adaptive-Samples:3-2.
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Hybrids,8 :

◦ The challenger sets v∗s ← {0, 1}n. He sets e ← {0, 1}n and e′ ← {0, 1}n. Next, he sets g = iO(Pe, e
′).

For all b ∈ {0, 1}, i ∈ [1, n], he sets y∗i,b ← {0, 1}
n, u∗s[i] = y∗i,gi , z

∗
i,gi

= PRG(y∗i,gi) and z
∗
i,ḡi

= PRG(y∗i,ḡi),
where gi is the ith bit of g and ḡi = 1− gi.
He pads the program Adaptive-Samples: 2 in Figure 37 appropriately and sends an iO of the program
to the adversary.

◦ Set j = 0. While the adversary is queries the RO, increment j and repeat:

1. Let the adversary query the RO on protocol description d∗j .
2. If j < s, the challenger sets the output of the RO, v∗j ← {0, 1}n.

He sets K3 ← {0, 1}n, e′ ← {0, 1}n. He queries the oracle to obtain the sample p∗j and sets g =
iO(P ′K3,p∗j ,d

∗
j
, e′) (See Figure 39). For all b ∈ {0, 1} and i ∈ [1, n], he sets (y∗1,0, y

∗
1,1), . . . , (y∗n,0, y

∗
n,1) =

F1(K
(n)
1 , v∗j ), u∗j [i] = y∗i,gi , where gi is the i

th bit of g.
3. If j > s, the challenger sets the output of the random oracle, (u∗j , v

∗
j )← {0, 1}n2+n.

◦ The adversary then outputs a single bit b′.

Adaptive-Samples: 2

Constants: v∗s , g, PRF keys K(n)
1 {v∗s}, K2, K′2, z∗i,b for i ∈ [1, n] and b ∈ {0, 1}

Input: Program hash u = u[1], . . . , u[n], v.

1. If v = v∗s then for i = 1, . . . , n do
If PRG(u[i]) = z∗i,0 let xi = 0, if PRG(u[i]) = z∗i,1 let xi = 1, else xi = ⊥.
Go to step 4.

2. Compute F1(K
(n)
1 , v) = (y1,0, y1,1), . . . , (yn,0, yn,1).

3. For i = 1, . . . , n, if u[i] = yi,0 set xi = 0 else if u[i] = yi,1 set xi = 1 else set xi = ⊥
4. If x ∈ {0, 1}n (i.e. no ⊥s), output x.
5. Else set K3 = F2(K2, u|v), r = F2(K

′
2, u|v). Output iO(PK3 ; r) of the programa PK3 of Figure 38.

aAppropriately appended to the maximum of the size of itself and P ′
K3,p

∗
j ,d
∗
j

Figure 37: Program Adaptive-Samples: 2

PK3

Constant: PRF key K3.
Input: Program description d.

1. Output d(F3(K3, d)). Recall that d is a program description which outputs k bits.

Figure 38: Program PK3

P ′K3,p
∗
j ,d
∗
j

Constants: PRF key K3{d∗j}, d∗j , p∗j .
Input: Program description d.

1. If d = d∗j output p∗j .
2. Else output d(F3(K3, d)). Recall that d is a program description which outputs k bits.

Figure 39: Program P ′K3,p∗j ,d
∗
j

Intuitively, indistinguishable from Hybrids,7 by security of the PRG.
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Hybrids,9 :

◦ The challenger sets v∗s ← {0, 1}n. He sets e ← {0, 1}n and e′ ← {0, 1}n. Next, he sets g = iO(Pe, e
′).

For all b ∈ {0, 1}, i ∈ [1, n], he sets (y∗1,0, y
∗
1,1), . . . , (y∗n,0, y

∗
n,1) = F1(K

(n)
1 , v∗s ), u∗s[i] = y∗i,gi , z

∗
i,b =

PRG(y∗i,b), where gi is the i
th bit of g.

He pads the program Adaptive-Samples: 2 in Figure 40 appropriately and sends an iO of the program
to the adversary.

◦ Set j = 0. While the adversary queries the RO, increment j and repeat:

1. Let the adversary query the RO on protocol description d∗j .
2. If j < s, the challenger sets the output of the RO, v∗j ← {0, 1}n.

He sets K3 ← {0, 1}n, e′ ← {0, 1}n. He queries the oracle to obtain the sample p∗j and sets g =
iO(P ′K3,p∗j ,d

∗
j
, e′) (See Figure 42). For all b ∈ {0, 1} and i ∈ [1, n], he sets (y∗1,0, y

∗
1,1), . . . , (y∗n,0, y

∗
n,1) =

F1(K
(n)
1 , v∗j ), u∗j [i] = y∗i,gi , where gi is the i

th bit of g.
3. If j > s, the challenger sets the output of the RO, (u∗j , v

∗
j )← {0, 1}n2+n.

◦ The adversary then outputs a single bit b′.

Adaptive-Samples: 2

Constants: v∗s , g, PRF keys K(n)
1 {v∗s}, K2, K′2, z∗i,b for i ∈ [1, n] and b ∈ {0, 1}

Input: Program hash u = u[1], . . . , u[n], v.

1. If v = v∗s then for i = 1, . . . , n do
If PRG(u[i]) = z∗i,0 let xi = 0, if PRG(u[i]) = z∗i,1 let xi = 1, else xi = ⊥.
Go to step 4.

2. Compute F1(K
(n)
1 , v) = (y1,0, y1,1), . . . , (yn,0, yn,1).

3. For i = 1, . . . , n, if u[i] = yi,0 set xi = 0 else if u[i] = yi,1 set xi = 1 else set xi = ⊥
4. If x ∈ {0, 1}n (i.e. no ⊥s), output x.
5. Else set K3 = F2(K2, u|v), r = F2(K

′
2, u|v). Output iO(PK3 ; r) of the programa PK3 of Figure 41.

aAppropriately appended to the maximum of the size of itself and P ′
K3,p

∗
j ,d
∗
j

Figure 40: Program Adaptive-Samples: 2

PK3

Constant: PRF key K3.
Input: Program description d.

1. Output d(F3(K3, d)). Recall that d is a program description which outputs k bits.

Figure 41: Program PK3

P ′K3,p
∗
j ,d
∗
j

Constants: PRF key K3{d∗j}, d∗j , p∗j .
Input: Program description d.

1. If d = d∗j output p∗j .
2. Else output d(F3(K3, d)). Recall that d is a program description which outputs k bits.

Figure 42: Program P ′K3,p∗j ,d
∗
j

Intuitively, indistinguishable from Hybrids,8 by security of punctured PRF key K(n)
1 {d∗s}.
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Hybrids,10 :

◦ The challenger pads the program Adaptive-Samples in Figure 43 appropriately and sends an iO of the
program to the adversary.

◦ Set j = 0. While the adversary is making queries to random oracle, increment j and repeat:

1. Let the adversary query to the random oracle be on protocol description d∗j .
2. If j < s, the challenger sets the output of the random oracle, v∗j ← {0, 1}n.

He sets K3 ← {0, 1}n, e′ ← {0, 1}n. He queries the oracle to obtain the sample p∗j and sets g =
iO(P ′K3,p∗j ,d

∗
j
, e′) (See Figure 45). For all b ∈ {0, 1} and i ∈ [1, n], he sets (y∗1,0, y

∗
1,1), . . . , (y∗n,0, y

∗
n,1) =

F1(K
(n)
1 , v∗j ), u∗j [i] = y∗i,gi , where gi is the i

th bit of g.
3. If j = s, the challenger sets v∗j ← {0, 1}n. He sets e ← {0, 1}n and e′ ← {0, 1}n. Next, he sets
g = iO(Pe, e

′). For all i ∈ [1, n], he sets (y∗1,0, y
∗
1,1), . . . , (y∗n,0, y

∗
n,1) = F1(K

(n)
1 , v∗j ), u∗j [i] = y∗i,gi ,

where gi is the ith bit of g.
4. If j > s, the challenger sets the output of the random oracle, (u∗j , v

∗
j )← {0, 1}n2+n.

◦ The adversary then outputs a single bit b′.

Adaptive-Samples

Constants: PRF keys K(n)
1 , K2,K

′
2.

Input: Program hash u = u[1], . . . , u[n], v.

1. Compute F1(K
(n)
1 , v) = (y1,0, y1,1), . . . , (yn,0, yn,1).

2. For i = 1, . . . , n, if u[i] = yi,0 set xi = 0 else if u[i] = yi,1 set xi = 1 else set xi = ⊥
3. If x ∈ {0, 1}n (i.e. no ⊥s), output x.
4. Else set K3 = F2(K2, u|v), r = F2(K

′
2, u|v). Output iO(PK3 ; r) of the programa PK3 of Figure 44.

aAppropriately appended to the maximum of the size of itself and P ′
K3,p

∗
j ,d
∗
j

Figure 43: Program Adaptive-Samples

PK3

Constant: PRF key K3.
Input: Program description d.

1. Output d(F3(K3, d)). Recall that d is a program description which outputs k bits.

Figure 44: Program PK3

P ′K3,p
∗
j ,d
∗
j

Constants: PRF key K3{d∗j}, d∗j , p∗j .
Input: Program description d.

1. If d = d∗j output p∗j .
2. Else output d(F3(K3, d)). Recall that d is a program description which outputs k bits.

Figure 45: Program P ′K3,p∗j ,d
∗
j

Intuitively, indistinguishable from Hybrids,9 by iO security between Adaptive-Samples: 2 and Adaptive-
Samples.
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Hybrids,11 :

◦ The challenger pads the program Adaptive-Samples in Figure 46 appropriately and sends an iO of the
program to the adversary.

◦ Set j = 0. While the adversary queries the RO, increment j and repeat:

1. Let the adversary query the RO on protocol description d∗j .
2. If j < s, the challenger sets the output of the RO, v∗j ← {0, 1}n.

He sets K3 ← {0, 1}n, e′ ← {0, 1}n. He queries the oracle to obtain the sample p∗j and sets g =
iO(P ′K3,p∗j ,d

∗
j
, e′) (See Figure 48). For all b ∈ {0, 1} and i ∈ [1, n], he sets (y∗1,0, y

∗
1,1), . . . , (y∗n,0, y

∗
n,1) =

F1(K
(n)
1 , v∗j ), u∗j [i] = y∗i,gi , where gi is the i

th bit of g.
3. If j = s, the challenger sets v∗s ← {0, 1}n. He sets e ← {0, 1}n and e′ ← {0, 1}n. Next, he sets
p∗j = d∗j (F3(e, d∗j )), g = iO(P ′e,p∗j ,d∗j

, e′) (See Figure 48). For all i ∈ [1, n], he sets (y∗1,0, y
∗
1,1), . . . , (y∗n,0, y

∗
n,1) =

F1(K
(n)
1 , v∗j ), u∗j [i] = y∗i,gi , where gi is the i

th bit of g.
4. If j > s, the challenger sets the output of the random oracle, (u∗j , v

∗
j )← {0, 1}n2+n.

