
A preliminary version of this paper appears in CRYPTO 2014. This is the full version.

Cryptography from Compression Functions:

The UCE Bridge to the ROM

Mihir Bellare1 Viet Tung Hoang2 Sriram Keelveedhi3

July 2, 2014

Abstract

This paper suggests and explores the use of UCE security for the task of turning VIL-ROM schemes
into FIL-ROM ones. The benefits we offer over indifferentiability, the current leading method for this
task, are the ability to handle multi-stage games and greater efficiency. The paradigm consists of (1)
Showing that a VIL UCE function can instantiate the VIL RO in the scheme, and (2) Constructing the
VIL UCE function given a FIL random oracle. The main technical contributions of the paper are domain
extension transforms that implement the second step. Leveraging known results for the first step we
automatically obtain FIL-ROM constructions for several primitives whose security notions are underlain
by multi-stage games. Our first domain extender exploits indifferentiability, showing that although the
latter does not work directly for multi-stage games it can be used indirectly, through UCE, as a tool
for this end. Our second domain extender targets performance. It is parallelizable and shown through
implementation to provide significant performance gains over indifferentiable domain extenders.

1 Department of Computer Science & Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla,
California 92093, USA. Email: mihir@eng.ucsd.edu. URL: http://cseweb.ucsd.edu/~mihir/. Supported in part by NSF
grants CNS-1116800 and CNS-1228890.

2 Department of Computer Science & Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla,
California 92093, USA. Email: vth005@eng.ucsd.edu. URL: http://csiflabs.cs.ucdavis.edu/~tvhoang/. Supported in
part by NSF grant CNS-1116800.

3 Email: sriramkr@cs.ucsd.edu. URL: http://cseweb.ucsd.edu/~skeelvee/. This work was done when Keelveedhi was
a Ph.D. student at the University of California San Diego, supported in part by NSF grants CNS-1116800 and CNS-1228890.

1

Contents

1 Introduction 3

2 Preliminaries 6

3 UCE framework 7

4 UCE from indifferentiability 8

5 UCE from universal hashing 11

6 Fast, parallelizable AU hash from reduced-round AES 13

7 An example application 15

8 Implementation 17

A Proofs of Theorem 4.1 19

B Proof of Theorem 5.1 21

C Constructing FIL UCE-secure hash in the FIL-ROM 24

D Proof of Proposition 6.1 28

E Proof of Proposition 6.2 28

F Proof of Proposition 6.3 29

2

1 Introduction

Two forms of the random oracle model (ROM) of BR [9] have emerged, namely the VIL-ROM and FIL-
ROM. In the VIL-ROM, the random oracle, denoted RO, is variable input length (VIL), meaning takes
inputs of arbitrary length. In the FIL-ROM, the random oracle, denoted ro, is fixed input length (FIL),
meaning only takes inputs of one, particular length. The VIL-ROM is preferable for the design and analysis
of ROM schemes and reflects the original view of BR [9] that random oracles would be instantiated by
cryptographic hash functions that, like SHA-256, take variable length inputs. However hash functions are
built in a very structured way from their underlying compression functions. This lead researchers beginning
with Coron, Dodis, Malinaud and Puniya [15] to suggest that it should be the compression function, rather
than the hash function, that is treated as “ideal,” leading to the FIL-ROM. Indeed, SHA-256 is built from
its compression function sha-256 in a way that renders SHA-256 subject to the extension attack, which
can lead to attacks when SHA-256 is used to instantiate a VIL random oracle. Treating the compression
function (rather than the full hash function) as the ideal object is more reflective of the design goals and
intuition of practitioners and leads to better security.

The consensus then is that we should design schemes in the FIL-ROM. The question is how best to do
this. One option is to directly design and analyze schemes in this model, but this is difficult and ad hoc.
A better option is to provide a construction Ero of a VIL function that can substitute a VIL RO, meaning
we would design schemes secure in the VIL-ROM as usual and then automatically replace RO with Ero

to obtain security in the FIL-ROM. We refer to such an E as a domain extension construction or domain
extender.

For this to work in some broad and useful way, we need a definition of some property, call it X, that,
if satisfied by Ero, allows the latter to securely replace RO in the VIL-ROM and thus provide security in
the FIL-ROM, for some useful and hopefully large set of schemes that are proven secure in the VIL-ROM.
The leading proposal for X is “indifferentiability from a random oracle” as defined by Maurer, Renner and
Holenstein (MRH) [21] and advocated by [15].

This paper suggests, and explores, an alternative X. We suggest that X be the notion of UCE (Universal
Computational Extractor) security defined by BHK [6]. Our results will show both theoretical and practical
benefits of X=UCE over X=indifferentiability in this role. On the theoretical side, UCE allows us to move
from the VIL-ROM to the FIL-ROM for primitives whose security is defined via multi-stage games, a
setting where indifferentiability fails [25]. On the practical side, we exhibit UCE domain extenders E
that are significantly more efficient than known indifferentiability ones, in particular parallelizable to take
advantage of modern multi-core machines, our efficiency claims being not just asymptotic but supported
by implementations and experiments. Conceived as a way to remove random oracles, UCE now becomes
a bridge to better security in the ROM.

