Rmind: a tool for cryptographically secure
statistical analysis

Dan Bogdanov!, Liina Kamm!-2, Sven Laur? and Ville Sokk!

! Cybernetica, Tartu, Estonia
{dan, liina, ville.sokk}@cyber.ee
2 University of Tartu, Institute of Computer Science, Tartu, Estonia
swen@math.ut.ee

Abstract. Secure multi-party computation platforms are becoming more
and more practical. This has paved the way for privacy-preserving sta-
tistical analysis using secure multi-party computation. Simple statistical
analysis functions have been emerging here and there in literature, but
no comprehensive system has been compiled. We describe and implement
the most used statistical analysis functions in the privacy-preserving set-
ting including simple statistics, t-test, x? test, Wilcoxon tests and linear
regression. We give descriptions of the privacy-preserving algorithms and
benchmark results that show the feasibility of our solution.

Keywords: Privacy, statistical analysis, hypothesis testing, predictive mod-
elling, cryptography

1 Introduction

Digital databases exist wherever modern computing technology is used. These
databases often contain private data, e.g., the behaviour of customers or citizens.
Today’s data analysis technologies require that the analysts have direct access
to the data, thus creating a risk to privacy. Even if data analysts are diligent and
keep secrets, the data in their possession can leak through an external attack.

Cryptographic research has given us encryption schemes that protect databases
until the data are processed. However, existing analysis tools require us to de-
crypt data before processing, bringing us back to the privacy problem. Emerging
cryptographic technologies like secure multi-party computation (SMC) solve the
problem by allowing data to be processed in encrypted form. This enables a new
kind of computer that can manipulate individual data records without seeing
them—much like a blind craftsman sculpting a work of art.

Secure multi-party computation was considered impractical for years, but
clever protocol design and determined engineering have led to first real-world
applications [12, 11]. Therefore, we decided to investigate the feasibility of using
SMC to perform statistical analyses with better privacy.

We interviewed statisticians to explain the privacy potential of SMC technol-
ogy and find their expectations [5]. They saw potential, but also had concerns.

First, statisticians were used to seeing individual values and were unsure if they
can find inconsistencies and ensure analytical quality without such access. SMC
takes away control from the analyst by only disclosing the query results.

The second concern was the lack of user-friendly tools for cryptographically
secure data analysis. Statisticians are used to the workflows of interactive en-
vironments like SAS, SPSS and R. The interviewees expected to see a drop-in
replacement of their environment with the new privacy guarantees.

In this paper, we describe a suite of privacy-preserving algorithms for privacy-
preserving filtering, descriptive statistics, outlier detection, statistical testing and
modelling. We implement these algorithms in RMIND, a cryptographically secure
statistical analysis tool designed to provide a similar experience to existing script-
able tools such as R'. RMIND provides tools to support all stages of statistical
analysis—data collection, exploration, preparation and analysis.

In 2014, we presented the Estonian Data Protection Agency with a proposal

for linking and analyzing two government databases using the tools and methods
presented in this paper. Their conclusion was that, according to the legislation,
our method does not process personally identifiable information and thus no
permit is needed as long as our technical solution is used and the study plan
is followed [5]. While this is not yet the prevailing legal position, it marks a
paradigm shift in data protection.
Our contribution. This paper builds on our earlier work in [5, 37] where we pre-
sented our first attempts on privacy-preserving statistics. In this paper, we have
made major improvements. First, we designed and implemented new privacy-
preserving algorithms for statistical testing including popular value correction
methods for multiple testing. Second, we designed and implemented privacy-
preserving methods for multivariate linear regression, which can be easily ex-
tended to polynomial regression or linear regression with regard to other basic
functions. For this, we developed privacy-preserving methods for solving a set of
linear equations based on Gaussian elimination with backsubstitution and LU
decomposition. Both are, of course, applicable in other contexts beside statis-
tics. The same applies to our novel privacy-preserving version of the conjugate
gradient method for minimizing quadratic forms.

Third, we present RMIND, a privacy-preserving statistical analysis environ-
ment designed to resolve user acceptance issues. RMIND supports a complete
data analysis process where data are collected from various sources, linked and
statistically analysed. The user interface is identical to that of R. We also took
great care to fix all details of our algorithms so that they provide the same results
as the R tool, to the precision of a floating point comparison.

Fourth, we have implemented the new algorithms, optimised the previous
implementations, and provide new performance results that prove the feasibility
of the system. Comparable performance results for the entire suite of statistical
operations have not been published and thus it has been difficult to estimate
whether cryptographically secure statistical analysis is practically feasible or
not.

! The R Project for Statistical Computing. http://www.r-project.org

Related work. The closest system to what we propose has been introduced by
Chida et al. in [19]. They are using the statistics environment R to create a user
interface to a secure multi-party computation backend. They have implemented
descriptive statistics, filtering, cross-tabulation and a version of the t-test and
X2 test. Their protocols combine public and private calculations and provide
impressive performance. However, their implementation is limited in the kinds
of analyses they can perform due to their lack of support for real numbers. Their
implementation also does not support linking different database tables.

Another recent implementation with similar goals is by El Emam et al [25].
They provide protocols for only linking and the computation of x? tests, odds
ratio and relative risk. Other published results have focused on individual com-
ponents in our statistics suite, e.g, mean, variance, frequency analysis and re-
gression [16, 21,22, 41, 40], filtered sums, weighted sums and scalar products [53,
56, 36]. Related papers on private data aggregation have also targeted stream-
ing data [50,45]. However, all of these components have been implemented as
separate special purpose programs using various programming languages and dif-
ferent underlying secure multi-party computation protocol sets. It would be very
difficult, if not impossible, to integrate these programs into one comprehensive
statistics suite.

2 Designing a tool for secure statistical analysis

2.1 Requirements for a secure statistical analysis tool

There is a perceived need of cryptographic security capability in the following
privacy-preserving data integration scenario [5].

1. Data owners and analysts agree on the data format and the study plan.
2. Data owners upload their inputs to a secured database.

3. Data analysts send queries that are in the study plan.

4. Analysts receive analysis results and interpret them in a resulting report.

We propose a tool for performing privacy-preserving statistical studies in
the given setting using secure multi-party computation. The difference between
RMIND and standard statistical tools is that RMIND collects and analyses data in
encrypted form without decrypting them and gives provable privacy guarantees
to the analysis process. This efficiently ensures that the data owner is the only
party with access to the private inputs and only the results of the analysis are
disclosed to the analyst. RMIND is designed with the following goals:

1. Similarity to existing tools. Based on the interviews, the end users prefer
tools with familiar user interfaces.

2. Separation of public and private data. The tool should separate public
and private values in data.

3. Seamless use of cryptographic technology. Cryptographic processing
must be applied automatically when private data are processed.

4. Features chosen according to real-world needs. Data transformation
and analysis features are chosen after interviews with statisticians to deter-
mine the tools they most commonly use.

Upload data in protected storage for data Send queries to be
a protected (e.g., performed without
encrypted) form. removing protection.

secure computation engine

|:> privacy-preserving statistical <:>

operation library

data owner data analyst

input
records

Fig. 1. Design of a privacy-preserving statistical analysis tool and interfaces based on
secure computation

analysis

data entry interface

results

data analysis interface

i

The main components of RMIND are the data entry interface, the data analy-
sis interface and the storage and computation backend (see Figure 1). Standalone
data entry or analysis interfaces can be implemented on any programming plat-
form supported by the secure multi-party computation framework. Data are
tagged public or private during the upload to allow the statistical tool to apply
secure multi-party computation on private data. As the study plan is public, we
do not need to hide data formats or the algorithms being executed. However,
private parameters to the queries can be hidden from the computing parties as
any other private inputs, e.g., the criteria for forming subgroups can be kept
secret.

2.2 Secure multi-party computation with external parties

Secure multi-party computation (SMC) is a cryptographic technology for com-
puting a function with multiple parties where only the party who provided a par-
ticular input can see that input and every party only gets the output specifically
intended for them. In the standard model, parties Py,..., P, jointly evaluate a
function f(z1,...,x,) with outputs (y1,...,yn) so that P; submits its input a;
and learns the output y; and nothing about the other inputs and outputs.

Not all parties in the data integration scenario have the resources and moti-
vation to participate equally in the secure analysis. Therefore, we consider three
different party types. Input parties (data owners) provide the inputs to the anal-
ysis and expect that nobody else learns them. Computing parties store inputs,
participate in secure multi-party computation protocols and give outputs to the
result parties (the analysts).

SMC protocols can be built using homomorphic encryption [47, 28], garbled
circuits [57] and secret sharing [18, 18], among others. All of these can provide a

set of composable cryptographic primitives that implement the secure arithmetic
we need for the statistical operations.

There are a number of SMC implementations available. Some provide se-
cure integer arithmetic [46, 14, 32, 27, 20, 3, 42], floating point arithmetic [17, 26],
shuffling and sorting [29] and linking [25], but, to our knowledge, only the
SHAREMIND framework provides all the operations integrated into a single im-
plementation [10, 44, 43, 38, 8].

2.3 Cryptographically secure operations for statistical analysis

The privacy-preserving statistical analysis algorithms presented in in this paper
are independent of a particular SMC approach. Instead, we assume the existence
of an abstract set of SMC protocols, or a protection domain kind as defined in [7].

Definition 1 (Protection domain kind). A protection domain kind (PDK)
is a set of data representations, algorithms and protocols for storing and com-
puting on protected data.

Functionality Notation
Protected storage of a private value x

(signed integer, floating point, boolean) []
Conversion to the private form [z] + =

Support for value vectors and matrices |[z] and [M]

[2] < [=] ® [v]

Privacy-preserving binary operations
(signed integer, floating point, boolean)

Privacy-preserving functions Iyl < f([=])
Declassify value to computing parties |declassify([z])
Publish value to result parties publish([z])

Private shuffling, linking and sorting | —

Table 1. Secure computation capabilities and notation for statistical analysis algo-
rithms.

Specifically, we require the existence of the privacy-preserving operations
listed in Table 1. The arithmetic operations are used for implementing statistical
functions. Secure linking and sorting are required for preparing data tables for
analysis. We also require a cryptographically private shuffling protocol that can
randomly rearrange the values in a vector or rows in a matrix without leaking
the elements being rearranged.

In the simplest model, the input party encrypts its input « to get [z]. Then,
it sends [z] to the computing party CP who computes [y] + f([z]) using PDK
operations and sends [y] to the result party who will decrypt it to learn y. With
a secure PDK, CP learns nothing about x or y in the process.

The threat models for different PDKs vary. For example, threats for a hardware-
assisted PDK include backdoors and design flaws. For secure multi-party compu-
tation, the main threat is that computing parties collude to reveal private inputs.
PDKs also differ in their security assumptions and guarantees, e.g., they may
remain private only when there is an honest majority, or withstand malicious
tampering. Stronger security guarantees often come at a cost of computational
power. Security against passive adversaries (who do not modify software but
try to learn private values from its state) is sufficient for processing personal
data when the computing parties are organizations with a legal responsibility to
protect privacy.