◦ The adversary then outputs a single bit b′.

Adaptive-Samples

Constants: PRF keys K(n)
1 , K2,K

′
2.

Input: Program hash u = u[1], . . . , u[n], v.

1. Compute F1(K
(n)
1 , v) = (y1,0, y1,1), . . . , (yn,0, yn,1).

2. For i = 1, . . . , n, if u[i] = yi,0 set xi = 0 else if u[i] = yi,1 set xi = 1 else set xi = ⊥
3. If x ∈ {0, 1}n (i.e. no ⊥s), output x.
4. Else set K3 = F2(K2, u|v), r = F2(K

′
2, u|v). Output iO(PK3 ; r) of the programa PK3 of Figure 47.

aAppropriately appended to the maximum of the size of itself and P ′
K3,p

∗
j ,d
∗
j

Figure 46: Program Adaptive-Samples

PK3

Constant: PRF key K3.
Input: Program description d.

1. Output d(F3(K3, d)). Recall that d is a program description which outputs k bits.

Figure 47: Program PK3

P ′K3,p
∗
j ,d
∗
j

Constants: PRF key K3{d∗j}, d∗j , p∗j .
Input: Program description d.

1. If d = d∗j output p∗j .
2. Else output d(F3(K3, d)). Recall that d is a program description which outputs k bits.

Figure 48: Program P ′K3,p∗j ,d
∗
j

Intuitively, indistinguishable from Hybrids,10 by security of iO between programs PK3 and P ′K3,d∗,p∗
.
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Hybrids,12 :

◦ The challenger pads the program Adaptive-Samples in Figure 49 appropriately and sends an iO of the
program to the adversary.

◦ Set j = 0. While the adversary is making queries to random oracle, increment j and repeat:

1. Let the adversary query the RO on protocol description d∗j .
2. If j < s, the challenger sets the output of the RO, v∗j ← {0, 1}n.

He sets K3 ← {0, 1}n, e′ ← {0, 1}n. He queries the oracle to obtain the sample p∗j and sets g =
iO(P ′K3,p∗j ,d

∗
j
, e′) (See Figure 51). For all b ∈ {0, 1} and i ∈ [1, n], he sets (y∗1,0, y

∗
1,1), . . . , (y∗n,0, y

∗
n,1) =

F1(K
(n)
1 , v∗j ), u∗j [i] = y∗i,gi , where gi is the i

th bit of g.
3. If j = s, the challenger sets v∗s ← {0, 1}n. He sets e ← {0, 1}n and e′ ← {0, 1}n. Next, he

sets x′ ← {0, 1}m, p∗j = d∗j (x
′), g = iO(P ′e,p∗j ,d∗j

, e′) (See Figure 51). For all i ∈ [1, n], he sets

(y∗1,0, y
∗
1,1), . . . , (y∗n,0, y

∗
n,1) = F1(K

(n)
1 , v∗j ), u∗j [i] = y∗i,gi , where gi is the i

th bit of g.
4. If j > s, the challenger sets the output of the random oracle, (u∗j , v

∗
j )← {0, 1}n2+n.

◦ The adversary then outputs a single bit b′.

Adaptive-Samples

Constants: PRF keys K(n)
1 , K2,K

′
2.

Input: Program hash u = u[1], . . . , u[n], v.

1. Compute F1(K
(n)
1 , v) = (y1,0, y1,1), . . . , (yn,0, yn,1).

2. For i = 1, . . . , n, if u[i] = yi,0 set xi = 0 else if u[i] = yi,1 set xi = 1 else set xi = ⊥
3. If x ∈ {0, 1}n (i.e. no ⊥s), output x.
4. Else set K3 = F2(K2, u|v), r = F2(K

′
2, u|v). Output iO(PK3 ; r) of the programa PK3 of Figure 50.

aAppropriately appended to the maximum of the size of itself and P ′
K3,p

∗
j ,d
∗
j

Figure 49: Program Adaptive-Samples

PK3

Constant: PRF key K3.
Input: Program description d.

1. Output d(F3(K3, d)). Recall that d is a program description which outputs k bits.

Figure 50: Program PK3

P ′K3,p
∗
j ,d
∗
j

Constants: PRF key K3{d∗j}, d∗j , p∗j .
Input: Program description d.

1. If d = d∗j output p∗j .
2. Else output d(F3(K3, d)). Recall that d is a program description which outputs k bits.

Figure 51: Program P ′K3,p∗j ,d
∗
j

Intuitively, indistinguishable from Hybrids,11 by security of punctured PRF key K3 = e{d∗s}.
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Hybrids,13 :

◦ The challenger pads the program Adaptive-Samples in Figure 52 appropriately and sends an iO of the
program to the adversary.

◦ Set j = 0. While the adversary queries the RO, increment j and repeat:

1. Let the adversary query the RO on protocol description d∗j .
2. If j < s, the challenger sets the output of the RO, v∗j ← {0, 1}n.

He sets K3 ← {0, 1}n, e′ ← {0, 1}n. He queries the oracle to obtain the sample p∗j and sets g =
iO(P ′K3,p∗j ,d

∗
j
, e′) (See Figure 54). For all b ∈ {0, 1} and i ∈ [1, n], he sets (y∗1,0, y

∗
1,1), . . . , (y∗n,0, y

∗
n,1) =

F1(K
(n)
1 , v∗j ), u∗j [i] = y∗i,gi , where gi is the i

th bit of g.
3. If j = s, the challenger sets v∗s ← {0, 1}n. He sets e← {0, 1}n and e′ ← {0, 1}n.

He queries the oracle to obtain the sample p∗j and sets g = iO(P ′e,p∗j ,d∗j
, e′) (See Figure 54). For

all i ∈ [1, n], he sets (y∗1,0, y
∗
1,1), . . . , (y∗n,0, y

∗
n,1) = F1(K

(n)
1 , v∗j ), u∗j [i] = y∗i,gi , where gi is the i

th bit
of g.

4. If j > s, the challenger sets the output of the random oracle, (u∗j , v
∗
j )← {0, 1}n2+n.

◦ The adversary then outputs a single bit b′.

Adaptive-Samples

Constants: PRF keys K(n)
1 , K2,K

′
2.

Input: Program hash u = u[1], . . . , u[n], v.

1. Compute F1(K
(n)
1 , v) = (y1,0, y1,1), . . . , (yn,0, yn,1).

2. For i = 1, . . . , n, if u[i] = yi,0 set xi = 0 else if u[i] = yi,1 set xi = 1 else set xi = ⊥
3. If x ∈ {0, 1}n (i.e. no ⊥s), output x.
4. Else set K3 = F2(K2, u|v), r = F2(K

′
2, u|v). Output iO(PK3 ; r) of the programa PK3 of Figure 53.

aAppropriately appended to the maximum of the size of itself and P ′
K3,p

∗
j ,d
∗
j

Figure 52: Program Adaptive-Samples

PK3

Constant: PRF key K3.
Input: Program description d.

1. Output d(F3(K3, d)). Recall that d is a program description which outputs k bits.

Figure 53: Program PK3

P ′K3,p
∗
j ,d
∗
j

Constants: PRF key K3{d∗j}, d∗j , p∗j .
Input: Program description d.

1. If d = d∗j output p∗j .
2. Else output d(F3(K3, d)). Recall that d is a program description which outputs k bits.

Figure 54: Program P ′K3,p∗j ,d
∗
j

This is identical to Hybrids,12.
Note that Hybridq(λ),13 is the Ideal World and it describes how SimUGen and SimRO work in the first and

second bullet points above, respectively.
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5.3 Indistinguishability of the Hybrids
To establish Theorem 3, it suffices to prove the following claims,

Claim 5. Hybrid0(1λ) and Hybrid0,13(1λ) are identical.

Proof. Hybrid0 and Hybrids−1,13 are identical by inspection.

Claim 6. For s ∈ [q(λ)], Hybrids−1,13(1λ) and Hybrids,1(1λ) are computationally indistinguishable.

Proof. Hybrids−1,13 and Hybrids,1 are indistinguishable by security of iO between Adaptive-Samples and
Adaptive-Samples: 2.

It is easy to observe that the programs Adaptive-Samples and Adaptive-Samples:2 are functionally equiv-
alent for inputs v 6= v∗s . Moreover, even on input v = v∗s , such that
(z∗1,0, z

∗
1,1), . . . , (z∗n,0, z

∗
n,1) = PRG(F (K

(n)
1 , v∗s )), the functionality of both circuits is identical if the PRG is

injective.
Therefore, the obfuscated circuits must be indistinguishable by security of iO. Suppose they are not,

then consider an adversary D1 who distinguishes between these hybrids with significant advantage.
D1 can be used to break selective security of the indistinguishability obfuscation (according to Definition 1)

via the following reduction to iO distinguisher D. D acts as challenger in the experiment of Hybrids−1,13.
The iO challenger Samp(1λ) first activates the distinguisher D, which samples input v∗s ← {0, 1}n and passes
it to Samp.

The iO challenger on input v∗s samples circuits C0 = Adaptive-Samples and C1 = Adaptive-Samples:
2 with (z∗1,0, z

∗
1,1), . . . , (z∗n,0, z

∗
n,1) = PRG(F (K

(n)
1 , v∗s )). We note that the condition Pr[∀x,C0(x) = C1(x) :

(C0, C1, σ) ← Samp(1λ)] > 1 − α(λ) is trivially satisfied for all auxiliary information σ and all negligible
functions α(·), since the circuits are always functionally equivalent.

The iO challenger then sends Cx = iO(n,C0) or Cx = iO(n,C1) to the adversary D. D then acts
as challenger against D1 in the distinguishing game between Hybrids−1,13 and Hybrids,1. He follows the
Hybrids−1,13 game, such that he sets the circuit to the obfuscated circuit Cx. Since D1 has significant
distinguishing advantage, there exists a polynomial p(·) such that,∣∣∣Pr

[
D1(Hybrids−1,13) = 1

]
− Pr

[
D1(Hybrids,1) = 1

]∣∣∣ ≥ 1/p(λ).

We note that Hybrids−1,13 and Hybrids,1 correspond exactly to Cx being C0 and C1 respectively, thus we can
just have D echo the output of D1 such that the following is true, for α(·) = 1/p(·)∣∣∣Pr

[
D(σ, iO(n,C0)) = 1 : (C0, C1, σ)← Samp(1λ)

]
−Pr

[
D(σ, iO(n,C1)) = 1 : (C0, C1, σ)← Samp(1λ)

]∣∣∣ ≥ α(λ)

In other words, if D1 predicts Hybrids−1,13, then the obfuscation Cx is that of Adaptive-Samples, and if
it predicts Hybrids,1, then the obfuscation Cx is that of Adaptive-Samples:2 with
(z∗1,0, z

∗
1,1), . . . , (z∗n,0, z

∗
n,1) = PRG(F (K

(n)
1 , v∗s )).