Limitations of indifferentiability. While indifferentiability works well in some settings [21], it has
two major limitations. The first is that indifferentiable-from-random functions do not suffice to securely
replace a VIL random oracle for primitives whose security definition is underlain by multi-stage games [25].
This gap is more than academic, for we are seeing the emergence of numerous primitives and security
notions of practical importance whose definitions are inherently multi-stage. Examples, all but the last
listed by RSS [25], include Deterministic PKE (D-PKE) [4], Hedged PKE [5], encryption secure against
key-dependent messages [12], primitives secure against related-key attack [8], proofs of storage [25] and
Message-Locked Encryption (MLE) [7]. In each case there are natural, efficient and canonical solutions
in the VIL-ROM that we would like to implement in the FIL-ROM, but indifferentiability offers no way
to do this. The second limitation of indifferentiability is performance. Typical indifferentiable domain
extenders iterate the compression function sequentially. This means that instantiations are left unable to
take advantage of modern multi-core processors to provide performance gains. This reduces the potential
for high volume usage and deployment of cryptography based on compression functions.

Our perspective. We conceptualize the goal that motivated the use of indifferentiability as aiming to
design an X-secure domain extender —this being a construction Ero that, given the FIL random oracle ro,

3

Method Notions Performance Applications

Keyed-Indiff
UCE[Ssrs] About m/(m− n) times

All schemes in [6]
UCE[Scrs] the speed of M

AU-then-Hash UCE[Ssup]
Parallelizable MLE, key derivation,

∼ 0.4 cycles per byte storage auditing

Figure 1: Our UCE domain extension constructions and their properties. The second column
gives the UCE notion that is achieved. M is the indifferentiable domain extender used in the first con-
struction. The numbers n and m are the key length of the hash function and the input length of the ideal
compression function, respectively. Typically, n = 128 and m = 512.

computes a VIL, X-secure function— for a “good” choice of X, meaning one that allows Ero to securely
replace RO in the VIL-ROM for some significant set of applications. The composition theorem of [21] shows
that X=indifferentiability is able to do this for single-stage games, which is certainly important. However,
as discussed above, indifferentiability also has important limitations. We ask if there are alternative
definitions X that can overcome these limitations and complement indifferentiability in its role.

The core limitation of indifferentiability is the inability to handle multi-stage games. We suggest that a
natural route around this is that X-security itself be multi-stage. The particular candidate X we suggest is
the UCE notion of [6], which is indeed multi-stage. Our suggested UCE-based paradigm to move schemes
from the VIL-ROM to the FIL-ROM has two steps: (1) Show that instantiating the VIL random oracle
in the scheme with a VIL UCE function preserves security, and (2) Implement the VIL UCE function as
Ero to obtain a FIL-ROM scheme. Prior work has already given us the first step for many constructions:
UCE-secure hash functions are shown in [6] to be able to securely instantiate VIL random oracles for
diverse multi-stage applications including the important practical ones noted above and all examples of
multi-stage schemes listed in [25]. The missing element is UCE domain extenders E for the second step. If
we had those, we could immediately harvest the existing results to get FIL-ROM constructions for many
multi-stage primitives. The concrete quest that emerges, then, is for UCE domain extenders.

Our results. Our core contribution is two domain extenders for UCE that together allow us to reach
the above goals of security and speed. These are constructions E that take a FIL random oracle ro and
return a VIL, keyed function Ero that meets UCE security notions of BHK in the FIL-ROM.1 See Fig. 1
for a summary of the two domain extenders and their properties.

Our first construction is generic, turning any indifferentiable domain extender into a UCE domain
extender. Given an indifferentiable domain extender M, we show (Theorem 4.2) that the hash family H
defined for key hk and input x by Hhk(x) = Mro(hk ‖ ·)(x), is UCE secure. The forms of UCE achieved by H
are what BHK call UCE[Scrs]-security and UCE[Ssrs]-security, namely UCE security for computationally or
statistically reset-secure sources. This is enough to get FIL-ROM instantiations for all applications obtained
in [6] and discussed above, including the storage-auditing scheme used in [25] as a counterexample for the
failure of the indifferentiability framework in multi-stage settings, encryption secure for key-dependent
messages, encryption secure against related-key attack, MLE, D-PKE and more.

This construction illustrates what we believe is an interesting relation between UCE and indifferentia-
bility. Indifferentiability cannot directly yield the applications we have obtained for multi-stage primitives.
However, it can be used, in a blackbox way, to create a domain extender that meets a particular multi-stage
notion of security, namely UCE. Then, exploiting known UCE results, we can obtain FIL-ROM security for
many multi-stage primitives. Thus our construction shows how to use UCE to leverage indifferentiability
to solve a problem that indifferentiability could not solve directly.

While our first construction delivers, we believe, important advances on the theoretical front, its per-

1UCE hash functions are keyed, whence the introduction of a key in this setting. Also, UCE is not a monolithic or single
security notion, but rather a framework in which one parameterizes notions of security by classes of “sources.” Applications
rely on different choices of the starting class. The framework is recalled in Section 3. Here we will avoid the details beyond
noting for which classes each of our constructions is secure and what this entails for applications.

4

formance is that of the underlying indifferentiable construction. Our second construction targets speed. It
follows the Carter-Wegman paradigm [14]. We show (Theorem 5.2) that if F is almost-universal, then the
hash family H defined for key (hk,K) and input x by Hhk(x) = ro(K ‖Ffk(x)), is UCE secure. Here the form
of UCE achieved is what BHK call UCE[Ssup]-security. We can instantiate this to obtain highly efficiently,
fully parallelizable hash functions. The most important application here is a FIL-ROM instantiation of
the CE MLE scheme of [18, 7], leading to efficient systems for secure deduplicated storage.

