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Abstract. We revisit the context of leakage-tolerant interactive protocols as defined by Bitanski,
Canetti and Halevi (TCC 2012). Our contributions can be summarized as follows:

1. For the purpose of secure message transmission, any encryption protocol with message space M
and secret key space SK tolerating poly-logarithmic leakage on the secret state of the receiver must
satisfy |SK| ≥ (1 − ε)|M|, for every 0 < ε ≤ 1, and if |SK| = |M|, then the scheme must use a
fresh key pair to encrypt each message.

2. More generally, we show that any n party protocol tolerates leakage of ≈ poly(log κ) bits from one
party at the end of the protocol execution, if and only if the protocol has passive adaptive security
against an adaptive corruption of one party at the end of the protocol execution. This shows that
as soon as a little leakage is tolerated, one needs full adaptive security.

3. In case more than one party can be corrupted, we get that leakage tolerance is equivalent to a weaker
form of adaptivity, which we call semi-adaptivity. Roughly, a protocol has semi-adaptive security if
there exist a simulator which can simulate the internal state of corrupted parties, however, such a
state is not required to be indistinguishable from a real state, only that it would have lead to the
simulated communication.

All our results can be based on the solely assumption that collision-resistant function ensembles exist.
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1 Introduction

Would you trust your partner when you don’t trust his secrets? Suppose that Alice has a confidential
message m she wants to communicate to Bob, in a way that the content of m is protected from
outsiders. In a world where public key cryptography exists, Bob can sample a fresh public key pk
and hands it to Alice via an authenticated channel (while keeping the corresponding secret key sk).
Now Alice can use pk to encrypt m and send the resulting ciphertext c to Bob, who in turn can
decrypt using sk and recover the message.

The problem sketched above, also known as the problem of secure message transmission, is one
of the most basic questions in cryptography. For instance we know that when Bob’s secret key
is uniform and “well protected”, any semantically secure encryption scheme would suffice for the
purpose of secure message transmission. But what if (part of) Bob’s secrets can leak to an outsider?
Even when Bob’s secret is not exposed, what if the randomness Alice used to encrypt can leak?
Can Alice still trust the protocol above?
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Leakage-resilient cryptography In the last few years, questions of this kind gained momentum in the
cryptographic community due to the spread of side-channel attacks. Starting from the early 90s’, it
has become clear that an adversary can potentially gain partial information on the secret state of
uncorrupted players in a variety of ways, e.g. by measuring time [29], power [30] and electromagnetic
emission [38]. This information, often called leakage, can be powerful knowledge in the hands of an
adversary, putting security of the cryptographic primitive under attack on edge.

Indeed, cryptographic algorithms are typically analyzed in a black-box fashion where secrets
are assumed to be completely oblivious to an adversary; in particular they offer no guarantees in
the presence of side-channel attacks. To change the above state of affairs, researchers started to
investigate the possibility of constructing schemes which preserve both their functionality and their
security properties even in the presence of (an as large as possible class of) leakage. As a result,
we now possess a rich list of leakage-resilient (a.k.a. leakage-tolerant) schemes, e.g., for pseudoran-
domness generation [16,36], storage [10,13], encryption [33,11,18], signatures [27,17,18,6,35,9] and
general non-interactive circuits [25,19,15].

However, in order to have a scheme Π which maintains (in the presence of leakage) exactly the
same security guarantees it has in a leak-free setting, some restriction on the leakage itself must
be placed as to escape trivial attacks. Examples include putting a bound on the total information
leaked, assuming that “only computation leaks information” [32], that different parts of the memory
leak independently [10,13,14], that leakage occurs only in specific times or that the leakage is “hard
to invert” [12]. Two general approaches have emerged:

- In the game-based approach, one augments the standard cryptographic game for Π by giving
the adversary A access to an auxiliary interface from which she can input some function (within
a set of admissible leakage functions) and receive back the value of the function applied to the
secret state of Π.

- In the simulation-based approach, one shows that Π (augmented with a leakage interface)
achieves the same properties of an ideal execution where a simulator S interacts with a func-
tionality F (augmented with a leakage interface) and no communication between parties takes
place. Hence, security is achieved if A can be simulated in the UC framework [7], i.e. for any
A attacking Π there exists a simulator S such that no environment Z can tell whether it is
interacting with A and Π or with S and F.

Both approaches have advantages and disadvantages. Sometimes, game-based notions do not exactly
capture the realistic security threats they wish to model and do not come in general with easy
composition rules. Simulation-based notions are harder to achieve and often require the use of
expensive tools.

The model of Bitanski, Canetti and Halevi. In this paper we focus on the second approach, building
upon previous work of Bitanski et al. [5]. In their model, leakage queries from an adversary A are
viewed as a form of partial corruption, where A does not receive the complete state of the chosen
party but just some function fA(·) of it.

Note that without any help the simulator S would have a very hard life. Consider for instance
the case of secure message transmission: Already a single bit of arbitrary leakage, say the first bit
of the transmitted message, makes it impossible to achieve semantic security! The solution is to
allow also the simulator to leak on the “ideal state” of the protocol, by specifying some function
fS(·). Now, security means that a real world attacker leaking λ bits from the entire secret state of

2



the implementation can be simulated given λ bits of leakage on the corresponding ideal state (i.e.,
on the message alone in case of secure message transmission).

The functionality is also able to react to leakage, in the sense that it can be asked to “give-up” on
security when too much leakage occurred. This feature allows us to model relaxed security notions
of protocols in the presence of leakage, and in particular to specify how the security degrades with
the leakage.