Claim 7. For s ∈ [q(λ)], Hybrids,1(1λ) and Hybrids,2(1λ) are computationally indistinguishable.

Proof. Hybrids,1 and Hybrids,2 are indistinguishable by security of puncturable PRF K
(n)
1 .

Suppose they are not, then consider an adversary D2 who distinguishes between these hybrids with
significant advantage. This adversary can be used to break selective security of the punctured PRFK

(n)
1 (more

precisely, at least one of the punctured PRF’s in the sequence K(n)
1 ) via the following reduction algorithm,

that first gets the protocol hash v∗s from the distinguisher D2.
Consider a sequence of 2n + 1 sub-hybrids, such for i ≤ n, the ith sub-hybrid Hybrids,1,i, is the same as

Hybrids,1 except that:
For i < n, ∀j ≤ i, yj,0 ← {0, 1}n. Also ∀i < j ≤ n, yj,0 = PRF(Kj,0

1 , v∗s ) and ∀j > n, yj,1 = PRF(Kj,0
1 , v∗s ).

For i > n, ∀j ≤ n, yj,0 ← {0, 1}n, ∀n < j ≤ i, yj−n,1 ← {0, 1}n and ∀j > i, yj−n,1 = PRF(Kj,1
1 , v∗s ).
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Note that Hybrids,1,0 ≡ Hybrids,1 and Hybrids,1,2n ≡ Hybrids,2.
Then, there exists some j ∈ [0, 2n − 1] such that D2 distinguishes between Hybrids,1,j and Hybrids,1,j+1

with significant advantage.
Assume without loss of generality that j < n (arguments for j > n will follow similarly), then D2 can

be used to break selective security of the punctured PRF Kj+1,0
1 via the following reduction algorithm, that

first gets the protocol hash v∗s from the distinguisher D2.
The PRF attacker submits v∗s to the PRF challenger and receives the punctured PRF Kj+1,0

1 ({v∗s}) and
the challenge a, which is either chosen uniformly at random or is the output of the PRF at v∗s . The PRF
attacker continues the experiment of Hybrids,1,j as challenger, except that he sets y∗j+1,0 = a.

Then, there exists polynomial p(·) such that∣∣∣Pr
[
D2(Hybrids,1,j) = 1

]
− Pr

[
D2(Hybrids,1,j+1) = 1

]∣∣∣ ≥ 1/2np(λ).

If D2 predicts Hybrids,1,j , then a is the output of the PRF Kj+1,0
1 at v∗s . If D2 predicts Hybrids,1,j+1,

then a was chosen uniformly at random.
Therefore, we can just have D echo the output of D2 such that∣∣∣Pr

[
D(y = PRF(Kj+1,0

1 {v∗s}, v∗s )) = 1
]
− Pr

[
D(y ← {0, 1}n) = 1

]∣∣∣ ≥ 1/2np(λ).

Claim 8. For s ∈ [q(λ)], Hybrids,2(1λ) and Hybrids,3(1λ) are computationally indistinguishable.

Proof. Hybrids,2 and Hybrids,3 are indistinguishable by security of the PRG.
Suppose they are not, then consider an adversary D3 who distinguishes between these hybrids with

significant advantage.
Now, consider a sequence of 2n+1 sub-hybrids, where the ith sub-hybrid Hybrids,2,i is identical to Hybrids,2

except that:
For i ≤ n, then ∀j ≤ i, z∗j,0 ← {0, 1}n, ∀i < j ≤ n, z∗j,0 = PRG(y∗) for y∗ ← {0, 1}n, ∀j > n, z∗j−n,1 = PRG(y∗)
for y∗ ← {0, 1}n.
For i > n, then ∀j < n, z∗j,0,← {0, 1}n, ∀n < j < i, z∗j−n,1 ← {0, 1}n and ∀j ≥ i, z∗j−n,1 = PRG(y∗) for
y∗ ← {0, 1}n. Note that Hybrids,2,0 ≡ Hybrids,2 and Hybrids,2,2n ≡ Hybrids,3.

Then, there exists some j ∈ [0, 2n − 1] such that D3 distinguishes between Hybrids,2,j and Hybrids,2,j+1

with significant advantage. But we show that if this is true, then D3 can be used to break security of the
PRG via the following reduction.
D is a distinguisher of the PRG security game which takes a PRG challenge a, setting z∗j+1,0 = a if j < n

and z∗j+1−n,1 = a if j ≥ n. It then continues the rest of the experiment of Hybrids,2,j as the challenger for
D3.

Then, there exists polynomial p(·) such that∣∣∣Pr
[
D3(Hybrids,2,j) = 1

]
− Pr

[
D3(Hybrids,2,j+1) = 1

]∣∣∣ ≥ 1/2np(λ).

If a was the output of a PRG, then we are in Hybrids,2,j . If a was chosen as a random string, then we are
in Hybrids,2,j+1.

Therefore, we can just have D echo the output of D10 such that∣∣∣Pr
[
D(PRG(y) for y ← {0, 1}n) = 1

]
− Pr

[
D(y ← {0, 1}2n) = 1

]∣∣∣ ≥ 1/2np(λ).

Claim 9. For s ∈ [q(λ)], Hybrids,3(1λ) and Hybrids,4(1λ) are computationally indistinguishable.

Proof. Hybrids,3 and Hybrids,4 are indistinguishable by security of iO between Adaptive-Samples: 2 and
Adaptive-Samples: 3.

It is easy to see that Adaptive-Samples: 2 and Adaptive-Samples: 3 are functionally equivalent on all
inputs other than (u∗s, v

∗
s ). Moreover, on input v∗s , note that the condition in Step 1 is never satisfied
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in Adaptive-Samples: 2 except with probability 2−n, since z∗ is chosen at random. Therefore, the out-
put of Adaptive-Samples: 2 on input (u∗s, v

∗
s ) is an iO of the program PPRF(K2,u∗s |v∗s ) using randomness

PRF(K ′2, u
∗
s|v∗s ). On input (u∗s, v

∗
s ), the output of Adaptive-Samples: 3 (which is g) is therefore the same as

that of Adaptive-Samples: 2.
Since their functionality is exactly identical on all inputs, both obfuscated circuits must be indistinguish-

able by security of iO. Suppose they are not, then consider an adversary D4 who distinguishes between these
hybrids with significant advantage.

This adversary can be used to break selective security of the indistinguishability obfuscation (according
to Definition 1) via the following reduction to iO distinguisher D. Samp(1λ) first activates the distinguisher
D. D picks (u∗s, v

∗
s ) uniformly at random and passes them to Samp.

The iO challenger Samp(1λ) on input (u∗s, v
∗
s ) picks z∗i,b ← {0, 1}2n for all i ∈ [1, n], b ∈ {0, 1}. He then

samples circuits C0 = Adaptive-Samples: 2 and C1 = Adaptive-Samples: 3 setting g appropriately. We
note that the condition Pr[∀x,C0(x) = C1(x) : (C0, C1, σ) ← Samp(1λ)] > 1 − α(λ) is trivially satisfied for
α(λ) = 2−n.

The iO challenger then sends Cx = iO(n,C0) or Cx = iO(n,C1) to the adversary D. D then acts as
challenger against D4 in the distinguishing game between Hybrids,3 and Hybrids,4. He follows the Hybrids,3
game, such that he sets the circuit to the obfuscated circuit Cx. Since D4 has significant distinguishing
advantage, there exists a polynomial p(·) such that,∣∣∣Pr

[
D4(Hybrids,3) = 1

]
− Pr

[
D4(Hybrids,4) = 1

]∣∣∣ ≥ 1/p(λ).

We note that Hybrids,3 and Hybrids,4 correspond exactly to Cx being C0 and C1 respectively, thus we can
just have D echo the output of D4 such that the following is true, for α(·) = 1/p(·)∣∣∣Pr

[
D(σ, iO(n,C0)) = 1 : (C0, C1, σ)← Samp(1λ)

]
−Pr

[
D(σ, iO(n,C1)) = 1 : (C0, C1, σ)← Samp(1λ)

]∣∣∣ ≥ α(λ)

In other words, if D4 predicts Hybrids,3, then the obfuscation Cx is that of Adaptive-Samples: 2, and if
it predicts Hybrids,4, then the obfuscation Cx is that of Adaptive-Samples: 3.

Claim 10. For s ∈ [q(λ)], Hybrids,4(1λ) and Hybrids,5(1λ) are computationally indistinguishable.

Proof. Hybrids,4 and Hybrids,5 are indistinguishable by security of the puncturable PRF K2. Suppose they
are not, then consider an adversary D5 who distinguishes between these hybrids with significant advantage.
This adversary can be used to break selective security of the punctured PRF K2 via the following reduction
algorithm to distinguisher D, that first gets the protocol hash (u∗s, v

∗
s ) after activating the distinguisher D5.

The PRF attacker D gives (u∗s, v
∗
s ) to the PRF challenger. The attacker receives the punctured PRF key

K2{u∗s|v∗s} and the challenge a, which is either chosen uniformly at random or is the output of the PRF at
u∗s|v∗s . The PRF attacker continues the experiment of Hybrids,4 as challenger, except that he uses the same
(u∗s, v

∗
s ) and sets e = a.

Then, there exists polynomial p(·) such that∣∣∣Pr
[
D5a(Hybrids,4) = 1

]
− Pr

[
D5a(Hybrids,5) = 1

]∣∣∣ ≥ 1/p(λ).

If D5 predicts Hybrids,4, then a is the output of the punctured PRF K2 at u∗s|v∗s . If D5 predicts Hybrids,5,
then a was chosen uniformly at random. Therefore, we can just have D echo the output of D5 such that∣∣∣Pr

[
D(PRF(K2({v∗s |u∗s}), v∗s |u∗s)) = 1

]
− Pr

[
D(y ← {0, 1}n1) = 1

]∣∣∣ ≥ 1/p(λ).

Claim 11. For s ∈ [q(λ)], Hybrids,5(1λ) and Hybrids,6(1λ) are computationally indistinguishable.
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Proof. Hybrids,5 and Hybrids,6 are indistinguishable by security of the puncturable PRF K ′2. Suppose they
are not, then consider an adversary D6 who distinguishes between these hybrids with significant advantage.
This adversary can be used to break selective security of the punctured PRF K ′2 via the following reduction
algorithm to distinguisher D, that first gets the protocol hash (u∗s, v

∗
s ) after activating the distinguisher D6.

The PRF attacker D gives (u∗s, v
∗
s ) to the PRF challenger. The attacker receives the punctured PRF key

K ′2({u∗s|v∗s}) and the challenge a, which is either chosen uniformly at random or is the output of the PRF at
u∗s|v∗s . The PRF attacker continues the experiment of Hybrids,5 as challenger, except that he uses the same
u∗s, v

∗
s and sets e′ = a.
Then, there exists polynomial p(·) such that∣∣∣Pr

[
D6(Hybrids,5) = 1

]
− Pr

[
D6(Hybrids,6) = 1

]∣∣∣ ≥ 1/p(λ).