General domain extension. Above we presented the domain extension problem for notion X as being
to design E such that Ero is a VIL X-secure function in the FIL-ROM. More generally, the problem is to
design E such that if H is a FIL X-secure function then EH is a VIL X-secure function. Here H can be
a FIL-ROM function, and thus the prior formulation is a special case. Our domain extenders discussed
above generalize to solve this problem. In the first case, we show (Theorem 4.1) that if H is UCE secure

then so is the family H defined for key hk and input x by Hhk(x) = MH(hk ‖ ·)(x), where M, as before, is
an indifferentiable domain extender, the UCE classes for which this is true being UCE[Scrs] and UCE[Ssrs]
as before. Setting Hhk(·) = ro(hk‖·) recovers the result stated above as a special case. The generalization
however yields something new, namely a standard model domain extender for UCE. This follows by letting
H be a standard model FIL UCE function. This is interesting because it shows that indifferentiability,
which so far has been a ROM notion and tool, can be leveraged to get results purely in the standard model,
and allows us to relax UCE assumptions in the standard model, from being on VIL functions to being on
FIL functions. Our second result likewise generalizes to show (Theorem 5.1) that if F is almost-universal
and H is UCE secure then the hash family H defined for key (hk,K) and input x by Hhk(x) = H(K ‖Ffk(x))
is also UCE secure, the UCE class for which this is true being UCE[Ssup] as before.

Instantiation and experimental results. We give a very fast instantiation of F for our second
construction discussed above, based on reduced-round AES and polynomial evaluation. Our construction
makes use of the fact that four-round AES, with the four subkeys chosen uniformly and independently, is an
almost-xor-universal hash function [20]. We stress that our universal hashing construction is unconditional,
making no assumption on AES. This leads to a highly efficient, parallelizable UCE-secure hash FastHash.
Our experiments show that even in the sequential setting, FastHash is about 5.3 times faster than SHA-
256. When parallelism is employed, FastHash achieves a much better speedup, about 24 times faster than
SHA-256. Finally, we demonstrate the utility of FastHash by giving an extremely fast MLE scheme based
on it.

Related work and discussion. Mittelbach [23] defines restrictions on a multi-stage game so that the
indifferentiability composition theorem of MRH still holds for a subclass of indifferentiable domain exten-
ders called iterative domain extenders, and is thereby able to show that the latter suffice for applications
like D-PKE and MLE. He also shows that if M is an iterative domain extender then Mro is UCE-secure. In
comparison, our first construction is more general: It is able to use any indifferentiable domain extender,
and as a result our applications are able to use a broader class of domain extenders; it turns any FIL
UCE function into a VIL one; and it works both in the standard model and the ROM. On the other hand,
Mittelbach’s construction is about m/(m−n) times faster than our first construction, where m is the input
length of the compression function, and n is the key length.

Dodis, Ristenpart, and Shrimpton [17] define preimage-awareness (PrA) as a strengthening of collision
resistance and show that the plain Merkle-Damg̊ard is a PrA extender. PrA can also be used in multi-stage
games: Ristenpart, Shacham, and Shrimpton [25] show how to compose a PrA-secure hash with a FIL RO
to achieve D-PKE.

Demay, Gazi, Hirt and Maurer [16] introduce a more fine-grained indifferentiability framework in which
simulator resources are parameterized, and explain the failure of indifferentiability for multi-stage games,
discovered by [25], in terms of simulator memory. They also present some more general negative results
for indifferentiable domain extension.

The end products of our above-outlined two-stage UCE-based paradigm is FIL-ROM schemes for a
variety of primitives, based typically on standard assumptions. For example our FIL-ROM MLE scheme

5

makes no assumptions and our FIL-ROM D-PKE scheme assumes only a standard IND-CPA PKE scheme.
In particular, while the UCE notion is used to obtain these results, it does not show up in the end product
as an assumption. One may go a step further and ask about instantiating the FIL random oracle in these
schemes to obtain standard-model schemes. Our results imply that UCE security of the instantiating
functions suffices. This is another benefit over the use of indifferentiability, where there is no well-defined
property of a function that allows it to securely instantiate the random oracle in the final FIL-ROM
scheme. One has to be careful here that some forms of UCE are not achievable in the standard model
if indistinguishability obfuscation for all circuits exists [13], but most of the applications use other forms
of UCE, and, even for the few that do not, the results of [13] do not rule out the possibility of some
(non-UCE) secure instantiation of the FIL random oracle.

We clarify that UCE complements, rather than replaces, indifferentiability. Indifferentiability, unlike
UCE, can handle all single stage games [21]. UCE can handle some (but not all) of these, and when it can
may be preferable due to the performance gain. On the other hand UCE can handle a swathe of popular
multi-stage games, which indifferentiability cannot. Overall the task of moving VIL-ROM schemes to FIL-
ROM ones requires and benefits from the availability of multiple tools, currently available ones including
indifferentiability [21], restricted indifferentiability [23] and, now, UCE.

2 Preliminaries

Concrete security bounds are important for applications. However, notions in the current domain, involving
simulators and multiple conditions and adversaries, are complex. The result is that when theorems are
stated purely concretely, it is hard to understand the (much more simple) conceptual import. We will
try to achieve the “best of both worlds.” We formulate definitions asymptotically. The first cut theorem
statements are asymptotic so that one can quickly see the core implication and result. This is followed by
a concrete statement with bounds.

