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Abstract

We revisit the context of leakage-tolerant interactive protocols as defined by Bitanski, Canetti and
Halevi (TCC 2012). Our contributions can be summarized as follows:

e For the purpose of secure message transmission, any encryption protocol with message space M
and secret key space SKC tolerating poly-logarithmic leakage on the secret state of the receiver
must satisfy |SK| > (1 — €)| M|, for every 0 < € < 1, and if |[SK| = | M|, then the scheme must
use a fresh key pair to encrypt each message.

e More generally, we show that any n party protocol tolerates leakage of ~ poly(log k) bits from one
party at the end of the protocol execution, if and only if the protocol has passive adaptive security
against an adaptive corruption of one party at the end of the protocol execution. This shows that
as soon as a little leakage is tolerated, one needs full adaptive security.

All our results can be based on the only assumption that collision-resistant function ensembles exist.

Keywords. simulation-based security, leakage tolerance, adaptive security, arguments of knowledge

*Partially supported by European Research Council Starting Grant 279447. Partially supported by DFF Starting Grant 10-
081612. Partially supported by the Danish National Research Foundation and The National Science Foundation of China (under
the grant 61061130540) for the Sino-Danish Center for the Theory of Interactive Computation, and also from the CFEM research
center (supported by the Danish Strategic Research Council).

TWork done while at Aarhus University.



Contents

(1__Introduction 2 [2.3  Leakage-Tolerant Secure Message |
M1 Our Conmbution . . . ....... 3 Transmissionl . . . . . ... .. .. 7
Il .2 Our Technlquesl ........... 4 B—|Leakage-Tolerant PKE 9
3 RelatedWorkl . ... ........ 5 3.1 Necessity of Long Keys| . . . . . .. 9
3.2 OnRe-UsingKeys| . ... ... .. 11

2 Preliminaries . ] ;
4 Relation to Adaptive Security| 12
QLALONN -+ v v e e e e e e e e 5 4.1 Corruption of a Single Party] . . .. 12
[2.2  Interactive Argument Systems| . . . 6 4.2 Corruption of Many Parties| . . . . . 15

1 Introduction

Would you trust your partner when you don’t trust his secrets? Suppose that Alice has a confidential message
m she wants to communicate to Bob, in a way that the content of m is protected from outsiders. In a world
where public-key cryptography exists, Bob can sample a fresh public key pk and hands it to Alice via an
authenticated channel (while keeping the corresponding secret key sk). Now Alice can use pk to encrypt m
and send the resulting ciphertext ¢ to Bob, who in turn can decrypt using sk and recover the message.

The problem sketched above, also known as the problem of secure message transmission, is one of
the most basic questions in cryptography. For instance we know that when Bob’s secret key is uniform
and “well protected”, any semantically secure encryption scheme would suffice for the purpose of secure
message transmission. But what if (part of) Bob’s secrets can leak to an outsider? Even when Bob’s secret
is not exposed, what if the randomness Alice used to encrypt can leak? Can Alice still trust the protocol
above?

Leakage-resilient cryptography. In the last few years, questions of this kind gained momentum in the
cryptographic community due to the spread of side-channel attacks. Starting from the early 90s’, it has
become clear that an adversary can potentially gain partial information on the secret state of uncorrupted
players in a variety of ways, e.g. by measuring time [35], power [36] and electromagnetic emission [43].
This information, often called /leakage, can be powerful knowledge in the hands of an adversary, putting
security of the cryptographic primitive under attack on edge.

Indeed, cryptographic algorithms are typically analyzed in a black-box fashion where secrets are as-
sumed to be completely oblivious to an adversary; in particular they offer no guarantees in the presence of
side-channel attacks. To change the above state of affairs, researchers started to investigate the possibility of
constructing schemes which preserve both their functionality and their security properties even in the pres-
ence of (an as large as possible class of) leakage. As a result, we now possess a rich list of leakage-resilient
(a.k.a. leakage-tolerant) schemes, e.g., for pseudorandomness generation [21}143]], storage [15} 18], encryp-
tion [39, (16, [24]], signatures [33} 123, 24, [11}, 41} [14, 22] and general non-interactive circuits [31} 25} 20].

However, in order to have a scheme II which maintains (in the presence of leakage) exactly the same
security guarantees it has in a leak-free setting, some restriction on the leakage itself must be placed as to
escape trivial attacks. Examples include putting a bound on the total information leaked, assuming that “only
computation leaks information” [38]], that different parts of the memory leak independently [[15} 18} [19], that
leakage occurs only in specific times or that the leakage is “hard to invert” [[17]. Two general approaches
have emerged:



e In the game-based approach, one augments a standard cryptographic game for II by giving the ad-
versary A access to an auxiliary interface from which she can input some function (within a set of
admissible functions) and receive back the value of the function applied to the secret state of II.

o In the simulation-based approach, one shows that II (augmented with a leakage interface) achieves
the same properties of an ideal execution where a simulator S interacts with a functionality F (also
augmented with a leakage interface) and no communication between parties takes place. Hence,
security is achieved if A can be simulated in the UC framework [[12], i.e. for any A attacking IT there
exists a simulator S such that no environment 7Z can tell whether it is interacting with A and II or with
S and F.

Both approaches have advantages and disadvantages. Sometimes, game-based notions do not exactly capture
the realistic security threats they wish to model and do not come in general with easy composition rules.
Simulation-based notions are harder to achieve and often require the use of expensive tools.