If D6 predicts Hybrids,5, then a is the output of the punctured PRF K2 at u∗s|v∗s . If D6 predicts Hybrids,6,
then a was chosen uniformly at random. Therefore, we can just have D echo the output of D6 such that∣∣∣Pr

[
D(PRF(K2({v∗s |u∗s}), v∗s |u∗s) = 1

]
− Pr

[
D(y ← {0, 1}n2) = 1

]∣∣∣ ≥ 1/p(λ).

Claim 12. For s ∈ [q(λ)], Hybrids,6(1λ) and Hybrids,7(1λ) are computationally indistinguishable.

Proof. Hybrids,6 and Hybrids,7 are indistinguishable by security of iO between Adaptive-Samples: 2 and
Adaptive-Samples: 3.

Suppose they are not, then consider an adversary D7 who distinguishes between these hybrids with
significant advantage. We will use D7 to break security of iO via the following reduction to distinguisher D,
which acts as challenger for D7.

Samp(1λ) first activates the distinguisher D. D sets u∗s ← {0, 1}n, v∗s according to Hybrids,7 and gives
(u∗s, v

∗
s ) to Samp. D also gives punctured PRF keys K1,K2,K

′
2 at points v∗s , u∗s|v∗s respectively, along with

e, e′ ← {0, 1}n, g = iO(Pe; e
′) and z∗i,b ← {0, 1}2n for all i ∈ [1, n], b ∈ {0, 1}. Samp then samples circuit

C0 = Adaptive-Samples: 3 with the values of z∗, g set as above.
Samp also samples circuit C1 = Adaptive-Samples: 2 except by setting z∗i,gi = PRG(u∗s[i]) (but setting

z∗i,ḡi ← {0, 1}
2n).

The circuits C0 and C1 are easily seen to be functionally equivalent for v 6= v∗s and for (u = u∗s, v = v∗s ).
We note that if z∗ are chosen uniformly at random, the condition in step 2 is possibly satisfied in circuit
C0 with probability only 2−n by security of the length-doubling PRG. Moreover, even in circuit C1, this
condition will only be satisfied on input u∗s corresponding to v∗s except with probability 2−n by security of
the length-doubling PRG and by injectivity of the PRG. Therefore, the condition Pr[∀x,C0(x) = C1(x) :
(C0, C1, σ)← Samp(1λ)] > 1− α(λ) is met for all auxiliary information σ and α(λ) = 2−(n−1).

The iO adversary D obtains challenge circuit Cx = iO(n,C0) or Cx = iO(n,C1) from the iO challenger.
D then acts as challenger against D7 in the distinguishing game between Hybrids,6 and Hybrids,7. He

follows the Hybrids,7 game, such that he sends to D7, the obfuscated circuit Cx.
Since D7 has significant distinguishing advantage, there exists a polynomial p(·) such that,∣∣∣Pr

[
D7(Hybrids,6) = 1

]
− Pr

[
D7(Hybrids,7) = 1

]∣∣∣ ≥ 1/p(λ).

We note that Hybrids,6 and Hybrids,7 correspond exactly to Cx being C0 and C1 respectively, thus we can
just have D echo the output of D7 such that the following is true, for α(·) = 1/p(·)∣∣∣Pr

[
D(σ, iO(n,C0)) = 1 : (C0, C1, σ)← Samp(1λ)

]
−Pr

[
D(σ, iO(n,C1)) = 1 : (C0, C1, σ)← Samp(1λ)

]∣∣∣ ≥ α(λ)

In other words, if D7 predicts Hybrids,6, then the obfuscation Cx is that of Adaptive-Samples: 3, and if
it predicts Hybrids,7, then the obfuscation Cx is that of Adaptive-Samples: 2.
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Claim 13. For s ∈ [q(λ)], Hybrids,7(1λ) and Hybrids,8(1λ) are computationally indistinguishable.

Proof. Hybrids,7 and Hybrids,8 are indistinguishable by security of the PRG.
Suppose they are not, then consider an adversary D8 that distinguishes between these hybrids with

significant advantage.
Now, consider a sequence of n+1 sub-hybrids, where the ith sub-hybrid Hybrids,7,i for i ∈ [0, n] is identical

to Hybrids,7 except that:
For all j ≤ i, z∗j,ḡj = PRG(y∗) for y∗ ← {0, 1}n, and for all j > i, z∗j,ḡj ← {0, 1}

2n.
Note that Hybrids,7,0 ≡ Hybrids,7 and Hybrids,7,n ≡ Hybrids,8.

Then, there exists some j ∈ [0, n − 1] such that D8 distinguishes between Hybrids,7,j and Hybrids,7,j+1

with significant advantage. But we show that if this is true, then D8 can be used to break security of the
PRG via the following reduction.
D is a distinguisher of the PRG security game which takes a PRG challenge a, setting z∗j+1, ¯gj+1

= a. Note
that he can do this since the seed of the PRG, y∗j,ḡj is not used anywhere else. He then continues the rest of
the experiment of Hybrids,7,j as the challenger for D8.

Then, there exists polynomial p(·) such that∣∣∣Pr
[
D8(Hybrids,7,j) = 1

]
− Pr

[
D8(Hybrids,7,j+1) = 1

]∣∣∣ ≥ 1/2np(λ).

If a was the output of a PRG, then we are in Hybrids,7,j . If a was chosen as a random string, then we are
in Hybrids,7,j+1.

Therefore, we can just have D echo the output of D8 such that∣∣∣Pr
[
D(PRG(y) for y ← {0, 1}n) = 1

]
− Pr

[
D(y ← {0, 1}2n) = 1

]∣∣∣ ≥ 1/np(λ).

Claim 14. For s ∈ [q(λ)], Hybrids,8(1λ) and Hybrids,9(1λ) are computationally indistinguishable.

Proof. Hybrids,8 and Hybrids,9 are indistinguishable by security of the puncturable PRF K
(n)
1 .

Suppose they are not, then consider an adversary D9 who distinguishes between these hybrids with
significant advantage.

Now consider a sequence of 2n+ 1 sub-hybrids, such for i ≤ n, the ith sub-hybrid Hybrids,8,i, is the same
as Hybrids,8 except that:
For i < n, ∀j ≤ i, yj,0 = PRF(Kj,0

1 , v∗s ). Also ∀i < j ≤ n, yj,0 ← {0, 1}n and ∀j, yj,1 ← {0, 1}n.
For i > n, ∀j, yj,0 = PRF(Kj,0

1 , v∗s ), ∀j ≤ i, yj−n,1 = PRF(Kj,1
1 , v∗s ) and ∀j > i, yj−n,1 ← {0, 1}n.

Note that Hybrids,8,0 ≡ Hybrids,8 and Hybrids,8,2n ≡ Hybrids,9.
Then, there exists some j ∈ [0, 2n − 1] such that D9 distinguishes between Hybrids,8,j and Hybrids,8,j+1

with significant advantage.
Assume without loss of generality that j < n (arguments for j > n will follow similarly), then D9 can

be used to break selective security of the punctured PRF Kj+1,0
1 via the following reduction algorithm, that

first gets the protocol v∗s from the distinguisher D9.
The PRF attacker D submits v∗s to the PRF challenger and receives the punctured PRF Kj+1,0

1 ({v∗s})
and the challenge a, which is either chosen uniformly at random or is the output of the PRF at v∗s . Then D
continues the experiment of Hybrids,8,j as challenger, except that he sets y∗j+1,0 = a, and programs u∗s[j + 1]
to y∗j+1,0 if p∗s,j+1 = 0.

Then, there exists polynomial p(·) such that∣∣∣Pr
[
D9(Hybrids,8,j) = 1

]
− Pr

[
D9(Hybrids,8,j+1) = 1

]∣∣∣ ≥ 1/2np(λ).

If D9 predicts Hybrids,8,j , then a was chosen uniformly at random. If D9 predicts Hybrids,8,j+1, then a is
the output of the PRF Kj+1,0

1 at v∗s . Therefore, we can just have D echo the output of D9 such that∣∣∣Pr
[
D(y = PRF(Kj+1,0

1 {v∗s}, v∗s )) = 1
]
− Pr

[
D(y ← {0, 1}n) = 1

]∣∣∣ ≥ 1/2np(λ).
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Claim 15. For s ∈ [q(λ)], Hybrids,9(1λ) and Hybrids,10(1λ) are computationally indistinguishable.

Proof. Hybrids,9 and Hybrids,10 are indistinguishable by security of iO between circuits Adaptive-Samples: 2
and Adaptive-Samples.

It is easy to observe that the circuits Adaptive-Samples: 2 and Adaptive-Samples are functionally equiv-
alent on all inputs v 6= v∗. Moreover, even on input v = v∗s , such that (z∗1,0, z

∗
1,1), . . . , (z∗n,0, z

∗
n,1) =

PRG(F (K
(n)
1 , v∗s )), the functionality of both circuits is identical if the PRG is injective.

The, the iO of both circuits must be indistinguishable. Suppose not, then consider an adversary D10 who
distinguishes between these hybrids with significant advantage.

This adversary can be used to break selective security of the indistinguishability obfuscation (according
to Definition 1) via the following reduction to distinguisher D, which acts as challenger to distinguisher D10.
D samples v∗s ← {0, 1}n and gives v∗s , (z∗1,0, z

∗
1,1), . . . , (z∗1,0, z

∗
1,1) = PRG(F1(K

(n)
1 , v∗s )) to the iO challenger

Samp(1λ).
Samp on input v∗s samples circuits C0 = Adaptive-Samples: 2 and C1 = Adaptive-Samples with (z∗1,0, z

∗
1,1), . . . , (z∗n,0, z

∗
n,1) =

PRG(F1(K
(n)
1 , v∗s )). We note that the condition Pr[∀x,C0(x) = C1(x) : (C0, C1, σ)← Samp(1λ)] > 1− α(λ)

is trivially satisfied for all auxiliary information σ and all negligible functions α(·), since the circuits are
always functionally equivalent.

The iO challenger then sends Cx = iO(n,C0) or Cx = iO(n,C1) to the adversary D. D then acts as
challenger against D10 in the distinguishing game between Hybrids,9 and Hybrids,10. He follows the Hybrids,9
game, such that he sets the circuit to the obfuscated circuit Cx. Since D10 has significant distinguishing
advantage, there exists a polynomial p(·) such that,∣∣∣Pr

[
D1(Hybrids,9) = 1

]
− Pr

[
D1(Hybrids,10) = 1

]∣∣∣ ≥ 1/p(λ).