One example of a practically feasible PDK is secure multi-party computation
on additively secret shared data [9]. If an input party wants to provide a secret
value z € Z (where Z is a quotient ring) as a private input to n computing
parties, it uniformly generates shares x1,...,x,_1 < Z and calculates the final
share x,, < xr—x1—---—x,_1. Each computing party receives one share x; that
it stores as [x]. As an individual share x; is just a uniformly distributed value,
no computing party can learn anything about x without colluding with others.

Computing parties can process the shares without recovering the secret. For
example, if each computing party has shares x; and y; of secrets z and y, they
can calculate z; < x; + y; to get the shares of z = = + y. Further operations in
this protection domain kind require more complex protocols, as described in [9,
10]. The privacy and composability proofs for the cited protocols can be found
in [6].

2.4 Limiting the leakage of private inputs

In our setting, data owners and analysts agree on a study plan, including what
results can be published to the analysts. An ideal privacy goal would be to require
that no information about the private inputs is revealed during the computations
or in the outputs. However, this is impossible to achieve, as all practically useful
outputs contain information about the private inputs.

Instead of forbidding leakage, we will use automatically enforced mechanisms
to minimize it. We implement controlled statistics—our statistical tool will only
publish results that the data owners and computing parties have cleared for pub-
lishing. This approach has been shown to be a sufficient and legally acceptable
way of protecting personal information and tax secrets in social studies [5].

The privacy-preserving algorithms in this paper are designed to minimize
leakage using a combination of techniques that follow the following privacy goals.

Goal 1: Cryptographic security. During the evaluation of a function

([[yl]]v LR [[yk]]) A f([[xl]]a AR [[xm]]),

a computing party CP cannot learn any private input z; where j € {1,...,m},
output yp where £ € {1,...,k} or intermediate value computed by f unless the
value is published to the result parties using the publish function. We also

want to prevent leaking private values through changes in the running time of
the algorithm.

We achieve this goal as follows. First, our algorithms process all private values
using composable secure operations in the PDK. This prevents leakage through
any storage used by the computing party. Second, whenever possible, we design
the algorithm as a straight line program. A straight line program consisting of
universally composable secure operations is cryptographically secure and uni-
versally composable itself [15]. Hence, we can omit the security proofs of such
algorithms in this paper (Algorithms 3, 7, 8, 10, 14).

The remaining algorithms are not straight line programs and require separate
security proofs. Most of these algorithms (Algorithms 1, 2, 4, 5, 6, 9) declassify
the size of the selected subgroup, which is assumed to be public or is a desired
output according to the study plan. We just optimize the running time by de-
classifying certain results slightly earlier so that computing parties can reduce
the amount of PDK operations they have to perform. For example, the cut func-
tion reduces the amount of data to be processed by declassifying the size of the
dataset that matches a search criterion, which is usually an allowable output in
the study. Three remaining algorithms (Algorithms 11, 12, 13) declassify values
that are independent of input data and thus privacy-preserving.

Fortunately, it is sufficient to analyse security in a hybrid model where ab-
stract operations with private values reveal no information and an attacking
computing party can make decisions only based on values that are declassified
during the computations. Consequently, we must show that the transcript of val-
ues declassified during runtime can be simulated knowing only the final published
results of the algorithm. If this assumption is satisfied, then the implementation
in the hybrid model can be shown to be cryptographically secure. As the compo-
sition theorem from [15] assures that the security of the hybrid implementation
does not degrade when we replace all abstract operations with the actual PDK
operations. As long as all of them are universally composable, we have formally
shown that our implementation is cryptographically secure.

Goal 2: Source privacy. An algorithm for computing f(x1,...,x,,) is source-
private if all outputs and all intermediate values do not depend on the order
of inputs. If an algorithm for computing f(z1,...,2,) is cryptographically se-
cure, it is sufficient to prove that the output distributions of f(z1,..., %) and
f(Zr(1)s -+, Tr(m)) coincide for all permutations of inputs 7.

Source privacy ensures that the computing parties are not capable of link-
ing computation results with the private inputs of a specific input party. For
instance, the simple sum z; + --- + x, is source private and, thus, it does not
reveal the relation between input parties and their inputs even if we somehow
know the values of z1,...,x,. The latter does not mean that we cannot infer
something about xz;. For instance, if all inputs are in a fixed range, the sum can
limit the set of potential values of x;. Similarly, we might get extra information
about z; if we know some other values ;.

All algorithms in this paper are source-private. Straight line programs with no
declassified values are trivially source-private, because their data access patterns

are independent of the inputs. All other statistical functions are independent on
the order of inputs. Hence, it is straightforward to achieve source privacy by
obliviously shuffling the inputs before the actual computations.

Goal 3: Query restrictions. A privacy-preserving statistical analysis system
enforces query restrictions if it provides a mechanism for the input parties to
control which computations can be performed by the computing parties on the
private inputs and which results can be published to the result parties.

We achieve this goal by combining organizational controls with technical
ones. First, the input parties negotiate a study plan that describes the compu-
tations to be performed and their publishable results. Second, the study plan is
implemented on the RMIND tool using a PDK and the algorithms in this paper.
Every result in the study plan is published using the publish operation.

RMIND enforces these restrictions by requiring that computing parties have
exactly the same version of the study plan deployed at the time of execution.
The result party can only run queries for which the necessary algorithms are
deployed. Parties cannot upload new code to perform any query. If at least one
computing party refuses to run a query, it cannot be run. Input parties can have
a greater control over the process, if they or their representatives also host a
computing party.

Goal 4: Output privacy. A statistical study is output-private, if its published
results do not leak the private inputs of the input parties.

Output privacy cannot be absolute, as this way we learn nothing from the pri-
vate inputs. In practice, the amount of allowable leakage is strongly application-
dependent. In the data integration scenario, data owners help compile the study
plan and perform a privacy impact assessment of the publishable outputs. They
can then decide to augment the algorithms with limitations. For example, they
can require that a result cannot be published if it is a direct aggregation of, e.g.,
less than five, inputs. Also, they can limit the number of queries that can be
sent to prevent the siphoning of private data.

Formal quantification of output privacy should be defined on well-founded
mathematical formalisations like k-anonymity [54] and differential privacy [23].
Achieving these goals comes with the cost of reduced precision. The result parties
must accept either noisy or coarse-grained results.

Legislations often specify requirements in terms equivalent or similar to k-
anonymity, as it is easy to understand and verify such requirements. However,
these privacy requirements do not protect against attackers with background
information. Differential privacy guarantees security against attackers with un-
bounded background knowledge, provided that the result parties are willing to
accept a potentially unbounded amount of noise added to results [24].

In principle, there is no technical difficulties for implementing cryptograph-
ically secure output randomisation that provides differential guarantees similar
to the seminal work [23]. However, it must be a separate layer, as in statistical
studies, the customers often expect precise results regardless of privacy impli-
cations. Also, the amount of accessible background information is limited in a

typical statistical study, or otherwise the study would be redundant. Hence, dif-
ferential privacy may provide overly conservative results by adding too much
noise to outputs.

The authors conclude that the RMIND tool should have optional support
for output randomisation techniques that one can use to achieve differential
privacy. Moreover, defining a flavour of differential privacy that faithfully models
the bounded nature of background information in statistical studies without
inconsistencies is an important research goal.

2.5 Achieving efficiency

Protection domain kinds may have specific performance profiles. For example,
PDKSs based on secret sharing, are significantly more efficient when the algo-
rithms perform many parallel operations together. Figure 2 shows a generic
running time profile for a secure multi-party computation operation [10].

time ¢ . R
running time of a
A : : secure computation
| [operation
| 1
1 memory 1 t=vy(n)
| . ol
saturation
network : aturatio :
. oint
saturation | P |
. | |
point I I
| |
| |
| |
| 1
| number of
|
. > parallel
| . | . :
resources are used performance is \ performance is operations n
e . N '
inefficiently communication-bound " CPU- or memory-bound

Fig. 2. Performance model of the secure computation protocols based on secret sharing.

The vertical axis shows the running time ¢ of a secure multi-party computa-
tion protocol based on secret sharing and the horizontal axis shows n, the number
of simultaneous parallel operations. In the function ¢t = y(n), y characterises the
running time of the protocol based on the network setting it is deployed in. A
thorough study of function y has been performed in [49].

On Figure 2, we can distinguish three different stages. In the first stage, the
running time does not grow quickly in the number of inputs. This is because
we can fit the protocols for many parallel operations in the network channel at
the same time. Once the network channel becomes saturated, each further input
starts increasing the number of round trips for messages in the protocol. This
causes the running time to grow much faster with each parallel input. At some
point, all the computers resources are used up and processing more values in
parallel will either be impossible or very slow. Similar effects have been noted
in other PDKSs, see e.g. [51]. This gives us reason to use parallel operations as

much as possible in our algorithm design, utilizing batch processing to prevent
exhausting computational resources.

We will allow the algorithm to optimize its running time, if this requires the
declassification of a private value that is among the published outputs of the
statistical function. For example, we will use aggregates like counts and sums to
reduce the amount of data we have to process after certain filtering tasks.

3 Data import and filtering

We now present a collection of algorithms for performing privacy-preserving
statistical analysis in the application model described in the previous sections.
We begin with the first steps in the statistical analysis process—acquiring and
preparing the data.

Data are crucial ingredients of statistical analyses and they can be collected
for a specific designed study, such as a clinical trial. Alternatively, existing
datasets can be used in analyses, e.g. tax data can be used to analyse the finan-
cial situation of a country. We look at these two different methods separately as
they entail special requirements in a privacy-preserving setting.

First, let us look at the case where data are collected for a specific study.
In such studies, data are entered by a data collector (e.g. national census or a
clinical trial) or by data donors themselves (e.g. an online survey) and the joint
database is considered to be horizontally partitioned. With secure multi-party
computation, the data are encrypted or secret-shared immediately at the source
and stored in a privacy-preserving manner.

Second, consider the case where datasets previously exist and analysts wish
to perform a study by combining data from several different databases that
cannot be joined publicly into a new wvertically partitioned database. Then, data
can be imported from these databases by encrypting or secret-sharing them and
later merging them in a privacy-preserving way.

For generality, we look at the data importing stage as one abstract operation.
However, we keep in mind that when dealing with existing databases, data can
be validated and filtered by the database owners and managers before they are
imported into the privacy-preserving database. In addition to automatic checks,
the data manager can also look at the data and see if there are questionable
values that need to be checked or removed.

3.1 Availability mask vectors

It is likely that in a dataset, values are missing for some data donors. There are
two options for dealing with missing values in a privacy-preserving dataset: a
special value in the data domain can be used for denoting these values; or an
extra attribute can be added for each attribute to store this information. The
first option is not practical in the privacy-preserving domain, as the use of a
special value adds an expensive private comparison operation to nearly every
operation.

The solution with an extra attribute is much more practical, as only one
private bit of extra data needs to be stored per entry. The latter uses extra
storage space of N -k - b bits, where N is the number of entries, k is the number
of attributes, and b is the smallest data unit that can be stored in the database.

In our work, we concentrate on the latter, as this allows us to perform faster
computations on private data. Let the availability mask [m] of vector [a] contain
0 if the corresponding value in the attribute [a] is missing and 1 otherwise. It is
clear, that it is not possible to discern which and how many values are missing
from the value vector by looking at the private availability vector. However,
the count of available elements can be computed by summing the values in the
availability mask.