The model of Bitanski, Canetti and Halevi. In this paper we focus on the second approach, building
upon previous work of Bitanski et al. [6]]. In their model, leakage queries from an adversary A are viewed as
a form of partial corruption, where A does not receive the complete state of the chosen party but just some
function f4(+) of it.

Note that without any help the simulator S would have a very hard life. Consider for instance the case
of secure message transmission: Already a single bit of arbitrary leakage, say the first bit of the transmitted
message, makes it impossible to achieve semantic security! The solution is to allow also the simulator to
leak on the “ideal state” of the protocol, by specifying some function fs(-). Now, security means that a
real world attacker leaking A bits from the entire secret state of the implementation can be simulated given
A bits of leakage on the corresponding ideal state (i.e., on the message alone in case of secure message
transmission).

The functionality is also able to react to leakage, in the sense that it can be asked to “give-up” on security
when too much leakage occurred. This feature allows us to model relaxed security notions of protocols in
the presence of leakage, and in particular to specify how the security degrades with the leakage.

1.1 Our Contribution

We revisit the context of leakage-tolerant interactive protocols. Our results give strong evidence that leakage
tolerance in the simulation-based setting requires expensive tools already when a small amount of leakage
needs to be tolerated. Our main contributions are outlined below:

1. For the concrete case of secure message transmission, we show that any encryption protocol II tol-
erating a poly-logarithmic amount of leakage in the definition of Bitanski er al. [6] must satisfy
|ISKC| > (1 —€)|M| for all 0 < e < 1, where M is the message space and SK is the space of
secret keys. In other words, the decryption key must be essentially as long as the message being en-
crypted. Furthermore, if the messages and the secret keys have the same length, then a fresh key must
be used to encrypt every message.

2. We prove that II is secure against one adaptive corruption of the receiver at the end of the protocol
execution if and only if T is secure against leakage of =~ poly(log k) bits from the receiver’s internal
state at the end of the protocol execution. More in general, we prove that any n-party protocol tolerates
leakage of ~ poly(log x) bits from one party at the end of the protocol execution, if and only if the



protocol has passive security against an adaptive corruption. This shows that simulation-based leakage
tolerance becomes identical to full adaptive security already for very little leakage, as long as at most
one party can be corrupted.

3. We further discuss under which conditions it is possible to generalize our result from 2] to adaptive
corruption of an arbitrary number of parties in a leakage-tolerant protocol.

All our results can be based on the solely assumption that collision-resistant function ensembles exist.

1.2 Our Techniques

At the heart of our results there is a novel technique exploiting succinct interactive arguments for NP. These
are argument systems where the total amount of communication is at most poly-logarithmic in the length
of the witness and the instance being proven. Succinct interactive arguments (with a constant number of
rounds) are known to exist given any collision-resistant function ensemble [34, 47]].

Proof outline. We now sketch the proof of our main result. Since protocol II is leakage-tolerant, there
exists a simulator S producing a “convincing” view of the protocol for A. In addition, S can handle leakage
queries from A.

We exhibit an environment Z for which the existence of a simulator yields our bound. The environment
inputs a uniformly random m € M. Then, it lets the protocol terminate without making any leakage query
or any corruption, i.e. it simply delivers all messages between Alice (the sender) and Bob (the receiver).
As part of this, Z learns pk and the ciphertext ¢ from observing the communication on the authenticated
channel. After the protocol terminates, Z asks the receiver to prove the following NP-statement via a
succinct argument system: ‘“There exists some sk that explains ¢ as an encryption of m”. Notice that the
receiver can do this as it knows the secret key (i.e., a valid witness).

The crux of the strategy above is that Z can play the role of the verifier in the interactive argument by
using the leakage queries on the state of the receiver to “extract” the massages of the prover.

Now, by completeness of the argument system, in the real world the proof will be accepting with over-
whelming probability. On the other hand, leakage tolerance of II implies that the simulator must cook-up
an indistinguishable output in the ideal world. However, S has to choose ¢ beforehand to simulate A’s view,
and later answer leakage queries consistently by “explaining” ¢ as an encryption of m for decryption key
sk. It follows from (computational) soundness of the proof system that this is only possible if for a large
fraction of the messages in M there exists a secret key sk’ which explains ¢ consistently. From this, a simple
counting argument shows that | M| must be negligibly close to |SK|.

Extracting the state. Let H (-) be a collision-resistant hash function with range p bits. When the argument
system from above is an argument of knowledge (i.e., there exists a knowledge extractor which is able
to extract a valid witness for a statement when given access to a successful prover with respect to that
statement), we are able to show that IT is leakage-tolerant against 2poly(log k) + p + 1 bits of leakage from
the receiver’s internal state, if and only if IT has semi-honest adaptive security. The second direction follows
directly from the result of [6] that adaptive (semi-honest) security is sufficient to obtain leakage tolerance
for a broad class of functionalities.