1.1 Our Contribution

We revisit the context of leakage-tolerant interactive protocols. Our results give strong evidence
that leakage tolerance in the simulation-based setting requires expensive tools already when a small
amount of leakage needs to be tolerated. Our main contributions are outlined below:

1. For the concrete case of secure message transmission, we show that any encryption protocol
Π tolerating a poly-logarithmic amount of leakage in the definition of Bitanski et al. [5] must
satisfy |SK| ≥ (1− ε)|M| for all 0 < ε ≤ 1, where M is the message space and SK is the space
of secret keys. In other words, the decryption key must be essentially as long as the message
being encrypted. Furthermore, if the messages and the secret keys have the same length, then
a fresh key must be used to encrypt every message.

2. We prove that Π is secure against one adaptive corruption of the receiver at the end of the
protocol execution if and only if Π is secure against leakage of ≈ poly(log κ) bits from the
receiver’s internal state at the end of the protocol execution. More in general, we prove that any
n-party protocol tolerates leakage of ≈ poly(log κ) bits from one party at the end of the protocol
execution, if and only if the protocol has passive security against an adaptive corruption. This
shows that simulation-based leakage tolerance becomes identical to full adaptive security already
for very little leakage, as long as at most one party can be corrupted.

3. We further explain how to generalize our result from 2 to adaptive corruption of an arbitrary
number of parties in a leakage-tolerant protocol.

All our results can be based on the solely assumption that collision-resistant function ensembles
exist.

1.2 Our Techniques

At the heart of our results there is a novel technique exploiting succinct interactive arguments
for NP. These are argument systems where the total amount of communication is at most poly-
logarithmic in the length of the witness and the instance being proven. Succinct interactive argu-
ments (with a constant number of rounds) are known to exist given any collision-resistant function
ensemble [28,40].

Proof outline We now sketch the proof of our main result. Since protocol Π is leakage-tolerant,
there exists a simulator S producing a “convincing” view of the protocol for A. In addition, S can
handle leakage queries from A.

We exhibit an environment Z for which the existence of a simulator yields our bound. The
environment inputs a uniformly random m ∈ M. Then, it lets the protocol terminate without
making any leakage query or any corruption, i.e. it simply delivers all messages between Alice (the
sender) and Bob (the receiver). As part of this, Z learns pk and the ciphertext c from observing the
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communication on the authenticated channel. After the protocol terminates, Z asks the receiver
to prove the following NP-statement via a succinct argument system: “There exists some sk that
explains c as an encryption of m”. Notice that the receiver can do this as it knows the secret key
(i.e., a valid witness).

The crux of the strategy above is that Z can play the role of the verifier in the interactive
argument by using the leakage queries on the state of the receiver to “extract” the massages of the
prover.

Now, by completeness of the argument system, in the real world the proof will be accepting with
overwhelming probability. On the other hand, leakage tolerance ofΠ implies that the simulator must
cook-up an indistinguishable output in the ideal world. However, S has to choose c beforehand to
simulate A’s view, and later answer leakage queries consistently by “explaining” c as an encryption
of m for decryption key sk. It follows from (computational) soundness of the proof system that
this is only possible if for a large fraction of the messages in M there exists a secret key sk′ which
explains c consistently. From this, a simple counting argument shows that |M| must be negligibly
close to |SK|.

Extracting the state Let H(·) be a collision-resistant hash function with range µ bits. When the
argument system from above is an argument of knowledge (i.e., there exists a knowledge extractor
which is able to extract a valid witness for a statement when given access to a successful prover with
respect to that statement), we are able to show that Π is leakage-tolerant against 2poly(log κ)+µ+1
bits of leakage from the receiver’s internal state, if and only if Π has semi-honest adaptive security.
The second direction follows directly from the result of [5] that adaptive (semi-honest) security is
sufficient to obtain leakage tolerance for a broad class of functionalities.

To prove the first direction, one has to construct a simulator S′ which simulates first the com-
munication (pk, c) of the protocol to adversary A′, and then after being given m simulates the
internal state of the receiver consistently. Roughly, we do this as follows. We start by considering
an adversary A against leakage tolerance of Π; from the definition of leakage tolerance, we know
there exists a simulator S. Hence, we use S to construct S′. The adversary starts by leaking the
value h obtained by applying H(·) on the final state of the receiver; then A uses an argument of
knowledge to ask for a proof that there is a consistent state inside the receiver which could be
extracted (consistent also with the above value of h). Now, A uses an additional leakage query to
“send” a distinguisher Z′ (attacking adaptive security of Π) inside the receiver, have a look at the
state and output its guess b. Finally, the adversary leaks a proof that the bit b was actually com-
puted by Z′ from the same state which could be extracted from the first argument of knowledge.
Note that the latter can be achieved by using the same value of h in both arguments.

It follows that if we later use a simulator S′ for this attack and extract from its first argument
of knowledge some state, this state will have to look indistinguishable from a real state to any Z′
(as long as finding collisions in H(·) is hard). Adaptive security follows.

Semi-adaptive security The above proof technique is quite general, and in fact it can be applied
to any leakage-tolerant interactive n-party protocol, where at most one party gets corrupted. The
n-party case with arbitrary corruptions is more subtle as now a distinguisher for the adaptive
security game should have access to the state of all parties when it makes its guess, and it is not
clear how to simulate this given short leakages from each state. In particular, we cannot “send” a
distinguisher Z′ into each of the parties one by one, as sending Z′ out of the parties again could
require too much leakage. Indeed, in this case we do not know how to force the extracted internal
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states from the parties to be indistinguishable from the internal state in the real world. All that is
guaranteed is that the states are consistent with the simulated public communication.