We note that Hybrids,9 and Hybrids,10 correspond exactly to Cx being C0 and C1 respectively, thus we can
just have D echo the output of D1 such that the following is true, for α(·) = 1/p(·)∣∣∣Pr

[
D(σ, iO(n,C0)) = 1 : (C0, C1, σ)← Samp(1λ)

]
−Pr

[
D(σ, iO(n,C1)) = 1 : (C0, C1, σ)← Samp(1λ)

]∣∣∣ ≥ α(λ)

In other words, if D10 predicts Hybrids,9, then the obfuscation Cx is that of Adaptive-Samples: 2 with
(z∗1,0, z

∗
1,1), . . . , (z∗n,0, z

∗
n,1) = PRG(F (K

(n)
1 , v∗s )), and if it predicts Hybrids,10, then the obfuscation Cx is that

of Adaptive-Samples.

Claim 16. For s ∈ [q(λ)], Hybrids,10(1λ) and Hybrids,11(1λ) are computationally indistinguishable.

Proof. Hybrids,10 and Hybrids,11 are indistinguishable by security of iO between circuits PK3
and P ′K3,p∗s ,d

∗
s
,

if p∗s = d∗s(PRF(K3, d
∗
s)). Note that the circuits are functionally equivalent for this setting of p∗s.

Suppose these hybrids are not indistinguishable, then consider an adversary D11 who distinguishes be-
tween these hybrids with significant advantage.

This adversary can be used to break selective security of the indistinguishability obfuscation (according
to Definition 1) via the following reduction to distinguisher D, which acts as challenger in the experiment
of Hybrids,10 until it obtains d∗s from the distinguisher D11 which it passes to the iO challenger, along with
p∗s = d∗s(PRF(K3, d

∗
s)).

Samp(1λ) on input d∗s, p∗s samples circuits C0 = PK3 and C1 = P ′K3,p∗s ,d
∗
s
.

We note that the condition Pr[∀x,C0(x) = C1(x) : (C0, C1, σ) ← Samp(1λ)] > 1 − α(λ) is always met
since the circuits are functionally equivalent.

The iO adversary D then obtains Cx = iO(n,C0) or Cx = iO(n,C1). He continues as challenger in the
distinguishing game between Hybrids,10 and Hybrids,11. He follows the Hybrids,10 game, except that he sets
g to the obfuscated circuit Cx. Since D11 has significant distinguishing advantage, there exists a polynomial
p(·) such that, ∣∣∣Pr

[
D11(Hybrids,10) = 1

]
− Pr

[
D11(Hybrids,11) = 1

]∣∣∣ ≥ 1/p(λ).
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We note that Hybrids,10 and Hybrids,11 correspond exactly to Cx being C0 and C1 respectively, we can just
have D echo the output of D11 such that the following is true, for α(·) = 1/p(·)∣∣∣Pr

[
D(σ, iO(n,C0)) = 1 : (C0, C1, σ)← Samp(1λ)

]
−Pr

[
D(σ, iO(n,C1)) = 1 : (C0, C1, σ)← Samp(1λ)

]∣∣∣ ≥ α(λ)

In other words, if D11 predicts Hybrids,10, then the obfuscation Cx is that of PK3 , and if it predicts
Hybrids,11, then the obfuscation Cx is that of P ′K3,p∗s ,d

∗
s
.

Claim 17. For s ∈ [q(λ)], Hybrids,11(1λ) and Hybrids,12(1λ) are computationally indistinguishable.

Proof. Hybrids,11 and Hybrids,12 are indistinguishable by security of the puncturable PRF key K3 = e.
Suppose they are not, then consider an adversary D12 who distinguishes between these hybrids with

significant advantage. This adversary can be used to break selective security of the punctured PRF key K3

via the following reduction to distinguisher D.
The PRF attacker D begins the experiment of Hybrids,11 and continues it until the hybrid adversary

makes a random oracle query d∗s. D passes d∗s to the PRF challenger. The PRF challenger gives D the
punctured PRF key K3({d∗s}) and the challenge a, which is either chosen uniformly at random or is the
output of the PRF at d∗s. The PRF attacker continues the experiment of Hybrids,11 as challenger, except
that he sets p∗s = d∗s(a).

Then, there exists polynomial p(·) such that∣∣∣Pr
[
D12(Hybrids,11) = 1

]
− Pr

[
D12(Hybrids,12) = 1

]∣∣∣ ≥ 1/p(λ).

If D12 predicts Hybrids,11, then a is the output of the punctured PRF K3 at d∗s. If D12 predicts Hybrids,12,
then a was chosen uniformly at random. Therefore, we can just have D echo the output of D12 such that∣∣∣Pr

[
D(PRF(K3({d∗s}), d∗s)) = 1

]
− Pr

[
D(y ← {0, 1}m) = 1

]∣∣∣ ≥ 1/p(λ).

Claim 18. For s ∈ [q(λ)], Hybrids,12(1λ) and Hybrids,13(1λ) are identical.

Proof. Hybrids,12 and Hybrids,13 are identical when x′ is sampled uniformly at random in {0, 1}m.

5.4 No Honest Sample Violations
Claim 19.

Pr[Ideal(1λ) aborts] = 0

Proof. Note that whenever the adversary queries H on any input d, in the final hybrid we set (u, v) = H(d)
to output the externally specified samples. This can be verified by a simple observation of Sample.

Therefore, because of our construction, an “Honest Sample Violation” never occurs in the ideal world for
any d sent to the random oracle. That is, condition (1) in Definition 4 is always satisfied. In other words,

Pr[Ideal(1λ) aborts] = 0

.

6 IBE from PKE and Universal Parameters
We now describe further applications of universal samplers. We start with a direct, natural, and very simple
construction of identity-based encryption from public-key encryption and a universal sampler scheme. Even
though we will consider only public-key encryption, we note that the approach extends easily to other
cryptographic public-key primitives. For instance, it can be used in the same way to convert a digital
signature scheme into an identity-based signature scheme.
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6.1 Basic Definitions
While our construction of Section 5 will meet our adaptive definition above, some of our applications only
need a weaker notation of adaptive one-time security.

Definition 5 (One-Time Adaptively-Secure Universal Sampler Scheme). We say that a pair of efficient
oracle algorithms (Setup, Sample) is an adaptively-secure one-time universal sampler scheme if they meet
the adaptive definition given above, but with the added restriction that an admissible adversary A is only
allowed to send a single message of the form (sample, d).

Definition 6 (Secure Public-Key Encryption). A public-key encryption scheme (PKE) consists of PPT
algorithms PKE = (PKGen,PKEnc,PKDec).

Key generation. PKGen takes as input security parameter 1λ and returns a key pair (pk , sk).

Encryption. PKEnc takes as input public key pk and messagem, and returns a ciphertext c← PKEnc(pk ,m).

Decryption. PKDec takes as input secret key sk and ciphertext c, and returns a message m← PKDec(sk , c).

We require the usual correctness properties.

We say that public-key encryption scheme PKE is wIND-CCA secure, if

negl(λ) ≥
∣∣∣Pr[Expwcca−0PKE,AA(λ) = 1]− Pr[Expwcca−1PKE,A (λ) = 1]

∣∣∣
for some negligible function negl and for all PPT attackers A, where Expwcca−bA,PKE (λ) is the following experiment
with scheme PKE and (stateful) attacker A:

1. The experiment runs (pk , sk)← PKGen(1λ).

2. The attacker, on input pk , outputs two messages (m0,m1)← A(1λ, pk).

3. The experiment computes c∗ ← PKEnc(pk ,mb) and returns whatever algorithm AOwCCA(1λ, c∗) returns.
Here OwCCA is an oracle that on input c returns PKDec(sk , c) for all c 6= c∗.

Note that this is a weakened version of standard IND-CCA security, because the attacker has access to OwCCA

only after seeing the challenge ciphertext.
We say that public-key encryption scheme PKE is IND-CPA secure, if

negl(λ) ≥
∣∣∣Pr[Expcpa−0PKE,A(λ) = 1]− Pr[Expcpa−1PKE,A(λ) = 1]

∣∣∣
for some negligible function negl and for all PPT attackers A, where Expcpa−bA,PKE(λ) denotes an experiment
which is identical to Expwcca−bA,PKE (λ), except that A does not have access to oracle OwCCA.

Definition 7 (Secure Identity-based Encryption). An identity-based encryption scheme (IBE) consists of
PPT Algorithms IBE = (IDGen, IDKey, IDEnc, IDDec).

Master key generation. IDGen takes as input security parameter 1λ and returns a master key pair (mpk ,msk).

User key extraction. IDKey takes as input an identity id ∈ {0, 1}λ and msk , and returns an identity
secret key sk id .

Encryption. IDEnc takes as input master public key mpk , identity id , and message m, and returns a
ciphertext c← IDEnc(pk , id ,m).

Decryption. IDDec takes as input secret key sk id and ciphertext c, and returns a messagem← PKDec(sk id , c).
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We require the usual correctness properties.
We say that IBE is selectively IND-ID-CPA secure, if

negl(λ) ≥
∣∣∣Advind-id-cpaIBE,A (λ) := Pr[Expind-id-cpa-0IBE,A (λ) = 1]− Pr[Expind-id-cpa-1IBE,A (λ) = 1]

∣∣∣
for some negligible function negl and for all PPT attackers A, where Expind-id-cpa-bIBE,A is the following security
experiment with scheme IBE and (stateful) attacker A having access to an oracle OIBE.

1. The experiment runs id∗ ← A(1λ).

2. The experiment runs (mpk ,msk)← IDGen(1λ).

3. The attacker, on input mpk outputs two messages (m0,m1)← AOIBE(1λ, pk).

4. The experiment computes c∗ ← IDEnc(mpk , id∗,mb) and returns whatever AOIBE(1λ, c∗) returns.

Here oracle OIBE takes as input id such that id 6= id∗, and returns sk id ← IDKey(msk , id).

6.2 Universal Samplers with Additional Input
Recall that algorithm Sample(U, d) of a universal sampler scheme receives as input a sampling algorithm d
for some distribution described by program d. Sometimes, for instance in our generic construction of IBE
from PKE and a universal sampler scheme, a slightly different definition will be useful, where program d
may be fixed, but Sample takes a bit string x as additional input.

We note that is straightforward to extend Sample, without requiring a new construction or security
analysis. To this end, for any program d, we let dx denote the program d extended with an additional
comment containing string x. This allows to alter the description of d without changing its functionality in
any way. We require that this extension is performed in some standard and deterministic way, for instance
by always adding the comment at the very beginning of the code. We will write dx to denote the program
d with comment x. To obtain an universal sampler scheme with additional input, we simply set

Sample(U, d, x) := Sample(U, dx)

Hashing to arbitrary sets. Universal sampler schemes can also be used to construct hash functions that
map into arbitrary efficiently samplable sets, while allowing a limited form of “programmability” that allows
to map certain inputs to certain outputs in an indistinguishable way. For instance, imagine a (programmable)
hash function that maps strings into

◦ group elements gx ∈ G for a group G with known generator g (but unknown exponent x), or

◦ Diffie-Hellman pairs of group elements (gx, hx) for publicly known g, h (but unknown x), or

◦ vectors of the form v = A · x + e for a known matrix A, but unknown x and “short” error vector e
(i.e., vectors v close to the lattice spanned by the columns of A).