To prove the first direction, one has to construct a simulator S’ which simulates first the communication
(pk, c) of the protocol to adversary A’, and then after being given m simulates the internal state of the
receiver consistently. Roughly, we do this as follows. We start by considering an adversary A against



leakage tolerance of II; from the definition of leakage tolerance, we know there exists a simulator S. Hence,
we use S to construct S’. The adversary starts by leaking the value h obtained by applying H (-) on the final
state of the receiver; then A uses an argument of knowledge to ask for a proof that there is a consistent state
inside the receiver which could be extracted (consistent also with the above value of h). Now, A uses an
additional leakage query to “send” a distinguisher Z’ (attacking adaptive security of II) inside the receiver,
have a look at the state and output its guess b. Finally, the adversary leaks a proof that the bit b was actually
computed by Z' from the same state which could be extracted from the first argument of knowledge. Note
that the latter can be achieved by using the same value of / in both arguments.

It follows that if we later use a simulator S’ for this attack and extract from its first argument of knowl-
edge some state, this state will have to look indistinguishable from a real state to any Z' (as long as finding
collisions in H (-) is hard). Adaptive security follows.

Corruption of more parties. The above proof technique is quite general, and in fact it can be applied to
any leakage-tolerant interactive n-party protocol, where at most one party gets corrupted.

The n-party case with arbitrary corruptions is more subtle as now a distinguisher for the adaptive security
game should have access to the state of all parties when it makes its guess, and it is not clear how to simulate
this given short leakages from each state. In particular, we cannot “send” a distinguisher Z’ into each of the
parties one by one, as sending Z’ out of the parties again could require too much leakage. Indeed, in this
case we do not know how to force the extracted internal states from the parties to be indistinguishable from
the internal state in the real world.

We conjecture that for corruption of multiple parties equivalence does not hold in general in case of
independent leakages from the state of each party; we leave the construction of a separating example as an
open problemE]

1.3 Related Work

Simulation-based notions of leakage tolerance have been considered also for public-key encryption schemes
by Halevi and Lin [29], and in the context of zero-knowledge protocols [27, 42, |1], coin tossing [10], and
secure multi-party computation [9, (8, [7]].

We mention a few other papers exploiting argument systems for negative results. The first one is the work
on “seed-incompressible functions” of Halevi, Myers and Rackoff [30], who use CS proofs [37] to show
that no pseudorandom function exists which remains secure after one leaks a “compressed” key. Another
example is the work of [44] on parallel repetition of computationally sound proofs, and the work of Jain
and Pietrzak [32]] who show that (game-based) leakage resilience for natural primitives like signatures and
encryption does not always amplify in case of parallel repetition. The first and the last results rely on random
oracles, whereas the second one is based on universal arguments [2]].

We stress that the techniques used in all the above works are substantially different than ours.

2 Preliminaries

2.1 Notation

We let N denote the naturals and R denote the reals. For a,b € R, we let [a,0] = {z € R; a <z < b};
fora € Nwelet[a] = {1,2,...,a}. If x is a string, we denote its length by |z|; if X is a set, | X'| represents

'In case the simulator is allowed joint leakage on the state of the parties equivalence still holds.



the number of elements in X'. When z is chosen randomly in X', we write © <— X. When A is an algorithm,
we write y < A(x) to denote a run of A on input x and output y; if A is randomized, then y is a random
variable and A(z;r) denotes a run of A on input z and randomness . An algorithm A is probabilistic
polynomial-time (PPT) if A is allowed to use randomness as part of its logic (i.e., A is probabilistic) and for
any input x € {0, 1}* the computation of A(z) terminates in at most poly(|z|) steps.

Let « be a security parameter. A function negl is called negligible in x (or simply negligible) if it
vanishes faster than the inverse of any polynomial in x. For a relation R C {0, 1}* x {0, 1}*, the language
associated with R is Lg = {z : Jw s.t. (z,w) € R}.

For two ensembles X = { X, }xen.Y = {Yi }ren, we write X &~ ), meaning that every probabilistic
polynomial-time distinguisher has negligible advantage in distinguishing X and ).

2.2 Interactive Argument Systems

Our results are based on the existence of round-efficient interactive argument systems. The definition below
is taken from [47]].

Definition 1 (Round-efficient interactive argument system). An interactive protocol (P, V') is an interactive
argument system for a language L if there is a relation R such that L = L, and functions v,s : N — [0, 1]
such that 1 — v(k) > s(k) + 1/poly(k) and the following conditions hold.

- (Efficiency): The length of all the exchanged messages is polynomially bounded, and both P and V
are computable in probabilistic polynomial time;

- (Completeness): If (x,w) € R, then V accepts in (P(w),V')(x) with probability at least 1 — v(|x|).

- (Computational soundness): If v € L, then for every non-uniform probabilistic polynomial-time P*
and for all sufficiently long © & L, the verifier V accepts in (P*,V)(x) with probability at most

s(|).

The value v(-) is called the completeness error and the value s(-) is called the soundness error. We
say (P, V) has perfect completeness if v = 0. The communication complexity of the argument system is
the total length of all messages exchanged during an execution; the round complexity is the total number
of exchanged messages. The protocol is called public-coin when the verifier’s moves consist merely of
tossing coins and sending their outcomes to the prover. We write AM,, ;(p(x), A(k)) to denote public-
coin interactive argument systems with completeness error v, soundness error s, round-complexity p(k)
and communication complexity (k). Sometimes we also write A(k) = Ap(k) + Ay (k) to differentiate
between the communication complexity of the prover and of the verifier. We say (P, V) is succinct if \(k)
is poly-logarithmic in the length of the witness and the statement being proven.