We say that Π has semi-adaptive security if there exist a simulator which can simulate the
internal state of corrupted parties, in the sense that it can output some internal state consistent
with what the party has sent and received. Notice that the state may not look indistinguishable
from a real state, but it would have lead to the simulated communication. Hence, one can show that
if an arbitrary interactive n-party protocol Π is able to tolerate a little leakage from t parties at the
end of the execution of the protocol, then Π must be semi-adaptive secure against a semi-honest
adversary which is allowed to do t adaptive corruptions.

1.3 Related Work

Simulation-based notions of leakage tolerance have been considered also for public key encryption
schemes by Halevi and Lin [23] and in the context of zero-knowledge protocols by Garg et al. [21].

We mention a few other papers exploiting argument systems for negative results. The first one
is the work on “seed-incompressible functions” of Halevi, Myers and Rackoff [24], who use CS
proofs [31] to show that no pseudorandom function exists which remains secure after one leaks a
“compressed” key. Another example is the work of [37] on parallel repetition of computationally
sound proofs and the work of Jain and Pietrzak [26], who show that (game-based) leakage resilience
for natural primitives like signatures and encryption does not always amplify in case of parallel
repetition. The first and the last results rely on random oracles, whereas the second one is based
on universal arguments [1].

We stress that the techniques used in all the above works are substantially different than ours.

2 Preliminaries

2.1 Notation

We let N denote the naturals and R denote the reals. For a, b ∈ R, we let [a, b] = {x ∈ R ; a ≤
x ≤ b}; for a ∈ N we let [a] = {1, 2, . . . , a}. If x is a string, we denote its length by |x|; if X is a set,
|X | represents the number of elements in X . When x is chosen randomly in X , we write x ← X .
When A is an algorithm, we write y ← A(x) to denote a run of A on input x and output y; if A is
randomized, then y is a random variable and A(x; r) denotes a run of A on input x and randomness
r. An algorithm A is probabilistic polynomial-time (PPT) if A is allowed to use randomness as part
of its logic (i.e., A is probabilistic) and for any input x ∈ {0, 1}∗ the computation of A(x) terminates
in at most poly(|x|) steps.

Let κ be a security parameter. A function negl is called negligible in κ (or simply negligible) if
it vanishes faster than the inverse of any polynomial in κ. For a relation R ⊆ {0, 1}∗ × {0, 1}∗, the
language associated with R is LR = {x : ∃w s.t. (x,w) ∈ R}.

For two ensembles X = {Xκ}κ∈N,Y = {Yκ}κ∈N, we write X ≈ Y, meaning that every proba-
bilistic polynomial-time distinguisher has negligible advantage in distinguishing X and Y.

2.2 Interactive Argument Systems

Our results are based on the existence of round-efficient interactive argument systems. The definition
below is taken from [40].
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Definition 1 (Round-efficient interactive argument system). An interactive protocol (P, V )
is an interactive argument system for a language L if there is a relation R such that L = LR, and
functions ν, s : N→ [0, 1] such that 1− ν(κ) > s(κ) + 1/poly(κ) and the following holds:

- (Efficiency): The length of all the exchanged messages is polynomially bounded and both P and
V are computable in probabilistic polynomial time;

- (Completeness): If (x,w) ∈ R, then V accepts in (P (w), V )(x) with probability at least 1−ν(|x|).
- (Computational soundness): If x 6∈ L, then for every non-uniform probabilistic polynomial-time
P ∗ and for all sufficiently long x 6∈ L, the verifier V accepts in (P ∗, V )(x) with probability at
most s(|x|).

The value ν(·) is called the completeness error and the value s(·) is called the soundness error. We
say (P, V ) has perfect completeness if ν = 0. The communication complexity of the argument system
is the total length of all messages exchanged during an execution; the round complexity is the total
number of exchanged messages. The protocol is called public-coin when the verifier’s moves consist
merely of tossing coins and sending their outcomes to the prover. We write AMν,s(ρ(κ), λ(κ))
to denote public-coin interactive argument systems with completeness error ν, soundness error
s, round-complexity ρ(κ) and communication complexity λ(κ). Sometimes we also write λ(κ) =
λP (κ) + λV (κ) to differentiate between the communication complexity of the prover and of the
verifier. We say (P, V ) is succinct if λ(κ) is poly-logarithmic in the length of the witness and the
statement being proven.

We get an argument of knowledge whenever it is possible to extract a witness from any successful
prover:

Definition 2 (Argument of knowledge). An interactive protocol (P, V ) is an interactive argu-
ment of knowledge for a language L if it is an interactive argument system, where the computational
soundness condition is replaced by the following:

- (Argument of knowledge): For every non-uniform probabilistic polynomial-time P ∗ such that
V accepts in (P ∗, V )(x) with overwhelming probability, there exists a non-uniform probabilis-
tic polynomial-time extractor EP ∗ outputting (x,w) such that (x,w) ∈ R with overwhelming
probability.

There are other forms of extractability, where from any prover succeeding to convince V with prob-
ability p(·), one can extract a witness with probability which is polynomially related to p(·) [2,39].
Here we only need the weak notion above, where extraction is only guaranteed if the prover con-
vinces the verifier with probability close to 1. The technical reason is that in the real world we
will ask a party to “leak” an argument of knowledge of its internal state, which will succeed with
overwhelming probability by completeness.