Notation. By λ ∈ N we denote the security parameter. If n ∈ N then 1n denotes its unary representation.
We denote the size of a finite set X by |X|, the number of coordinates of a vector x by |x|, and the length
of a string x ∈ {0, 1}∗ by |x|. We let ε denote the empty string. If x is a string then x[i] is its i-th bit
and x[1, `] = x[1] . . . x[`]. By x‖y we denote the concatenation of strings x, y. If X is a finite set, we let
x←$X denote picking an element of X uniformly at random and assigning it to x. Algorithms may be
randomized unless otherwise indicated. Running time is worst case. “PT” stands for “polynomial-time,”
whether for randomized algorithms or deterministic ones. If A is an algorithm, we let y ← A(x1, . . . ; r)
denote running A with random coins r on inputs x1, . . . and assigning the output to y. We let y←$A(x1, . . .)
be the resulting of picking r at random and letting y ← A(x1, . . . ; r). We let [A(x1, . . .)] denote the set of
all possible outputs of A when invoked with inputs x1, We say that f : N→ R is negligible if for every
positive polynomial p, there exists np ∈ N such that f(n) < 1/p(n) for all n > np.

Games. We use the code based game playing framework of [10]. (See Fig. 3 for an example.) By
GA1,A2,...(λ)⇒ y we denote the event that the execution of game G with adversaries A1, A2, . . . and security
parameter λ results in output y. We abbreviate GA1,A2,...(λ)⇒ true by GA1,A2,...(λ), the occurrence of this
event meaning that A1, A2, . . . win the game.

For concrete security assessments, let the number of queries of A to an oracle Proc be the function
QProc
A that on input λ returns the maximum number of queries that A makes to Proc when executed with

security parameter λ, the maximum over all coins and all possible replies to queries to all oracles of A.
Time assessments are simplified by the convention that running time is that of the game rather than merely
the adversary, and we let T(GA1,A2,...) denote the function of λ that returns the maximum execution time
of game G with adversaries A1, A2, . . . and security parameter λ, the maximum over all coins, and the time
being all inclusive, meaning the time taken by game procedures to compute replies is included.

Random oracles. A random oracle RO : U → {0, 1}n is a procedure that maintains a table H, initially
empty, and is defined by

6

RO(x)

If H[x] 6= ⊥ then H[x]←$ {0, 1}n ; Return H[x]

We say that RO is variable-input length (VIL) if U = {0, 1}∗ and fixed-input length (FIL) if there is m ∈ N
such that U = {0, 1}m. Formally, any random oracle referred to in a game should appear explicitly in the
game as a procedure defined as above, but for the same of brevity of game descriptions, we omit writing
it explicitly, instead only indicating the domain and range of each random oracle. By convention, RO
indicates a VIL random oracle, and ro a FIL random oracle.

3 UCE framework

The Universal Computational Extractor (UCE) framework of BHK [6] is intended to define security notions
for families of hash functions in the standard model, but BHK also lift this to the ROM to show its
achievability there. We use the latter with the random oracle being FIL. We note that the standard-model
definition is the special case where parties and algorithms make no queries to the random oracle.

BHK first give a single-key version of the definition and then extend it to a multi-key one. We will
work directly with the multi-key version, calling it UCE rather than mUCE as in [6].

Function families. Our syntax for function families follows [6], in particular allowing variable output
lengths. A family of functions H specifies the following. On input the unary representation 1λ of the security
parameter λ ∈ N, key generation algorithm H.Kg returns a key hk ∈ {0, 1}H.kl(λ), where H.kl: N → N is
the keylength function associated to H. The deterministic, PT evaluation algorithm H.Ev takes 1λ, a key
hk ∈ [H.Kg(1λ)], an input x ∈ {0, 1}∗ with |x| ∈ H.IL(λ), and a unary encoding 1` of an output length
` ∈ H.OL(λ) to return H.Ev(1λ,hk, x, 1`) ∈ {0, 1}`. Here H.IL is the input-length function associated to H,
so that H.IL(λ) ⊆ N is the set of allowed input lengths, and similarly H.OL is the output-length function
associated to H, so that H.OL(λ) ⊆ N is the set of allowed output lengths. The latter allows us to cover
functions of variable output length. If H has fixed input length then let H.il denote the function such that
H.IL(λ) = {H.il(λ)} for every λ ∈ N. If H has fixed output length, define H.ol likewise. In the ROM, we
allow H.Ev access to a FIL random oracle denoted ro. We write H.Evro to indicate explicitly that H.Ev
needs access to a FIL random oracle ro.

Framework. Let H be a family of functions. Let S be an adversary called the source and D an adversary
called the distinguisher. We associate to them and H the game UCES,DH (λ) in the left panel of Fig. 2.
Initially, the source specifies a unary-encoded integer n ≥ 1 to indicate the number of hash keys that it
wants to use. The game then chooses a secret vector hk of n uniformly random hash keys and grants the
source access to an oracle Hash. We require that any query (x, 1`, i) made to this oracle satisfy |x| ∈ H.IL(λ),
` ∈ H.OL(λ) and i ∈ {1, . . . , n}. When the challenge bit b is 1 (the “real” case) the oracle responds via
H.Ev under hk[i]. When b = 0 (the “random” case) it responds via the ith random-oracle procedure. The
source then leaks a string L to its accomplice distinguisher. The latter does get the keys hk as input and
must now return its guess b′ ∈ {0, 1} for b. The game returns true iff b′ = b, and the uce-advantage of
(S,D) is defined for λ ∈ N via

Advuce
H,S,D(λ) = 2 Pr[UCES,DH (λ)]− 1 .