We get an argument of knowledge whenever it is possible to extract a witness from any successful
prover:

Definition 2 (Argument of knowledge). An interactive protocol (P, V') is an interactive argument of knowl-
edge for a language L if it is an interactive argument system, where the computational soundness condition
is replaced by the following:

- (Argument of knowledge): For all non-uniform probabilistic polynomial-time P* such that V' accepts
in (P*,V)(z) with overwhelming probability, there exists a non-uniform probabilistic polynomial-
time extractor Ep- outputting (x,w) such that (x,w) € R with overwhelming probability.



There are other forms of extractability, where from any prover succeeding to convince V' with probability
p(+), one can extract a witness with probability which is polynomially related to p(-) [3,46]. Here we only
need the weak notion above, where extraction is only guaranteed if the prover convinces the verifier with
probability close to 1. The technical reason is that in the real world we will ask a party to “leak” an argument
of knowledge of its internal state, which will succeed with overwhelming probability by completeness.

Instantiations. Kilian [34] constructs a 4-round public-coin succinct argument of knowledge for NP
based on a probabilistically checkable proof (PCP) system for NP and a collision-resistant function ensem-
ble. Gentry and Wichs [28]] prove that non-interactive succinct arguments, so called SNARGs, cannot exist
given a black-box reduction to any falsifiable assumption. In fact, the only constructions of SNARGs we
know of are either based on the random oracle model of Bellare and Rogaway [4] (as shows Micali [37] by
applying the Fiat-Shamir transform [26] to Kilian’s protocol) or under so-called “knowledge of exponent”
assumptions [5].

We remark that for our results interactive arguments are sufficient; in particular our theorems can be
based on the assumption that collision-resistant function ensembles exist.

2.3 Leakage-Tolerant Secure Message Transmission

Syntax of public-key encryption. A public-key encryption (PKE) scheme is a tuple of algorithms (Gen,
Enc, Dec) defined as follows. The key generation algorithm Gen takes as input a security parameter x and
outputs (pk, sk) < Gen(1%); we let PK x SK be the key space. The encryption algorithm takes as input
a message m € M and outputs a ciphertext ¢ < Enc(pk, m) in some ciphertext space C. The decryption
algorithm takes as input a ciphertext ¢ € C and a secret key sk € SK and outputs m < Dec(sk, c).

Since we aim to apply our result to arbitrary encryption schemes, we will assume that decryption is
also randomized. We say that (Gen, Enc, Dec) has negligible completeness error if it holds that Dec(sk,
(Enc(pk, m)) returns m with overwhelming probability over the coin tosses of (Enc, Dec) and the choices
of (pk, sk) < Gen(1%) and m € M.

Leakage-tolerant PKE. We recall the simulation-based notion of leakage tolerance introduce by Bitansky
et al. [6]. Informally, leakage queries from an adversary A are viewed as a form of partial corruptions, where
A does not received the complete state of the chosen party but just some function of it. Security is then
achieved if such an adversary can be simulated in the UC framework. Without loss of generality we will
consider only dummy adversaries — adversaries which just carry out the commands of the environment. lL.e.,
it is the environment which specifies all leakage queries. We will therefore completely drop the adversary
in the notation for clarity.

Let II be a protocol implementing an ideal functionality F. Let Z be an environment trying to “break”
security of II. The environment specifies all inputs to the protocol, sees all messages sent, schedules all
message deliveries, sees all outputs and is in addition allowed to make leakage queries during the run of the
protocol. Such queries are modelled in the following way: When Z wants to leak from the state of player X,
it sends a leakage request (X, f7) upon which it receives f7(ox ), where ox is the current secret state of X.
The function f7 can be any function within a set of admissible leakage functions J, which is a parameter in
the definition.

In the ideal world, a trusted party is running F' and a simulator S is interacting with it. The simulator
must then simulate the protocol to the environment Z. All inputs specified by Z go directly to F'; the
simulator only sees the input of corrupted parties. The simulator must then simulate the communication of



Functionality FJ\k_

Running with parties R, .S and adversary S, the functionality Fg,\',ll‘T is parametrized by the security

parameter ~, message space M and the set of all admissible leakage functions F. Hence, Fsﬁ\',"‘T

behaves as follows:

e Upon input (send, S, R, m) send a message (send, S, R, |m|) to S. Once S allows to forward
the message, send (sent, S, m) to R.

e Upon input (leak, X, fz) for X € {S,R} and f; € F send a message (leak, X) to S.
Receive (leak, X', fs) from S, check that fs € F, and that |fz(-)| = |fs(*)] and X' = X.
Send (1leak, fs(m)) to S and (leaked, |fs(m)]) to X'.

Figure 1: Ideal functionality F;r,\'}l‘T for secure message transmission with leakage

the protocol to Z. In addition, all leakage queries (leak, X, fz) from Z goes to the simulator. When a
query (leak, X, fz) arrives, the simulator is allowed to make its own leakage query (leak, X, fs) to the
ideal functionality, under the restriction that the length of the leakage requested by S does not exceed the
length of the leakage requested by Z.

We say that 11 is a leakage-tolerant secure implementation of F' if there exists a simulator S such that
no environment can distinguish between the real life protocol II and S interacting with the ideal func-
tionality F. More formally, consider the ideal functionality F;r,\'/ll‘T, depicted in Figure Denote with
IDEALF;\'}T,&Z(‘F , k) the output of the environment Z when interacting with simulator S in the simula-
tion.

