
Rmind: a tool for cryptographically secure
statistical analysis

Dan Bogdanov1, Liina Kamm1,2, Sven Laur2 and Ville Sokk1

1 Cybernetica, Tartu, Estonia
{dan, liina, ville.sokk}@cyber.ee

2 University of Tartu, Institute of Computer Science, Tartu, Estonia
swen@math.ut.ee

Abstract. Secure multi-party computation platforms are becoming more
and more practical. This has paved the way for privacy-preserving sta-
tistical analysis using secure multi-party computation. Simple statistical
analysis functions have been emerging here and there in literature, but
no comprehensive system has been compiled. We describe and implement
the most used statistical analysis functions in the privacy-preserving set-
ting including simple statistics, t-test, χ2 test, Wilcoxon tests and linear
regression. We give descriptions of the privacy-preserving algorithms and
benchmark results that show the feasibility of our solution.

Keywords: Privacy, statistical analysis, hypothesis testing, predictive mod-
elling, cryptography

1 Introduction

Digital databases exist wherever modern computing technology is used. These
databases often contain private data, e.g., the behaviour of customers or citizens.
Today’s data analysis technologies require that the analyst have a direct access
to the records in the database, thus creating a fundamental risk to privacy. Even
if the data analyst is diligent and keeps secrets, the digital data in his or her
possession can leak in an internal or external attack.

Years of information security research has given us strong encryption schemes
that can protect databases at rest, i.e., while they are stored before processing.
However, today’s tools require us to decrypt data before it can be processed,
bringing us back to the privacy problem. Emerging cryptographic technologies
like secure multi-party computation are a solution to this problem, allowing
data to be processed in their encrypted form. Essentially, they create a new
kind of computer that does not need to see individual data values, but can still
manipulate them—much like a blind craftsman sculpting a work of art.

Secure multi-party computation technologies were considered impractical for
years, but clever protocol design and determined engineering have created the
first real-world applications, for example, see [11, 10]. This and a wide range of

prototypes mean that we can now build data analysis tools with significantly
better protection against both internal and external attacks.

In 2014, the Estonian Data Protection Agency reviewed our proposal for
linking and analyzing two personal databases using secure multi-party computa-
tion [4]. They concluded that, according to the data protection legislation, secure
multi-party computation is not personal information processing and no permit
is needed. While this is not the prevailing legal position, it marks a potential
paradigm shift in data protection.

In interviews conducted with potential end users of secure multi-party com-
putation technology, they showed great interest, but also had concerns [4]. First,
statisticians are used to seeing individual values and are unsure if they can find
inconsistencies and ensure analytical quality without such access. Secure multi-
party computation takes away control from the analyst so that only query results
will be disclosed.

The second concern is the availability of user-friendly environments for per-
forming cryptographically secure data analysis. The steps in the analysis depend
on the data and, thus, statisticians use computational environments, like SAS,
SPSS or R, to interactively determine the workflow. Hence, potential users ex-
pect to see a feature complete drop-in replacement of the environment with
additional privacy guarantees.

In this paper, we overcome these challenges. We describe a suite of privacy-
preserving algorithms for filtering, descriptive statistics, outlier detection, statis-
tical testing and modelling. We implement these algorithms in Rmind, a privacy-
preserving statistical analysis tool designed to provide an experience similar to
existing scriptable tools such as the R environment1. Rmind provides tools to
support all stages of statistical analysis—data collection, exploration, prepara-
tion and analysis.
Our contribution. This paper builds on our earlier work in [4, 34] where we
report on our first attempts on implementing privacy-preserving statistics with
secure multi-party computation. In this paper, we have made significant im-
provements. First, we provide all the algorithms with their privacy analysis.
This includes new algorithms for privacy-preserving false discovery rate control,
Mann-Whitney U test, Gaussian elimination with backsubstitution, LU decom-
position and its use in solving a set of linear equations, and the conjugate gradient
method.

Second, we present the Rmind privacy-preserving statistical tool that is
designed to resolve user acceptance issues. This is achieved by implementing
privacy-preserving tools needed for complex data analysis processes where data
is collected from various sources, linked and statistically analysed. Third, we
have implemented the new algorithms, optimised the previous prototype imple-
mentation, and provide new performance results that prove the feasibility of the
system.
Related work. The closest system to what we propose has been introduced
by Chida et al. in [17]. They are using the popular statistics environment R to

1 The R Project for Statistical Computing. http://www.r-project.org

create a user interface to a secure multi-party computation backend. They have
implemented descriptive statistics, filtering, cross-tabulation and a version of the
t-test and χ2 test. Their protocols combine public and private calculations and
provide impressive performance. However, their implementation is limited in the
kinds of analyses they can perform due to their lack of support for real numbers.
Their implementation also does not support linking databases.

Another recent implementation with similar goals is by El Emam et al [22].
They provide protocols for only linking and the computation of χ2-tests, odds
ratio and relative risk. Other published results have focused on individual com-
ponents in our statistics suite, e.g, mean, variance, frequency analysis and re-
gression [14, 19, 20, 38, 37], filtered sums, weighted sums and scalar products [51,
54, 33].

Related papers on private data aggregation have targeted streaming data,
for example consider solutions by Shi et al. and Li et al. that provide differential
privacy [48, 43].

2 A tool for cryptographically secure statistical analysis

2.1 Preliminaries

Secure multi-party computation (SMC) is a cryptographic technology for com-
puting a function with multiple parties so that only the party who provided a
particular input can see that input and every party only gets the output specif-
ically intended for them. More specifically, input parties provide the inputs to
the computation and expect that nobody else learns them. Computing parties
store inputs, participate in secure multi-party computation protocols and give
outputs to the output parties.

There are various techniques for performing SMC, including homomorphic
encryption [45, 25], garbled circuits [55] and secret sharing [16, 16]. All of these
can provide a set of cryptographic primitives that implement the secure arith-
metic we need for the statistical operations. We model such sets of primitives as
protection domain kinds, following the definition from [5].

Definition 1 (Protection domain kind). A protection domain kind (PDK)
is a set of data representations, algorithms and protocols for storing and com-
puting on protected data.

The statistical tool presented in this paper is designed on a protection domain
kind based on additive secret sharing [8]. If an input party wants to provide a
secret value s ∈ Z (where Z is a quotient ring) as a private input to n computing
parties, it first uniformly generates shares s1, . . . , sn−1 ← Z and calculates the
final share sn ← s−s1−· · ·−sn−1. Each computing party receives one share si.
No computing party is capable of recovering s, because each share of it is just a
uniformly distributed value.

The parties can use secure operations defined in the protection domain kind
to process the shares without recovering the secret. For example, if each comput-
ing party has shares ui and vi of secrets u and v, they can calculate wi ← ui +vi

to get the shares of w = u + v. Further operations in this protection domain
kind require more complex protocols, as described in [8, 9].

For statistical analysis, we need a PDK with composable operations for secure
integer arithmetic, secure floating point arithmetic, secure linking, sorting and
shuffling. The arithmetic operations are required for implementing statistical
functions with cryptographic privacy. Secure linking and sorting are required for
preparing data tables for analysis.

In this paper, we also require that the PDK has a cryptographically private
shuffling protocol. This protocol must be capable of randomly rearranging the
values in a vector or rows in a matrix without leaking the elements in the vector
or matrix. By shuffling, we can rearrange inputs and, thus, break any relations
between the order of the values and their sources. Thus, it is an important tool
for reducing privacy leaks.

Many PDK implementations provide integer arithmetic [44, 13, 29, 24, 18, 3,
39], floating point arithmetic [15, 23], shuffling and sorting [26] and linking [22],
but, to our knowledge, only the Sharemind framework provides all the opera-
tions we need in a single implementation [9, 42, 40, 35, 6].

Therefore, the statistical tool in this paper is built on the Sharemind frame-
work and its protection domain kind implementation based on additive se-
cret sharing among three parties with honest-but-curious security. This security
model is acceptable for us in the statistical application, as we are mainly inter-
ested in providing privacy. However, the algorithms presented in this paper are
not dependent on the particular protection domain kind and can be implemented
on other frameworks as well.

2.2 The design of a secure statistical tool

In this paper, we propose the complete design for a statistical analysis tool that
collects and analyses data in an encrypted form without decrypting it. The tool
is designed to achieve the following goals:

1. Support for data collection and sharing. Based on end-user interviews
in [4], the scenarios that most need privacy-preserving data analysis are ones
where different data owners provide data to be statistically analysed by one
or more analysts. The tool must support such an analysis process.

2. Similarity to existing tools. Based on [4], the end users prefer tools with
familiar user interfaces.

3. Clear tagging of public and private data. The data uploaded into the
tool may contain both public and private values. The tool must support data
tagging with privacy types.

4. Seamless use of cryptographic technology. The interfaces for analysing
public and private data must be the same and cryptography is applied au-
tomatically and seamlessly when private data is processed.

5. Features chosen according to real-world needs. The statisticians we
interviewed stressed that data transformation and preparation is as impor-
tant as the final analysis and a good tool supports both.

protected storage for data

secure computation engine

privacy-preserving statistical
operation library

Upload data in
a protected (e.g.,
encrypted) form.

input
records da

ta
 e

nt
ry

 in
te

rfa
ce

da
ta

 a
na

ly
sis

 in
te

rfa
ceSend queries to be

performed without
removing protection.

data owner data analyst

analysis
results

Fig. 1. Design of a privacy-preserving statistical analysis tool and interfaces based on
secure computation

Based on these goals, we propose the design described in Figure 1. The
main components of the tool are the data entry interface, the data analysis
interface and the storage and computation backend. Standalone data entry or
analysis interfaces can be implemented on any programming platform supported
by the secure multi-party computation framework. Data is tagged public or
private during the upload to allow the statistical tool to apply secure multi-
party computation on private data.

What differentiates this design from other client-server designs, is that private
data remains protected throughout the analysis process with secure multi-party
computation techniques. This efficiently ensures that the data owner is the only
party with access to the private inputs and only the results of the analysis are
disclosed to the analyst. We will now elaborate further on the exact privacy
guarantees of the tool.