We note that the respective sets that the universal sampler scheme maps into should be easy to sample: for
instance, group elements gx can be sampled by choosing x randomly and then computing gx from g and x.
However, the function H with H(x) := gx would not be very interesting for most cryptographic purposes,
since it would directly reveal x. (In most applications, knowing trapdoor information like x to hashed images
gx would allow to break the constructed scheme.)

Universal sampler schemes with additional input allow to construct such hash functions easily. Let
U ← Setup(1λ) and let S be an efficiently samplable set with sampling algorithm d. Then the function H
defined by (U, d) as

H(x) := Sample(U, d, x),

forms a hash function that maps into S.
If (Setup, Sample) is a selective one-time universal sampler scheme, then this hash function can be

“programmed” as follows. Let s∗ ∈ S be sampled according to distribution d, and let x∗ be an element of
the domain of H. Computing sampler parameters as U ′ ← SimUGen(1λ, dx∗ , s

∗) defines a programmed map
H′ with H(x) := Sample(U ′, d, x) such that H′(x∗) = s∗, and U ′ is computationally indistinguishable from
U ← Setup(1λ) by the selective one-time security of the universal sampler scheme.
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6.3 Generic Construction
Let PKE = (PKGen,PKEnc,PKDec) and PKEwCCA = (PKGenwCCA,PKEncwCCA, PKDecwCCA) be public-key
encryption schemes, and let (Setup, Sample) be a (selective, one-time secure) universal sampler scheme with
algorithm SimUGen for the “programmed” generation of sampler parameters U .

Remark 1. In the sequel it will sometimes be helpful to make the random coins of an algorithm explicit. Let
ρ = (ρ0, ρ1) ∈ {0, 1}`ind with ρ0, ρ1 ∈ {0, 1}`

in
d/2, then we will write PKGen(1λ; ρ0) and PKEncwCCA(pkwCCA,m; ρ1)

to denote the deterministic execution of PKGen and PKEncwCCA, respectively, on input randomness ρ0 and
ρ1. Here we assume for simplicity that the randomness space of PKGen and PKEncwCCA is {0, 1}`ind/2.

Consider the following IBE-scheme IBE = (IDGen, IDKey, IDEnc, IDDec).

IDGen: On input 1λ, the master key generation algorithm works as follows.

1. It runs (pkwCCA, skwCCA)← PKGen(1λ) to generate a key pair for PKEwCCA.

2. Then it creates a program d that, on input randomness ρ = (ρ0, ρ1) ← {0, 1}`ind , computes a key
pair (pk , sk)← PKGen(1λ; ρ0), ciphertext c∗ ← PKEncwCCA(sk ; ρ1), and outputs (pk , c∗).

3. Finally it computes U ← Setup(1λ).

The master public key is mpk := (U, d), the master secret key is msk := skwCCA.

Recall that we write dx to denote program d deterministically extended with a comment field containing
x (cf. Section 6.2). If the comment field takes values in {0, 1}λ, then (U, d) define a map with domain
{0, 1}λ and range S, where

S =
{

(pk ,PKEncwCCA(pkwCCA, sk)) : (pk , sk)← PKGen(1λ)
}

is the set of all tuples (pk , c) such that c is an encryption under pkwCCA of the secret key corresponding
to pk . In the sequel we will write H(x) to abbreviate Sample(U, d, x).

IDKey: The user key extraction algorithm receives as input id ∈ {0, 1}λ and msk . It computes (pk id , cid)←
H(id) and returns sk id := PKDecwCCA(msk , cid).

IDEnc: The encryption algorithm receives as input mpk , id , and message m. It computes (pk id , cid)← H(id)
and returns c← PKEnc(pk ,m).

IDDec: The decryption algorithm receives as input sk id and ciphertext c. It computes and returns m ←
PKDec(sk , c).

The correctness of this scheme follows immediately from the correctness of PKE, PKEwCCA, and (Setup, Sample).

Theorem 4. Algorithms IBE = (IDGen, IDKey, IDEnc, IDDec) form a secure IBE scheme in the sense of
Definition 7.

The concept of selective, one-time universal sampler schemes makes the proof extremely simple and
natural. Essentially, we first use the programmed generation algorithm SimUGen to define H such that
H(id∗) = (pk∗, c∗) where c∗ = PKEncwCCA(pkwCCA, sk

∗). Then we use the wCCA-security of PKEwCCA to
replace c∗ with an encryption of 1λ (the wCCA decryption oracle is used to answer OIBE-queries). From this
point on we do not need to know sk∗ anymore, which makes the reduction to the IND-CPA security (with
challenge public key pk∗) of PKE straightforward.

Proof. We proceed in a sequence of hybrid games H0, . . . ,H4, where Hybrid H0 corresponds to the IND-ID-
CPA security experiment Expind-id-cpa-0IBE,A (λ) and Hybrid H4 corresponds to experiment Expind-id-cpa-1IBE,A (λ).

Hybrid 0. This is the original Expind-id-cpa-0IBE,A (λ) security experiment with scheme IBE. By definition we
have

Pr[H0 = 1] = Pr[Expind-id-cpa-0IBE,A (λ) = 1]
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Hybrid 1. This hybrid is identical to Hybrid 0, except for the following. The experiment generates sampler
parameters as U ← SimUGen(1λ, d(id∗), (pk

∗, c∗wCCA)), where (pk∗, c∗wCCA) ← d(ρ) for uniformly random ρ ←
{0, 1}`ind and id∗ is the challenge identity chosen by A. Note that this programs the function H such that
H(id∗) = (pk∗, c∗wCCA).

Note that in Hybrid 0, the sampler parameters U are generated exactly as in the Real-experiment from
Definition 3, while in Hybrid 1, the sampler parameters are generated as in the Ideal-experiment. Thus, by
the selective security of the one-time secure sampler scheme, we have

|Pr[H1 = 1]− Pr[H0 = 1]| ≤ negl(λ)

for some negligible function negl .

Hybrid 2. This hybrid is identical to Hybrid 1, except for the following. In Hybrid 1 we have (pk∗, c∗wCCA)←
d(id∗)(ρ), where ρ = (ρ0, ρ1)← {0, 1}`ind , and (pk∗, sk∗)← PKGen(1λ; ρ0), and c∗wCCA ← PKEncwCCA(pkwCCA, sk

∗; ρ1).
In Hybrid 2 we replace c∗wCCA with an encryption of 1λ.

We construct an attacker BwCCA against the wIND-CCA security of PKEwCCA from any attacker A that
distinguishes Hybrid 2 from Hybrid 1. BwCCA runs A as a subroutine by simulating the IBE security experi-
ment for A as follows.

1. At the beginning, BwCCA receives as input a challenge public key pk∗wCCA from the IND-CCA experiment.
Then it starts A and receives a challenge identity id∗ from A.

2. BwCCA runs (pk∗, sk∗)← PKGen(1λ; ρ0) for ρ0 ← {0, 1}`
in
d/2 to generate a key pair, and outputs (sk∗, 1λ)

to the IND-CCA experiment. It receives in response a ciphertext c∗wCCA.

3. BwCCA runs U ← SimUGen(1λ, d(id∗), (pk
∗, c∗wCCA)) and sets mpk := (U, d) and msk := ⊥.

4. OIBE is simulated by B as follows. When A makes a query OIBE(id), then BwCCA computes (pk id , cid) =
H(id) and returns whatever OwCCA(cid) returns.

If c∗wCCA is an encryption of sk∗, then this is a perfect simulation of Hybrid 1, while if c∗wCCA is an encryption
of 1λ, then this is a perfect simulation of Hybrid 2. It follows from the wIND-CCA security of PKEwCCA that

|Pr[H2 = 1]− Pr[H1 = 1]| ≤ negl(λ)

for some negligible function negl .

Hybrid 3. This hybrid is identical to Hybrid 2, except for the following. In Hybrid 2 the experiment
creates the challenge ciphertext c∗ as c∗ ← PKEnc(pk∗,m0), where (m0,m1) are the messages chosen by A.
In this game c∗ is created as c∗ ← PKEnc(pk∗,m1).

We construct an attacker BCPA against the IND-CPA security of PKE from any attacker that distinguishes
Hybrid 2 from Hybrid 3. BCPA runs A as a subroutine by simulating the IBE security experiment as follows.

1. At the beginning, BCPA receives as input a challenge public key pk∗ from the IND-CCA experiment and
generates a key pair (pkwCCA, skwCCA) ← PKGenwCCA(1λ). Then it starts A and receives a challenge
identity id∗ from A.

2. BCPA runs U ← SimUGen(1λ, d(id∗), (pk
∗, cwCCA)), where cwCCA is an encryption cwCCA ← PKEnc(pkwCCA, 1

λ)

of 1λ, and sets mpk := (U, d) and msk := skwCCA. Note that BCPA can simulate OIBE, since it knows
msk .

3. When A outputs two messages (m0,m1), then B forwards these messages to the IND-CPA security
experiment, and receives in response a challenge ciphertext c∗ ← PKEnc(pk∗,mb). Ciphertext c∗ is
forwarded by BCPA to A.

4. Finally, when A terminates then BCPA outputs whatever A returns.
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Note that if c∗ is an encryption of m0, then the view of A is identical to Hybrid 2, while if c∗ encrypts m1,
then the view is identical to Hybrid 3. The IND-CPA security of PKE thus implies that

|Pr[H3 = 1]− Pr[H2 = 1]| ≤ negl(λ)

for some negligible function negl .

Hybrid 4. This hybrid is identical to Hybrid 3, except for the following. In Hybrid 3, we have H(id∗) =
(pk∗, c∗wCCA), where c∗wCCA is an encryption of 1λ. In this hybrid we replace c∗wCCA with an encryption of sk∗.
With the same arguments as in Hybrid H2 we have

|Pr[H4 = 1]− Pr[H3 = 1]| ≤ negl(λ)

Hybrid 5. This hybrid is identical to Hybrid 4, except that regular sampler parameters are generated.
That is, the experiment generates U as U ← Setup(1λ, d). As in Hybrid H1, we have

|Pr[H5 = 1]− Pr[H4 = 1]| ≤ negl(λ)

Note also that Hybrid 5 is identical to Expind-id-cpa-1IBE,A (λ). Thus we have∣∣∣Expind-id-cpa-0IBE,A (λ)− Expind-id-cpa-1IBE,A (λ)
∣∣∣ ≤ negl(λ).

6.4 Extensions
From selective to adaptive security. The generic IBE construction from PKE and selective one-time
universal sampler schemes achieves selective security. It is possible to extend this to adaptive security, where
the IND-ID-CPA attacker selects the challenge identity id∗ not at the beginning, but together with the
messages (m0,m1).