Consider the following protocol II between a sender S and a receiver R, supposed to realize F;r,\',lfT viaa
public-key encryption scheme (Gen, Enc, Dec) with message space M and key space PK x SK, assuming
authenticated channels:

1. S transmits to R its willing to forward a message m € M;

2. R samples (pk, sk) = Gen(1";r¢q), where pk € PK and sk € SK, and sends pk to S;
3. S computes ¢ = Enc(pk, m; rg) and forwards the result to R;

4. R outputs m’ = Dec(sk,c;rp).

Note that at the end of the execution of II the state of S is g = (m,rg) whereas the state of R is
or = (sk,rq,rp,m’). Denote with REALp z(F, k) the output of the environment Z after interacting
with parties R, .S in a real execution of II.

Definition 3 (Leakage-tolerant PKE protocol). We say that 11 is a leakage-tolerant public-key encryption
protocol (w.r.t. a set of leakage functions F) if 11 securely implements Fa\','l‘T i.e., there exists a probabilistic
polynomial-time simulator S such that for any environment 7 it holds that

{IDEALF;RI/TT,S,Z(‘F’ /f)}HEN ~ {REALmz(f, K)}KEN'



When the total amount of leaked informationis A = ), | fg) ()|, we say that II tolerates X bits of leakage.

3 Leakage-Tolerant PKE

In this section we present a result regarding the complexity of encryption schemes that are leakage-resilient
according to Definition [3] Looking ahead, we will prove that it is not possible to achieve security in this set-
ting without relying on an encryption scheme having similar properties to non-committing encryption [13].

3.1 Necessity of Long Keys

We show the following theorem.

Theorem 1 (Deﬁnitionrequires long keys). Assume the existence of AM cq1(,c) negi(x) (O(1), AM(K)) argu-
ment systems for NP, where \(k) = A\p(k) + A\v (k). Let Il be a leakage-tolerant public-key encryption
protocol with key space PK x SK and message space M. Then, whenever 11 tolerates \' (k) = Ap(k) bits
of leakage it must be that |SK| > (1 — €)| M| forall 1 > € > 0. In particular, if {(SK) and (M) are resp.
the bit length of the secret key and of the messages, we have {(SK) > {(M) — 1, i.e. to encrypt a message
of length { bits one needs a key of length at least { — 1 bits.

Proof. Assume first that the decryption algorithm is deterministic and that the encryption scheme has perfect
correctness, i.e., Dec(sk, Enc(pk, m;rg)) = m for all rg and for all m when (pk, sk) < Gen(1").

Since protocol II is leakage-tolerant, we know that there exist a simulator S producing a “convincing”
view of the protocol. Moreover, S can handle requests of the kind (1eak, X, f7), where X is either S or R
and f7 is a leakage function (chosen by the environment) to be applied to the internal state oy of X.

We construct an environment Z which uses Ap bits of leakage on the receiver’s state after the execution
of I, for which the existence of simulator S implies our bound. Consider the following relation:

R = {((pk,c,m), (sk,rc)) : (pk,sk) = Gen(1%;rq) A Dec(sk,c) =m} , (1)

and let (P, V') be an AM,,c01(),negi(x) (O(1), A(x)) argument system for £ = L£(R). The main idea will be
to let Z play the role of the verifier in the argument system, while running the prover with the help of the
leakage queries on the state of the receiver. The environment Z works as follows:

1. Input a uniformly random m € M to S.

2. Let the protocol terminate without any leakage queries or any corruptions, i.e., simply deliver all
messages between S and R. As part of this Z learns pk and ¢ from observing the authenticated
channel between S and R.

3. After the protocol terminates, let R prove via leakage queries that x = (pk, c,m) € L. Notice that R
can do this as it knows the witness w = (sk, r). Details follow.

We now show how to generate an interactive argument for £, by letting Z (holding the instance x =
(pk, c,m)) play the role of the verifier and using the leakage queries on the receiver’s state w = (sk,rq)
to generate the interaction with the prover. Wlog. assume the verifier talks first, and denote with p(x) =
poly(k) the total number of rounds. (The case where the prover talks first can be derived similarly.)

We introduce some auxiliary notation. Let rp (ry/) be a random string long enough to specify all random
choices done by the prover (verifier), such that for fixed rp (ry), the prover (verifier) is deterministic. For



alli =0,...,p/2 — 1, denote with yo;11 = V(x,2i + 1, views;; ry ) the next message sent by the verifier,
where the variable view; is defined as the entire view until round j € [p]. Similarly, the next message
computed by the prover is computed as yo; = P(x,w,2i,viewy;—1;rp) for all i = 1,...,p/2. Note
that, with this notation, the complete view consists of (y1,¥2,...,9,). At the end the verifier computes a
judgement J (z, view,; ry) € {0, 1}, where 1 indicates accept.

Therefore, it suffices to specify how Z (holding only (pk, ¢, m)) can generate the messages of the prover.
It proceeds as follows:

1. Z samples uniformly random rp and ry .

2. Z computes y; = V(z,1, L;ry) and then sets the leakage function f;) to be the function fg)(w) =
P(xz,w,2,y1;rp). (This can be done by “hard-wiring” the values = and y; into the leakage function.)