3.2 Input validation

By input validation and data correction, we mean operations that can be done
without interacting with the user, such as range and type checks. The values for
acceptable ranges and types are specified by the user but they are applied to
the data automatically. Input validation and data correction can be performed
at two stages—during data import on entered but not yet encrypted data, or
afterwards, in the privacy-preserving database on encrypted data. It is, of course,
faster, more sensible and straightforward to do this on data before encryption.
If the data cannot be checked before encryption for some reason, the validation
has to be performed in the privacy-preserving database.

To perform a range check on a private vector [a] of values, we construct a
vector [¢] containing the constant with which we want to compare the values.
We then compare the two vectors point-wise and get a private vector [m] of
comparison results, where [m;] < [a;]®[c;], where ® is a comparison operation,
i € {1,...,n}, and n is the size of vectors [a], [¢] and [m]. Unlike the public
range check operation, the privacy-preserving version does not receive as a result
a private vector of values that are within range. Instead, it receives a mask vector
[m] that can be used in further computations. To find out how many values are
within range, it suffices to sum the values in vector [m].

3.3 Evaluating filters and isolating filtered data

Similarly to range checks, filtering can be performed by comparing a vector [a]
of values point-wise to a vector [¢] containing filter values. As a result, we obtain
a mask vector [m] that contains 1 if the condition holds and 0 otherwise. For a
more complex filter, the comparisons are done separately and the resulting mask
vectors are combined using conjunction and disjunction.

For example, to find from a dataset all women who have had a degree in
statistical analysis for more than 5 years, we will first make three comparisons
[p] < ([a] = “F"), [q] < ([b] = “statistics”), and [r] < ([¢] > 5), where [a]
contains values for gender, [b] contains values for a person’s specialty, and [c]
contains values for years since graduation. As the filters themselves are privacy-
preserving, it is not possible to distinguish which records correspond to the filter

Algorithm 1: Privacy-preserving function cut for cutting the dataset ac-
cording to a given filter that leaks the size of the selected subset n.

Data: Data vector [a] of size N and corresponding mask vector [m].
Result: Data vector [«] of size n that contains only elements of [a]
corresponding to the mask [m]
1 Obliviously shuffle the value pairs in vectors ([a], [m]) into ([a’], [m'])
2 s + declassify([m'])
3 Form an output vector [x] by collecting all [a’;] for which s; =1
4 return [z]

conditions. To get the combined filter, we need to conjunct the filters together
[m] < [pl A gl A 7]

Most of the algorithms presented in this paper are designed so that filter
information is taken into account during computations. On the other hand, some
algorithms require that a subset vector containing only the filtered data be built.
We use Algorithm 1 for selecting a subset based on a given filter in a privacy-
preserving way.

First the value and mask vector pairs are shuffled in a privacy-preserving
way, retaining the correspondence of the elements. Next, the mask vector is
declassified and values for which the mask vector contains 0 are removed from
the value vector. The obtained subset vector is then returned to the user. It is
also possible to cut matrices in a similar fashion. This process leaks the number of
values that correspond to the filter that the mask vector represents. If the number
of records in the filter is published anyway, the function cut does not reveal any
new information, as oblivious shuffling ensures that no other information about
the private input vector and mask vector is leaked [44].

Lemma 1. If operations in the PDK are universally composable, then Algo-
rithm 1 leaks only the number of non-zero elements in the input mask filter.

Proof. In short, due to oblivious shuffle the elements of s are in unknown random
order. Hence, it is trivial to simulate the results of the declassify protocol—it
suffices to fix n ones in random locations.

More formally, we first define the trusted third party 7 in the ideal implemen-
tation as follows: T takes in vectors [a] and [m] and submits [x] to computing
parties where @ consists of a; satisfying m; = 1 in random order. In the hybrid
world, we must simulate all actions given only the shares of [z] corresponding
to corrupted computing parties. The number of such shares reveals the number
of elements n in the subset. To simulate the outcomes of the oblivious shuffle
protocol, we fix n random locations among N cells. To get shares of the elements
in the permuted vector [a], we insert elements of [«] one-by-one into these slots
and fill the remaining slots with [0]. To simulate vector [s], we insert [1] to the
slots corresponding to the locations where elements of [x] were inserted and fill
the remaining slots with [0]. After that we open the vector [s] to the attacker.
As all operations are ideal, computing parties observe no difference.

Also, note that the order of shares [x] matches: if corrupted parties behave
honestly, their shares of [x] are in the same order as specified by T. Conse-
quently, the hybrid protocol is cryptographically secure. The security of the real
implementation based on the PDK follows directly form the universal compos-
ability of shuffle and declassify operations.

The availability of filtering, predicate evaluation and summing elements of
a vector, allows us to implement privacy-preserving versions of data mining
algorithms such as frequent itemset mining (FIM) [4]. As FIM is often used for
mining sparse datasets, a significant speedup can be achieved if the infrequent
itemsets are pruned using the cut function.

4 Data quality assurance

When databases are encrypted or secret-shared, the privacy of the data donor
is protected and no users, including system administrators can see individual
values. However, this also makes it impossible for the data analyst to see the
data. Statistical analysts often detect patterns and anomalies, and formulate
hypotheses when looking at the data values. Our solution is to provide privacy-
preserving algorithms for a range of descriptive statistics that can give a feel of
the data, while protecting the individual records.

Given access to these aggregate values and the possibility to eliminate out-
liers, it is possible to ensure data quality without compromising the privacy of
individual data owners. Even though descriptive statistics leak some information
about inputs, the leakage is small and strictly limited to aggregations permitted
on the current database.

4.1 Five-number summary

Box-plots are simple tools for giving a visual overview of the data and for effec-
tively drawing attention to outliers. These diagrams are based on the five-number
summary—a set of descriptive statistics that includes the minimum, lower quar-
tile, median, upper quartile and maximum of an attribute. All of these values
are, in essence, quantiles and can, therefore, be computed by using a formula for
the appropriate quantiles. As no one method for quantile estimation has been
widely agreed upon in the statistics community, we use algorithm Q from [35]
used by the R software. Let p be the percentile we want to find and let [a] be a
vector of values sorted in ascending order. Then the quantile is computed using
the following function:

Qp; [a]) = (1 =7) - [a;] + - [aj11]

where j = [(n—1)p] 4+ 1, n is the size of vector [a], and v = np— [(n—1)p| —p.
For finding the j-th element in a private vector of values, we can either use
privacy-preserving versions of vector lookup or sorting.

Algorithm 2: Privacy-preserving algorithm for finding the five-number
summary of a vector that leaks the size of the selected subset

Data: Input data vector [a] and corresponding mask vector [m].

Result: Minimum [min], lower quartile [lq], median [me], upper quartile [uq],
and maximum [maz] of [a] based on the mask vector [m]

[] < cut([a], [m])

[b] < sort([x])

[min] < [b1]

[maz] + [bx]

[1a] Q(0.25, [b])

[me] + Q(0.5, [6])

7 [uq] < Q(0.75, [b])

8 return ([min], [lq], [me], [uq], [maz])

O Uk W N

Algorithm 3: Privacy-preserving algorithm for finding the five-number
summary of a vector that hides the size of the selected subset.

Data: Input data vector [a] of size N and corresponding mask vector [m].

Result: Minimum [min], lower quartile [lg], median [me], upper quartile [ug],
and maximum [mazx] of [a] based on the mask vector [m]

([b1, [m']) sort* ([al, [m])

[n] < sum([m])

[os] < N —[n]

4 [[mzn]] < |Ib[[1+os]]]]

5 [max] « [bn]

[iq] + Q*(0.25, [a], [os])

7 [me] < Q* (0.5, [a], [os])

[ugl < Q*(0.75, [a], [os])

9 return ([min], [lq], [me], [uq], [maz])

[S S

[

®

Using the quantile computation formula Q, the five-number summary can
be computed as given in Algorithm 2. The algorithm uses Algorithm 1 to re-
move unwanted or missing values from the data vector. The subset vector is
sorted in a privacy-preserving way and the summary elements are computed. As
mentioned before, function cut leaks the count of elements n that correspond
to the filter signified by the mask vector [m]. If we want to keep n secret, we
can use Algorithm 3 which hides n, but is slower than Algorithm 2. Note that
Algorithm 2 consists of the cut operation followed by a straight line program.
Hence, we can use the universal composability property of the PDK together
with the cut security proof to conclude that Algorithm 2 is cryptographically
secure.

Algorithm 3 starts with a call to the function sort*. This function first sorts
the data vector by the data values and then by the mask values (line 1) to ensure
that unwanted or missing values will be at the beginning of the vector. Next,
the offset is computed privately on line 3. The formula Q* for computing the

Algorithm 4: Privacy-preserving algorithm for finding the frequency table
of a data vector that leaks the size of the selected subset.
Data: Input data vector [a] and corresponding mask vector [m].
Result: Vector [b] containing breaks against which frequency is computed, and
vector [¢] containing counts of elements
[2] « cut([a], [m])
n < size([x])
k « [log,(n) + 1]
[min] < min([z]), [maz] + max([z])
Securely compute breaks [b] according to [min], [maz] and k
[¢:] + (sum([z:] < [bi+1]),i € {1,...,n})
for i € {k,...,2} do
| o] = [ei] = [eimi]
end
return ([b], [c])

© 00N O A W N

[y
o

quantiles works as Q with the exception that, as the number of elements [n] is
kept private, the indices [j] are also not revealed. The computed offset [os] is
added to the private index [§] to account for the values at the beginning of the
sorted vector that do not belong to the filtered subset. In addition, vector lookup
on line 4 and during the computations of the quantiles are now performed in a
privacy-preserving way. As a result, the value is retrieved while the the index
remains secret for all computing parties.

4.2 Data density estimation

The distribution of values of an attribute gives an insight into the data. For cate-
gorical attributes, the distribution can be discerned by counting the occurrences
of different values. For numerical attributes, we must split the range into bins
specified by breaks and compute the corresponding frequencies. The resulting
frequency tables can be visualised as a histogram.

Algorithm 4 computes a frequency table for a vector of numerical values
similarly to a public frequency computation algorithm. Missing or filtered values
are removed on line 1. The size n of the returned vector [x] is determined by the
function size on line 2. As we do not hide the sizes of private vectors, this function
returns a public value. The number of bins & is publicly computed according to
Sturges’ formula [52]. Bins are created in a privacy-preserving manner based on
the minimum, maximum and k. Finally, on lines 6 - 9, the elements belonging in
each bin are counted using secure multi-party computation. These comparisons
can be done in parallel to speed up the algorithm.

The process of creating a frequency table for discrete or categorical attributes
is similar, but instead of checking whether an element belongs to an interval, it
is compared to each bin value and the last cycle is omitted.

4.3 Simple statistical measures

Statistical algorithms use common operations for computing means, variance
and covariance. These statistical measures also provide important insights about
the attributes and their correspondence. We show, how these measures can be
computed in a privacy-preserving manner over various samples.