One obvious approach is to use an adaptively secure universal sampler scheme. However, we prefer a
simpler, more direct method. One can replace the function H(·) in the above construction with a function
H(RO(·)), where RO : {0, 1}λ → {0, 1}λ is a cryptographic hash function. If RO is modeled as a random
oracle, then this construction can be proven adaptively secure using standard arguments (as in [BF01], for
instance).

Extension to other primitives. Note that the “hashing-identities-to-public-keys” approach used in the
above construction extends easily to other cryptographic primitives. For instance, it is straightforward to
use the same approach to construct identity-based signature schemes from public-key signatures. We note
that for this construction again a selective one-time secure universal sampler scheme is sufficient (essentially,
because in the classical EUF-CMA security experiment only one challenge public-key is considered). Thus,
one-time secure universal sampler schemes can be seen as a generic tool to make certain public-key primitives
identity-based.

There are however examples of applications where selective q-time universal sampler schemes with q >
1 are required for the “public-key-to-identity-based” conversion. For instance, to convert a 2-party non-
interactive key exchange protocol [FHKP13] into a 2-party ID-based NIKE protocol. While the application
of universal sampler schemes is analogous to the PKE-to-IBE-setting, we will need a selective 2-time universal
sampler scheme here. This is essentially because there are two challenge public keys in the NIKE security
experiment.

We did not make the notion of selective q-time universal sampler schemes explicit in this paper, but
note that their definition and construction (for small q) are simple extensions of selective one-time universal
sampler schemes.
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7 Multiparty Key Exchange from PKE and Universal Samplers
In this section, we use universal sampler schemes together with a public-key encryption (PKE) scheme to
construct non-interactive multiparty key exchange (NIKE) schemes. We also show how our construction
implies a new class of adaptively secure broadcast encryption schemes.

7.1 Definitions
Definition 8 (Secure Non-interactive Multiparty Key Exchange). A multiparty non-interactive key exchange
protocol (NIKE) consists of PPT algorithms NIKE = (KESetup,KEPub,KeyGen).

Trusted Setup. KESetup takes as input the security parameter 1κ and an upper bound 1n on the number
of users. It returns the public parameters PP.

Publish. KEPub takes as input the public parameters PP, a unique identifier id , and produces a user secret
key sk and user public key pk . The user publishes pk , keeping sk secret.

Key Generation. KeyGen takes as input the public parameters PP, a list of up to n user identifiers S, |S| ≤
n and corresponding public keys {pk id}j∈S, and one user secret key sk id , id ∈ S. It outputs a shared
secret key KS for the user set S.

For correctness, we require that for any set S of identifiers, if (sk id , pk id)← KEPub(PP) for each id ∈ S,
then for each id1 6= id2, the following holds:

KeyGen(PP, S, {pk id}id∈S , sk id1
) = KeyGen(PP, S, {pk id}id∈S , sk id2

)

For security, we follow [FHKP13, BZ14] and define active security by the following game between
adversary and challenger, parameterized by security parameter λ and bound n(λ) on the largest number of
users that can compute a shared secret key. The challenger flips a bit b ← {0, 1}. The adversary receives
PP← KESetup(1λ, 1n), and then is allowed to make the following queries:

◦ Register Honest User: These are queries of the form (Reg, id) for an arbitrary string id that has not
appeared before in a register honest user or register corrupt user (see below) query. The challenger runs
(sk id , pk id)← KEPub(PP, id), records the tuple (id , sk id , pk id), and returns pk id to the challenger.

◦ Register Corrupt User: These are queries of the form (RegCor, id , pk id , honest) for an arbitrary string
id that has not been used in a register honest or corrupt user query, and adversarially chosen public
key pk id . The challenger records the tuple (id ,⊥, pk id , corrupt). The adversary does not expect a
reply

◦ Extract: These are queries of the form (Ext, id), where id corresponds to a user that was registered
honest, and that id /∈ S∗, where S∗ is the challenge set (see below). The challenger looks for the tuple
(id , sk id , pk id , honest), changes it to (id , sk id , pk id , corrupt), and returns sk id to the adversary.

◦ Reveal: These are queries of the form (Rev, S, id) where S is a subset of identities of size at most n,
and id ∈ S is an identity. We require that id is registered as honest. We also require that S is not
equal to the challenge set S∗ (see below). The challenger runs kS ← KeyGen(PP, S, {pk id}id∈S , sk id),
and gives kS to the adversary. In other words, the challenger computes the shared secret key kS for
the set S, as computed by id . The challenger records the set S.

◦ Challenge: These are queries of the form (Chal, S∗) where S∗ is a subset of identities, called the
challenge set. We require that S∗ consists of identities that are registered as honest, have not since
been corrupted, and that S∗ is distinct from all sets S queried in reveal queries (though S∗ may
have arbitrary overlaps with these sets). The challenger chooses an arbitrary id ∈ S∗, and runs
k∗0 ← KeyGen(PP, S∗, {pk id}id∈S∗ , skid) (correctness shows that the choice of id does not matter). It
also chooses a random k∗1 . Then, the challenger responds with k∗b .

For simplicity we restrict the adversary to making a single challenge query — a simple hybrid argument
shows that this implies security for multiple challenge queries.
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Finally, the adversary produces a guess b′ for b. The advantage of the adversary is defined as Pr[b′ =
b]− 1/2.

Definition 9. We say that a tuple of algorithms NIKE = (KESetup,KEPub,KeyGen) is an adaptively-secure
multiparty non-interactive key exchange protocol if the advantage of any PPT adversary in the above exper-
iment is negligible.

7.2 Construction
We show how universal sampler schemes give a simple instantiation of multiparty key agreement. We
actually give two constructions, one which requires a trusted setup, and a second slightly more complicated
scheme that requires no setup at all. Our second scheme is derived from the first similarly to Boneh and
Zhandry [BZ14] by designating one of the parties as the “master party” who runs the setup algorithm and
publishes both the sampler parameters and her own public value.

Our scheme is very simple. A trusted setup generates sampler parameters. Each user publishes a public
key for a public key encryption scheme, keeping the corresponding secret key as their private input. The
“induced samples” for a set of users is then an encryption of a random key k to each of the public keys in
that set of users. To generate the shared secret key, each user will run the universal sampler to obtain such
induced samples, and then decrypt the ciphertext component corresponding to their public key to obtain k.
The correctness of the universal sampler scheme ensures that all parties obtain k. Universal sampler security
implies that the induced samples look like a tuple of freshly generated ciphertexts, and the CPA security
of the encryption scheme then shows that k is hidden to the adversary. We now describe our first scheme
NIKE:

◦ KESetup(1κ, 1n): run U ← Setup(1λ, 1`) where ` = `(λ, n) is chosen so that the circuits used below in
the protocol will always have size at most `. Output PP = U

◦ KEPub(U, id): run (sk id , pk id) ← PKGen(1λ), where PKE = (PKGen,PKEnc,PKDec) is a public key
encryption scheme.

◦ KeyGen(U, S, {pk id}id∈S , sk id): Let dS be a circuit that samples a random k, and outputs

{PKEnc(pk id , k)}id∈S

We will include the set S as a comment in dS to ensure that different sets S have different circuits
dS , even if the public keys pk id are the same18. Then run {cj}j∈S ← Sample(U, dS). Finally, run
k ← PKDec(sk id , cid), and output k as the shared secret key.

For correctness, observe that the circuit dS computed in KeyGen only depends on the public values, and
not the user secret key. Therefore, all users in S will compute the same dS . Therefore, the sets {cid}id∈S
computed will be the same for each user, and since each cid encrypts the same key k, all users will arrive at
k.

Before proceeding, we observe that we can actually modify the above construction to allow users to
individually choose their own potentially different public-key encryption scheme; the description of the
encryption algorithm will be part of pk , and dS will contain the descriptions of all the encryption schemes
for the various users. With this modification, users can choose their desired CPA-secure scheme, and can
even use their existing keys.

A scheme with no setup. We now give our second variant NIKE′, which requires no setup phase. Roughly,
analogously to Boneh and Zhandry [BZ14], we have each user carry out the trusted setup from the scheme
NIKE, obtaining separate sampler parameters Uid . Then for each group of users, a cannonical user is chosen,
and that user’s sampler parameters will be used for key generation.

Unfortunately, this simple approach breaks down in the adaptive setting. We describe a high-level
attack. The adversary chooses an arbitrary group S∗ as the challenge group, and obtains the “parameters”

18A malicious user may set his pk to be identical to an existing party’s pk . Without the commenting, this could result in two
different sets S, S′ having the same dS . This would lead to an attack on the scheme
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CS∗ = {cS∗,id}id∈S∗ corresponding to this set. Notice that if the adversary can decrypt any of the cS∗,id
ciphertexts, he can learn the group key and break the scheme. Next the adversary chooses a set S containing
at least one user id∗ from S∗, as well as one corrupt user idcor. The adversary sets up the malicious
parameters for idcor so that, on input dS , the ciphertext component corresponding to id∗ will be exactly
cS∗,id∗ . Moreover, he chooses S and id∗ in a way so that his sampler parameters are chosen for key generation.
The security definition of universal sampler schemes guarantees nothing when the sampler parameters are
generated adversarially. Moreover, in our universal sampler scheme construction, the sampler parameters
are obfuscated programs, so it is very reasonable for the adversary to hard-code a particular output into the
program without detection.

At this point, the adversary performs a reveal query on the set S and user id∗. id∗ will compute what he
thinks is the shared group key for S as the decryption of cS∗,id∗ , which he will then output to the adversary.
Since this is exactly the actually shared group key for S∗, the adversary successfully breaks the scheme.

We note that while the simple scheme is broken, the break is much weaker than the break in Boneh and
Zhandry [BZ14]. In their scheme, the malicious obfuscated program is run on user secrets themselves, and
so the attack can actually leak the entire user secret. In our case, the obfuscated program — namely, the
sampler parameters — is only run on public circuits. The only way the adversary interacts with the secret
key is by learning the decryptions of outputs of the universal sampler. In effect, this gives the adversary a
decryption oracle, but nothing more.

We therefore propose two changes to the protocol above. First, to block the attack above, we bind each
ciphertext outputted by dS to the set S. We do this by encrypting the set S along with k. Then during key
generation, the user will decrypt, and check that the resulting set S′ is actually equal to S. If the sets do
not match, the user knows the ciphertext was not generated properly, so he throws away the shared key and
aborts. However, if the sets match, then the user accepts.

Now the adversary can no longer insert the components of the challenge into later reveal queries since the
sets will necessarily not match. However, if the scheme is malleable, he may be able to maul the ciphertexts
in the challenge to change the underlying set. Moreover, the adversary can still potentially embed other
ciphertexts of his choice into his parameters, thus maintaining the decryption oracle. Therefore, our second
modification is to require that the encryption scheme is CCA secure. We show that this is sufficient for
adaptive security.