2.3 Privacy goals

In our setting, data owners who use data upload tools, fill the roles of input
parties. The people or organisations hosting the privacy-preserving storage and
analysis systems are the computing parties. The statistical analyst who wants
to see the results of the analysis is the result party. A single real-world entity
can fill the role of multiple parties, e.g. both provide and receive information.

Our privacy goal in this setting is to ensure that the private inputs of the
input parties cannot be accessed by other parties. Ideally, we would like to assure
that no information about the private inputs is revealed during the computa-
tions. However, such a security goal is impossible to achieve, as the expected
outputs contain some information about the data. On the other hand, simple
cryptographic privacy is not enough, as it does not ensure that the outputs do
not directly leak a significant amount of information about private inputs. Hence,
we have the following four privacy properties that the Rmind tool, and the se-
cure multi-party computation algorithms that make up its analytical capability,
must satisfy.

1. Source privacy. During the evaluation of the algorithm, computing par-
ties must not be capable of associating a particular computation result with

the input of a certain input party. We achieve this goal in the proposed
algorithms by using the secure shuffling operation that removes such associ-
ations.

2. Cryptographic privacy. During the evaluation of the algorithm, comput-
ing parties must not learn anything about the intermediate values used to
compute results, including the individual values in the inputs of input par-
ties, unless this information can be deduced form the desired output of the
algorithm. This goal is achieved by processing all private inputs using secure
operations in the PDK.

3. Query auditing. During the evaluation of the algorithm, the result par-
ties learn the intended results only when no computing party objects to the
publication of the results. In our tool, query restrictions are enforced by the
computing parties who can refuse to respond to a query, if they have reason
to believe that this query would break privacy. Restrictions on queries can
be based on the query auditing algorithms that attempt to detect malicious
behaviour from statisticians performing the analysis. For example, a com-
puting party can refuse to give the results to an aggregation query, when it
is performed over less than five inputs. Note that, at this point, we are focus-
ing on privacy and are less worried of denial of service attacks by computing
parties.

4. Output privacy. The outputs of the algorithm must not leak significant
parts of the private inputs. In this paper, we consider output privacy sepa-
rately for each algorithm. In some algorithm we allow limited leakage from
certain operations for efficiency reasons. For example, we may reveal the
number of values that remain after filtering. Each algorithm description is
followed by a description of the allowed leakage.
We adopt this approach, because the proper formalisation of the output
privacy is elusive for statistical analysis. On one hand, k-anonymity [52]
is too weak as it does not consider potential background information an
attacker can have. On the other hand, differential privacy [21] is too strong,
as it assumes perfect background knowledge which is unrealistic. In this
paper, we are focusing on algorithm designs that do not add noise to the
inputs or outputs.

All privacy-preserving algorithms proposed in this paper are designed to
follow these goals. As we allow both public and private values in our algorithms,
we use the following notation in the algorithms to distinguish between them. Let
[[x]] denote a private value x, let [[a]] denote a private value vector a, and let [[M]]
denote a private matrix M. Let binary operations between private values denote
the respective privacy-preserving protocols in the used protection domain kind.
We consider the sizes of all vectors and matrices to be public.

2.4 Achieving efficiency

Protection domain kinds may have specific performance profiles. For example,
PDKs based on secret sharing, are significantly more efficient when the algo-

performance is
communication-bound

performance is
CPU- or memory-bound

time t

number of
parallel

operations nresources are used

network
saturation

point

memory
saturation

point

running time of a
secure computation

operation
t = y(n)

icientlyineff

Fig. 2. Performance model of the secure computation protocols based on secret sharing.

rithms perform many parallel operations together. Figure 2 shows a generic
running time profile for a secure multi-party computation operation [9].

The vertical axis shows the running time t of a secure multi-party computa-
tion protocol based on secret sharing and the horizontal axis shows n, the number
of simultaneous parallel operations. In the function t = y(n), y characterises the
running time of the protocol based on the network setting it is deployed in. A
thorough study of function y has been performed in [47].

On Figure 2, we can distinguish three different stages. In the first stage, the
running time does not grow quickly in the number of inputs. This is because
we can fit the protocols for many parallel operations in the network channel at
the same time. Once the network channel becomes saturated, each further input
starts increasing the number of round trips for messages in the protocol. This
causes the running time to grow much faster with each parallel input. At some
point, all the computers resources are used up and processing more values in
parallel will either be impossible or very slow. Similar effects have been noted
in other PDKs, see e.g. [49]. This gives us reason to use parallel operations as
much as possible in our algorithm design.

3 Data import and filtering

We now present a collection of algorithms for performing privacy-preserving
statistical analysis in the application model described in the previous sections.
We begin with the first steps in the statistical analysis process—acquiring and
preparing the data.

Data are crucial ingredients of statistical analyses and they can be collected
for a specific designed study, such as a clinical trial, or, alternatively, existing
datasets can be used, e.g. tax data can be used to analyse the financial situation
of a country. We look at these two different methods separately, as they entail
special requirements in a privacy-preserving setting.

First, let us look at the case where data are collected for a specific study.
In a privacy-preserving setting we can assume that data are entered by a data

collector (e.g. national census or a clinical trial) or by data donors themselves
(e.g. an online survey). In this case, the joint database is considered to be verti-
cally partitioned. With secure multi-party computation, the data are encrypted
or secret-shared immediately at the source and stored in a privacy-preserving
manner.

Second, consider the case where datasets previously exist and analysts wish
to perform a study by combining data from several different databases that
cannot be joined publicly (forming a horizontally partitioned database). Then,
data can be imported from these databases by encrypting or secret-sharing them
and later merging them in a privacy-preserving way.

For generality, we look at the data importing stage as one abstract operation.
However, we keep in mind that when dealing with existing databases, data can
be validated and filtered by the database owners and managers before they are
imported into the privacy-preserving database. In addition to automatic checks,
the data manager can also look at the data and see if there are questionable
values that need to be checked or removed.

3.1 Availability mask vectors

It is likely that in a dataset, values are missing for some data donors. There are
two options for dealing with missing values in a privacy-preserving dataset: a
special value in the data domain can be used for denoting these values; or an
extra attribute can be added for each attribute to store this information. The
first option is not practical in the encrypted domain, as the use of a special value
adds an expensive private comparison operation to nearly every operation.

The solution with an extra attribute is much more practical, as only one
private bit of extra data needs to be stored per entry. The latter uses extra
storage space of N · k · b bits, where N is the number of entries, k is the number
of attributes, and b is the smallest data unit that can be stored in the database.

In our work, we concentrate on the latter, as this allows us to perform faster
computations on private data. Let the availability mask [[m]] of vector [[a]] contain
0 if the corresponding value in the attribute [[a]] is missing and 1 otherwise. It is
clear, that it is not possible to discern which and how many values are missing
from the value vector by looking at the private availability vector. However,
the count of available elements can be computed by summing the values in the
availability mask.

3.2 Input validation

By input validation and data correction, we mean operations that can be done
without interacting with the user, such as range and type checks. The values for
acceptable ranges and types are specified by the user but they are applied to
the data automatically. Input validation and data correction can be performed
at two stages—during data import on entered but not yet encrypted data, or
afterwards, in the privacy-preserving database on encrypted data. It is, of course,
faster, more sensible and straightforward to do this on data before encryption.

Algorithm 1: Privacy-preserving function cut for cutting the dataset ac-
cording to a given filter.

Data: Data vector [[a]] of size N and corresponding mask vector [[m]].
Result: Data vector [[x]] of size n that contains only elements of [[a]]

corresponding to the mask [[m]]
1 Shuffle the value pairs in vectors ([[a]], [[m]]) into ([[a′]], [[m′]])
2 s← declassify([[m′]])
3 [[x]]← ([[a′i]] | si = 1, i ∈ {1, . . . , N})
4 return [[x]]

If the data cannot be checked before encryption for some reason, the validation
has to be performed in the privacy-preserving database.

To perform a range check on a private vector [[a]] of values, we construct a
vector [[b]] containing the constant with which we want to compare the values.
We then compare the two vectors point-wise and get a private vector [[m]] of
comparison results, where [[mi]]← [[ai]]�[[bi]], where � is a comparison operation,
i ∈ {1, . . . , n}, and n is the size of vectors [[a]], [[b]] and [[m]]. Unlike the public
range check operation, the privacy-preserving version does not receive as a result
a private vector of values that are within range. Instead, it receives a mask vector
[[m]] that can be used in further computations. To find out how many values are
within range, it suffices to sum the values in vector [[m]].

3.3 Evaluating filters and isolating filtered data

Similarly to range checks, filtering can be performed by comparing a vector [[a]]
of values point-wise to a vector [[b]] containing filter values. As a result, we obtain
a mask vector [[m]] that contains 1 if the condition holds and 0 otherwise. For
a more complex filter, the comparisons are done separately and the resulting
mask vectors are combined using conjunction and disjunction. For example, to
find from a dataset all women who have had a degree in statistical analysis for
more than 5 years, we will first make three comparisons [[p]] ← ([[a]] = ”F”),
[[q]] ← ([[b]] = ”statistics”), and [[r]] ← ([[c]] > 5), where [[a]] contains values for
gender, [[b]] contains values for a person’s specialty, and [[c]] contains values for
years since graduation. As the filters themselves are privacy-preserving, it is not
possible to distinguish which records correspond to the filter conditions. To get
the combined filter, we need to conjunct the filters together [[m]]← [[p]]∧[[q]]∧[[r]].

Most of the algorithms presented in this paper are designed so that filter
information is taken into account during computations. Thus, in general, there
is no need to extract from the original data vector a subset of values that cor-
respond to the filter. On the other hand, some algorithms require that a subset
vector containing only the filtered data be built. We use Algorithm 1 for cutting
the dataset based on a given filter in a privacy-preserving way.

First the value and mask vector pairs are shuffled in a privacy-preserving
way, retaining the correspondence of the elements. Next, the mask vector is

declassified and values for which the mask vector contains 0 are removed from
the value vector. The obtained subset vector is then returned to the user. It is
also possible to cut matrices in a similar fashion. This process leaks the number of
values that correspond to the filter that the mask vector represents. If the number
of records in the filter is published anyway, the function cut does not reveal any
new information, as oblivious shuffling ensures that no other information about
the private input vector and mask vector is leaked [42].