To compute means, variances and covariances, we first multiply point-wise
the value vector [a] of size N with the mask vector [m]. Let us denote the result
by [x]. This way, the values that do not correspond to the filter do not interfere
with the computations. The number of subjects [n] is computed by summing the
elements in the mask vector. The arithmetic mean, and the unbiased estimates
of variance and standard deviation can be computed as follows

;XN
mean([z]) = m . l:zl[[xl]] ,

var([z]) = [[n]]%l Z[[%]]Q - ﬁ : (Z[[%‘]]))
sdev([z]) = v/var([x]) .

The computation of these values is straightforward, if the privacy-preserving
platform supports addition, multiplication, division and square root. Further-
more, if n is public, we can use division with a public divisor and public square
root instead, as they are faster than the private versions.

Trimmed mean is a version of mean where the upper and lower parts of
the sorted data vector [a] are not included in the computation. The analyst
specifies the percentage of data that he or she wants to trim off the data. Then
the corresponding quantiles are computed, data are compared to these values and
the mask vector [m] is updated with the results acquired from the comparison
operation. This ensures that only values that fall between the given percentages
remain in the filtered result [z].

Covariance shows whether two attributes change together. The unbiased es-
timate of covariance between filtered vectors [z] and [y] can be computed as

N

cov([z], [y]) = M%l (Z[[%Myi]] - ﬁ ‘ Z[[xi]] Z[[%]])

i=1 i=1

4.4 Univariate outlier detection

Datasets often contain errors or extreme values that should be excluded from
the analysis. Although there are many elaborate outlier detection algorithms
like [13], outliers are often detected using quantiles.

It is common to mark values in a data vector [a] smaller than the 5% quan-
tile or larger than 95% quantile as outliers. The corresponding mask vector is

computed by comparing all elements of [a] to Q(0.05, [a]) and Q(0.95, [a]), and
then conjuncting the resulting index vectors.

The values of the quantiles need not be published for outlier detection pur-
poses and data are filtered to exclude outliers from further analysis. Furthermore,
it is possible to combine the mask vector with the availability mask [m] and
cache it as an updated availability mask to reduce the filtering load.

Another generic measure of eliminating outliers from a dataset is using me-
dian absolute deviation [30,31] (MAD). Element [z] is considered an outlier in
a value vector [a] of length n if

1Q(0.5, [al) — [«]| > A - MAD,

where
MAD = Q(0.5, |[a;] — Q(0.5,[a])]) ,i € {1,...,n}

and A is a constant. The exact value of A is generally between 3 to 5, but it can
be specified depending on the dataset.

5 Statistical tests

It is often useful to compare behaviours in two groups, often referred to as the
case and control populations. There are two ways to approach this. Firstly, we
can select the appropriate subjects into one group and assume all the rest are in
the other group. Alternatively, we can choose subjects into both groups. These
selection categories yield either one or two mask vectors. In the former case, we
compute the second mask vector by flipping all the bits in the existing mask
vector. Hence, we can always consider the version where case and control groups
are determined by two mask vectors.

In the following, let [a] be the value vector we are testing and let [ca] and
[eo] be mask vectors for case and control groups, respectively. Then [nq] =
sum([ea]) and [n.,] = sum([co]) are the counts of subjects in the correspond-
ing populations.

5.1 The principles of statistical testing

Figure 3 gives an overview of what the different steps are for statistical testing
in the private and public setting. In a normal statistical testing procedure, we
first compute the test statistic based on the data. Next, we compute the p-value
based on the obtained value and the size of the sample. Finally, we compare the
p-value to a significance threshold set by the analyst.

In the privacy-preserving setting, we have two options of how to carry out
this procedure. The choice depends on how much information we are willing to
publish.

Option 1 is similar to the public setting, with the difference that the test
statistic is computed in a privacy-preserving manner. It is then published along
with the sample sizes, the p-value is computed publicly and compared to the

Public data
Data > Te.st. »| p-value »[Comparison |« Threshold
statistic
Option 1 Private data Public data
Data > Te.st. »| p-value »| Comparison |« Threshold
statistic
Option 2 Private data Public data
Data > Te.st. »| Comparison |« Cm'c"."l t.eSt < Threshold
statistic statistic

Fig. 3. Statistical testing procedure in the public and private setting

given threshold value. As the function that converts the test statistic to into the
p-value is always monotone and depends only on the sizes of case and control
groups. Consequently, it can be always inverted if sample sizes are public. Hence,
publishing the test statistic is equivalent to revealing the p-value together with
the sizes of case and control groups.

However, revealing the sizes of the case and control groups or the raw p-value
might sometimes reveal too much information. For this occasion, we propose
Option 2, where the test statistic is computed based on the data in a privacy-
preserving manner. The data analyst determines the threshold, and the critical
p-value and the corresponding test statistic are publicly determined based on
this threshold. Finally, the private test statistic is compared to the critical test
statistic in a privacy-preserving manner. The only thing that is published is the
decision whether the alternative hypothesis is supported by the data.

‘We discuss how to perform Student’s t-test, paired t-test, Wilcoxon rank sum
and signed-rank tests, and the x? test in a privacy-preserving manner. These test
algorithms return the test statistic value that has to be combined with the sizes
of the compared populations to determine the significance of the difference.

5.2 Student’s t-tests

The two-sample Student’s t-test is the simplest statistical tests that allows us to
determine whether the difference of group means is significant or not compared to
variability in groups. There are two common flavours of this test [39] depending
on whether the variability of the populations is equal. Let [] < [a] - [ca] and
[y] < [a] - [co], then [x] is the data of the case population and [y] is the data

of the control population. For equal variance, the t-test statistic is computed as:

;1 mean([z]) — mean([y])

sdev([zl,) /gy + i

where sdev([z], [y]) estimates the common standard deviation of the two sam-
ples and is computed as follows

ot = [LAl

The t-test for unequal variances is also known as the Welch t-test. The test
statistic is computed as follows

mean([z]) — mean(Jy])
var([z]) var([y])
\/ [real T Trcol

Nca o

[t] =

A paired t-test [39] is used to detect whether a significant change has taken
place in cases where there is a direct one-to-one dependence between case and
control group elements, for example, the data consists of measurements from
the same subject. Let [x] and [y] be the paired measurements, and let n be the
count of these measurements. The test statistic for the paired t-test is computed
in the following way

mean([z] — [y]) - v/In]
sdev([z] - [y]) '

The algorithms for computing both t-tests are straightforward evaluations
of the respective formulae using privacy-preserving computations. To compute
these, we need the availability of privacy-preserving addition, multiplication,
division and square root. As mentioned earlier, we can either publish the test
statistic and the population sizes or, based on a user-given threshold, publish
only whether the hypothesis was significant or not.

[t] =

5.3 Wilcoxon rank sum test and signed rank test

The t-test provides accurate results only if measurements in the case and control
groups follow the normal distribution. If this assumption does not hold, non-
parametric Wilcoxon tests provide an alternative. The Wilcoxon rank sum test
and its improvement Mann-Whitney U test [34] work on the assumption that
the distribution of data in one group significantly differs from that in the other.

Algorithm 5 gives an overview of how we compute the test statistic [w]
using the Mann-Whitney U test. For this algorithm to work, we need to cut
the database similarly to what was done for the five-number summary, keeping
in mind that we need the dataset to retain elements from both groups—cases
and controls. On line 1, we combine the two input mask vectors into one. The

Algorithm 5: Privacy-preserving two-sided Mann-Whitney U test that
leaks the total size of the case and control group

Data: Value vector [a] and corresponding mask vectors [ea] and [co]
Result: Test statistic [w]

[m] < [ea] V [co]

[nca] < sum([ea]) and [nco] + sum([eo])

([x], [u], [v]) < cut(([a], [ca], [co]), [m])

([=], [u], [v]) < sort([z], [], [v])

[r] + rank([z])

[rea] < [r] - [u] and [reo] < [r] - [v]

[Rea] < sum([req])

[ucal <= [Rea] = 5([12ca] - ([ncal + 1)) and [uco] <= [1ca] - [nco] — [uca]
return [w] < min(Juca], [tco])

B = N1 BN VR I

©

Algorithm 6: Privacy-preserving Wilcoxon signed-rank test that leaks the
size of the case and control group

Data: Paired value vectors [a] and [b] for n subjects, mask vector [m]
Result: Test statistic [w]

([z], [y]) « cut(([a], [b]), [m])

[d] < [z] - [y]

Let [d’] be the absolute values and [s] be the signs of elements of [d]
[s] < sort(([d'], [s]))

[r] < ranko([s])

return [w] + sum([s] - [r])

S ULk W N

function cut is the same as before, except that several vectors are cut at once
based on the combined filter [m]. Next, the value and mask vectors are sorted
based on the values of [x] so that the relation between the values and mask
elements is retained.

The rank function on line 5 shares and assigns an integer ¢ € {1,...,n} to
all values in the sorted vector based on the location of the value. If some values
in the sorted vector are equal, all of these elements are assigned the average of
their ranks. This is done using oblivious comparison and oblivious division. This
correction makes the algorithm significantly slower as this requires us to keep
all the ranks as floating point values instead of integers. It is possible to use this
test without the correction which makes it give a stricter bound and might not
accept borderline hypotheses, but the algorithm will work faster. On line 6, the
rank vector [r] is multiplied with the case and control masks to find the ranks
belonging to the case and control groups.

Similarly to Student’s paired t-test, the Wilcoxon signed-rank test [55] is
a paired difference test. Our version, given in Algorithm 6, takes into account
Pratt’s correction [34] for when the values are equal and their difference is 0.

First, both data vectors are cut based on the mask vector similarly to what
was done in Algorithm 5. Next, the difference [d] between the two data samples

is found, followed by the computation of the absolute value and sign of [d]. We
expect that the latter is the standard function that returns —1 when the element
is negative, 1 if it is positive and 0 otherwise. The signs are then sorted based
on the absolute values [d’] (line 4) and the ranking function rankg is called.
This ranking function is otherwise similar to the function rank, but differs in
the fact that we also need to exclude the differences that have the value 0. Let
the number of 0 values in vector [d] be [k]. As [d] has been sorted based on
absolute values, the 0 values are at the beginning of the vector so it is possible
to use [k] as the offset for our ranks. Function rankg assigns [r;] < 0 while
[s;] = 0, and works similarly to rank on the rest of the vector [s], with the
difference that i € {1,...,[n — k[}.

Both algorithms only publish the statistic value and the population sizes. As
the first operation cut is followed by a straight line program in both algorithms,
the universal composability property of the PDK together with the security
proof of function cut is sufficient for concluding cryptographic security of both
algorithms.

5.4 The x? tests for consistency.

If the attribute values are discrete such as income categories then it is impossible
to apply t-tests or their non-parametric counterparts and we have to analyse
frequencies of certain values in the dataset. The corresponding statistical test is
known as the x? test. The standard x? test statistic is computed as
k m
fii — eji)?
Xzzzz(j ejz-j) 7

=1 j=1
where f}; is the observed frequency and e;; is the expected frequency of the i-th
option and j-th group. As we are working with two populations, we can simplify
this formula as

k 2 2
i — €15 di — ey
Gyl al | (=)

€14 €2

i=1
then the frequencies can be presented as the contingency Table 2.