3. In general, given viewy; = (y1,¥2,- - -, Y2i), the adversary Z can compute y2;1, hard-wire this value

into fg) and get ya; 12 = P(x,w,2i + 2,y2;41;7p). This can be done for all i € [p], until the last
message ¥, of the argument system is obtained.

4. Then Z outputs J(x, view,; ry) as its guess.

Note that the total amount of leaked information is the communication complexity of the prover in
(P,V),i.e., Ap bits. By completeness of the argument system, we know that REALy 7(F, k) = 1, except
with negligible probability. From this we conclude that IDEA L+ ¢, (F, k) = 1 except with negligible

S )

probability, by security of the protocol. We write out what this mearhg.’ The simulation proceeds as follows:

1. First Z inputs a uniformly random m € M to the ideal functionality on behalf of S. As a result S is
given (send, S, R, |m]).

2. Then S must simulate the communication of the protocol, which in particular means that it must output
some pk and c to Z.

3. After the simulation of the protocol terminates, the environment makes the leakage queries with which
R proves that x = (pk,c,m) € L. The leakage queries are answered by S. In more detail:

(a) Z samples uniformly random 7p and ry/.

(b) Z sets the leakage function f75;1) to be the function fél)(w) = P(z,w,2,y1;7p). The function
is sent to S, who must choose some function fs producing value ys.

(c) In general, given views; = (y1,y2, - - -, Y2i), the environment Z specify fg) and sends the same

fg) as in the protocol to S which in turn chooses fs(i) defining some 2; 1. This is done for all
i € [p], until the last message ¥, of the argument system is obtained.

(d) Then Z outputs J(x, view,; ry) as its guess.

Since Z is computing its own messages ;1 as the verifier of (P, V') would have done, and the messages
y2; are computed by S which is PPT, and J (z, view,; ry) = 1, it follows from soundness that x € £ except
with negligible probability. This means that there exist (sk, rg) such that (pk, sk) = Gen(1%;r¢) and m =
Dec(sk, c). In particular, there exist sk € SK such that m = Dec(sk, ¢). Let My, . C M denote the subset
of m’ € M for which there exist sk’ € SK such that m’ = Dec(sk’, ¢). We have that m € M,y .. Notice,
that if it was the case that m ¢ My ., then it would be the case that (pk,c,m) ¢ L and hence S would
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not be able to answer the leakage queries such that J(x, view,; ry) = 1, except with negligible probability,
by soundness. Hence, it follows from {IDEALF;'A"T,S,Z(*F’ k)}keNn = {REAL 7 (F, K)}ren that the
probability that m € My . is overwhelming. This implies that |M, .|/| M| is negligibly close to 1, in
particular [Mpy, .| > (1 —€)|M]| forall 0 < e < 1. Take two mg # my € M, .. By definition there exist
sko, sk1 € SK such that my = Dec(sko, c) and m; = Dec(sk1,c). From my # m;, we conclude that
sko # skq, 50 |SKC| > |Mpy, | From this we get the theorem.

To handle randomized decryption functions, we let the environment pick the randomness which should
be used for decryption. l.e., Z hard-wires a random string rp into the instance = and asks the receiver to
prove that there exists r¢, sk such that (pk, sk) = Gen(1%;r¢) and Dec(sk, ¢;rp) = m. In the real world,
this will hold with overwhelming probability, and hence in the ideal world we can, along the lines above,
conclude that for any two messages mg and m, there exists sko, sk1 € SK such that my = Dec(sko, ¢;7p)
and m; = Dec(ski, ¢;rp). This again allows to conclude that sk # sk;. Note that it is important that Z
picks rp. If it was considered part of the witness, we would only get that there exists skg, sk1 € SK and

r%,rL such that mg = Dec(sko,c;%) and m; = Dec(ski, c;r}), from which we cannot conclude that
sko # ski, as r% =+ rlD might be enough to give different decryptions for a fixed skg = sk;. O

Remark 1. Assuming the existence of collision-resistant function ensembles (which implies an argument
system for AM p,cq1(1c) megi(r) (4, poly(log k))), we get that Theorem|I| holds for any leakage-tolerant public-
key encryption protocol tolerating poly-logarithmic leakage on the receiver’s state.

3.2 On Re-Using Keys

One could still hope that it is possible to use the same key to encrypt more than one message. Below, we
prove that this hope is also vacuous.

Corollary 1 (Fresh key for every message). If Il is a leakage-tolerant public-key encryption protocol toler-
ating poly-logarithmic leakage and such that 20(M) — 1 > ((SK) > £(M) — 1, then a fresh key must be
used to encrypt every message.

Proof. We prove this by contradiction to Theorem |1, Namely, assume IT = (Gen, Enc, Dec) has message
space M, key space PK x SK and uses a single pair (pk, sk) < Gen(1*) to encrypt two messages m’ and
m” sequentially. Denote with ¢’ < Enc(pk,m’) and ¢’ < Enc(pk, m”) the corresponding ciphertexts.
Now consider the following public-key encryption scheme II = (Gen, Enc, Dec). The key generation
algorithm Gen simply runs (pk, sk) < Gen(1%). The encryption algorithm takes as input a message m €

M2, writes it as m = m/||m' and outputs

Enc(pk, m) = Enc(pk, m')[Enc(pk,m") = || = c.

The decryption algorithm Dec parses c as ¢/||¢”” and outputs m < Dec(sk, ¢’)||Dec(sk, c").