The availability of filtering, predicate evaluation and summing elements of
a vector, allows us to implement privacy-preserving versions of data mining
algorithms such as frequent itemset mining (FIM). As FIM is often used for
mining sparse datasets, a significant speedup can be achieved if the infrequent
itemsets are pruned using the cut function.

4 Data quality assurance

When databases are encrypted or secret-shared, the privacy of the data donor
is protected and no users, including system administrators can see individual
values. However, this also makes it impossible for the data analyst to see the
data. Statistical analysts often detect patterns and anomalies, and formulate
hypotheses when looking at the data values. Our solution is to provide privacy-
preserving algorithms for a range of descriptive statistics that can give a feel of
the data, while protecting the individual records.

Given access to these aggregate values and the possibility to eliminate out-
liers, it is possible to ensure data quality without compromising the privacy of
individual data owners. Even though descriptive statistics leak some information
about inputs, the leakage is small and strictly limited to aggregations permitted
on the current database.

4.1 Five-number summary

Box-plots are a simple tool for giving a visual overview of the data and for
effectively drawing attention to outliers. These diagrams are based on the five-
number summary—a set of descriptive statistics that includes the minimum,
lower quartile, median, upper quartile and maximum of an attribute. All of
these values are, in essence, quantiles and can, therefore, be computed by using
a formula for the appropriate quantiles. As no one method for quantile estimation
has been widely agreed upon in the statistics community, we use algorithm Q7

from [32] used by the R software. Let p be the percentile we want to find and
let [[a]] be a vector of values sorted in ascending order. Then the quantile is
computed using the following function:

Q(p, [[a]]) = (1− γ) · [[aj]] + γ · [[aj+1]] ,

where j = b(n−1)pc+ 1, n is the size of vector [[a]], and γ = np−b(n−1)pc−p.
For finding the j-th element in a private vector of values, we can either use
privacy-preserving versions of vector lookup or sorting.

Algorithm 2: Privacy-preserving algorithm for finding the five-number
summary of a vector.

Data: Input data vector [[a]] and corresponding mask vector [[m]].
Result: Minimum [[min]], lower quartile [[lq]], median [[me]], upper quartile [[uq]],

and maximum [[max]] of [[a]] based on the mask vector [[m]]
1 [[x]]← cut([[a]], [[m]])
2 [[b]]← sort([[x]])
3 [[min]]← [[b1]]
4 [[max]]← [[bn]]
5 [[lq]]← Q(0.25, [[b]])
6 [[me]]← Q(0.5, [[b]])
7 [[uq]]← Q(0.75, [[b]])
8 return ([[min]], [[lq]], [[me]], [[uq]], [[max]])

Algorithm 3: Privacy-preserving algorithm for finding the five-number
summary of a vector.

Data: Input data vector [[a]] of size N and corresponding mask vector [[m]].
Result: Minimum [[min]], lower quartile [[lq]], median [[me]], upper quartile [[uq]],

and maximum [[max]] of [[a]] based on the mask vector [[m]]
1 ([[b]], [[m′]])← sort([[a]], [[m]])
2 [[n]]← sum([[m]])
3 [[os]]← N − [[n]]
4 [[min]]← [[b[[1+os]]]]
5 [[max]]← [[bN]]
6 [[lq]]← Q(0.25, [[a]], [[os]])
7 [[me]]← Q(0.5, [[a]], [[os]])
8 [[uq]]← Q(0.75, [[a]], [[os]])
9 return ([[min]], [[lq]], [[me]], [[uq]], [[max]])

Using the quantile computation formula Q, the five-number summary can be
computed as given in Algorithm 2. The algorithm uses Algorithm 1 to remove
the unwanted or missing values from the data vector. The subset vector is sorted
in a privacy-preserving way and then the summary elements are computed. As
mentioned before, function cut leaks the count of elements n that correspond to
the filter signified by the mask vector [[m]]. If we want to keep n secret, we can
use Algorithm 3 which hides n, but is slower than Algorithm 2.

Algorithm 3 starts by sorting the data vector first by the data values and
then by the mask values (line 1) to ensure that missing values will be at the
beginning of the vector. Next, the offset is computed privately on line 3. The
formula Q for computing the quantiles works as before with the exception that,
as the number of elements [[n]] is kept private, the indices [[j]] are also not revealed.
The computed offset [[os]] is added to the private index [[j]] to account for the
values at the beginning of the sorted vector that do not belong to the filtered
subset. In addition, vector lookup on line 4 and during the computations of the

Algorithm 4: Privacy-preserving algorithm for finding the frequency table
of a data vector.
Data: Input data vector [[a]] and corresponding mask vector [[m]].
Result: Vector [[b]] containing breaks against which frequency is computed, and

vector [[c]] containing counts of elements
1 [[x]]← cut([[a]], [[m]])
2 n← declassify(sum([[m]]))
3 k ← dlog2(n) + 1e
4 [[min]]←min([[x]]), [[max]]←max([[x]])
5 Compute breaks according to [[min]], [[max]] and k, assign result to [[b]]
6 [[ci]]← (sum([[xi]] ≤ [[bi+1]]), i ∈ {1, . . . , n})
7 for i ∈ {k, . . . , 2} do
8 [[ci]]← [[ci]]− [[ci−1]]
9 end

10 return ([[b]], [[c]])

quantiles are now performed in a privacy-preserving way. As a result, the value
is retrieved while the the index remains secret for all computing parties

4.2 Data distribution

Distribution of an attribute also gives an insight into the data. For categori-
cal attributes, the distribution can be discerned by counting the occurrences
of different values. For numerical attributes, we must split the range into bins
specified by breaks and compute the corresponding frequencies. The resulting
frequency tables can be visualised as a histogram.

Algorithm 4 computes a frequency table for a vector of numerical values
similarly to a public frequency computation algorithm. Missing or filtered values
are removed on line 1. The number of bins k is computed according to Sturges’
formula [50]. Bins are created based on the minimum, maximum and k. Finally,
on lines 6 - 9, the elements belonging in each bin are counted using secure multi-
party computation. These comparisons can be done in parallel to speed up the
algorithm.

The process of creating a frequency table for discrete or categorical attributes
is similar, but instead of checking whether an element belongs to an interval, it
is compared to each bin value and the last cycle is omitted.

4.3 Simple statistical measures

Statistical algorithms use common operations for computing means, variance
and covariance. These statistical measures also provide important insights about
the attributes and their correspondence. We show, how these measures can be
computed in a privacy-preserving manner over various samples.

To compute means, variances and covariances, we first multiply point-wise
the value vector [[a]] with the mask vector [[m]]. Let us denote the result by [[x]].

This way, the values that do not correspond to the filter do not interfere with the
computations. The number of subjects n is computed by summing the elements
in the mask vector. The arithmetic mean, and the unbiased estimates of variance
and standard deviation can be computed as follows

mean([[x]]) =
1

n
·

n∑
i=1

[[xi]] ,

var([[x]]) =
1

n− 1

 n∑
i=1

[[xi]]
2 − 1

n
·

(
n∑

i=1

[[xi]]

)2
 ,

sdev([[x]]) =
√

var([[x]]) .

The computation of these values is straightforward, if the privacy-preserving
platform supports addition, multiplication, division and square root. Further-
more, if n is public, we can use division with a public divisor and public square
root instead, as they are faster than the private versions.

Trimmed mean is a version of mean where the upper and lower parts of
the sorted data vector [[a]] are not included in the computation. The analyst
specifies the percentage of data that he or she wants to trim off the data. Then
the corresponding quantiles are computed, data is compared to these values and
the mask vector [[m]] is updated with the results acquired from the comparison
operation. This ensures that only values that fall between the given percentages
remain in the filtered result [[x]].

Covariance shows whether two attributes change together. The unbiased es-
timate of covariance between filtered vectors [[x]] and [[y]] can be computed as

cov([[x]], [[y]]) =
1

n− 1

(
n∑

i=1

[[xi]][[yi]]−
1

n
·

n∑
i=1

[[xi]]

n∑
i=1

[[yi]]

)
.

4.4 Unidimensional outlier detection

Datasets often contain errors or extreme values that should be excluded from
the analysis. Although there are many elaborate outlier detection algorithms
like [12], outliers are often detected using quantiles.

It is common to mark values in a data vector [[a]] smaller than the 5% quan-
tile or larger than 95% quantile as outliers. The corresponding mask vector is
computed by comparing all elements of [[a]] to Q(0.05, [[a]]) and Q(0.95, [[a]]), and
then conjuncting the resulting index vectors. The values of the quantiles need
not be published for outlier detection purposes and data is filtered to exclude
outliers from further analysis. Furthermore, it is possible to combine the mask
vector with the availability mask [[m]] and cache it as an updated availability
mask to reduce the filtering load.

Another generic measure of eliminating outliers from a dataset is using me-
dian absolute deviation [27, 28] (MAD). Element [[x]] is considered an outlier in
a value vector [[a]] of length n if

|Q(0.5, [[a]])− [[x]]| > λ ·MAD, (1)

where

MAD = Q(0.5, |[[ai]]−Q(0.5, [[a]])|) , i ∈ {1, . . . , n}

and λ is a constant. The exact value of λ is generally between 3 to 5, but it can
be specified depending on the dataset.

These simple statistical measures are also useful for analyzing simple privacy-
preserving statistical surveys. For example, answers to single choice questions
can be analyzed with privacy-preserving frequency tables and visualized with
bar charts.

5 Statistical tests

5.1 The principles of statistical testing

Two-sample statistical tests compare two different populations. In such cases,
we first extract two groups—the case and control populations. There are two
ways to approach this.

Firstly, we can select the appropriate subjects into one group and assume all
the rest are in the other group. Alternatively, we can choose subjects into both
groups. These selection categories yield either one or two mask vectors. In the
former case, we compute the second mask vector by flipping all the bits in the
existing mask vector. Hence, we can always consider the version where case and
control groups are determined by two mask vectors.

In the following, let [[a]] be the value vector we are testing and let [[ca]] and
[[co]] be mask vectors for case and control groups, respectively. Then [[nca]] =
sum([[ca]]) and [[nco]] = sum([[co]]) are the counts of subjects in the correspond-
ing populations.