If S is a class (set) of sources, we say that H is UCE[S]-secure if Advuce
H,S,D(·) is negligible for all sources

S ∈ S and all PT distinguishers D. Trivial attacks from [6] show that UCE[S]-security is not achievable
if S is the class of all PT sources. To obtain meaningful notions of security, BHK [6] impose restrictions
on the source. There are many ways to do this; below we’ll focus on what they call unpredictable and
reset-secure sources. To discuss the concrete security of constructions it will be useful to say that S is a
N -key source if we always have n ≤ N(λ) when (1n, t)←$ S(1λ, ε).

Unpredictable sources. A source is unpredictable if it is hard to guess the source’s Hash queries even
given the leakage, in the random case of UCE game. Formally, let S be a source and P an adversary called
a predictor. Consider game PredPS (λ) in the middle panel of Fig. 2 associated to S, P . Given 1n and the

7

Game UCES,DH (λ)

(1n, t)←$ S(1λ, ε)

For i = 1, . . . , n do hk[i]←$ H.Kg(1λ)

b←$ {0, 1} ; L←$ SHash,ro(1λ, t)

b′←$Dro(1λ,hk, L) ; Return (b′ = b)

Hash(x, 1`, i)

If T [x, `, i] = ⊥ then

If b = 0 then T [x, `, i]←$ {0, 1}`
Else T [x, `, i]← H.Evro(1λ,hk[i], x, 1`)

Return T [x, `, i]

Game PredPS (λ)

(1n, t)←$ S(1λ, ε)

Q← ∅
L←$ SHash,ro(1n, t)

Q′←$ P ro(1λ, 1n, L)

Return (Q′ ∩Q 6= ∅)

Hash(x, 1`, i)

Q← Q ∪ {x}
If T [x, `, i] = ⊥ then

T [x, `, i]←$ {0, 1}`
Return T [x, `, i]

Game ResetRS (λ)

U ← ∅ ; (1n, t)←$ S(1λ, ε)

L←$ SHash,ro(1n, t) ; b←$ {0, 1}
If b = 0 then // reset the array T

For (x, `, i) ∈ U do

T [x, `, i]←$ {0, 1}`
b′←$RHash,ro(1λ, L) ; Return (b = b′)

Hash(x, 1`, i)

If T [x, `, i] = ⊥ then T [x, `, i]←$ {0, 1}`
U ← U ∪ {(x, `, i)}
Return T [x, `, i]

Figure 2: Games UCE (left), Pred (middle), and Reset (right) to define UCE security. Here
ro : {0, 1}ro.il(λ) → {0, 1}ro.ol(λ) is a random oracle.

leakage, the predictor outputs a set Q′. The predictor wins if Q′ contains a Hash-query of the source. For
λ ∈ N we let

Advpred
S,P (λ) = Pr[PredPS (λ)] .

We require that the size of Q′, as well as the number of queries that P makes to ro, be bounded by a
polynomial (allowed to depend on P) in λ. We say that S is computationally (respectively, statistically)

unpredictable if Advpred
S,P (·) is negligible for all PT (respectively, all, even computationally unbounded)

predictors P . We let Scup be the class of computationally unpredictable PT sources, and Ssup the class
of statistically unpredictable PT sources. The corresponding security notions for H are UCE[Scup] and
UCE[Ssup].

Reset-secure sources. We recall the second restriction on sources from [6], called reset security. Let S
be a source and R an adversary called a reset adversary. The source again is executed with its Hash being
a random oracle. The reset adversary is either given access to the same random oracle or to an independent
one. The requirement is that it should not be able to tell which. Formally, consider game ResetRS (λ) at
the right panel of Fig. 2 associated to S,R. For λ ∈ N we let

Advreset
S,R (λ) = 2 Pr[ResetRS (λ)]− 1 .

We require that the number of queries that P makes to Hash and ro be bounded by a polynomial (allowed
to depend on R) in λ. We say S is computationally (respectively, statistically) reset-secure if Advreset

S,R (·)
is negligible for all PT (respectively, all, even computationally unbounded) reset adversaries R. We let
Scrs be the class of all PT computationally reset-secure sources, and Ssrs the class of all PT statistically
reset-secure sources. The corresponding security notions for H are UCE[Scrs] and UCE[Ssrs].
Relations and achievability. Reset security is a relaxation of unpredictability. In particular BHK [6]
show that UCE[Scrs]-security of H implies UCE[Scup]-security of H and UCE[Ssrs]-security of H implies
UCE[Ssup]-security of H. The converses are not necessarily true. BFM [13] show that if indistinguishability
obfuscation for all circuits is possible then UCE[Scrs]-security is not achievable in the standard model. In
the ROM however BHK [6] show that both UCE[Scrs]-security and UCE[Ssrs]-security are achievable.

4 UCE from indifferentiability

We first review necessary definitions of the indifferentiability framework [21].