Instantiations Kilian [28] constructs a 4-round public-coin succinct argument of knowledge for
NP based on a probabilistically checkable proof (PCP) system for NP and a collision-resistant
function ensemble. Gentry and Wichs [22] prove that non-interactive succinct arguments, so called
SNARGs, cannot exist given a black-box reduction to any falsifiable assumption. In fact, the only
constructions of SNARGs we know of are either based on the random oracle model of Bellare and
Rogaway [3] (as shows Micali [31] by applying the Fiat-Shamir transform [20] to Kilian’s protocol)
or under so-called “knowledge of exponent” assumptions [4].

We remark that for our results interactive arguments are sufficient; in particular our theorems
can be based on the assumption that collision-resistant function ensembles exist.
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2.3 Leakage-Tolerant Secure Message Transmission

Syntax of public-key encryption A public-key encryption (PKE) scheme is a tuple of algorithms
(Gen,Enc,Dec) defined as follows. The key generation algorithm Gen takes as input a security
parameter κ and outputs (pk, sk) ← Gen(1κ); we let PK × SK be the key space. The encryption
algorithm takes as input a message m ∈ M and outputs a ciphertext c ← Enc(pk,m) in some
ciphertext space C. The decryption algorithm takes as input a ciphertext c ∈ C and a secret key
sk ∈ SK and outputs m← Dec(sk, c).

Since we aim to apply our result to arbitrary encryption schemes, we will assume that decryption
is also randomized. We say that (Gen,Enc,Dec) has negligible completeness error if it holds that
Pr[Dec(sk, (Enc(pk,m)) → m] with overwhelming probability over the coin tosses of (Enc,Dec)
and the choices of (pk, sk)← Gen(1κ) and m ∈M.

Leakage-tolerant PKE We recall the simulation-based notion of leakage tolerance introduce by
Bitansky et al. [5]. Informally, leakage queries from an adversary A are viewed as a form of partial
corruptions, where A does not received the complete state of the chosen party but just some function
of it. Security is then achieved if such an adversary can be simulated in the UC framework. Without
loss of generality we will consider only dummy adversaries — adversaries which just carry out the
commands of the environment. I.e., it is the environment which specifies all leakage queries. We
will therefore completely drop the adversary in the notation for clarity.

Let Π be a protocol implementing an ideal functionality F. Let Z be an environment trying to
“break” security of Π. The environment specifies all inputs to the protocol, sees all messages sent,
schedules all message deliveries, sees all outputs and is in addition allowed to make leakage queries
during the run of the protocol. Such queries are modelled in the following way: When Z wants to
leak from the state of player X, it sends a leakage request (X, fZ) upon which it receives fZ(σX),
where σX is the current secret state of X. The function fZ can be any function within a set of
admissible leakage functions F , which is a parameter in the definition.

In the ideal world, a trusted party is running F and a simulator S is interacting with it. The
simulator must then simulate the protocol to the environment Z. All inputs specified by Z go
directly to F; the simulator only sees the input of corrupted parties. The simulator must then
simulate the communication of the protocol to Z. In addition, all leakage queries (leak, X, fZ) from
Z goes to the simulator. When a query (leak, X, fZ) arrives, the simulator is allowed to make its
own leakage query (leak, X, fS) to the ideal functionality, under the restriction that the length of
the leakage requested by S does not exceed the length of the leakage requested by Z.

We say that Π is a leakage-tolerant secure implementation of F if there exists a simulator
S such that no environment can distinguish between the real life protocol Π and S interacting
with the ideal functionality F. More formally, consider the ideal functionality F+lk

SMT, depicted in
Figure 1. Denote with IDEALF+lk

SMT,S,Z
(F , κ) the output of the environment Z when interacting

with simulator S in the simulation.
Consider the following protocol Π between a sender S and a receiver R, supposed to realize

F+lk
SMT via a public-key encryption scheme (Gen,Enc,Dec) with message space M and key space
PK × SK, assuming authenticated channels:

1. S transmits to R its willing to forward a message m ∈M;
2. R samples (pk, sk) = Gen(1κ; rG), where pk ∈ PK and sk ∈ SK, and sends pk to S;
3. S computes c = Enc(pk,m; rE) and forwards the result to R;
4. R outputs m′ = Dec(sk, c; rD).
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Functionality F+lk
SMT

Running with parties R,S and adversary S, the functionality F+lk
SMT is parametrized by the security parameter

κ, message space M and the set of all admissible leakage functions F . Hence, F+lk
SMT behaves as follows:

– Upon input (send, S,R,m) send a message (send, S,R, |m|) to S. Once S allows to forward the message,
send (sent, S,m) to R.

– Upon input (leak, X, fZ) for X ∈ {S,R} and fZ ∈ F send a message (leak, X) to S. Receive (leak, X ′, fS)
from S, check that fS ∈ F , and that |fZ(·)| = |fS(·)| and X ′ = X. Send (leak, fS(m)) to S and
(leaked, |fS(m)|) to X ′.

Fig. 1. Ideal functionality F+lk
SMT for secure message transmission with leakage

Note that at the end of the execution of Π the state of S is σS = (m, rE) whereas the state
of R is σR = (sk, rG, rD,m

′). Denote with REALΠ,Z(F , κ) the output of the environment Z after
interacting with parties R,S in a real execution of Π.