Figure 3 gives an overview of what the different steps are for statistical testing
in the private and public setting. In a normal statistical testing procedure, we
first compute the test statistic based on the data. Next, we compute the p-value
based on the obtained value and the size of the sample. Finally, we compare the
p-value to a significance threshold set by the analyst.

In the privacy-preserving setting, we have two options of how to carry out
this procedure. The choice depends on how much data we are willing to publish.
The first option is similar to the public setting, with the difference that the test
statistic is computed in a privacy-preserving manner. It is then published along
with the sample sizes, the p-value is computed publicly and compared to the
given threshold value. Computing the p-value in public reveals sample sizes but
does not reveal any additional information as the function is invertible if the
sample sizes are known and the test statistic can be computed based on the

Public data

Data Test
statistic p-value Threshold

Public data

Data Test
statistic p-value Threshold

Private data

Comparison

Comparison

Public data

Data Test
statistic

Critical test
statistic Threshold

Private data

Comparison

Option 1

Option 2

Fig. 3. Statistical testing procedure in the public and private setting

published p-value. However, revealing the sizes of the case and control groups
might sometimes not be acceptable.

The first option is intuitive to the analyst as he or she receives the same type
of result as in the case of public computations. However, in case of, for instance,
genome-wide association studies (GWAS) and multiple testing, revealing the p-
value can reveal too much information. For this occasion, we propose another
way of doing privacy-preserving hypothesis testing.

In this option, the test statistic is computed based on the data in a privacy-
preserving manner. The data analyst determines the threshold and the critical p-
value and the corresponding test statistic are publicly determined based on this
threshold. Finally, the privately computed test statistic is privately compared
to the critical test statistic. The only thing that is published is the decision
whether the alternative hypothesis is supported by the data. Note, that the first
option must always be chosen if the analyst needs the p-value itself and not the
accept/reject decision.

We discuss how to perform Student’s t-test, paired t-test, Wilcoxon rank sum
and signed-rank tests, and the χ2-test in a privacy-preserving manner. These test
algorithms return the test statistic value that has to be combined with the sizes
of the compared populations to determine the significance of the difference.

5.2 Student’s t-tests

The two-sample Student’s t-test is the simplest statistical tests that allows us to
determine whether the difference of group means is significant or not compared to
variability in groups. There are two common flavours of this test [36] depending
on whether the variability of the populations is equal. Let [[x]]← [[a]] · [[ca]] and
[[y]]← [[a]] · [[co]], then [[x]] is the data of the case population and [[y]] is the data

of the control population. For equal variance, the t-test statistic is computed as:

[[t]] =
mean([[x]])−mean([[y]])

sdev([[x]], [[y]]) ·
√

1
[[nca]]

+ 1
[[nco]]

,

where sdev([[x]], [[y]]) estimates the common standard deviation of the two sam-
ples and is computed as follows

sdev([[x]], [[y]]) =

√
([[nca]]− 1) · var([[x]]) + ([[nco]]− 1) · var([[y]])

[[nca]] + [[nco]]− 2
.

The t-test for unequal variances is also known as the Welch t-test. The test
statistic is computed as follows

[[t]] =
mean([[x]])−mean([[y]])√

var([[x]])
[[nca]]

+ var([[y]])
[[nco]]

.

A paired t-test [36] is used to detect whether a significant change has taken
place in cases where there is a direct one-to-one dependence between case and
control group elements, for example, the data consists of measurements from
the same subject. Let [[b]] and [[c]] be the paired measurements, and let n be the
count of these measurements. The test statistic for the paired t-test is computed
in the following way

[[t]] =
(mean([[b]])−mean([[c]])) ·

√
[[n]]

sdev([[b]]− [[c]])
.

The algorithms for computing both t-tests are straightforward evaluations
of the respective formulae using privacy-preserving computations. To compute
these, we need the availability of privacy-preserving addition, multiplication,
division and square root. As mentioned earlier, we can either publish the test
statistic and the population sizes or, based on a user-given threshold, publish
only whether the hypothesis was significant or not.

5.3 Wilcoxon rank sum test and signed rank test

T-test results have meaning only if the distribution of values in case and control
groups follows the normal distribution. If this assumption does not hold, non-
parametric Wilcoxon tests provide an alternative. The Wilcoxon rank sum test
and its improvement Mann-Whitney U test [31] work on the assumption that
the distribution of data in one group significantly differs from that in the other.
Algorithm 5 gives an overview of how we compute the test statistic [[w]] using
the Mann-Whitney U test.

For this algorithm to work, we need to cut the database similarly to what
was done for the five-number summary, keeping in mind that here we need the
dataset to retain elements from both groups—cases and controls. On line 1, we

Algorithm 5: Privacy-preserving Mann-Whitney U test

Data: Value vector [[a]] and corresponding mask vectors [[ca]] and [[co]]
Result: Test statistic [[w]]

1 [[m]]← [[ca]] ∨ [[co]]
2 [[nca]]← sum([[ca]]) and [[nco]]← sum([[co]])
3 ([[x]], [[u]], [[v]])← cut(([[a]], [[ca]], [[co]]), [[m]])
4 ([[x]], [[u]], [[v]])← sort([[x]], [[u]], [[v]])
5 [[r]]← rank([[x]])
6 [[rca]]← [[r]] · [[u]] and [[rco]]← [[r]] · [[v]]
7 [[Rca]]← sum([[rca]]) and [[Rco]]← sum([[rco]])
8 [[uca]]← [[Rca]]− 1

2
([[nca]] · ([[nca]] + 1)) and [[uco]]← [[nca]] · [[nco]]− [[uca]]

9 return [[w]]←min([[uca]], [[uco]])

Algorithm 6: Privacy-preserving Wilcoxon signed-rank test

Data: Paired value vectors [[a]] and [[b]] for n subjects, mask vector [[m]]
Result: Test statistic [[w]]

1 ([[x]], [[y]])← cut(([[a]], [[b]]), [[m]])
2 [[d]]← [[x]]− [[y]]
3 Let [[d′]] be the absolute values and [[s]] be the signs of elements of [[d]]
4 [[s]]← sort(([[d′]], [[s]]))
5 [[r]]← rank0([[s]])
6 return [[w]]← sum([[s]] · [[r]])

combine the two input mask vectors into one. The function cut differs from its
previous usage in that several vectors are cut at once based on the combined
filter [[m]]. Next, the value and mask vectors are sorted based on the values of
[[x]] so that the relation between the values and mask elements is retained.

The rank function on line 5 shares and assigns an integer i ∈ {1, . . . , n} to
all values in the sorted vector based on the location of the value. If some values
in the sorted vector are equal, all of these elements are assigned the average of
their ranks. This is done using oblivious comparison and oblivious division. This
correction makes the algorithm significantly slower as this requires us to keep all
the ranks as floating point values instead of integers. We do allow our algorithms
to be called without this correction which makes the test give a stricter bound
and might not accept borderline hypotheses, but the algorithms will work faster.

On line 6, the rank vector [[r]] is multiplied with the case and control masks
to find the ranks belonging to the case and control groups.

Similarly to Student’s paired t-test, the Wilcoxon signed-rank test [53] is
a paired difference test. Our version, given in Algorithm 6, takes into account
Pratt’s correction [31] for when the values are equal and their difference is 0.

First, both data vectors are cut based on the mask vector similarly to what
was done in Algorithm 5. Next, the difference [[d]] between the two data samples
is found, followed by the computation of the absolute value and sign of [[d]]. We
expect that the latter is the standard function that returns −1 when the element

Algorithm 7: Privacy-preserving algorithm for compiling the contingency
table for two classes with k options for the χ2 test

Data: Value vector [[a]], corresponding mask vectors [[ca]] and [[co]] for cases
and controls respectively and a public code book CB defining k options

Result: Contingency table [[CT]]
1 [[xca]]← [[a]] · [[ca]] and [[xco]]← [[a]] · [[co]]
2 Let [[CT]] be a 2× k matrix
3 for i ∈ {1, . . . , k} do
4 [[bca]]← [[xca]] = CBi,2 and [[bco]]← [[xco]] = CBi,2

5 [[CT1,i]]← sum([[bca]]) and [[CT2,i]]← sum([[bco]])

6 end
7 return [[CT]]

is negative, 1 if it is positive and 0 otherwise. The signs are then sorted based
on the absolute values [[d′]] (line 4) and the ranking function rank0 is called.
This ranking function is otherwise similar to the function rank, but differs in
the fact that we also need to exclude the differences that have the value 0. Let
the number of 0 values in vector [[d]] be [[k]]. As [[d]] has been sorted based on
absolute values, the 0 values are at the beginning of the vector so it is possible
to use [[k]] as the offset for our ranks. Function rank0 assigns [[ri]] ← 0 while
[[si]] = 0, and works similarly to rank on the rest of the vector [[s]], with the
difference that i ∈ {1, . . . , [[n− k]]}.

Both algorithms only publish the statistic value and the population sizes.

5.4 The χ2-tests for consistency.

If the attribute values are discrete such as income categories then it is impossible
to apply t-tests or their non-parametric counterparts and we have to analyse
frequencies of certain values in the dataset. The corresponding statistical test is
known as the χ2-test.

Option 1 Option 2 . . . Total

Cases c1 c2 . . . r1
Controls d1 d2 . . . r2
Total p1 p2 . . . n

Table 1. Contingency table for the standard χ2 test

The standard χ2-test statistic is computed as

χ2 ←
k∑

i=1

2∑
j=1

(fji − eji)2

eji
,

Algorithm 8: Privacy-preserving χ2 test

Data: Contingency table [[C]] of size 2× k
Result: The test statistic χ2

1 Let [[n]] be the total count of elements
2 Let [[r1]] and [[r2]] be the row subtotals and [[p1]], . . . , [[pk]] be the column subtotals

3 Let [[E]] be a table of expected frequencies such that [[Ei,j]]←
[[ri]]·[[pj]]

n ,

i ∈ {1, 2} , j ∈ {1, . . . , k}

4 [[χ2]]←
∑k

j=1
([[C1,j]]−[[E1,j]])

2

[[E1,j]]
+

([[C2,j]]−[[E2,j]])
2

[[E2,j]]
5 return [[χ2]]

where fji is the observed frequency and eji is the expected frequency of the
i-th option and j-th group. For simplification, we denote ci = f1i and di = f2i,
then the frequencies can be presented as the contingency Table 1. Algorithm 7
compiles a contingency table from a data vector, mask vector and a code book
CB that gives the algorithm information about which elements will be converted
into which option.