Indifferentiability. We consider an algorithm M that, given a FIL random oracle ro, attempts to
have input-output behavior approximating that of a VIL random oracle. Indifferentiability provides one
definition of what it means for M to succeed at this task. Consider game IndiffA

M,M
(λ) of Fig. 3 associated

8

Game IndiffA
M,M

(λ)

b←$ {0, 1} ; st← ε

b′←$APrim,Func(1λ)

Return (b = b′)

Func(x)

If b = 1 then return Mro(1λ, x)

Else return RO(x)

Prim(x)

If b = 1 then return ro(x)

(y, st)←$ M
RO

(1λ, st, x)

Return y

Figure 3: Game Indiff defining indifferentiability. Here RO : {0, 1}∗ → {0, 1}M.fol(λ) and ro :
{0, 1}M.pil(λ) → {0, 1}M.pol(λ) are random oracles.

to M, an algorithm M called a simulator, and an adversary A. In the first world (b = 1), oracle Prim
implements the FIL random oracle ro while oracle Func implements the construction, namely Mro, that
aims to approximate a VIL random oracle. In the second world (b = 0), oracle Func implements a true VIL
random oracle RO while replies to Prim queries are determined by the simulator that itself has access to
RO. The simulator is stateful, its state st being maintained by the game. The input x to M has arbitrary
length, the oracle provided to M maps M.pil(λ)-bit inputs to M.pol(λ)-bit outputs, and M returns outputs
of length M.fol(λ), where M.pil,M.pol,M.fol : N→ N are functions associated to M called the input-length
of M’s primitive, output-length of M’s primitive, and output-length of M’s functionality, respectively. For
λ ∈ N we let

Advindiff
M,M,A

(λ) = 2 Pr[IndiffA
M,M

(λ)]− 1 .

We require that the number of queries that A makes to its oracles be bounded by a polynomial (allowed
to depend on A) in λ. Then we say that M is a pseudorandom oracle (PRO) if there is a PT simulator M
such that Advindiff

M,M,A
(·) is negligible for every (even computationally unbounded) adversary A.

For concrete security assessments we let QM,q be the function that on input λ returns the maximum, over

all x1, . . . , xq ∈ {0, 1}M.pil(λ), of the total number of oracle queries that M makes when run sequentially
on inputs x1, . . . , xq, starting from state ε. Also let TM,q be the function that on input λ returns the

maximum, over all x1, . . . , xq ∈ {0, 1}M.pil(λ), of the total running time of M when run sequentially on
inputs x1, . . . , xq, starting from state ε, the time for an oracle query being taken as linear in the length of
the query and reply.

The Keyed-Indiff extender. Let H be a FIL function family that is UCE[Sxxx]-secure for some xxx.
We want to build a VIL family of functions H that is also UCE[Sxxx]-secure. Our construction uses as a
tool any PRO M with M.pil = H.il and M.pol = H.ol. We associate to M and H the family of functions
H = Keyed-Indiff[M,H] defined as follows. We let H.IL = N, meaning H is VIL. The output length of H is
H.ol = M.fol. We let H.Kg = H.Kg, meaning keys for H are the same as for H. Finally for any λ ∈ N, any
hk ∈ [H.Kg(1λ)] and any x ∈ {0, 1}∗ we let

H.Evro(1λ, hk, x, 1H.ol(λ)) = MH.Ev
ro
(1λ,hk,·,1H.ol(λ))(1λ, x) . (1)

This needs some explanation. Begin by ignoring ro, so that we are looking at a standard-model construction.
Recall that M takes an oracle mapping {0, 1}M.pil(λ) to {0, 1}M.pol(λ). In the indifferentiability setting, this is
a random oracle. Our construction however does something different. It implements M’s oracle via the given
UCE[Sxxx]-secure family H. The key hk is held fixed. Our claim will be that H is itself UCE[Sxxx]-secure
for xxx ∈ {crs, srs}. Something we consider interesting is that this result is entirely standard model, yet
uses ROM theory, in the form of a PRO, for the construction and proof. Finally the ro in the construction
simply reflects that the result lifts to the ROM. In case H was a ROM family of functions, H will be as
well. This extension, together with known applications of UCE[Sxxx]-security, allow us to implement in the
FIL-ROM many constructions given in the VIL-ROM.

Result. We view Keyed-Indiff[M, ·] as a domain extension transform taking a FIL family H and returning
a VIL family H = Keyed-Indiff[M,H]. The following says that this transform preserves UCE[Sxxx]-security
for xxx ∈ {crs, srs}. The proof is in Appendix A.

Theorem 4.1 Let H be a hash function family. Let M be a PRO such that M.pil = H.il and M.pol = H.ol.

9

Let H = Keyed-Indiff[M,H]. Let xxx ∈ {crs, srs}.

Asymptotic result: If H is UCE[Sxxx]-secure then so is H.

Concrete result: Let M be a simulator for M. Let S be an N -key source, D a distinguisher and R a
reset adversary. Then we construct an N -key source S, indifferentiability adversaries A,B and a reset
adversary R such that

Advuce
H,S,D(λ) ≤ Advuce

H,S,D
(λ) +N(λ) · Advindiff

M,M,A
(λ) (2)

Advreset
S,R

(λ) ≤ Advreset
S,R (λ) + 3N(λ) · Advindiff

M,M,B
(λ) (3)

for all λ ∈ N. Furthermore:

QPrim
A = 0; QFunc

A ,QFunc
B ≤ QHash

S ; QPrim
B ≤ QHash

R

Qro
R = Qro

R
; QHash

R ≤ QM,q where q = QHash
R

; Qro
S

= Qro
S

QHash
S

is bounded by the number of oracle queries of M in the execution of UCES,DH

T(IndiffA
M,M

) ≤ T(UCES,DH); T(UCES,D
H

) ≤ T(UCES,DH)

T(ResetRS) ≤ T(ResetR
S

) + TM,q where q = QHash
R

T(IndiffB
M,M

) ≤ T(ResetRS) + T(ResetR
S

)

We emphasize that Keyed-Indiff works in both the standard and the random oracle models. In particular if
FIL family H is UCE[Sxxx]-secure in the standard model, then so is Keyed-Indiff[M,H], for xxx ∈ {crs, srs}.
This resolves an open problem from [6] to construct UCE domain extenders in the standard model.