Since II securely realizes F;,\I,ll‘-r in the presence of A bits of leakage, Theorem 1| implies {(SK) >
(M) — 1. On the other hand, the notion of leakage tolerance composes sequentially, so that IT securely
realizes F;,:/ll‘-r (with the same leakage bound). However, II has message space M = M? and key space
SK = SK. Hence, Theoremyields

((SK) = U(SK) > (M) — 1 =2¢(M) — 1,

a contradiction. O



Connection with Bitanski ef al. The authors in [6] show that any non-committing encryption proto-
col [13] suffices to securely realize F;’,{,TT It is understood that every non-committing encryption protocol
must satisfy the property that both the public and the secret key are as long as the total number of message
bits ever encrypted [40].

4 Relation to Adaptive Security

In this section we investigate the relation between leakage tolerance and adaptive security for arbitrary
functionalities. We obtain the following results:

e We show that being secure against a semi-honest adversary which is allowed to do one adaptive
corruption after the execution of the protocol is equivalent to being secure against a little leakage
from a single party after the execution of the protocol.

e We conjecture that equivalence does not hold in general for independent leakages from the state of
more than one party (but still holds for the case of joint leakage).

4.1 Corruption of a Single Party

Assume that there exists an AM,¢g(x) negi(x) (O(1), A(%)) argument system, which is also an argument of
knowledge. Also assume there exists a family of collision-resistant hash functions H = {H,}s with output
length p(k).

We now prove that it holds for any leakage-tolerant PKE protocol II, as in the above section, that II is
secure against one adaptive corruption of R after the protocol execution if and only if 1II is secure against
leakage of ~ A\(k) + (k) bits from R after the protocol execution. Note that the above statement is
clearly true when X is large, as this would mean that the adversary is essentially leaking the entire state.
Interestingly, we prove that also for a small amount of leakage (how small depends on the communication
complexity of the underlying argument of knowledge) simulation-based leakage tolerance becomes identical
to adaptive security.

Assume that II is secure against one adaptive corruption of R after the protocol execution. In that case
II is also secure against any leakage queries from R after the protocol execution. This follows from [J5]], as
leakage is weaker than adaptive corruption. We therefore focus on the other direction.

Theorem 2 (Equivalence to adaptive security). Assume the existence of AM i) negi(x)(O(1), AM(K)) ar-
gument of knowledge systems for NP, where \(k) = Ap(k)+ Ay (k). Let H be afamily of collision-resistant
hash functions with range p and 11 be a leakage-tolerant public-key encryption protocol. If 11 tolerates
N(k) = 2Ap(k) + (k) + 1 bits of leakage from R after the protocol execution, then 11 is passive secure
against an adaptive corruption of R after the protocol execution.

Proof. For simplicity we prove the theorem in the case where decryption is deterministic. One can handle
randomized decryption using the same technique as in the proof of Theorem|[I]

Let Fsyt be the ideal functionality for secure message transmission without leakage (featuring simu-
lator §'), and denote with IDEALF.,,; s 7(x) and REALp 7 (k) the real and ideal distributions in the
adaptive security game. To prove that II is secure against one adaptive corruption of R after the protocol
execution, we have to construct a simulator S’ such that for all environments Z' (corrupting R at the end of
the protocol execution) and for all £ € N it holds that REALp; 7/ (x) ~ IDEALg,,, s 7/ (k).
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Note that S’ needs to simulate first the communication (pk, ¢) of the protocol, and then after being given
m simulates the internal state (sk, rg) of R. We will build S’ by constructing an environment Z attacking 11
in the leakage game. Then we will get a simulator S which can simulate the attack of Z in the ideal world,
by the assumption that IT is secure. From S we will then construct S'. For later use, Z will depend on an
environment Z' for the adaptive security game. Specifically we will assume that Z' does a normal adaptive
corruption of R after the execution of the protocol. The environment Z(Z') runs as follows.

1. Z(Z') runs an internal copy of Z/'.

2. Until the protocol IT is running Z simply runs Z/, using the same inputs to IT and delivering messages
in the same way. This is possible as the real world for leakage tolerance and adaptive security are
identical as long as no leakage queries and no corruption queries are issued.

3. If Z/ does not make an adaptive corruption of R after the execution of II terminated, then Z just
terminates with the same guess as 7Z/.

4. If Z' makes an adaptive corruption of R, then Z proceeds as follows.

(a) Ask Rtoleak h = Hs(w), where w = (sk,rg) and s is a random seed for the hash family .

(b) Ask R to leak an argument of knowledge of w = (sk, r¢) such that h = Hs(w) and (pk, sk) =
Gen(1%; r¢) and Dec(sk, ¢) = m. (This can be done exactly in the same way as in the proof of
Theorem (1} by letting Z(Z') play the role of the verifier and simulating the interaction with the
prover via leakage queries.)

(c) Let o be the current state of Z'. We can without loss of generality assume that Z’ is deterministic
and that it terminates with its guess b after seeing the internal state (sk,rg, m) of R; we write
b="7(o,sk,rg,m). Now Z leaks f(sk,rq) = Z(o, sk,ra, m). Note that Z knows m as this
was a value it input to IT itself, and that it knows o as it is Z which is running Z’ (so these values
can be hard-wired into the leakage function).

(d) Finally ask R to leak an argument of knowledge for w = (sk,r¢) such that h = H,(w) and
b="171o,sk,rg,m).
(e) Output b.