Algorithm 8 shows how to compute the χ2 test statistic based on a contin-
gency table. The algorithm can be optimised if the number of classes is small,
e.g. two. The algorithm publishes only the statistic value and the population
sizes.

5.5 Multiple testing

When we have a dataset with several distinct variables ready for analysis, we can
test multiple hypotheses on the gathered data. However, this can lead to false
positive results as the chances of accidental correlation rise with each variable
tested. When working with multiple testing, different precautions can be taken.
In this section, we discuss how to apply privacy-preserving versions of Bonferroni
correction and Benjamini-Hochberg procedur (false discovery rate control).

As the correction for multiple-hypothesis testing is trivial when p-values are
public, we consider the case where privacy-preserving statistical testing reveals
only whether the corrected significance threshold is reached or not.

Bonferroni correction Let α be the significance threshold and let k be the
number of tests applied on the same data. Then the Bonferroni correction simply
reassigns the same significance threshold α̂ = α/k to all tests. As a result, the
implement Bonferroni correction is trivial to implement, we just have to use the
corrected significance threshold α̂ of all privacy-preserving statistical tests.

Benjamini-Hochberg procedure Bonferroni correction is often too harsh
compared to false discovery rate (FDR) correction. Unfortunately, FDR is not as

Algorithm 9: Privacy-preserving Benjamini-Hochberg procedure

Data: Vector of k test statistics [[t]], significance threshold α
Result: List of significant hypotheses

1 Publicly compute q(i) ≈ Q
(
iα
k

)
for i ∈ {1, . . . , k}.

2 Obliviously sort pairs ([[ti]], [[i]]) in descending order wrt. [[ti]].
3 Let ([[t(i)]], [[c(i)]]) be the result.
4 Compute [[si]]← ([[t(i)]] ≥ q(i)) for i ∈ {1, . . . , k}.
5 Declassify values [[sk]], [[sk−1]], . . . [[s1]] until the first 1 ([[si∗]] = 1) is revealed.
6 Declassify locations [[c(1)]], . . . , [[c(i∗)]] and declare the corresponding hypotheses

significant.

straightforward to apply in the privacy-preserving setting as for multiple testing
p-values must remain private. Therefore, we look at the Benjamini-Hochberg
(BH) procedure [2]. The BH procedure first orders p-values in ascending order
and then finds the largest i such that

p(i) ≤
i

k
α

where p(i) is the i-th p-value and k is the number of hypotheses.
Recall that for any statistical test the correspondence between between p-

values and test statistics is anti-monotone. Namely, for any significance threshold
α we can find a value Q(α) such that for any value of the test statistic t ≥ Q(α)
the corresponding p-value is less than α. As a result, the Benjamini-Hochberg
criterion can be expressed in terms of decreasingly ordered test statistics:

p(i) ≤
i

k
α ⇐⇒ t(i) ≥ Q

(
iα

k

)
.

For most tests, the function Q is computed as the upper quantile of a distri-
bution that depends only on the size of the size of case and control group. Hence,
we can publicly compute fractional approximations of significance thresholds

q(i) ≈ Q
(
iα

k

)
and use secure computing to evaluate comparisons t(i) ≥ q(i).

Algorithm 9 depicts the corresponding privacy-preserving significance testing
procedure, which reveals only the locations ci and ordering of significant test
statistics. It is even possible to hide the ordering if the shares [[c(1)]], . . . , [[c(i∗)]]
are obliviously shuffled before opening such that c(1), . . . , c(i∗) are opened in
random order.

6 Predictive modelling

6.1 Matrix operations

We have implemented privacy-preserving versions of the following vector and
matrix operations: computing the dot product, computing vector length, com-

puting the unit vector, and matrix multiplication. It is also possible to transpose
a matrix and compute its determinant. In addition, we have implemented cross
product for vectors of length 3, and eigenvector and eigenvalue computation for
2 × 2 symmetric matrices. The privacy-preserving versions of these algorithms
are straightforward.

6.2 Linear regression

Linear regression can be used to predict values of variables based on other exist-
ing variables. It can also be used to find out if and how strongly certain variables
influence other variables in a dataset.

Let us first look at simple linear regression. Using covariance, we can per-
form simple linear regression with a single explanatory variable. The aim of this
analysis is to find α̂ and β̂ that fit the approximation yi ≈ α + βxi best for all
data points xi, yi, i ∈ {1, . . . , n}. The estimations of α and β can be computed
in the following way

β̂ =
cov(x,y)

var(x)
and α̂ = mean(y)− β̂ ·mean(x) .

As we have the capability to compute covariance and variance in the privacy-
preserving setting, we can also estimate the values of α̂ and β̂ in this setting.

Next, let us assume that we have k independent variable vectors of n el-
ements, i.e X = (Xj,i), where i ∈ {0, . . . , k} and j ∈ {1, . . . , n}. The vector
Xj,0 = (1) is an added variable for the constant term. Let y = (yj) be the vector
of dependent variables. We want to estimate the unknown coefficients β = (βi)
such that

yj ≈ βkXj,k + . . .+ β1Xj,1 + β0Xj,0 .

This equation can be written as Xβ ≈ y. As this system of linear equations
is overdetermined, we use the linear least squares method to solve the system.
Now, we have to find β in the following system of linear equations:

XTXβ = XTy .

We will look at four different methods for solving such systems: for k < 4,
we simply invert the matrix by computing determinants. For the general case,
we give algorithms for the Gaussian elimination method [46], LU decomposi-
tion [46] and the conjugate gradient method [30]. Note, that when using these
algorithms, we assume that the data matrix has already been multiplied with its
transpose [[A]] = [[X]]T [[X]] and the dependent variable has been multiplied with
the transpose of the data matrix as well ([[b]] = [[X]]T [[y]]).

In the privacy-preserving setting, matrix inversion using determinants is
straightforward, and using this method to solve a system of linear equations
requires only the use of multiplication, addition and division, and, therefore, we
will not discuss it in length. For the more general methods for solving systems
of linear equations, we first give an algorithm that finds the first maximum el-
ement in a vector and also returns its location in the vector, used for finding

Algorithm 10: maxLoc: Finding the first maximum element and its lo-
cation in a vector in a privacy-preserving setting

Data: A vector [[a]] of length n
Result: The maximum element [[b]] and its location l in the vector

1 Let π(j) be a permutation of indices j ∈ {1, . . . , n}
2 [[b]]← [[aπ(1)]] and [[l]]← π(1)
3 for i ∈ {π(2), . . . , π(n)} do
4 [[c]]← ([[aπ(i)]] > [[b]])
5 [[b]]← [[b]]− [[c]] · [[b]] + [[c]] · [[aπ(i)]]
6 [[l]]← [[l]]− [[c]] · [[l]] + [[c]] · π(i)

7 end
8 return ([[b]],declassify([[j]]))

the pivot element. While the Gaussian and LU decomposition algorithms can
be used without pivoting, it is not advisable as the algorithm is numerically
unstable in the presence of any roundoff errors [46]. Algorithm 10 describes the
function maxLoc that finds the pivot element and its location from a given
vector. To avoid leaking information about equal values in a vector, the indices
are first permuted to ensure cryptographic privacy. Hence, the algorithm leaks
the location of a maximum element, but in the case of several equal maximum
elements, it returns the location of one of these elements. In addition, the rows of
both algorithms that call this function have been shuffled, hence, it leaks nothing
about the original matrix.

Of the three algorithms for solving a system of linear equations, let us first
look more closely at Gaussian elimination with backsubstitution. Algorithm 11
gives the privacy-preserving version of the Gaussian elimination algorithm. The
computation of coefficients is done in place for both the Gaussian and the LU
decomposition algorithms.

At the start of the algorithm (line 1), the rows of the input matrix [[A]] are
shuffled along with the elements of the dependent variable vector [[b]] retaining
the relations. On lines 4-12, the pivot element is located from the remaining
matrix rows and then the rows are interchanged so that the one with the pivot
element becomes the current row. Note that all the matrix indices are public
and, hence, all of the conditionals work in the public setting. As we need to
use the pivot element as the divisor, we need to check whether it is 0. However,
we do not want to give out information about the location of this value so,
on line 13, we privately make a note whether any of the pivot elements is 0,
and on line 33, we finish the algorithm early if we are dealing with a 0. Note
that in the platform we are using, division by 0 will not be reported during
privacy-preserving computations as this would reveal the divisor immediately.

On lines 16 - 21, elements on the pivot line are reduced. Similarly, on lines 22 -
30, elements below the pivot line are reduced. Finally, on lines 35 - 38, backsub-
stitution is performed to get the values of the coefficients.