Some applications in [6] use only a single hash key. In other words, they only need UCE[Scrs ∩ Sone]
and UCE[Ssrs ∩ Sone] security, where Sone is the class of 1-key sources. Keyed-Indiff[M, ·] is also a domain
extender for UCE[Scrs ∩ Sone] and UCE[Ssrs ∩ Sone] because the value of N is preserved.

Instantiation. To obtain a concrete result that can be used in applications, we now instantiate H above
in a simple way, namely (1) H.Kg(1λ) returns hk←$ {0, 1}λ, and (2) H.Evro(1λ,hk, x, 1H.ol(λ)) returns
ro(hk ‖x). This is shown by BHK [6] to be UCE secure in the FIL-ROM for all forms of UCE they define.
For illustration, Fig. 4 describes the PRO ChopMD (truncated Merkle-Damg̊ard [15]) and shows how one
would implement Keyed-Indiff[ChopMD,H] from an iterative hash like SHA-256. From Theorem 4.1 we
obtain the following.

Theorem 4.2 Let H be constructed as above. Let M be a PRO such that M.pil = H.il and M.pol = H.ol.
Let H = Keyed-Indiff[M,H].

Asymptotic result: H is UCE[Scrs]-secure.

Concrete result: Let M be a simulator for M. Let S be an N -key source and D a distinguisher. We can
construct a reset adversary R and an indifferentiability adversary A such that

Advuce
H,S,D(λ) ≤ Advreset

S,R (λ) + 4N(λ) · Advindiff
M,M,A

(λ) +
2N(λ) · q(λ) +N2(λ)

2λ

for every λ ∈ N. Furthermore,

QPrim
A ≤ QHash

S ; QFunc
A ,Qro

R ≤ Qro
D; and QHash

R ≤ QM,q, where q = Qro
D

T(IndiffA
M,M

),T(ResetRS) ≤ T(UCES,DH) + TM,q, where q = Qro
D

Theorem 4.2 is the one that can be used for the applications, namely to obtain FIL-ROM constructions
for (possibly multi-stage) primitives that have been constructed using a VIL UCE function, such as those
in BHK [6]. We simply instantiate the VIL UCE function with H given by Theorem 4.2. The broader
paradigm to move from the VIL-ROM to the FIL-ROM is thus the following. Take a primitive with a
VIL-ROM proof, and show that the random oracle can be UCE-instantiated. Then apply Theorem 4.2.

10

��

x
�

x
�

�

��

z
�

z
�

�

hk hk

h h h h

w

y y

w

y y

Figure 4: An instantiation of Keyed-Indiff domain extender: The PRO ChopMD (truncated Merkle-
Damg̊ard [15]) on the left, and Keyed-Indiff[ChopMD,H] on the right, where h is a compression function
and H = h(hk ‖ ·).

H.Kg(1λ)

fk←$ F.Kg(1λ) ; hk←$ H.Kg(λ)

hk ← (hk, fk) ; Return hk

H.Evro(1λ,hk, x, 1`)

(hk, fk)← hk ; u← F.Ev(1λ, fk, x, 1F.ol(λ))

y ← H.Ev
ro

(1λ,hk, u, 1`) ; Return y

Figure 5: The H = AU-then-Hash[F,H] construction, built from a AU hash F and a FIL UCE-
secure hash H.

5 UCE from universal hashing

In this section, we show how almost universal hash functions can be used to build a domain extender for
UCE.

AU hash families. For any function family F let

Coll1F(λ,m) = max
|y|=F.ol(λ),|x|≤m

{
Pr

fk←$ F.Kg(1λ)
[y = F.Ev(1λ, fk, x, 1F.ol(λ))]

}
,

and define Coll2F(λ,m0,m1) as

max
{

Pr
fk←$ F.Kg(1λ)

[F.Ev(1λ, fk, x0, 1
F.ol(λ)) = F.Ev(1λ, fk, x1, 1

F.ol(λ))]
}

;

the maximum is taken over distinct strings x0, x1 such that each |xi| ≤ mi. Let

CollF(λ,m0,m1) = max
{
Coll2F(λ,m0,m1),Coll1F(λ,min{m0,m1})

}
.

A hash family F is almost universal (AU) if f(λ) = CollF(λ,m0,m1) is negligible for all polynomials
m0,m1. This generalizes the Carter-Wegman notion of universal hashing [14].

A similar definition is given in [11], which is very useful when one needs to work with arbitrarily large
input and short hash keys. In Section 6, we’ll show how to concretely instantiate a very fast AU hash for
λ = 128, from reduced-round AES and a classic polynomial-based universal hash. Define

Advcoll
F (λ, p, σ) = max

`≤p,`′≤p,m1+···+m`≤σ,m′
1+···+m′

`′≤σ

{∑̀
i=1

`′∑
j=1

CollF(λ,mi,m
′
j)
}
.

If F is AU then Advcoll
F (λ, p, σ) is negligible for all polynomials p and σ: since Coll(λ, ·, ·) is increasing in

both arguments, it follows that Advcoll
F (λ, p, σ) ≤ p2CollF(λ, σ, σ).

UCE extender from an AU hash. We now describe a UCE extender from AU hash. Intuitively, one first
uses the AU hash to condense the input, and then applies the resulting string to the (keyed) compression
function. Formally, let H be a hash function family of fixed input length, and F be a universal hash function
family with F.ol = H.il and F.IL = N. Consider the hash function family H = AU-then-Hash[F,H] as given
in Fig. 5, with H.OL = H.OL and H.IL = N. The construction essentially follows the widely used Carter-
Wegman paradigm [26] Below, we show that AU-then-Hash[F, ·] is also a domain extender for UCE[Ssup]
security. The proof is in Appendix B.