To give the analyst the possibility to choose, which values will be converted
into which option in the contingency table, we introduce the notion of a public
codebook CB. This matrix essentially holds the possible values of the attribute
in the first column, and the option they will belong to, in the second.

Option 1 Option 2 ... Total
Cases c1 Co L. 1
Controls dy do ... ro
Total p1 P2 .. n

Table 2. Contingency table for the standard x? test

Algorithm 7: Privacy-preserving algorithm for compiling the contingency
table for two classes with k options for the x? test

Data: Value vector [a], corresponding mask vectors [ca] and [co] for cases
and controls respectively and a public code book CB defining k£ options
from wu possible values of the attribute

Result: Contingency table [CT]

[zca] < [a] - [ca] and [zco] + [a] - [eo]

Let [CT] be a 2 x k matrix

for i € {1,...,u} do

[[bca]] < [[:Ecaﬂ = CBi,l and Hbco]] < [[ZI}COII = CBi,l
j <— CB¢,2
[CT1,;] [CT1 ;] + sum([bea])
[CT2,;] = [CT2,;] + sum([beo])
end
return [CT]

© 0 N0 A W N -

Algorithm 8: Privacy-preserving x? test of independence

Data: Contingency table [C] of size 2 x k

Result: The test statistic x2
1 Let [n] be the total count of elements
2 Let [r1] and [r2] be the row subtotals and [p1], ..., [px] be the column subtotals
3 Let [E] be a table of expected frequencies such that

1T
[E: ;] « lril el Z]]n[[p]]], ie{1,2},5€{1,....k}
ko ([Coyl-[Er;D? (Ca,]-[E2,])?

27 L J 51V J J

bl 23—1 [E1] [E2]

5 return [x’]

Algorithm 7 compiles a contingency table from a data vector, mask vector
and the public code book CB. Algorithm 8 shows how to compute the x? test
statistic based on a contingency table. The algorithm can be optimised if the
number of classes is small, e.g. two. The algorithm publishes only the statistic
value and the population sizes.

5.5 Multiple testing

When we have a dataset with several distinct variables ready for analysis, we
can test multiple hypotheses on the gathered data. However, this can lead to
false positive results as the chances of accidental spurious results rise with each
variable tested. When working with multiple testing, different precautions can
be taken. In this section, we discuss how to apply privacy-preserving versions
of Bonferroni correction and Benjamini-Hochberg procedur (false discovery rate
control). As the correction for multiple-hypothesis testing is trivial when p-values
are public, we consider the case where privacy-preserving statistical testing re-
veals only whether the corrected significance threshold is reached or not.

Algorithm 9: Privacy-preserving Benjamini-Hochberg procedure

Data: Vector of k test statistics [¢], significance threshold «

Result: List of significant hypotheses

Publicly compute q(;) ~ Q (%) forie{1,...,k}.

Obliviously sort pairs ([t], [¢]) in descending order wrt. [¢;].

Let ([t(:y], [eqy]) be the result.

Compute [s:] < ([t(iy] > gq)) for i € {1,...,k}.

Declassify values [sk], [sk—1], - .. [s1] until the first 1 ([s;,] = 1) is revealed.
Declassify locations [c(1)], ..., [c@,)]. Declare these hypotheses significant.

D Uk W N

Bonferroni correction. Let o be the significance threshold and let k& be the
number of tests applied on the same data. Then the Bonferroni correction simply
reassigns the same significance threshold & = «a/k to all tests. As a result,
Bonferroni correction is trivial to implement, we just have to use the corrected
significance threshold & of all privacy-preserving statistical tests.

Benjamini-Hochberg procedure. Bonferroni correction is often too harsh
compared to false discovery rate (FDR) correction. Unfortunately, FDR, is not as
straightforward to apply in the privacy-preserving setting as for multiple testing
p-values must remain private. Therefore, we look at the Benjamini-Hochberg
(BH) procedure [2]. The BH procedure first orders p-values in ascending order
and then finds the largest i such that

i

Dy < T

BNl

where p(;) is the i-th p-value and % is the number of hypotheses.

Recall that for any statistical test the correspondence between between p-
values and test statistics is anti-monotone. Namely, for any significance threshold
a we can find a value Q(«) such that for any value of the test statistic ¢ > Q(«)
the corresponding p-value is less than «. As a result, the Benjamini-Hochberg
criterion can be expressed in terms of decreasingly ordered test statistics:

1 xe’
Puy < 7 — tiy > Q T

For most tests, the function @ is computed as the upper quantile of a distri-
bution that depends only on the size of the case and control group. Hence, we
can publicly compute fractional approximations of significance thresholds

Qo
qu) ~ Q (k)

and use secure computing to evaluate comparisons L@y 2 qe)-
Algorithm 9 depicts the corresponding privacy-preserving significance test-
ing procedure, which reveals only the locations ¢; and ordering of significant test

statistics. It is even possible to hide the ordering if the shares [c(y], ..., [c.)] are
obliviously shuffled before opening such that c(y), ..., c(;,) are opened in random
order. As the number of revealed zeroes is equal to the number of significant hy-
potheses, we can directly simulate the published values knowing only the desired
outcome. The formal security proof is analogous to the proof of Lemma 1.

6 Predictive modelling

As most prediction models are defined in terms of linear algebra, we have im-
plemented privacy-preserving versions of the following vector and matrix opera-
tions: computing the dot product, computing vector length, computing the unit
vector, and matrix multiplication. It is also possible to transpose a matrix and
compute its determinant. In addition, we have implemented cross product for
vectors of length 3, and eigenvector and eigenvalue computation for 2 x 2 sym-
metric matrices. The privacy-preserving versions of these algorithms are straight-
forward and can be used in linear regression models.

6.1 Linear regression

Linear regression is the most commonly used method for predicting values of
variables based on other existing variables. It can also be used to find out if and
how strongly certain variables influence other variables in a dataset.

Let us assume that we have k independent variable vectors of n elements, i.e
X = (X;,;), where i € {0,...,k} and j € {1,...,n}. The vector X; o = (1) is an
added variable for the constant term. Let y = (y;) be the vector of dependent
variables. We want to estimate the unknown coefficients 3 = (5;) such that

Yi = BeXjk 4 ...+ 81X + BoXjo0 + €5

where the vector of errors € = (¢;) is assumed to be white Gaussian noise. This
list of equations can be compactly written as € = X8 — y. Most methods for
linear regression try to minimize the square of residuals

lell* = lly — X8I . (1)

This can be done directly or by first converting the minimization task into its
equivalent characterization in terms of linear equations:

XTX3 =XTy . 2)

Let us first look at simple linear regression, where the aim of the analysis
is to find @ and B that fit the approximation y; ~ fg + S1x; best for all data
points. Then the corresponding linear equation (2) can be solved directly:

. cov(z,y)
| _cov(zy)

var(x))

Bo = mean(y) — f; - mean(z) .

Algorithm 10: maxLoc: Finding the first maximum element and its lo-
cation in a vector in a privacy-preserving setting

Data: A vector [a] of length n
Result: The maximum element [b] and its location [I] in the vector
Let 7(j) be a permutation of indices j € {1,...,n}
[6] < [ax1)] and [I] < (1)
for i € {m(2),...,m(n)} do
[< (|leno]] > 1)
[8] « 1] — [el - 18 + [€] - [axo]
[l < [- [] - [+ [- =)
end
return ([b], [1])

® N O A W N

As we have the capability to compute covariance and variance in the privacy-
preserving setting, we can also estimate the values of 50 and ﬁl in this setting.

We will look at three different methods for solving the system (2) with more
than one explanatory variable: for k < 4, we simply invert the matrix by com-
puting determinants. For the general case, we give algorithms for the Gaussian
elimination method [48] and LU decomposition [48]. We also describe the con-
jugate gradient method [33] that directly minimizes the square of residuals (1).

In all these algorithms, we assume that the data matrix has already been
multiplied with its transpose: [A] = [X]?[X] and the dependent variable has
been multiplied with the transpose of the data matrix: [b] = [X]?[y].

In the privacy-preserving setting, matrix inversion using determinants is
straightforward, and using this method to solve a system of linear equations
requires only the use of multiplication, addition and division, and, therefore, we
will not discuss it in length. For the more general methods for solving systems
of linear equations, we first give an algorithm that finds the first maximum el-
ement in a vector and also returns its location in the vector, used for finding
the pivot element. While the Gaussian and LU decomposition algorithms can
be used without pivoting, it is not advisable as the algorithms are numerically
unstable in the presence of any roundoff errors [48].

Algorithm 10 describes the function maxLoc that finds the pivot element
and its location from a given vector. To avoid leaking information about equal
values in a vector, the indices are first permuted to ensure cryptographic privacy.
This means that the indices are traversed in random order during each execution.
On line 4, the current maximum element is compared with the element that
is being viewed. On lines 5 and 6 the value and its location are determined
obliviously. Namely, if the new element was larger, it will be considered as the
new maximum element and its location will be recorded based on the same
comparison result. For several maximum elements, it returns the location of one
of these elements.

Of the two algorithms for solving a system of linear equations, let us first
look more closely at Gaussian elimination with backsubstitution. Algorithm 11
gives the privacy-preserving version of the Gaussian elimination algorithm.

At the start of the algorithm (line 2), the rows of the input matrix [A] are
shuffled along with the elements of the dependent variable vector, that have been
copied to [z], retaining the relations. On lines 5-13, the pivot element is located
from the remaining matrix rows and then the rows are interchanged so that the
one with the pivot element becomes the current row. Note that all the matrix
indices are public and, hence, all of the conditionals work in the public setting.
As we need to use the pivot element as the divisor, we need to check whether
it is 0. However, we do not want to give out information about the location of
this value so, on line 14, we privately make a note whether any of the pivot
elements is 0, and on line 34, we finish the algorithm early if we are dealing with
a singular matrix. Note that in the platform we are using, division by 0 will
not be reported during privacy-preserving computations as this would reveal the
divisor immediately.

On lines 17 - 22, elements on the pivot line are reduced. Similarly, on lines 23 -
31, elements below the pivot line are reduced. Finally, on lines 36 - 39, backsub-
stitution is performed to get the values of the coefficients.

The main difference between the original and the privacy-preserving Gaussian
elimination algorithm is actually in the maxLoc function. In the original version,
elements are compared one-by-one to the largest element so far and at the end of
the subroutine, the greatest element and its location have been found. As for our
system, we basically do the same thing only we use oblivious choice instead of the
straightforward if-clauses. This way, we are able to keep the largest element secret
and we only reveal its location at the end without finding out other relationships
between elements in the vector during the execution of this algorithm.

Lemma 2. If operations in the PDK are universally composable, then Algo-
rithm 11 leaks only whether the matriz is singular or not.

Proof. During the execution of the algorithm, row indices p; of pivoting elements
are declassified to computing parties. For the proof, we must show that pivoting
index p = (p;) leaks no information about the matrix A.