Definition 3 (Leakage-tolerant PKE protocol). We say that Π is a leakage-tolerant public-
key encryption protocol (w.r.t. a set of leakage functions F) if Π securely implements F+lk

SMT, i.e.,
there exists a probabilistic polynomial-time simulator S such that for any environment Z it holds
that

{IDEALF+lk
SMT,S,Z

(F , κ)}κ∈N ≈ {REALΠ,Z(F , κ)}κ∈N.

When the total amount of leaked information is λ =
∑

i |f
(i)
Z (·)|, we say that Π tolerates λ bits of

leakage.

3 Upper Bounds on Leakage-Tolerant PKE

In this section we present a result regarding the complexity of encryption schemes that are leakage-
resilient according to Definition 3. Looking ahead, we will prove that it is not possible to achieve
security in this setting without relying on an encryption scheme having similar properties to non-
committing encryption [8].

Theorem 1 (Definition 3 requires long keys). Assume the existence of AMnegl(κ),negl(κ)(O(1),
λ(κ)) argument systems for NP, where λ(κ) = λP (κ) + λV (κ). Let Π be a leakage-tolerant public-
key encryption protocol with key space PK×SK and message spaceM. Then, whenever Π tolerates
λ′(κ) = λP (κ) bits of leakage it must be that |SK| ≥ (1− ε)|M| for all 1 ≥ ε > 0. In particular, if
`(SK) and `(M) are resp. the bit length of the secret key and of the messages, we have `(SK) ≥
`(M)− 1, i.e. to encrypt a message of length ` bits one needs a key of length at least `− 1 bits.

Proof. Assume first that the decryption algorithm is deterministic and that the encryption scheme
has perfect correctness, i.e., Dec(sk,Enc(pk,m; rE)) = m for all rE when (pk, sk)← Gen(1κ).

Since protocol Π is leakage-tolerant, we know that there exist a simulator S producing a “con-
vincing” view of the protocol. Moreover, S can handle requests of the kind (leak, X, fZ), where
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X is either S or R and fZ is a leakage function (chosen by the environment) to be applied to the
internal state σX of X.

We construct an environment Z which uses λP bits of leakage on the receiver’s state after the
execution of Π, for which the existence of simulator S implies our bound. Consider the following
relation:

R := {((pk, c,m), (sk, rG)) : (pk, sk) = Gen(1κ; rG) ∧ Dec(sk, c) = m} , (1)

and let (P, V ) be an AMnegl(κ),negl(κ)(O(1), λ(κ)) argument system for L = L(R). The main idea
will be to let Z play the role of the verifier in the argument system, while running the prover with
the help of the leakage queries on the state of the receiver. The environment Z works as follows:

1. Input a uniformly random m ∈M to S.

2. Let the protocol terminate without any leakage queries or any corruptions, i.e., simply deliver all
messages between S and R. As part of this Z learns pk and c from observing the authenticated
channel between S and R.

3. After the protocol terminates, let R prove via leakage queries that x = (pk, c,m) ∈ L. Notice
that R can do this as it knows the witness w = (sk, rG). Details follow.

We now show how to generate an interactive argument for L, by letting Z (holding the instance
x = (pk, c,m)) play the role of the verifier and using the leakage queries on the receiver’s state
w = (sk, rG) to generate the interaction with the prover. Wlog. assume the verifier talks first, and
denote with ρ(κ) = poly(κ) the total number of rounds. (The case where the prover talks first can
be derived similarly.)

We introduce some auxiliary notation. Let rP (rV ) be a random string long enough to specify
all random choices done by the prover (verifier), such that for fixed rP (rV ), the prover (verifier)
is deterministic. For all i = 0, . . . , ρ/2 − 1, denote with y2i+1 = V (x, 2i + 1, view2i; rV ) the next
message sent by the verifier, where the variable viewj is defined as the entire view until round j ∈ [ρ].
Similarly, the next message computed by the prover is computed as y2i = P (x,w, 2i, view2i−1; rP )
for all i = 1, . . . , ρ/2. Note that, with this notation, the complete view consists of (y1, y2, . . . , yρ).
At the end the verifier computes a judgement J(x, viewρ; rV ) ∈ {0, 1}, where 1 indicates accept.

Therefore, it suffices to specify how Z (holding only (pk, c,m)) can generate the messages of the
prover. It proceeds as follows:

1. Z samples uniformly random rP and rV .

2. Z computes y1 = V (x, 1,⊥; rV ) and then sets the leakage function f
(1)
Z to be the function

f
(1)
Z (w) = P (x,w, 2, y1; rP ). (This can be done by “hard-wiring” the values x and y1 into the

leakage function.)

3. In general, given view2i = (y1, y2, . . . , y2i), the adversary Z can compute y2i+1, hard-wire this

value into f
(i)
Z and get y2i+2 = P (x,w, 2i + 2, y2i+1; rP ). This can be done for all i ∈ [ρ], until

the last message yρ of the argument system is obtained.

4. Then Z outputs J(x, viewρ; rV ) as its guess.

Note that the total amount of leaked information is the communication complexity of the prover
in (P, V ), i.e., λP bits. By completeness of the argument system, we know that REALΠ,Z(F , κ) = 1,
except with negligible probability. From this we conclude that IDEALF+lk

SMT,S,Z
(F , κ) = 1 except

with negligible probability, by security of the protocol. We write out what this means. The simu-
lation proceeds as follows:
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1. First Z inputs a uniformly random m ∈M to the ideal functionality on behalf of S. As a result
S is given (send, S,R, |m|).