Algorithm 11: Privacy-preserving Gaussian elimination with backsubsti-
tution

Data: a k × k matrix [[A]] = [[X]]T [[X]], a vector [[b]] = [[X]]T [[y]] of k values for
the dependent variable

Result: Vector [[b]] of coefficients
1 Shuffle [[A]], [[b]] retaining the dependencies
2 Let [[c]]← false be a boolean value
3 for i ∈ {1, . . . , k − 1} do
4 [[m]] be a subvector of [[Au,v]] such that u ∈ {i+ 2, . . . , k} , v = i
5 ([[t]], irow)←maxLoc([[m]])
6 irow ← irow + i+ 1
7 if irow 6= i then
8 for j ∈ {1, . . . , k} do
9 Exchange elements [[Airow,j]] and [[Ai,j]]

10 end
11 Exchange element [[birow]] and [[bi]]

12 end
13 [[c]]← [[c]] ∨ ([[Ai,i]] = 0)
14 [[pivinv]]← [[Ai,i]]

−1

15 [[Ai,i]]← 1
16 for j ∈ {1, . . . , k} do
17 if j 6= i then
18 [[Ai,j]]← [[Ai,j]] · [[pivinv]]
19 end
20 [[bi]]← [[bi]] · [[pivinv]]

21 end
22 for m ∈ {i+ 1, . . . , k} do
23 for j ∈ {1, . . . , k} do
24 if j 6= i then
25 [[Am,j]]← [[Am,j]]− [[Ai,j]] · [[Am,i]]
26 end

27 end
28 [[bm]]← [[bm]]− [[bi]] · [[Am,i]]
29 [[Am,i]]← 0

30 end

31 end
32 if declassify([[c]]) then
33 return ”Singular matrix”
34 end

35 [[bk]]←
[[bk]]

[[Ak,k]]
36 for i ∈ {k − 1, . . . , 1} do

37 [[bi]]← [[bi]]−
k∑

j=i+2

[[Ai,j]] · [[bj]]

38 end
39 return [[b]]

Let us look at the differences between the original and the privacy-preserving
version of Gaussian elimination with backsubstitution. As the platform provides
us with functions for addition, multiplication and inversion, we do not need to
use any workarounds in the main computations. The first additional method
we have to take into account, however, is that we start with shuffling the rows
of the input matrix and the vector containing the dependent variable keeping
the relationship intact. We do this, because we later need to know the location
of the largest element, and we do not want to reveal this information on the
input matrix. We can shuffle the rows without breaking the algorithm because
the input matrix and vector represent a set of linear equations and the order of
these equations does not influence the outcome. Furthermore, during execution,
the Gaussian algorithm itself rearranges the rows of the matrix based on the
location of the pivot element.

The main difference between the original and the privacy-preserving Gaussian
elimination algorithm is actually in the maxLoc function. In the original version,
elements are compared one-by-one to the largest element so far and at the end of
the subroutine, the greatest element and its location have been found. As for our
system, we basically do the same thing only we use oblivious choice instead of the
straightforward if-clauses. This way, we are able to keep the largest element secret
and we only reveal its location at the end without finding out other relationships
between elements in the vector during the execution of this algorithm.

Let us now look at LU decomposition. In the ordinary setting, this method
is faster than the Gaussian elimination method. LU decomposition uses matrix
decomposition to achieve this speed-up. If we can decompose the input matrix
into a lower and upper triangular matrix L and U, respectively, so that L·U = A,
we can use forward substitution and backsubstitution on these matrices, similarly
to the process we used in the Gaussian elimination method. Algorithm 12 gives
the privacy-preserving version of LU decomposition. Note, that the elements on
the diagonal of the lower triangular matrix L are equal to 1. Knowing this, L
and U can be returned as one matrix such that the diagonal and elements above
it belong to the upper triangular matrix U and the elements below the diagonal
belong to the lower triangular matrix L without losing any information.

Similarly to Algorithm 11, first the pivot element is found using the maxLoc
function. After the elements are exchanged, the row permutations are saved for
use in the algorithm for solving the set of linear equations. As a result, the
decomposition matrix and the permutations are returned. The permutations are
public information but they reveal nothing about the original dataset because the
rows have been shuffled before inputting them to the decomposition algorithm
similarly to what was done in Algorithm 11.

The difference between the original and the privacy-preserving versions of
the matrix decomposition algorithm is in using the maxLoc function for the
same reasons as for Algorithm 11.

Algorithm 13 shows how to solve a set of linear equations using LU decompo-
sition. The matrix rows are shuffled as in Algorithm 11 and the LU decomposition
matrix is composed using the LUDecomp function. As an additional result we

Algorithm 12: LUDecomp: Privacy-preserving LU decomposition of a
matrix
Data: a k × k matrix [[B]]
Result: The LU decomposition matrix [[B]] and q containing the row

permutations
1 Let [[c]]← 0 be a boolean value
2 for i ∈ {1, . . . , k} do
3 [[m]] be a subvector of [[Bu,v]] such that u ∈ {i, . . . , k} , v = i
4 ([[t]], irow)←maxLoc([[m]])
5 if irow 6= i then
6 for j ∈ {1, . . . , k} do
7 Exchange elements [[Birow,j]] and [[Bi,j]]
8 end

9 end
10 [[c]]← [[c]] ∨ ([[Bi,i]] = 0)
11 qi ← irow
12 [[ipiv]]← [[Bi,i]]

−1

13 for m ∈ {i+ 1, . . . , k} do
14 [[Bm,i]]← [[Bm,i]] · [[ipiv]]
15 for j ∈ {i+ 1, . . . , k} do
16 [[Bm,j]]← [[Bm,j]]− [[Bm,i]] · [[Bi,j]]
17 end

18 end

19 end
20 if declassify([[c]]) then
21 return ”Singular matrix”
22 end
23 return ([[B]], q)

receive the permutation that was done for pivoting purposes during the decom-
position phase. Next, on rows 3 - 6, elements of the vector [[b]] containing the
dependent variable are permuted to be in concurrence with the permutations
that were performed during the decomposition phase. Normally, this step does
not need to be done, as the elements can be accessed on the fly using the per-
mutation vector q, but in the privacy-preserving setting, it is more feasible to
first rearrange the vector and then access the elements in order.

On rows 7 - 9, forward substitution is performed using the values from the
lower triangular matrix. Finally, on rows 10 - 12, backsubstitution is performed
using the values from the upper triangular matrix.

In addition to the two elimination methods, we decided to look at an iterative
algorithm for solving sets of linear equations to test the difference in performance
and accuracy. We chose the conjugate gradient method which is a quadratic
programming task. If the computations are done without errors, it is guaranteed
to converge in k steps, where k is the number of columns in the matrix [1].

As our matrix is symmetric and positive semi-definite, we can use the sim-
plest version of this method with the exception that we forego the comparison

Algorithm 13: Solving linear regression using the LU decomposition ma-
trix in a privacy-preserving setting

Data: a k × k matrix [[A]] = [[X]]T [[X]], a vector [[b]] = [[X]]T [[y]] of k values for
the dependent variable

Result: A vector [[b]] of coefficients
1 Shuffle [[A]], [[b]] retaining the dependencies
2 ([[B]], q)← LUDecomp([[A]])
3 for i ∈ {1, . . . , k} do
4 Let j ← qi
5 Exchange elements [[bi]] and [[bj]]

6 end
7 for i ∈ {2, . . . , k} do

8 [[bi]]← [[bi]]−
i∑

j=1

[[Bi,j]] · [[bj]]

9 end
10 for i ∈ {k, . . . , 1} do

11 [[bi]]←

(
[[bi]]−

k∑
j=i+1

[[Bi,j]] · [[bj]]

)
· [[Bi,i]]

−1

12 end
13 return [[b]]

for finding when the method is converging, and simply do a fixed number of
iterations that exceeds the conversion point.

Algorithm 14 shows how to solve a set of linear equations using the conju-
gate gradient method. As discussed, the only real difference from the original
algorithm is in the detail that we do not measure the convergence as this can
give too much information about the original matrix. Instead, we simply fix a
number of iterations z. We also considered computing the optimal number of
iterations as given in [1], but decided against it, as this computation will be
almost as expensive as performing a hundred iterations and, in addition, the
computed iteration count reveals information about the data itself. Considering
that the initial convergence of the conjugate gradient method is rapid during a
small number of iterations [1] and that the algorithm should converge in k steps,
10 iterations are enough to get an estimate of the solution. If more iterations are
needed, it is sensible to use the elimination methods instead.

7 The implementation of Rmind

7.1 Implementation architecture

We have built an implementation of the privacy-preserving statistical analy-
sis tool on the Sharemind secure computation framework [3]. We used the
additive3pp PDK originally introduced in [8] as the computation backend. This
PDK uses secret sharing among three servers to protect the confidentiality of the

Algorithm 14: Privacy-preserving conjugate gradient method

Data: a k × k matrix [[A]] = [[X]]T [[X]], a vector [[b]] = [[X]]T [[y]] of k values for
the dependent variable, public number of iterations z

Result: A vector [[x]] of coefficients
1 Let [[x]] be a vector of k values 0

2 [[x]]← [[x]]T

3 [[r]], [[p]]← [[b]]
4 repeat

5 [[α]]←
[[r]]T [[r]]

[[p]]T [[A]][[p]]
6 [[x]]← [[x]] + α[[p]]
7 [[s]]← [[r]]− α[[A]][[p]]

8 [[β]]←
[[s]]T [[s]]
[[r]]T [[r]]

9 [[p]]← [[s]] + [[β]][[p]]
10 [[r]]← [[s]]
11 z ← z − 1

12 until z = 0 ;

13 return [[x]]T

data and has a wide range of implemented protocols (see Section 2.1). Figure 4
shows the architecture of the tool and how different Sharemind components
were used in its implementation.

We implemented a command line utility for uploading data that can secret-
share CSV-formatted files so that each server gets one share of each value in
the input file. These tables can then later be used by the Rmind tool in the
analysis. Rmind is an interactive tool with a command line interface that al-
lows the analyst to manipulate data tables and run statistical analyses. Rmind
is implemented in the Haskell programming language because of the ease of
implementing interpreters and compilers in Haskell.

We consciously made the choice not to build on top of an existing system (e.g.
R, SPSS etc) for two reasons. First, we cannot re-use the statistical functions
implemented by existing tools, because they are implemented on standard pro-
cessors and cannot be easily retargeted to secure computation. Second, existing
tools have no elegant support for separating public and private data. Solutions
have been proposed, e.g., in [17] that have a tuned system that performs just
the minimal amount of secure computation, interleaving public and private op-
erations. However, their paper does not describe a way for saving and reusing
the results of secure computation on the server side. In our tool, all data, in-
cluding intermediate tables, are stored remotely, and only statistical procedures
can make their results public.

Commands of Rmind are preprocessed at the client and sent to all Share-
mind servers, where the necessary secure computation procedures are executed.
These procedures are implemented in the SecreC 2 programming language [5]

ile parser (C/C++)

Sharem
ind server 2

CSV importer

Sharemind controller library

The Rmind tool

Sharemind controller library

Sharemind server 1

Sharemind client session manager

Sharemind virtual machine

Query language
interpreter (Haskell)

Privacy-preserving data
transformation and statistical
analysis algorithms (SecreC)

Sharemind PDK
layer

(protected data
analysis)

Sharemind
Database layer
(protected data

storage)

Sharem
ind server 3

......