For technical reasons, it is better to represent p in terms of original row
labels. For that, we initially label rows of A after the shuffling with 1,...,n
and carry these labels through the computations. Hence, p; is not equal to the
declassified output of the maxLoc operation. Instead, p; is the original label of
the row after shuffling. For example, let the first maximum element be in row
4. Then p; = 4, the first and fourth rows are interchanged and the matrix is
reduced. During the next step, let the maximum element be again in row 4. Now
p; will not be 4 but the original label, i.e. 1. Clearly, both representations are
equivalent, as one can compute the outputs of maxLoc form p and vice versa.

Let us first compare what happens if we apply Algorithm 11 with and without
shuffling the rows (line 1). Let A and A* denote the matrix states throughout
the execution of the corresponding algorithms. In the simplest case, all pivoting

Algorithm 11: Privacy-preserving Gaussian elimination with backsubsti-
tution for a matrix equation Ax = b that leaks if the matrix is singular

Data: a k x k matrix [A], a vector [b] of k values
Result: Vector [z] of coefficients

1 Let [x] be a copy of [b]
2 Obliviously shuffle [A], [x] retaining the dependencies
3 Let [c] « false privately store the failure flag during execution
4 forie{l,...,k—1} do
5 [m] be a subvector of [A.,.] such that uw € {i,...,k},v =1
6 (Tt], [irow]) + maxLoc([m])
7 irow < declassify ([irow]) + i
8 if irow # i then
9 for j € {1,...,k} do
10 ‘ Exchange elements [A;row,;] and [A; ;]
11 end
12 Exchange element [Zirow] and [z;]
13 end
14 [e] « [e] Vv ([Ai:] =0)
15 [pivinv] + [Ai:] ™"
16 [Aii] <1
17 for j € {1,...,k} do
18 if j # ¢ then
19 ‘ [[Ai’j]] <— [[Ai,j]] . [[pwmv]]
20 end
21 [x:] < [:] - [piviny]
22 end
23 forme{i+1,...,k} do
24 for j € {1,...,k} do
25 if j # i then
26 | [Ans] < [Ans] = [Ais] - [Am]
27 end
28 end
29 [2m] < [zm] = [zi] - [Am.i]
30 [Anm,:]+ 0
31 end
32 end
33 if declassify([c]) then
34 ‘ return ”Singular matrix”
35 end
36 [z]

[zx] < [[Ak,k]]
37 forie{k—1,...,1} do
38 [z:] < [zi] - j:Zi;rQ [Aij] - [=5]

39 end
40 return [z]

steps are deterministic, as there is only one element with maximal absolute value
larger than zero for m. In this case, we can always obtain A* by permuting the
rows of A. This claim clearly holds, at the beginning of execution. Now assume
that the claim holds at the beginning of the for-cycle (line 4). Then vectors m
and m* will contain the same elements. Consequently, both algorithms must
choose the row with the same matrix elements. The following reduction steps of
the algorithm use this row to modify remaining rows. As the set of rows to be
modified is the same up to the permutation of rows, the reduction step yields
the same results up to the row permutation. This completes the induction.

If there are several equal maximal elements then the pivoting index p is not
uniquely determined by the matrices A and A*. Nevertheless, we can compare
the distributions of p and p*. We do this by carefully aligning runs of both
algorithms. We can represent such runs by the tree of events where intermediate
decision nodes represent choices made by the maxLoc algorithm. As maxLoc
chooses elements with the maximal absolute value with equal probability, each
child is chosen uniformly when we reach such a decision node. Note that up to
the first equality the claim about matrices A and A* still holds. As the order of
children in the decision node does not alter probabilities, we can align event trees
so that the children match. As a result, the row with the same element is chosen
in matching children and thus matrix A* can be still obtained by permuting
the rows of A*. Hence, both runs of the algorithms can be represented with the
same event tree such that A* in each leaf node can be obtained by permuting
the rows of A.

Note that if we assign row labels to A before shuffling, then the pivoting
indices p and p* will be identical in each leaf node. Consequently, the distribu-
tions of pivoting indices will be the same. As the indices are assigned after the
shuffling step, we can obtain the distribution of p by taking p* and applying
a random permutation 7 to all elements, i.e., p; = w(p}). The latter directly
implies that p is distributed as a uniform permutation.

The claim holds even if the matrix is singular and thus some A;; = 0. If the
inversion operation returns a fixed value as 0~! all claims presented above still
hold. If the inversion operation returns several values with different probabilities,
then we must add additional decision nodes to the event tree. The latter, does
not change the reasoning, as choices can be matched similarly to before. Hence,
we get matching event trees and the claim still holds. For the same reason, the
claim holds even if all arithmetical operations are imprecise and probabilistic.

To complete the proof, we must formally define the corresponding simulator
construction. The latter is straightforward. We first sample the pivoting index
p and then simulate shares to match the execution dictated by p. We omit the
construction here as it is analogous to the simulator construction in Lemma 1.

Let us now look at LU decomposition. In the ordinary setting, this method
is faster than the Gaussian elimination method. LU decomposition uses matrix
decomposition to achieve this speed-up. If we can decompose the input matrix
into a lower and upper triangular matrix L and U, respectively, so that L-U = A,
we can use forward substitution and backsubstitution on these matrices, similarly

Algorithm 12: LUDecomp: Privacy-preserving LU decomposition for a
symmetric matrix A that leaks if the matrix is singular

Data: a k x k matrix [B]
Result: The LU decomposition matrix [B] and g containing the row
permutations

Let [¢] < 0 be a boolean value
for i € {1,...,k} do
[m] be a subvector of [By] such that uw € {i,...,k},v =1
(It], [irow]) + maxLoc([m])
irow < declassify ([irow])
if irow # i then

for j € {1,...,k} do

‘ Exchange elements [Birow,;] and [B; ;]

end
10 end
11 [e] <[]V ([Bis:] = 0)
12 qi < trow
13 [ipiv] < [Bi:] ™"
14 forme{i+1,...,k} do

© 00N O AW N

15 [Bum.il < [Bm.i] - [ipiv]

16 for je{i+1,...,k} do

17 | Byl ¢ Bl — [Bmal - [Biy]
18 end

19 end

20 end

21 if declassify([c]) then

22 ‘ return ”Singular matrix”

23 end

24 return ([B], q)

to the process we used in the Gaussian elimination method. Algorithm 12 gives
the privacy-preserving version of LU decomposition. Note, that the elements on
the diagonal of the lower triangular matrix L are equal to 1. Knowing this, L
and U can be returned as one matrix such that the diagonal and elements above
it belong to the upper triangular matrix U and the elements below the diagonal
belong to the lower triangular matrix L without losing any information.

Similarly to Algorithm 11, first the pivot element is found using the maxLoc
function. After the elements are exchanged, the row permutations are saved for
use in the algorithm for solving the set of linear equations. As a result, the
decomposition matrix and the permutations are returned. The permutations are
public information but they reveal nothing about the original dataset because the
rows have been shuffled before inputting them to the decomposition algorithm
similarly to what was done in Algorithm 11.

Lemma 3. If operations in the PDK are universally composable, then Algo-
rithm 12 leaks only whether the matrix is singular or not.

Algorithm 13: Solving linear regression task y ~ X3 using the LU de-
composition matrix in a privacy-preserving setting

Data: An n X k data matrix [X] and an n element response vector [y]
Result: A vector [b] of coefficients

Compute correlation matrix [A] + [X]7[X]

Compute new target vector [b] + [X]” [v]

Shuffle [A], [b] retaining the dependencies

(IB].q) « LUDecomp([A])

Rearrange [b] based on permutation g

for i € {2,...,k} do

7 | B < o] - ; [Bi.,] - 6]

8 end
orie€{k,...,1} do

10 | [bi] « <[[bz‘]] - zk: [Bi;]- ﬂbj]]> B

J=i+1

(=231 NV G

©
-

11 end
12 return [b]

Proof. This reasoning is the same as for Lemma 2. It is easy to see that both
algorithms output the same pivoting vectors, as the sub-matrix used for choosing
the pivot row is updated identically in both algorithms.

Algorithm 13 shows how to solve a set of linear equations using LU decom-
position. The matrix rows are shuffled as in Algorithm 11 and the LU decom-
position matrix is composed using the LUDecomp function. As an additional
result we receive the permutation that was done for pivoting purposes during
the decomposition phase. Next, on row 5, elements of the vector [b] containing
the dependent variable are permuted to be in concurrence with the permuta-
tions that were performed during the decomposition phase. In the usual setting,
this step does not need to be done, as the elements can be accessed on the fly
using the permutation vector g, but in the privacy-preserving setting, it is more
feasible to first rearrange the vector and then access the elements in order.

On rows 6 - 8, forward substitution is performed using the values from the
lower triangular matrix. Finally, on rows 9 - 11, backsubstitution is performed
using the values from the upper triangular matrix.

For the security consideration, note that Lemma 3 assures that line 4 is
universally composable and, thus, the entire algorithm is a straight line program
consisting of universally composable operations. As such, it is also secure.

In addition to the methods based on the formulation (2), we decided to look
at an iterative algorithm that trie to minimize the quadratic residuals directly to
test the difference in performance and accuracy. We chose the conjugate gradient
method for this quadratic programming task (1). For a quadratic programming
task, the conjugate gradient algorithm is guaranteed to converge in k steps, where

Algorithm 14: Privacy-preserving conjugate gradient method

Data: a k x k matrix [A] = [X]7[X], a vector [b] = [X]” [y] of k values for
the dependent variable, public number of iterations z

Result: A vector [x] of coefficients

Let [x] be a vector of k values 0

[x] « [x]"

[r], [p] « [b]

repeat

B W =

5 [a] « _—r]]T[[r]]
[p]"[A]lP]

6 | [x] < [=]+ o[p]

7 [s] < [r] . a[A][p]

s|*|s

o | [p]« [s]+ [A]lp]

10 [r] < [s]

11 z+—z—1

12 until z = 0;

13 return [z]”

k is the number of columns in the matrix A, provided that all computations are
done without errors [1].

As our matrix is symmetric and positive semi-definite, we can use the sim-
plest version of this method with the fixed number of iterations that depends on
the number of variables k. Considering that the initial convergence of the conju-
gate gradient method is rapid during a small number of iterations [1] and that
privacy-preserving floating point operations are approximately as imprecise as
operations with the float datatype in the normal setting, we decided to use fixed
number of iterations in all of our experiments. As the largest number of variables
was 10, the number of iterations was fixed to 10. Algorithm 14 shows how to
solve our quadratic programming task using the conjugate gradient method. As
Algorithm 14 is a straight line program, it is secure by default.

7 The implementation of Rmind

7.1 Implementation architecture

We have built an implementation of the privacy-preserving statistical analy-
sis tool on the SHAREMIND secure computation framework [3]. We used the
additive3pp PDK originally introduced in [9] as the computation backend. In
this setting, no computing party CP can derive information about intermediate
values unless it colludes with another computing party.

This PDK uses secret sharing among three servers to protect the confidential-
ity of the data and has a wide range of implemented protocols (see Section 2.2).

Figure 4 shows the architecture of the tool and how different SHAREMIND com-
ponents were used in its implementation.