2. Then S must simulate the communication of the protocol, which in particular means that it
must output some pk and c to Z.

3. After the simulation of the protocol terminates, the environment makes the leakage queries with
which R proves that x = (pk, c,m) ∈ L. The leakage queries are answered by S. In more detail:
(a) Z samples uniformly random rP and rV .

(b) Z sets the leakage function f
(1)
Z to be the function f

(1)
Z (w) = P (x,w, 2, y1; rP ). The function

is sent to S, who must choose some function fS producing value y2.

(c) In general, given view2i = (y1, y2, . . . , y2i), the environment Z specify f
(i)
Z and sends the

same f
(i)
Z as in the protocol to S which in turn chooses f

(i)
S defining some y2i+1. This is done

for all i ∈ [ρ], until the last message yρ of the argument system is obtained.
(d) Then Z outputs J(x, viewρ; rV ) as its guess.

Since Z is computing its own messages y2i+1 as the verifier of (P, V ) would have done, and the
messages y2i are computed by S which is PPT, and J(x, viewρ; rV ) = 1, it follows from soundness
that x ∈ L except with negligible probability. This means that there exist (sk, rG) such that
(pk, sk) = Gen(1κ; rG) and m = Dec(sk, c). In particular, there exist sk ∈ SK such that m =
Dec(sk, c). Let Mpk,c ⊂ M denote the subset of m′ ∈ M for which there exist sk′ ∈ SK such
that m′ = Dec(sk′, c). We have that m ∈ Mpk,c. Notice, that if it was the case that m 6∈ Mpk,c,
then it would be the case that (pk, c,m) 6∈ L and hence S would not be able to answer the leakage
queries such that J(x, viewρ; rV ) = 1, except with negligible probability, by soundness. Hence,
it follows from {IDEALF+lk

SMT,S,Z
(F , κ)}κ∈N ≈ {REALΠ,Z(F , κ)}κ∈N that the probability that

m ∈ Mpk,c is overwhelming. This implies that |Mpk,c|/|M| is negligibly close to 1, in particular
|Mpk,c| ≥ (1 − ε)|M| for all 0 < ε ≤ 1. Take two m0 6= m1 ∈ Mpk,c. By definition there exist
sk0, sk1 ∈ SK such that m0 = Dec(sk0, c) and m1 = Dec(sk1, c). From m0 6= m1, we conclude that
sk0 6= sk1, so |SK| ≥ |Mpk,c|. From this we get the theorem.

To handle randomized decryption functions, we let the environment pick the randomness which
should be used for decryption. I.e., Z hard-wires a random string rD into the instance x and asks the
receiver to prove that there exists rG, sk such that (pk, sk) = Gen(1κ; rG) and Dec(sk, c; rD) = m.
In the real world, this will hold with overwhelming probability, and hence in the ideal world we can,
along the lines above, conclude that for any two messages m0 and m1, there exists sk0, sk1 ∈ SK
such that m0 = Dec(sk0, c; rD) and m1 = Dec(sk1, c; rD). This again allows to conclude that
sk0 6= sk1. Note that it is important that Z picks rD. If it was considered part of the witness,
we would only get that there exists sk0, sk1 ∈ SK and r0D, r

1
D such that m0 = Dec(sk0, c; r

0
D) and

m1 = Dec(sk1, c; r
1
D), from which we cannot conclude that sk0 6= sk1, as r0D 6= r1D might be enough

to give different decryptions for a fixed sk0 = sk1. ut

Remark 1. Assuming the existence of collision-resistant function ensembles (which implies an ar-
gument system for AMnegl(κ),negl(κ)(4, poly(log κ))), we get that Theorem 1 holds for any leakage-
tolerant public-key encryption protocol tolerating poly-logarithmic leakage on the receiver’s state.

On re-using keys One could still hope that it is possible to use the same key to encrypt more than
one message. Below, we prove that this hope is also vacuous.

Corollary 1 (Fresh key for every message). If Π is a leakage-tolerant public-key encryption
protocol tolerating poly-logarithmic leakage and such that 2`(M) − 1 > `(SK) ≥ `(M) − 1, then a
fresh key must be used to encrypt every message.
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Proof. We prove this by contradiction to Theorem 1. Namely, assume Π = (Gen,Enc,Dec) has
message space M, key space PK × SK and uses a single pair (pk, sk) ← Gen(1κ) to encrypt
two messages m′ and m′′ sequentially. Denote with c′ ← Enc(pk,m′) and c′′ ← Enc(pk,m′′) the
corresponding ciphertexts.

Now consider the following public-key encryption scheme Π = (Gen,Enc,Dec). The key gener-
ation algorithm Gen simply runs (pk, sk) ← Gen(1κ). The encryption algorithm takes as input a
message m ∈M2, writes it as m = m′||m′′ and outputs

Enc(pk,m) = Enc(pk,m′)||Enc(pk,m′′) = c′||c′′ = c.

The decryption algorithm Dec parses c as c′||c′′ and outputs m← Dec(sk, c′)||Dec(sk, c′′).
Since Π securely realizes F+lk

SMT in the presence of λ bits of leakage, Theorem 1 implies `(SK) ≥
`(M) − 1. On the other hand, the notion of leakage tolerance composes sequentially, so that Π
securely realizes F+lk

SMT (with the same leakage bound). However, Π has message space M = M2

and key space SK = SK. Hence, Theorem 1 yields

`(SK) = `(SK) ≥ `(M)− 1 = 2`(M)− 1,

a contradiction.