CSV f

Component
used as-is

Component implemented
for this paper

(Implementation language)
Legend:

Fig. 4. The architecture of the Rmind tool (servers 2 and 3 are identical to server 1)

that separates public and private data on a type system level, thus also support-
ing the data tagging design goal of our tool. If the procedure needs to use data
uploaded by a user or the result of a previous intermediate result, it can access it
from the database system built into Sharemind that also separates data based
on which protection domain it belongs to.

Rmind can only perform operations for which the respective procedure has
been deployed on all Sharemind servers. This is an additional control mech-
anism to ensure that no unauthorised operations can be performed. The three
servers shown in our architecture must, therefore, be deployed by independent
organisations interested in preserving the privacy of the data. If that assump-
tion holds, the whole Rmind systems provides much improved privacy when
compared to traditional statistical tools.

7.2 Privacy-preserving statistical analysis language

Managing public and private variables We have adapted a subset of the
language used by the statistical analysis tool R into our privacy-preserving set-
ting. In Rmind, data is stored in public and private arrays of signed integers,
floating point numbers or boolean values. The language also supports public
strings for names. We are not giving the full language description here and focus
only on the parts that are important from a privacy perspective.

Functions can return either public or private data. For example, the load

function that loads a private table from the database, returns a value represent-
ing a database with private values. However, functions that describe the sizes
of tables, such as nrow and ncol functions, return public values. The typeof

function returns a string containing the data type of the expression, including
its security type. The values of public expressions can be printed using print.
Private variables can be used in statistical analysis that may print out their
result. Intermediate private results can also be stored in the database with the
store.table function.

tbl <- load("db", "table")

rowcount <- nrow(tbl)

print (typeof (tbl$col))

store.table("db", "table2", list("x", "y"),

list(tbl$x * 10, tbl$y + 100))

Rmind has several control structures like for, if, repeat and while. Arrays
are indexed with rectangular brackets (a[i]). Currently, conditional expressions
in control structures and indices can only be public expressions. Rmind lets
the analyst define procedures similarly to R and supports features like keyword
arguments and argument lists.

for (i in 1:10) print (a[i])

Preparing private data for analysis Rmind can prepare private data for
analysis using a range of transformations that result in new private data. For
example, it can perform arithmetic, comparisons and logic on private data to
compute new attributes. Private data can be combined with public data, but
the public data will be converted to private in the process.

products <- tbl$column1 *

tbl$column2

mask <- tbl$column < 10

There are two syntactic ways for filtering private data. There is a simpler
inline version and a more flexible procedural version. The second can easily
process tables. Filtering is implemented using techniques described in Section 3.

c <- tbl$col1[tbl$col2 < 10]

t <- subset(tbl, col1 < 10 & col2 != 1)

Tables and vectors can be sorted using the sort procedure. Tables can be
linked using merge. The underlying Sharemind system uses protocols described
in [7] and [41], respectively.

sortedcol <- sort(tbl$col)

tbl3 <- merge(tbl1, "key1", tbl2, "key2")

Analyzing private data Table 2 shows the statistical analysis features im-
plemented in Rmind using the respective algorithms in this paper. For some
operations, such as lm, several algorithms are available. The implementation has
a default one, but the user can select the preferred one using the corresponding
parameter. All operations run on private data and return a public result.

Rmind operation Statistical value computed or plot drawn
sum, mean, min/max sum and mean of values, smallest/largest value
median, sd, var, cov median, standard deviation, variance and covariance
fivenum, boxplot five number summary and/or box plot
hist, freqplot, heatmap histogram, frequency plot or heatmap
mad MAD (median absolute deviation)
rm.outliers remove outliers with quantiles or MAD
t.test paired and standard t-test with (non-)equal variances
wilcoxon.test Wilcoxon rank sum test and signed rank test
mann.whitney.test Mann-Whitney test (extended Wilcoxon rank sum test)
chisq.test χ2 tests with two or more categories
multiple.t.test multiple t-tests with Benjamini-Hochberg correction
multiple.chisq.test multiple χ2 tests with Benjamini-Hochberg correction
lm linear regression (several choices for private algorithm)

Table 2. Statistical operations in Rmind

7.3 Performance analysis

We tested the performance of Rmind on a Sharemind installation running on
three computers with 3 GHz 6-core Intel CPUs with 8 GB RAM per core (a
total of 48 GB RAM). The computers were connected using gigabit ethernet
network interfaces. While a subset of these algorithms have been benchmarked
in [4], we have optimized the implementation and redone all benchmarks for this
paper using the new Rmind tool. The benchmarks in [4] were performed on an
identical hardware setting, but they are less optimized and use an older version
of Sharemind.

Tables 3 and 4 show the performance of statistical operations in comparison
with earlier work in [4]. We see, on average, an order of magnitude improvement
in performance. The majority of operations were not implemented in previous
work so no comparison could be made. We note that the performance measures

should not be considered linear in the size of the input, due to the effects de-
scribed in Section 2.4.

Operation Inputs Time Time
(Rmind) ([4])

mean 2 000 0.05 s —
min/max 2 000 0.2 s 3 s
median 2 000 4.7 s —
sd 2 000 4.4 s —
var 2 000 4.4 s —
cov 2×1 000 3.5 s —

fivenum 2 000 2.4 s 21 s
hist 2 000 3.4 s 16 s
freqplot (10 classes) 2 000 0.5 s —
heatmap 2×1 000 5.8 s —

rm.outliers (quantiles) 2 000 3.3 s —
rm.outliers (MAD) 2 000 18.3 s —

merge 5×2 000
23.7 s 28 s

3×2 000

sort 10×1 000 13.1 s —

t.test 2×1 000 4.2 s 167 s
t.test (paired) 2×1 000 2.6 s 98 s

chisq.test (2 classes) 2 000 0.1 s 9 s
chisq.test (5 classes) 2 000 0.4 s 23 s

wilcoxon.test

(signed rank) 2×1 000 1.5 s 38 s
(rank sum) 2×1 000 2.7 s 34 s

mann.whitney.test 2×1 000 2.7 s —

Benjamini-Hochberg1 1 000 52.3 s —

Table 3. Performance of Rmind operations (in seconds)

1 We measured the Benjamini-Hochberg procedure standalone on 1000 test results,
without the multiple tests that lead to it.

Acknowledgments

This work was supported by the European Regional Development Fund through
the Estonian Center of Excellence in Computer Science, EXCS and by the Esto-
nian Research Council under Institutional Research Grants IUT2-1 and IUT27-
1. It has also received funding from the European Union Seventh Framework
Programme (FP7/2007-2013) under grant agreement no. 284731.

Operation Time (Rmind)

lm (simple) 33.9 s
lm (2 variables, inverse) 0.6 s
lm (3 variables, inverse) 1.1 s

lm (4 variables, Gaussian) 2.9 s
lm (4 variables, LU decomp.) 3.1 s
lm (4 variables, conj. grad.) 5.9 s

lm (7 variables, Gaussian) 9.4 s
lm (7 variables, LU decomp.) 8.7 s
lm (7 variables, conj. grad.) 7.8 s

lm (10 variables, Gaussian) 21.5 s
lm (10 variables, LU decomp.) 19.1 s
lm (10 variables, conj. grad.) 11 s

Table 4. Performance of Rmind linear regression on 10000-element arrays (in seconds)

References

1. Owe Axelsson. Iteration number for the conjugate gradient method. Mathematics
and Computers in Simulation, 61(36):421 – 435, 2003. MODELLING 2001 - Second
IMACS Conference on Mathematical Modelling and Computational Methods in
Mechanics, Physics, Biomechanics and Geodynamics.

2. Y. Benjamini and Y. Hochberg. Controlling the False Discovery Rate: A Practi-
cal and Powerful Approach to Multiple Testing. Journal of the Royal Statistical
Society. Series B (Methodological), 57(1):289–300, 1995.

3. Dan Bogdanov. Sharemind: programmable secure computations with practical ap-
plications. PhD thesis, University of Tartu, 2013.

4. Dan Bogdanov, Liina Kamm, Sven Laur, Pille Pruulmann-Vengerfeldt, Riivo
Talviste, and Jan Willemson. Privacy-preserving statistical data analysis on fed-
erated databases. In Proceedings of the Annual Privacy Forum. APF’14, volume
8450 of LNCS, pages 30–55. Springer, 2014.

5. Dan Bogdanov, Peeter Laud, and Jaak Randmets. Domain-Polymorphic Program-
ming of Privacy-Preserving Applications. In Proceedings of the Ninth ACM SIG-
PLAN Workshop on Programming Languages and Analysis for Security, 2014. To
appear.

6. Dan Bogdanov, Sven Laur, and Riivo Talviste. Oblivious Sorting of Secret-Shared
Data. Technical Report T-4-19, Cybernetica, http://research.cyber.ee/., 2013.

7. Dan Bogdanov, Sven Laur, and Riivo Talviste. A Practical Analysis of Oblivious
Sorting Algorithms for Secure Multi-party Computation. In Secure IT Systems -
19th Nordic Conference, NordSec 2014. Springer, 2014. To appear.

8. Dan Bogdanov, Sven Laur, and Jan Willemson. Sharemind: A framework for
fast privacy-preserving computations. In Sushil Jajodia and Javier Lopez, editors,
Proceedings of the 13th European Symposium on Research in Computer Security,
ESORICS ’08, volume 5283 of Lecture Notes in Computer Science, pages 192–206.
Springer, 2008.

9. Dan Bogdanov, Margus Niitsoo, Tomas Toft, and Jan Willemson. High-
performance secure multi-party computation for data mining applications. In-
ternational Journal of Information Security, 11(6):403–418, 2012.

10. Dan Bogdanov, Riivo Talviste, and Jan Willemson. Deploying secure multi-party
computation for financial data analysis (short paper). In Proceedings of FC 2012,
pages 57–64, 2012.