CSV importer The RMIND tool
CSV file parser (C/C++) Query language
[interpreter (Haskell)
_________ L ___

transformation and statistical

analysis algorithms (SecreC)

|

|

|

- : |
Privacy-preserving data |
|

|

|

SHAREMIND PDK
layer

SHAREMIND

i
1
1
! Database layer
1
1
1

G JoAIRS ANINHYVHS

b e e e e - -

(protected data (protected data

storage)

analysis)

F——e— e ——— —

Component implemented

|

]
Legend: for this paper ! Component

1

]

]

used as-is

(Implementation language)

Fig. 4. The architecture of the RMIND tool (servers 2 and 3 are identical to server 1)

We implemented a command line utility for uploading data that can secret-
share values from files in CSV-format so that each server gets one share of
each value in the input file. These tables can later be used by the RMIND tool
in the analysis. RMIND is an interactive tool with a command line interface
that allows the analyst to manipulate data tables and run statistical analyses.
RMIND is implemented in the Haskell programming language because of the ease
of implementing interpreters and compilers in Haskell.

We consciously made the choice not to build on top of an existing system (e.g.
R, SPSS etc) for two reasons. First, we cannot re-use the statistical functions

implemented by existing tools, because they are implemented on standard pro-
cessors and cannot be easily retargeted to secure computation. Second, existing
tools have no elegant support for separating public and private data.

Solutions have been proposed, e.g., in [19] that have a tuned system that
performs just the minimal amount of secure computation, interleaving public
and private operations. However, their paper does not describe a way for saving
and reusing the results of secure computation on the server side. In our tool,
all data, including intermediate tables, are stored remotely, and only statistical
procedures can make their results public.

Commands of RMIND are preprocessed at the client and sent to all SHARE-
MIND servers, where the necessary secure computation procedures are executed.
These procedures are implemented in the SECREC 2 programming language [7]
that separates public and private data on a type system level, thus also support-
ing the data tagging design goal of our tool. If the procedure needs to use data
uploaded by a user or previous intermediate results, it can access them from the
database system built into SHAREMIND that also separates data based on which
protection domain it belongs to.

RMIND can only perform operations for which the respective procedure has
been deployed on all SHAREMIND servers. This is an additional control mecha-
nism to ensure that no unauthorised operations are performed. The three servers
shown in our architecture must, therefore, be deployed by independent organiza-
tions interested in preserving the privacy of the data. If that assumption holds,
the whole RMIND system provides much improved privacy with provable security
guarantees when compared to traditional statistical tools.

7.2 Privacy-preserving statistical analysis language

Managing public and private variables. We have adapted a subset of the
language used by the statistical analysis tool R into our privacy-preserving set-
ting. In RMIND, data are stored in public and private arrays of signed integers,
floating point numbers or boolean values. The language also supports public
strings for names. We do not give the full language description here and focus
only on the parts that are important from a privacy perspective.

Functions can return either public or private data. For example, the load
function that loads a private table from the database, returns a value represent-
ing a database with private values. However, functions that describe the sizes
of tables, such as nrow and ncol functions, return public values. The typeof
function returns a string containing the data type of the expression, including
their security type. The values of public expressions can be printed using print.
Private variables can be used in statistical analysis that may print out their
result. Intermediate private results can also be stored in the database with the
store.table function.

tbl <- load("db", "table")

rowcount <- nrow(tbl)

print (typeof (tbl$col))

store.table("db", "table2", list("x", "y"),

list(tbl$x * 10, tbl$y + 100))

RMIND has several control structures like for, if, repeat and while. Arrays
are indexed with rectangular brackets (a[i]). Currently, conditional expressions
in control structures and indices can only be public expressions. RMIND lets
the analyst define procedures similarly to R and supports features like keyword
arguments and argument lists.

for (i in 1:10) print (alil)

Preparing private data for analysis. RMIND can prepare private data for
analysis using a range of transformations that result in new private data. For
example, it can perform arithmetic, comparisons and logic on private data to
compute new attributes. Private data can be combined with public data, but
the public data will be converted to private in the process.

products <- tbl$columnl * tbl$column?2
mask <- tbl$column < 10

There are two syntactic ways for filtering private data. There is a simpler
inline version and a more flexible procedural version. The second can easily
process tables. Filtering is implemented using techniques described in Section 3.

c <- tbl$coll[tbl$col2 < 10]
t <- subset(tbl, coll < 10 & col2 !'= 1)

Tables and vectors can be sorted using the sort procedure. Tables can be
linked using merge. The underlying SHAREMIND system uses protocols described
in [8] and [43], respectively.

sortedcol <- sort(tbl$col)

tbl3 <- merge(tbll, "keyl", tbl2, "key2")

Analyzing private data. Table 3 shows the statistical analysis features im-
plemented in RMIND using the respective algorithms in this paper. For some
operations, such as 1m, several algorithms are available. The implementation has
a default one, but the user can select the preferred one using the corresponding
parameter. All operations run on private data and return a public result.

7.3 Performance analysis

We tested the performance of RMIND on a SHAREMIND installation running on
three computers with 3 GHz 6-core Intel CPUs with 8 GB RAM per core (a
total of 48 GB RAM). The computers were connected using gigabit ethernet
network interfaces. While a subset of these algorithms have been benchmarked

Rmind operation Statistical value computed or plot drawn

sum, mean, min/max sum and mean of values, smallest/largest value
median, sd, var, cov median, standard deviation, variance and covariance
fivenum, boxplot five number summary and/or box plot

hist, fregplot, heatmap histogram, frequency plot or heatmap

mad MAD (median absolute deviation)

rm.outliers remove outliers with quantiles or MAD

t.test paired and standard t-test with (non-)equal variances
wilcoxon.test Wilcoxon rank sum test and signed rank test
mann.whitney.test Mann-Whitney test (extended Wilcoxon rank sum test)
chisq.test x? tests with two or more categories
multiple.t.test multiple t-tests with Benjamini-Hochberg correction
multiple.chisq.test multiple x? tests with Benjamini-Hochberg correction
1m linear regression (several choices for private algorithm)

Table 3. Statistical operations in RMIND

in [5], we have optimized the implementation and redone all benchmarks for this
paper using the new RMIND tool. The benchmarks in [5] were performed on an
identical hardware setting, but they are less optimized and use an older version
of SHAREMIND.

Tables 4 and 5 show the performance of statistical operations in comparison
with earlier work in [5]. We see, on average, an order of magnitude improvement
in performance. The majority of operations were not implemented in previous
work so no comparison could be made. We note that the performance measures
should not be considered linear in the size of the input, due to the effects de-
scribed in Section 2.5.

Acknowledgments

This work was supported by the European Regional Development Fund through
the Estonian Center of Excellence in Computer Science, EXCS and by the Esto-
nian Research Council under Institutional Research Grants IUT2-1 and TUT27-
1. It has also received funding from the European Union Seventh Framework
Programme (FP7/2007-2013) under grant agreement no. 284731.

References

1. Owe Axelsson. Iteration number for the conjugate gradient method. Mathematics
and Computers in Stmulation, 61(3-6):421 — 435, 2003. MODELLING 2001 - Sec-
ond IMACS Conference on Mathematical Modelling and Computational Methods
in Mechanics, Physics, Biomechanics and Geodynamics.

2. Y. Benjamini and Y. Hochberg. Controlling the False Discovery Rate: A Practi-
cal and Powerful Approach to Multiple Testing. Journal of the Royal Statistical
Society. Series B (Methodological), 57(1):289-300, 1995.

Operation Inputs| Time|Time
(RMIND)| ([5])
mean 2000 0.05s —
min/max 2 000 0.2s 3s
median 2 000 4.7 s —
sd 2 000 4.4s —
var 2 000 4.4 s —
cov 2x1 000 3.5s —
fivenum 2 000 2458 21s
hist 2 000 34s| 16s
freqplot (10 classes) 2 000 0.5s —
heatmap 2x1 000 5.8 s —
rm.outliers (quantiles) 2 000 3.3s —
rm.outliers (MAD) 2000, 18.3s —
merge 5x2 000
& o000 237s| 28
sort 10x1 000| 13.1s —
t.test 2x1 000 4.2s| 167 s
t.test (paired) 2x1 000 2.6s| 98s
chisq.test (2 classes) 2 000 0.1s| 9s
chisq.test (5 classes) 2 000 0.4s| 23s
wilcoxon.test
(signed rank) 2x1 000 1.5s| 38s
(rank sum,) 2x1 000 2.7s| 34s
mann.whitney.test 2x1 000 2.7s —
Benjamini-Hochberg? 1000] 52.3s —

Table 4. Performance of RMIND operations (in seconds)

! We measured the Benjamini-Hochberg procedure standalone on 1000 test results,
without the multiple tests that lead to it.

Operation Time (RMIND)
1m (simple) 339s
1m (2 variables, inverse) 0.6 s
1m (3 variables, inverse) 1.1s
1m (4 variables, Gaussian) 29s
1m (4 variables, LU decomp.) 3.1s
1m (4 variables, conj. grad.) 59 s
1m (7 variables, Gaussian) 94 s
1m (7 variables, LU decomp.) 8.7s
1m (7 variables, conj. grad.) 7.8 s
1m (10 variables, Gaussian) 21.5s
1m (10 variables, LU decomp.) 19.1 s
1m (10 variables, conj. grad.) 11s

Table 5. Performance of RMIND linear regression on 10000-element arrays (in seconds)

10.

11.

12.

13.

14.

15.

16.

. Dan Bogdanov. Sharemind: programmable secure computations with practical ap-

plications. PhD thesis, University of Tartu, 2013.

. Dan Bogdanov, Roman Jagomégis, and Sven Laur. A Universal Toolkit for Cryp-

tographically Secure Privacy-Preserving Data Mining. In Michael Chau, G. Alan
Wang, Wei Thoo Yue, and Hsinchun Chen, editors, Intelligence and Security In-
formatics - Pacific Asia Workshop, PAISI’12, Kuala Lumpur, Malaysia, May 29,
2012. Proceedings, volume 7299 of Lecture Notes in Computer Science, pages 112—
126. Springer, 2012.

. Dan Bogdanov, Liina Kamm, Sven Laur, Pille Pruulmann-Vengerfeldt, Riivo

Talviste, and Jan Willemson. Privacy-preserving statistical data analysis on fed-
erated databases. In Proceedings of the Annual Privacy Forum. APF’1}, volume
8450 of LNCS, pages 30-55. Springer, 2014.

. Dan Bogdanov, Peeter Laud, Sven Laur, and Pille Pullonen. From input private

to universally composable secure multi-party computation. In Proc. of CSF’14.
IEEE Computer Society, 2014.

. Dan Bogdanov, Peeter Laud, and Jaak Randmets. Domain-Polymorphic Program-

ming of Privacy-Preserving Applications. In Proceedings of the Ninth ACM SIG-
PLAN Workshop on Programming Languages and Analysis for Security, 2014. To
appear.

. Dan Bogdanov, Sven Laur, and Riivo Talviste. A Practical Analysis of Oblivi-

ous Sorting Algorithms for Secure Multi-party Computation. In Secure IT Sys-
tems - 19th Nordic Conference, NordSec 2014, volume 8788 of LNCS, pages 59-74.
Springer, 2014.