Connection with Bitanski et al. The authors in [5] show that any non-committing encryption
protocol [8] suffices to securely realize F+lk

SMT. It is understood that every non-committing encryption
protocol must satisfy the property that both the public and the secret key are as long as the total
number of message bits ever encrypted [34].

4 Generalizing Our Result

It is possible to make generalizations of our results in two directions.

1. We can show that being secure against a semi-honest adversary which is allowed to do one
adaptive corruption after the execution of the protocol is equivalent to being secure against a
little leakage from a single party after the execution of the protocol.

2. Furthermore, say that a protocol has semi-adaptive security if there exists a simulator which
can simulate the internal state of corrupted parties in the sense that it can output some internal
state consistent with what the party has sent and received (but not necessarily distributed as a
real-world state would be).
We can show that for a protocol being secure against a little leakage from t parties after the
execution of the protocol implies that it is semi-adaptive secure against a semi-honest adversary
which is allowed to do t adaptive corruptions.

4.1 Equivalence to Adaptive Security

Assume that there exists an AMnegl(κ),negl(κ)(O(1), λ(κ)) argument system, which is also an argu-
ment of knowledge. Also assume there exists a family of collision resistant hash functionsH = {Hs}s
with output length µ(κ).

We now prove that it holds for any leakage-tolerant PKE protocol Π, as in the above section,
that Π is secure against one adaptive corruption of R after the protocol execution if and only
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if Π is secure against leakage of ≈ λ(κ) + µ(κ) bits from R after the protocol execution. Note
that the above statement is clearly true when λ is large, as this would mean that the adversary is
essentially leaking the entire state. Interestingly, we prove that also for a small amount of leakage
(how small depends on the communication complexity of the underlying argument of knowledge)
simulation-based leakage tolerance becomes identical to adaptive security.

Assume that Π is secure against one adaptive corruption of R after the protocol execution. In
that case Π is also secure against any leakage queries from R after the protocol execution. This
follows from [4], as leakage is weaker than adaptive corruption. We therefore focus on the other
direction.

Theorem 2 (Equivalence to adaptive security). Assume the existence of AMnegl(κ),negl(κ)(O(1),
λ(κ)) argument of knowledge systems for NP, where λ(κ) = λP (κ) + λV (κ). Let H be afamily of
collision-resistant hash functions with range µ and Π be a leakage-tolerant public-key encryption
protocol. If Π tolerates λ′(κ) = 2λP (κ)+µ(κ)+1 bits of leakage from R after the protocol execution,
then Π is passive secure against an adaptive corruption of R after the protocol execution.

Proof. For simplicity we prove the theorem in the case where decryption is deterministic. One can
handle randomized decryption using the same technique as in the proof of Theorem 1.

Let FSMT be the ideal functionality for secure message transmission without leakage (featuring
simulator S′), and denote with IDEALFSMT,S′,Z′(κ) and REALΠ,Z′(κ) the real and ideal distri-
butions in the adaptive security game. To prove that Π is secure against one adaptive corruption
of R after the protocol execution, we have to construct a simulator S′ such that for all environ-
ments Z′ (corrupting R at the end of the protocol execution) and for all κ ∈ N it holds that
REALΠ,Z′(κ) ≈ IDEALFSMT,S′,Z′(κ).

Note that S′ needs to simulate first the communication (pk, c) of the protocol, and then after
being given m simulates the internal state (sk, rG) of R. We will build S′ by constructing an
environment Z attacking Π in the leakage game. Then we will get a simulator S which can simulate
the attack of Z in the ideal world, by the assumption that Π is secure. From S we will then construct
S′. For later use, Z will depend on an environment Z′ for the adaptive security game. Specifically
we will assume that Z′ does a normal adaptive corruption of R after the execution of the protocol.
The environment Z(Z′) runs as follows.

1. Z(Z′) runs an internal copy of Z′.
2. Until the protocol Π is running Z simply runs Z′, using the same inputs to Π and delivering

messages in the same way. This is possible as the real world for leakage tolerance and adaptive
security are identical as long as no leakage queries and no corruption queries are issued.

3. If Z′ does not make an adaptive corruption of R after the execution of Π terminated, then Z
just terminates with the same guess as Z′.

4. If Z′ makes an adaptive corruption of R, then Z proceeds as follows.

(a) Ask R to leak h = Hs(w), where w = (sk, rG) and s is a random seed for the hash family
H.

(b) Ask R to leak an argument of knowledge of w = (sk, rG) such that h = Hs(w) and (pk, sk) =
Gen(1κ; rG) and Dec(sk, c) = m. (This can be done exactly in the same way as in the proof
of Theorem 1, by letting Z(Z′) play the role of the verifier and simulating the interaction
with the prover via leakage queries.)

(c) Let σ be the current state of Z′. We can without loss of generality assume that Z′ is de-
terministic and that it terminates with its guess b after seeing the internal state (sk, rG,m)
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of R; we write b = Z′(σ, sk, rG,m). Now Z leaks f(sk, rG) = Z′(σ, sk, rG,m). Note that Z
knows m as this was a value it input to Π itself, and that it knows σ as it is Z which is
running Z′ (so these values can be hard-wired into the leakage function).

(d) Finally ask R to leak an argument of knowledge for w = (sk, rG) such that h = Hs(w) and
b = Z′(σ, sk, rG,m).

(e) Output b.