Note that the total amount of leakage is twice the communication complexity of the prover for the
arguments of knowledge, plus y bits of H,’s output and one additional bit for the output of Z/, i.e., N =
2\p + u + 1. By leakage tolerance, there exists a simulator S for the above Z(Z'). Since S is required to
work for all environments, it in particular works for Z(Z') for all Z', from which we get

{IDEALFg-I\lﬂkTS’Z(Z,) (.F, K:)}K,GN ~ {REALH,Z(Z’) (.F, H)},{eN, (2)

which we use later. Note, first, however, that by leakage resilience, it holds that in the view simulated by
S, the arguments of knowledge accept with probability negligibly close to 1, or we could easily construct
a distinguisher between the real world and the simulation. Furthermore, the distributions of the bit b in the
real world and in the simulation are computationally indistinguishable.

Consider now the following simulator S', interacting with Fsy T in the adaptive security game.

1. Until the protocol II is running, simulate using S.
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2. When Z' adaptively corrupted R, receive m from the ideal functionality.

3. Give the leakage function H(-) to S to make it generate a simulated value h. Note that S is a simulator
for the ideal world in the definition of leakage tolerance, i.e., it might issue leakage queries fs to the
ideal functionality. Answer these with fs(m) — the trick is that S’ at this point knows m.

4. Similarly, make S give an argument of knowledge of w = (sk,rg) such that h = Hg(w) and
(pk, sk) = Gen(1";r¢) and Dec(sk, c) = m.

5. By an above comment we know that this argument accepts except with negligible probability, so S/
can extract from P* := S a witness w = (sk, rg) such that h = Hg(w) and (pk, sk) = Gen(1%;rq)
and Dec(sk, c) = m.

6. Output w.

It only remains to argue that the w output by S’ has a distribution computationally indistinguishable from
the internal state of R in the real world. Assume for the sake of contradiction that it is not. Then there exists
an environment Z' which can distinguish. This means that b = Z'(w) has distinguishable distributions in
the real world and the simulation (for the adaptive security game). Consider then the adversary Z(Z') for
the leakage resilience game.

Claim 1. {REAan(Z/)(]:, H‘)}K)EN = {REALHZ/(/{)}EEN-

Proof of claim. In words, the output distribution of Z(Z') in the real world of the leakage game and Z' in
the real world of the adaptive security game are the same. This follows simply by construction of Z(Z'),
which runs Z’ on the internal state w of R. O

Claim 2. {IDEALF;&TSZ(Z/)(‘F’ H)}HGN ~ {IDEALFSMT,S’Z’(’{)}HEN'

Proof of claim. In words, the output distribution of Z(Z') in the ideal world of the leakage game and Z’ in
the ideal world of the adaptive security game are computationally indistinguishable.

The output distribution of Z(Z') in the ideal world of the leakage game is the value b simulated by S.
The output distribution of Z’ in the ideal world of the adaptive security game is Z' applied to the value w
extracted from P* := S. We need to prove that these two distributions are indistinguishable. To analyze
the distribution of the b returned by S in the simulation of the leakage game, notice that since both the
arguments of knowledge given by S are accepting, we can extract w = (sk, r¢g) and w’ = (sk’, ;) such that
h = Hy(w) and (pk, sk) = Gen(1%;7¢) and Dec(sk,c) = m, and h = Hy(w') and b = Z/ (o, sk', 7z, m).
From H(-) being collision resistant we can assume that w = w’, so we conclude that it holds from the w
extracted from the first argument of knowledge generated by S that w = (sk,rq), (pk, sk) = Gen(1%;r¢q),
Dec(sk,c) = m and b = Z'(o, sk,rg, m). This means that unless collision resistance of H(-) is broken,
the output distribution of Z(Z’) in the ideal world of the leakage game and Z' in the ideal world of the
adaptive security game are the same. O

The two claims above together with the assumption that Z' can distinguish, imply that that Z(Z’) has dis-
tinguishable outputs in the real world and the ideal world for the leakage game, contradicting Eq. (2) above.
From this we conclude that {REALy 7 (k) }ven ~ {IDEALp,,,; sz (k) }ren for all environments Z’,
which proves the theorem. O
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4.2 Corruption of Many Parties

We note that the proof technique from the previous section can be easily generalized to show that an arbitrary
n-party protocol II is secure against one adaptive corruption after the protocol execution if and only if 11
tolerates poly(log ) bits of leakage from one of the parties after the protocol execution.

A natural question is whether the above proof technique can be generalized to work also for an arbitrary
protocol and if we allow that many parties can be corrupted/leaked from after the protocol execution. We
conjecture that the answer is, in general, negative. The main idea would be to let the environment ask
each party to leak an argument of knowledge of an internal state consistent with its inputs and outputs.
A simulator which can simulate such an argument could also “by extracting itself”” have output the entire
internal state. We cannot, however, perform the trick where we send the distinguisher Z' into the parties to
leak Z'(w), as now a distinguisher for the adaptive security game should have access to (w1, . . . , wy, ), Where
w; is the internal state of party 4, and (w1, ..., w,) is not sitting inside a single party, so Z’' (w1, ..., wy)
cannot per se be computed using short leakages f;(w1), ..., fn(wn)ﬂ Hence, it seems hard to enforce the
extracted internal state to be indistinguishable from the internal state in the real world.
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