We now give the scheme. Since there is no setup, the publish step must now take as input the security
parameter λ, and bound n on the number of users:

◦ KEPub′(1λ, 1n, id): run (sk id , pk id) ← PKGen(1λ), where PKE = (PKGen,PKEnc,PKDec) is a public
key encryption scheme. Associate the random oracle Hid(·) = H(id , ·) with the user id , and run
Uid ← Setup(1λ, 1`), using Hid as the random oracle. ` = `(λ, n) is chosen so that the circuits used
below in the protocol will always have size at most `. Output sk as the user secret, and (pk , U) as the
user published value.

◦ KeyGen′(S, {pk id , Uid}id∈S , sk id): Let dS be a circuit that samples a random k and outputs

{PKEnc(pk id , (S, k) )}id∈S .

Notice that S itself is already a part of the description of dS , so we do not need to include S in comments
as in NIKE. Let U be the Uid that is lexicographically smallest. Then run {cid}id∈S ← Sample(U, dS),
again using Hid(·) = H(id , ·) as the random oracle. Finally, run (S′, k)← PKDec(sk id , cid) and check
that S′ = S. If the check passes, output k as the shared secret key. Otherwise abort and output ⊥.

For security, we have the following theorem:

Theorem 5. If (Setup, Sample) is an adaptively one-time secure universal sampler scheme and PKE is a
CPA-secure encryption scheme, then NIKE above is adaptively secure. If in addition PKE is CCA-secure,
then NIKE′ is also adaptively secure.

Proof. We prove the security of NIKE′, the proof of NIKE being similar. Let A be an adversary for NIKE.
We may assume, taking only a polynomial loss in security, that A commits to a user id∗ whose sampler
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parameters will be used to generate the challenge key. This clearly commits id∗ to be in the challenge set,
and in particular, id∗ must be an honest party.

Consider the following derived adversary B for the universal sampler (Setup, Sample):

◦ Upon receiving the sampler parameters U , B chooses a random bit b and simulates B, responding to
A’s queries as follows:

– Random oracle queries to Hid(x). If id = id∗, B forwards the query to its own random oracle. If
id 6= id∗, B responds with a fresh random value y, recording (id , x, y) for future use to ensure it
always responds to Hid(x) queries consistently.

– Register honest queries (Reg, id). B runs (sk id , pk id) ← PKGen(1λ). If id 6= id∗, B runs Uid ←
Setup(1λ, 1`) using Hid(·) = H(id , ·) as the random oracle, while if id = id∗, B sets Uid = U .
Note that since A committed to id∗ being honest, A will at some point register id∗ as honest.
Then B gives pk id , Uid to A. B records (id , sk id , (pk id , Uid), honest).

– Register corrupt queries (RegCor, id , (pk id , Uid)). B records (id ,⊥, (pk id , Uid), corrupt).
– Extract (Ext, id). B responds with sk id , and updates the tuple containing id to

(id , sk id , (pk id , Uid), corrupt).
– Reveal (Rev, S, id). Let id ′ be the identity whose sampler parameters will be used to generate the

group key. B computes the circuit dS that samples a random k, and outputs

{PKEnc(pk id , (S, k) )}id∈S .

Then B runs CS = {cS,j}j∈S ← Sample(Uid′ , dS) using the oracle Hid′ (regardless of if id ′ is an
honest or corrput user).
Finally, B decrypts cS,id using sk id obtaining (S′, kS). B checks that S′ = S. If the check fails,
respond with ⊥. If the check passes, give the key kS in the decryption to A.

– Challenge Chal, S∗. B computes dS∗ , CS∗ , kS∗ as in a reveal query, choosing an arbitrary id ∈ S∗
for decryption (correctness of the universal sampler implying that the choice does not matter).
Since the adversary guarantees that U = Uid∗ will be used to generate the shared key, B sends a
query (sample, dS∗) and records CS∗ to the auxillary tape as well. B sets k∗0 = kS∗ . It also chooses
a random k∗1 . Finally, responds with k∗b .

– Random oracle queries. In addition to the regular NIKE queries, A is also allowed to make random
oracle queries, which B forwards to its random oracle.

◦ Finally, B receives a bit b′ from A. If b = b′, B outputs 1, otherwise it outputs 0.

By the adaptive security of the universal sampler, the probability B outputs 1 in the real world (where
U ← SetupH(1λ) where H is a random oracle) is negligibly close to the probability it outputs 1 in the ideal
world, where U ← SimUGen(1λ), and H is simulated using SimRO. Thus, in the ideal world, A still guesses b
correctly with non-negligible probability.

In the ideal world, the view of A is as follows: a random function F is chosen, and a Samples Oracle O
is implemented as O(d) = d(F (d)). A can make all of the NIKE queries and random oracle queries, whose
responses are the same as in the real world with the following exceptions:

◦ When registering id∗ as honest, A receives U = Uid∗ generated as (Uid∗ , τ)← SimUGen(1λ) (note that
while A may wait to register id∗, (Uid∗ , τ) are sampled at the very beginning).

◦ The random oracles queries sent to the oracle Hid∗ are answered using RandRO(τ), which makes oracle
queries to the Samples Oracle O. Random oracle queries to Hid for id 6= id∗ are still answered with
fresh random values.

The result is that the kS∗ in the challenge query (which uses Uid∗) is chosen independently at random, and
the cS∗,id∗ are fresh encryptions of kS∗ under the public key pk id∗ .

We will assume wlog that A actually computes CS∗ = {cS∗,j}j∈S∗ ← Sample(U, dS∗) upon making the
challenge query.

47



Let q be the number of O queries that are ultimately made in the idea world. Now consider the following
set of hybrids H`, parameterized by ` ∈ {0, . . . , n}. We first pick random k∗0 , k

∗
1 , as well as a random i ∈ [q].

Then we simulate the idea world view of A, sampling O on the fly. For every query d to O other than the
ith query, we answer by choosing a random sample from d. For the ith query, we check that d has the form
dS∗ for some set S∗. If the check fails, we abort and output a random bit. Otherwise, we encrypt k∗1 to the
first ` public keys in dS∗ , and k∗0 to the remaining (at most) n− ` public keys.

Finally, when A finishes and outputs a guess b′, we check S∗ was actually the set queried in the challenge
query (which in particular implies that all the users in S∗ where registered as honest). If the check fails, we
abort and output a random bit. Otherwise, we output b′.

Now notice that, conditioned on not aborting, when ` = 0, we perfectly simulate the view of A in the
ideal word in the case b = 0, and when ` = n, we perfectly simulate the view of A in the ideal world in the
case b = 1. Since A does eventually compute CS∗ , O will at some point be queried on dS∗ . Therefore, with
probability 1/q, we will correctly guess which query to O corresponds to the challenge, and in this case we
will not abort. Thus A distinguishes H0 from H` with non-negligible probability.

It remains to argue that H`−1 and H` are computationally indisitnugishable. Indeed, suppose A distin-
guished the two hybrids with non-negligible probability. We will construct an adversary C that breaks the
CCA security of PKE. Let r be an upper bound on the number of honest users registered. C, upon receiving
a public key pk , picks a random j ∈ [r], and simulates the view of A as in hybrid H`−1, with the following
exceptions.

◦ In the jth register honest query for user id ′, C sets pk id = pk , the given public key.

◦ On the ith Samples oracle query, C runs all the checks as before, plus checks that id ′ is the `th user in
S∗. If the checks fail, output a random bit and abort. Otherwise, construct CS∗ as follows: encrypt
(S∗, k∗1) to the first `− 1 public keys and (S∗, k∗0) to the remaining n− ` public keys. Finally, make a
challenge query on ((S∗, k∗0), (S∗, k∗1)), setting the resulting challenge ciphertext c∗ to be the ciphertext
for the `th public key (which is pk). Set O to output CS∗ for this query.

◦ On any reveal query for a set S and user id , if id 6= id ′, decrypt cS,id as in the regular scheme, and
output the resulting key (or ⊥ if the public keys in the decryption are incorrect).

If id = id ′, and if the ith Samples oracle query has already occured, check that cS,id′ was not the
challenge ciphertext c∗. If it was, output ⊥. Otherwise, make a CCA query to decrypt cS,id′ . Recall
that c∗ is an encryption of (S∗, k∗b ) for some b, and S∗ 6= S. Therefore, if cS,id′ = c∗ and we were to
decrypt and check that the plaintext contains S, we would also abort. Moreover, if the ith Samples
oracle query has not occured, then with overwhelming probability c∗ will not equal cS,id′ . Therefore,
in the case id = id ′, the reveal query is handled correctly.

Conditioned on no aborts, if c∗ is an encryption of k∗0 , then this simulates hybrid H`−1 and if c∗ is an
encryption of k∗1 , this simulates hybrid H`. With probability 1/r, we will correctly guess the `th user in S
and will not abort. Therefore, if H`−1 and H` were distinguishable, we would successfully break the CCA
security of PKE, a contradiction.

Putting it all together, Hybrid H0 is indisitnguishable from Hybrid Hn. However, Hybrid H0 is the case
where A receives the correct group key, and Hn is the case where A receives a random group key. Therefore,
A has negligible probability of distinguishing in the ideal world. This implies a negligible probability of
distinguishing in the real world.

Security of NIKE. The security proof for NIKE is basically the same as above with many simplifications
because there is only a single sampler parameter U , and it is trusted. However, obtaining security from
CPA-secure encryption (as opposed to CCA-secure encryption) requires a minor change. Since there is only
a single sampler parameter, in the view of A in the ideal world, all ciphertext tuples CS in reveal queries are
generated by the Samples oracle, and are thus fresh encryptions of a fresh key. When simulating this view,
we will draw the fresh key for ourselves and therefore will know it without having to perform a decryption.
Therefore, we can eliminate CCA queries altogether and base the scheme on CPA security.
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7.3 Adaptively Secure Broadcast Encryption
Boneh and Zhandry [BZ14] give a simple conversion from any multiparty non-interactive key exchange
protocol into a distributed broadcast encryption scheme (that is, a broadcast scheme where users determine
their own secret keys). The ciphertexts consist of a single user public key pk , secret keys are user secret keys
sk , and the public parameters are exactly the public parameters of the underlying key exchange protocol.
Therefore, applying to our scheme gives a distributed broadcast scheme with short ciphertexts and secret
keys. Moreover, Boneh and Zhandry show that, if the underlying key exchange protocol is adaptively secure,
then the derived broadcast scheme is adaptively secure as well.

We note that while Boneh and Zhandry gave the conversion and proved adaptive security, they were
unable to supply an adaptively secure key exchange protocol to instantiate the broadcast scheme with.
Therefore, we obtain the first adaptively secure distributed broadcast scheme with short ciphertexts and
secret keys. An interesting direction for future work is to also get short public parameters while preserving
the distributed property.
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