11. Peter Bogetoft, Dan Lund Christensen, Ivan Damg̊ard, Martin Geisler, Thomas P.
Jakobsen, Mikkel Krøigaard, Janus Dam Nielsen, Jesper Buus Nielsen, Kurt
Nielsen, Jakob Pagter, Michael I. Schwartzbach, and Tomas Toft. Secure Mul-
tiparty Computation Goes Live. In Proceedings of FC 2009, pages 325–343, 2009.

12. Markus M. Breunig, Hans-Peter Kriegel, Raymond T. Ng, and Jörg Sander. Lof:
Identifying density-based local outliers. In Proceedings of CM SIGMOD 2000,
pages 93–104, 2000.

13. Martin Burkhart, Mario Strasser, Dilip Many, and Xenofontas A. Dimitropou-
los. SEPIA: Privacy-Preserving Aggregation of Multi-Domain Network Events
and Statistics. In Proceedings of USENIX 2010, pages 223–240, 2010.

14. Ran Canetti, Yuval Ishai, Ravi Kumar, Michael K. Reiter, Ronitt Rubinfeld, and
Rebecca N. Wright. Selective private function evaluation with applications to
private statistics. In Proceedings of PODC 2001, pages 293–304. ACM, 2001.

15. Octavian Catrina and Sebastiaan De Hoogh. Improved primitives for secure mul-
tiparty integer computation. In Proceedings of the 7th international conference on
Security and cryptography for networks, SCN’10, pages 182–199, Berlin, Heidel-
berg, 2010. Springer-Verlag.

16. David Chaum, Claude Crépeau, and Ivan Damg̊ard. Multiparty unconditionally
secure protocols (extended abstract). In Janos Simon, editor, Proceedings of the
20th Annual ACM Symposium on Theory of Computing. STOC’88, pages 11–19,
1988.

17. Koji Chida, Gembu Morohashi, Hitoshi Fuji, Fumihiko Magata, Akiko Fujimura,
Koki Hamada, Dai Ikarashi, and Ryuichi Yamamoto. Implementation and evalu-
ation of an efficient secure computation system using R for healthcare statistics.
Journal of the American Medical Informatics Association, 04, 2014.

18. Ivan Damg̊ard, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multiparty
computation from somewhat homomorphic encryption. In Reihaneh Safavi-Naini
and Ran Canetti, editors, CRYPTO, volume 7417 of Lecture Notes in Computer
Science, pages 643–662. Springer, 2012.

19. Wenliang Du and Mikhail J. Atallah. Privacy-preserving cooperative statistical
analysis. In Proceedings of ACSAC 2001, pages 102–110, 2001.

20. Wenliang Du, Shigang Chen, and Yunghsiang S. Han. Privacy-preserving multi-
variate statistical analysis: Linear regression and classification. In Proceedings of
SDM 2004, pages 222–233, 2004.

21. Cynthia Dwork. Differential privacy. In Michele Bugliesi, Bart Preneel, Vladimiro
Sassone, and Ingo Wegener, editors, Proceedings of the 33rd International Col-
loquium on Automata, Languages and Programming. ICALP’06, volume 4052 of
Lecture Notes in Computer Science, pages 1–12. Springer, 2006.

22. Khaled El Emam, Saeed Samet, Jun Hu, Liam Peyton, Craig Earle, Gayatri C.
Jayaraman, Tom Wong, Murat Kantarcioglu, Fida Dankar, and Aleksander Essex.
A Protocol for the Secure Linking of Registries for HPV Surveillance. PLoS ONE,
7(7):e39915, 07 2012.

23. Martin Franz and Stefan Katzenbeisser. Processing encrypted floating point sig-
nals. In Proceedings of the thirteenth ACM multimedia workshop on Multimedia
and security, MM&Sec ’11, pages 103–108, New York, NY, USA, 2011. ACM.

24. Martin Geisler. Cryptographic Protocols: Theory and Implementation. PhD thesis,
Aarhus University, February 2010.

25. Craig Gentry. Fully homomorphic encryption using ideal lattices. In Michael
Mitzenmacher, editor, Proceedings of the 41st Annual ACM Symposium on Theory
of Computing. STOC’09, pages 169–178. ACM, 2009.

26. Koki Hamada, Ryo Kikuchi, Dai Ikarashi, Koji Chida, and Katsumi Takahashi.
Practically Efficient Multi-party Sorting Protocols from Comparison Sort Algo-
rithms. In Proc. of ICISC’12, volume 7839 of LNCS, pages 202–216. Springer,
2013.

27. Frank R. Hampel. A general qualitative definition of robustness. The Annals of
Mathematical Statistics, 42(6):1887–1896, 1971.

28. Frank R. Hampel. The influence curve and its role in robust estimation. Journal
of the American Statistical Association, 69(346):383–393, June 1974.

29. Wilko Henecka, Stefan Kögl, Ahmad-Reza Sadeghi, Thomas Schneider, and Immo
Wehrenberg. TASTY: tool for automating secure two-party computations. In Ehab
Al-Shaer, Angelos D. Keromytis, and Vitaly Shmatikov, editors, Proceedings of the
17th ACM Conference on Computer and Communications Security. CCS’10, pages
451–462. ACM, 2010.

30. Magnus R. Hestenes and Eduard Stiefel. Methods of Conjugate Gradients for
Solving Linear Systems. Journal of Research of the National Bureau of Standards,
49(6):409–436, December 1952.

31. Myles Hollander and Douglas A Wolfe. Nonparametric statistical methods. John
Wiley New York, 2nd ed. edition, 1999.

32. Rob J Hyndman and Yanan Fan. Sample quantiles in statistical packages. The
American Statistician, 50(4):361–365, 1996.

33. Marek Jawurek and Florian Kerschbaum. Fault-tolerant privacy-preserving statis-
tics. In Privacy Enhancing Technologies, volume 7384 of LNCS, pages 221–238.
Springer, 2012.

34. Liina Kamm, Dan Bogdanov, Sven Laur, and Jaak Vilo. A new way to protect
privacy in large-scale genome-wide association studies. Bioinformatics, 29(7):886–
893, 2013.

35. Liina Kamm and Jan Willemson. Secure Floating-Point Arithmetic and Private
Satellite Collision Analysis. Cryptology ePrint Archive, Report 2013/850, 2013.
http://eprint.iacr.org/.

36. Gopal K Kanji. 100 statistical tests. Sage, 2006.

37. Florian Kerschbaum. Practical privacy-preserving benchmarking. In Proceedings
of IFIP TC-11 SEC 2008, volume 278, pages 17–31. Springer US, 2008.

38. Eike Kiltz, Gregor Leander, and John Malone-Lee. Secure computation of the
mean and related statistics. In Procedings of TCC 2005, volume 3378 of LNCS,
pages 283–302. Springer, 2005.

39. Benjamin Kreuter, Abhi Shelat, Benjamin Mood, and Kevin R. B. Butler. PCF: A
Portable Circuit Format for Scalable Two-Party Secure Computation. In Samuel T.
King, editor, USENIX Security, pages 321–336. USENIX Association, 2013.

40. Sven Laur, Riivo Talviste, and Jan Willemson. From Oblivious AES to Efficient
and Secure Database Join in the Multiparty Setting. In Proceedings of ACNS’13,
volume 7954 of LNCS, pages 84–101. Springer, 2013.

41. Sven Laur, Riivo Talviste, and Jan Willemson. From Oblivious AES to Efficient
and Secure Database Join in the Multiparty Setting. In Applied Cryptography and
Network Security, volume 7954 of LNCS, pages 84–101. Springer, 2013.

42. Sven Laur, Jan Willemson, and Bingsheng Zhang. Round-Efficient Oblivious
Database Manipulation. In Proceedings of ISC 2011, pages 262–277, 2011.

43. Qinghua Li and Guohong Cao. Efficient privacy-preserving stream aggregation in
mobile sensing with low aggregation error. In Emiliano Cristofaro and Matthew
Wright, editors, Privacy Enhancing Technologies, volume 7981 of Lecture Notes in
Computer Science, pages 60–81. Springer Berlin Heidelberg, 2013.

44. Dahlia Malkhi, Noam Nisan, Benny Pinkas, and Yaron Sella. Fairplay — a se-
cure two-party computation system. In Proceedings of the 13th USENIX Security
Symposium (2004), pp. 287-302., 2004.

45. Pascal Paillier. Public-key cryptosystems based on composite degree residuosity
classes. In Jacques Stern, editor, Proceedings of the 17th International Conference
on the Theory and Application of Cryptographic Techniques, EUROCRYPT’99,
volume 1592 of Lecture Notes in Computer Science, pages 223–238. Springer, 1999.

46. William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flan-
nery. Numerical Recipes 3rd Edition: The Art of Scientific Computing. Cambridge
University Press, New York, NY, USA, 3 edition, 2007.

47. Reimo Rebane. A Feasibility Analysis of Secure Multiparty Computation Deploy-
ments. Master’s thesis, Institute of Computer Science, University of Tartu, 2012.

48. Elaine Shi, T.-H. Hubert Chan, Eleanor G. Rieffel, Richard Chow, and Dawn Song.
Privacy-preserving aggregation of time-series data. In NDSS. The Internet Society,
2011.

49. Nigel P. Smart and Frederik Vercauteren. Fully homomorphic simd operations.
Des. Codes Cryptography, 71(1):57–81, 2014.

50. Herbert A Sturges. The choice of a class interval. Journal of the American Statis-
tical Association, 21(153):65–66, 1926.

51. Hiranmayee Subramaniam, Rebecca N. Wright, and Zhiqiang Yang. Experimental
analysis of privacy-preserving statistics computation. In Proceedings of SDM 2004,
volume 3178 of LNCS, pages 55–66. Springer, 2004.

52. Latanya Sweeney. k-anonymity: a model for protecting privacy. International
Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 10(5):557–570,
2002.

53. Frank Wilcoxon. Individual Comparisons by Ranking Methods. Biometrics Bul-
letin, 1(6):80–83, 1945.

54. Zhiqiang Yang, Rebecca N. Wright, and Hiranmayee Subramaniam. Experimental
analysis of a privacy-preserving scalar product protocol. Computer Systems Science
& Engineering, 21(1), 2006.

55. Andrew Chi-Chih Yao. Protocols for Secure Computations (Extended Abstract).
In Proceedings of FOCS’82, pages 160–164. IEEE, 1982.