. Dan Bogdanov, Sven Laur, and Jan Willemson. Sharemind: A framework for

fast privacy-preserving computations. In Sushil Jajodia and Javier Lopez, editors,
Proceedings of the 13th European Symposium on Research in Computer Security,
ESORICS ’08, volume 5283 of Lecture Notes in Computer Science, pages 192—206.
Springer, 2008.

Dan Bogdanov, Margus Niitsoo, Tomas Toft, and Jan Willemson. High-
performance secure multi-party computation for data mining applications. In-
ternational Journal of Information Security, 11(6):403-418, 2012.

Dan Bogdanov, Riivo Talviste, and Jan Willemson. Deploying secure multi-party
computation for financial data analysis (short paper). In Proceedings of FC 2012,
pages 57—64, 2012.

Peter Bogetoft, Dan Lund Christensen, Ivan Damgard, Martin Geisler, Thomas P.
Jakobsen, Mikkel Krgigaard, Janus Dam Nielsen, Jesper Buus Nielsen, Kurt
Nielsen, Jakob Pagter, Michael I. Schwartzbach, and Tomas Toft. Secure Mul-
tiparty Computation Goes Live. In Proceedings of FC 2009, pages 325-343, 2009.
Markus M. Breunig, Hans-Peter Kriegel, Raymond T. Ng, and Jorg Sander. Lof:
Identifying density-based local outliers. In Proceedings of CM SIGMOD 2000,
pages 93-104, 2000.

Martin Burkhart, Mario Strasser, Dilip Many, and Xenofontas A. Dimitropou-
los. SEPIA: Privacy-Preserving Aggregation of Multi-Domain Network Events
and Statistics. In Proceedings of USENIX 2010, pages 223—-240, 2010.

Ran Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In Proceedings of the 42nd Annual Symposium on Foundations of Com-
puter Science. FOCS’01, pages 136-145. IEEE Computer Society, 2001.

Ran Canetti, Yuval Ishai, Ravi Kumar, Michael K. Reiter, Ronitt Rubinfeld, and
Rebecca N. Wright. Selective private function evaluation with applications to
private statistics. In Proceedings of PODC 2001, pages 293-304. ACM, 2001.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

Octavian Catrina and Sebastiaan De Hoogh. Improved primitives for secure mul-
tiparty integer computation. In Proceedings of the 7th international conference on
Security and cryptography for networks, SCN’10, pages 182—-199, Berlin, Heidel-
berg, 2010. Springer-Verlag.

David Chaum, Claude Crépeau, and Ivan Damgard. Multiparty unconditionally
secure protocols (extended abstract). In Janos Simon, editor, Proceedings of the
20th Annual ACM Symposium on Theory of Computing. STOC’88, pages 11-19,
1988.

Koji Chida, Gembu Morohashi, Hitoshi Fuji, Fumihiko Magata, Akiko Fujimura,
Koki Hamada, Dai Ikarashi, and Ryuichi Yamamoto. Implementation and evalu-
ation of an efficient secure computation system using ‘R’ for healthcare statistics.
Journal of the American Medical Informatics Association, 04, 2014.

Ivan Damgard, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multiparty
computation from somewhat homomorphic encryption. In Reihaneh Safavi-Naini
and Ran Canetti, editors, CRYPTO, volume 7417 of Lecture Notes in Computer
Science, pages 643-662. Springer, 2012.

Wenliang Du and Mikhail J. Atallah. Privacy-preserving cooperative statistical
analysis. In Proceedings of ACSAC 2001, pages 102—-110, 2001.

Wenliang Du, Shigang Chen, and Yunghsiang S. Han. Privacy-preserving multi-
variate statistical analysis: Linear regression and classification. In Proceedings of
SDM 2004, pages 222-233, 2004.

Cynthia Dwork. Differential privacy. In Michele Bugliesi, Bart Preneel, Vladimiro
Sassone, and Ingo Wegener, editors, Proceedings of the 33rd International Col-
loguium on Automata, Languages and Programming. ICALP’06, volume 4052 of
LNCS, pages 1-12. Springer, 2006.

Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry, Ilya Mironov, and Moni
Naor. Our data, ourselves: Privacy via distributed noise generation. In Advances
in Cryptology (EUROCRYPT 2006), volume 4004 of Lecture Notes in Computer
Science, pages 486-503. Springer Verlag, 2006.

Khaled El Emam, Saeed Samet, Jun Hu, Liam Peyton, Craig Earle, Gayatri C.
Jayaraman, Tom Wong, Murat Kantarcioglu, Fida Dankar, and Aleksander Essex.
A Protocol for the Secure Linking of Registries for HPV Surveillance. PLoS ONE,
7(7):e39915, 07 2012.

Martin Franz and Stefan Katzenbeisser. Processing encrypted floating point sig-
nals. In Proceedings of the thirteenth ACM multimedia workshop on Multimedia
and security, MM&Sec ’11, pages 103-108, New York, NY, USA, 2011. ACM.
Martin Geisler. Cryptographic Protocols: Theory and Implementation. PhD thesis,
Aarhus University, February 2010.

Craig Gentry. Fully homomorphic encryption using ideal lattices. In Michael
Mitzenmacher, editor, Proceedings of the 41st Annual ACM Symposium on Theory
of Computing. STOC’09, pages 169-178. ACM, 2009.

Koki Hamada, Ryo Kikuchi, Dai Ikarashi, Koji Chida, and Katsumi Takahashi.
Practically Efficient Multi-party Sorting Protocols from Comparison Sort Algo-
rithms. In Proc. of ICISC’12, volume 7839 of LNCS, pages 202—-216. Springer,
2013.

Frank R. Hampel. A general qualitative definition of robustness. The Annals of
Mathematical Statistics, 42(6):1887-1896, 1971.

Frank R. Hampel. The influence curve and its role in robust estimation. Journal
of the American Statistical Association, 69(346):383-393, June 1974.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

Wilko Henecka, Stefan Kogl, Ahmad-Reza Sadeghi, Thomas Schneider, and Immo
Wehrenberg. TASTY: tool for automating secure two-party computations. In Ehab
Al-Shaer, Angelos D. Keromytis, and Vitaly Shmatikov, editors, Proceedings of the
17th ACM Conference on Computer and Communications Security. CCS’10, pages
451-462. ACM, 2010.

Magnus R. Hestenes and Eduard Stiefel. Methods of Conjugate Gradients for
Solving Linear Systems. Journal of Research of the National Bureau of Standards,
49(6):409-436, December 1952.

Myles Hollander and Douglas A Wolfe. Nonparametric statistical methods. John
Wiley New York, 2nd ed. edition, 1999.

Rob J Hyndman and Yanan Fan. Sample quantiles in statistical packages. The
American Statistician, 50(4):361-365, 1996.

Marek Jawurek and Florian Kerschbaum. Fault-tolerant privacy-preserving statis-
tics. In Privacy Enhancing Technologies, volume 7384 of LNCS, pages 221-238.
Springer, 2012.

Liina Kamm, Dan Bogdanov, Sven Laur, and Jaak Vilo. A new way to protect
privacy in large-scale genome-wide association studies. Bioinformatics, 29(7):886—
893, 2013.

Liina Kamm and Jan Willemson. Secure Floating-Point Arithmetic and Private
Satellite Collision Analysis. Cryptology ePrint Archive, Report 2013/850, 2013.
http://eprint.iacr.org/.

Gopal K Kanji. 100 statistical tests. Sage, 2006.

Florian Kerschbaum. Practical privacy-preserving benchmarking. In Proceedings
of IFIP TC-11 SEC 2008, volume 278, pages 17-31. Springer US, 2008.

Eike Kiltz, Gregor Leander, and John Malone-Lee. Secure computation of the
mean and related statistics. In Procedings of TCC 2005, volume 3378 of LNCS,
pages 283-302. Springer, 2005.

Benjamin Kreuter, Abhi Shelat, Benjamin Mood, and Kevin R. B. Butler. PCF: A
Portable Circuit Format for Scalable Two-Party Secure Computation. In Samuel T.
King, editor, USENIX Security, pages 321-336. USENIX Association, 2013.

Sven Laur, Riivo Talviste, and Jan Willemson. From Oblivious AES to Efficient
and Secure Database Join in the Multiparty Setting. In Proceedings of ACNS’13,
volume 7954 of LNCS, pages 84-101. Springer, 2013.

Sven Laur, Jan Willemson, and Bingsheng Zhang. Round-Efficient Oblivious
Database Manipulation. In Proceedings of ISC 2011, pages 262277, 2011.
Qinghua Li and Guohong Cao. Efficient privacy-preserving stream aggregation in
mobile sensing with low aggregation error. In Emiliano Cristofaro and Matthew
Wright, editors, Privacy Enhancing Technologies, volume 7981 of Lecture Notes in
Computer Science, pages 60-81. Springer Berlin Heidelberg, 2013.

Dahlia Malkhi, Noam Nisan, Benny Pinkas, and Yaron Sella. Fairplay — a se-
cure two-party computation system. In Proceedings of the 13th USENIX Security
Symposium (2004), pp. 287-302., 2004.

Pascal Paillier. Public-key cryptosystems based on composite degree residuosity
classes. In Jacques Stern, editor, Proceedings of the 17th International Conference
on the Theory and Application of Cryptographic Techniques, EUROCRYPT’99,
volume 1592 of Lecture Notes in Computer Science, pages 223-238. Springer, 1999.
William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flan-
nery. Numerical Recipes 3rd Edition: The Art of Scientific Computing. Cambridge
University Press, New York, NY, USA, 3 edition, 2007.

Reimo Rebane. A Feasibility Analysis of Secure Multiparty Computation Deploy-
ments. Master’s thesis, Institute of Computer Science, University of Tartu, 2012.

50.

51.

52.

53.

54.

55.

56.

57.

Elaine Shi, T.-H. Hubert Chan, Eleanor G. Rieffel, Richard Chow, and Dawn Song.
Privacy-preserving aggregation of time-series data. In NDSS. The Internet Society,
2011.

Nigel P. Smart and Frederik Vercauteren. Fully homomorphic simd operations.
Des. Codes Cryptography, 71(1):57-81, 2014.

Herbert A Sturges. The choice of a class interval. Journal of the American Statis-
tical Association, 21(153):65-66, 1926.

Hiranmayee Subramaniam, Rebecca N. Wright, and Zhiqiang Yang. Experimental
analysis of privacy-preserving statistics computation. In Proceedings of SDM 2004,
volume 3178 of LNCS, pages 55—-66. Springer, 2004.

Latanya Sweeney. k-anonymity: a model for protecting privacy. International
Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 10(5):557-570,
2002.

Frank Wilcoxon. Individual Comparisons by Ranking Methods. Biometrics Bul-
letin, 1(6):80-83, 1945.

Zhigiang Yang, Rebecca N. Wright, and Hiranmayee Subramaniam. Experimental
analysis of a privacy-preserving scalar product protocol. Computer Systems Science
& Engineering, 21(1), 2006.

Andrew Chi-Chih Yao. Protocols for Secure Computations (Extended Abstract).
In Proceedings of FOCS’82, pages 160-164. IEEE, 1982.