Note that the total amount of leakage is twice the communication complexity of the prover for
the arguments of knowledge, plus µ bits of Hs’s output and one additional bit for the output of Z′,
i.e., λ′ = 2λP + µ+ 1. By leakage tolerance, there exists a simulator S for the above Z(Z′). Since S
is required to work for all environments, it in particular works for Z(Z′) for all Z′, from which we
get

{IDEALF+lk
SMT,S,Z(Z′)

(F , κ)}κ∈N ≈ {REALΠ,Z(Z′)(F , κ)}κ∈N, (2)

which we use later. Note, first, however, that by leakage resilience, it holds that in the view simulated
by S, the arguments of knowledge accept with probability negligibly close to 1, or we could easily
construct a distinguisher between the real world and the simulation. Furthermore, the distributions
of the bit b in the real world and in the simulation are computationally indistinguishable.

Consider now the following simulator S′, interacting with FSMT in the adaptive security game.

1. Until the protocol Π is running, simulate using S.

2. When Z′ adaptively corrupted R, receive m from the ideal functionality.

3. Give the leakage function Hs(·) to S to make it generate a simulated value h. Note that S is a
simulator for the ideal world in the definition of leakage tolerance, i.e., it might issue leakage
queries fS to the ideal functionality. Answer these with fS(m) — the trick is that S′ at this
point knows m.

4. Similarly, make S give an argument of knowledge of w = (sk, rG) such that h = Hs(w) and
(pk, sk) = Gen(1κ; rG) and Dec(sk, c) = m.

5. By an above comment we know that this argument accepts except with negligible probability,
so S′ can extract from P ∗ := S a witness w = (sk, rG) such that h = Hs(w) and (pk, sk) =
Gen(1κ; rG) and Dec(sk, c) = m.

6. Output w.

It only remains to argue that the w output by S′ has a distribution computationally indistin-
guishable from the internal state of R in the real world. Assume for the sake of contradiction that it
is not. Then there exists an environment Z′ which can distinguish. This means that b = Z′(w) has
distinguishable distributions in the real world and the simulation (for the adaptive security game).
Consider then the adversary Z(Z′) for the leakage resilience game.

Claim. {REALΠ,Z(Z′)(F , κ)}κ∈N ≡ {REALΠ,Z′(κ)}κ∈N.

Proof (of claim). In words, the output distribution of Z(Z′) in the real world of the leakage game and
Z′ in the real world of the adaptive security game are the same. This follows simply by construction
of Z(Z′), which runs Z′ on the internal state w of R. ut

Claim. {IDEALF+lk
SMT,S,Z(Z′)

(F , κ)}κ∈N ≈ {IDEALFSMT,S′,Z′(κ)}κ∈N.
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Proof (of claim). In words, the output distribution of Z(Z′) in the ideal world of the leakage game
and Z′ in the ideal world of the adaptive security game are computationally indistinguishable.

The output distribution of Z(Z′) in the ideal world of the leakage game is the value b simulated by
S. The output distribution of Z′ in the ideal world of the adaptive security game is Z′ applied to the
value w extracted from P ∗ := S. We need to prove that these two distributions are indistinguishable.
To analyze the distribution of the b returned by S in the simulation of the leakage game, notice that
since both the arguments of knowledge given by S are accepting, we can extract w = (sk, rG) and
w′ = (sk′, r′G) such that h = Hs(w) and (pk, sk) = Gen(1κ; rG) and Dec(sk, c) = m, and h = Hs(w

′)
and b = Z′(σ, sk′, r′G,m). From Hs(·) being collision resistant we can assume that w = w′, so we
conclude that it holds from the w extracted from the first argument of knowledge generated by S
that w = (sk, rG), (pk, sk) = Gen(1κ; rG), Dec(sk, c) = m and b = Z′(σ, sk, rG,m). This means
that unless the collision resistance of Hs(·) is broken, the output distribution of Z(Z′) in the ideal
world of the leakage game and Z′ in the ideal world of the adaptive security game are the same. ut

The two claims above together with the assumption that Z′ can distinguish, imply that that Z(Z′)
has distinguishable outputs in the real world and the ideal world for the leakage game, contradicting
Eq. (2) above. From this we conclude that {REALΠ,Z′(κ)}κ∈N ≈ {IDEALFSMT,S′Z′(κ)}κ∈N for all
environments Z′, which proves the theorem. ut

4.2 Equivalence to Semi-Adaptive Security for Many Parties

We note that the proof technique from the previous section can be easily generalized to show that
an arbitrary two-party protocol Π is secure against one adaptive corruption after the protocol
execution if and only if Π tolerates ≈ poly(log κ) bits of leakage from one of the parties after the
protocol execution.

A variant of the above proof technique works also for an arbitrary protocol and if we allow
that many parties can be corrupted/leaked from after the protocol execution. The environment
will ask each party to leak an argument of knowledge of an internal state consistent with its inputs
and outputs. A simulator which can simulate such an argument could also “by extracting itself”
have output the entire internal state. We cannot, however, perform the trick where we send the
distinguisher Z′ into the parties to leak Z′(w), as now a distinguisher for the adaptive security game
should have access to (w1, . . . , wn), where wi is the internal state of party i, and (w1, . . . , wn) is
not sitting inside a single party, so Z′(w1, . . . , wn) cannot per se be computed using short leakages
f1(w1), . . . , fn(wn). Hence we cannot force the extracted internal state to be indistinguishable from
the internal state in the real world, all that is guaranteed is that the state is consistent with the
simulated public communication.
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