11

Theorem 5.1 Let H be a function family of fixed input length, and F be an AU hash function family with
F.ol = H.il and F.IL = N. Let H = AU-then-Hash[F,H].

Asymptotic result: If H is UCE[Ssup]-secure then so is H.

Concrete result: Let S be a N -key source, D a distinguisher, and P a predictor. We can construct a
source S, a distinguisher D, and a predictor P such that

Advuce
H,S,D(λ) ≤ Advuce

H,S,D
(λ) + Advcoll

F (λ, p, σ) (4)

Advpred

S,P
(λ) ≤

√
2qAdvcoll

F (λ, p, σ) +
√
qAdvpred

S,P (λ) (5)

where p = QHash
S , q is the maximum of the size of P ’s output in the execution of PredP

S
, and σ is the

maximum of the total length of Hash queries that S makes in UCES,DH . Furthermore,

Qro
S

= Qro
S ; QHash

S
= QHash

S ; Qro
D

= Qro
D

T(UCES,D
H

) ≤ T(UCES,DH), and P outputs a set of size at most QHash
S

We emphasize that AU-then-Hash works in both the standard and the random-oracle models. In particular
If FIL family H is UCE[Ssup]-secure in the standard model then so is AU-then-Hash[F,H]. The intended
applications for the AU-then-Hash[F, ·] transform, as listed in Fig. 1, use only a single hash key, that is,
they only need UCE[Ssup∩Sone] security, where Sone is the class of 1-key sources. AU-then-Hash[F, ·] is also
a domain extender for UCE[Ssup ∩ Sone] security because the value of N is preserved.

Instantiation. So far we have assumed the existence of a fixed-input-length UCE-secure hash H. For the
MLE application in [6], one needs to hash a short session key to produce a big one-time pad. We aim to make
this process as fast as AES-CTR. It’s possible to build a ROM-based H without any other cryptographic
primitive, but this won’t give us the desired speed, if one instantiates ro from, say the compression function
of SHA-256. Our construction therefore makes use of a PRP E, which will be instantiated by AES.

Recall that a PRP is a function family E such that E.il = E.ol, and E.Ev(1λ,K, ·, 1E.ol(λ)) is in Perm(E.ol(λ))
for every λ ∈ N and Advprp

E,A(λ) = 2 Pr[PRPAE (λ)]− 1 is negligible for every PT adversary A, where Perm(`)

is the set of permutation on {0, 1}` and game PRPAE is defined as follows.

Game PRPAE (λ)

b←$ {0, 1} ; K←$ {0, 1}E.kl(λ)

π←$ Perm(E.ol(λ)) ; b′←$ARR(1λ)

Return (b = b′)

RR(x)

If b = 1 then y ← E.Ev(1λ,K, x, 1E.ol(λ))

Else y ← π(x)

Return y

We now describe our ROM-based UCE construction. Assume that ro.il(λ) ≥ 2λ, and ro.ol(λ) = E.kl(λ),
and E.ol(λ) = λ for every λ ∈ N. The construction Hrom is given as follows, where Hrom.OL(λ) =
{1, 2, 3, . . . , 2dλ/2e} and Hrom.il(λ) = ro.il(λ)− λ for every λ ∈ N.

Hrom.Kg(1λ)

hk←$ {0, 1}λ ; Return hk

Hrom.Evro(1λ,hk, x, 1`)

K ← ro(hk ‖x ‖ `) ; m← d`/λe
For i = 1 to m do yi ← E.Ev(1λ,K, ` ‖ i, 1λ)

y ← y1 ‖ · · · ‖ ym ; y ← y[1, `] ; Return y

Here when we call ro(hk ‖x ‖ `) and E.Ev(1λ,K, ` ‖ i, 1λ), the string ` is encoded as a dλ/2e-bit string, and
i is encoded as a bλ/2c-bit string. The hash Hrom is indeed UCE-secure; the concrete security statement
and the proof are in Appendix C. We conclude the following.

12

Theorem 5.2 Let F be an AU hash function family with F.ol = Hrom.il and F.IL = N. Let H =
AU-then-Hash[F,Hrom].

Asymptotic result: H is UCE[Ssup]-secure.

Concrete result: Let S be an N -key source and D a distinguisher. We can construct a predictor P and a
PRP adversary A such that

Advuce
H,S,D(λ) ≤ 2

√
q(λ)Advcoll

F (λ, p(λ), σ(λ))+
√
q(λ)Advpred

S,P (λ)+2p(λ)·Advprp
E,A(λ)+

2s2(λ) +N2(λ) + q2(λ)

2λ

for every λ ∈ N, where p = QHash
S ; q = Qro

S + Qro
D; σ and s are the maximum of the total length of the first

components and the total number of λ-bit blocks in the second components, respectively, of Hash queries
in the execution of UCES,DH . Furthermore

QLR
A is maximum of the number of λ-bit blocks in the second component of a Hash query in UCES,DH

T(PRPAE) ≤ T(UCES,DH), and P outputs a set of size at most QHash
S .

6 Fast, parallelizable AU hash from reduced-round AES

We now show how to construct a fast parallelizable AU hash, which we call Faes4. In this section, let
n = 128, C = 215, and let r be a small integer, say r = 5. All function families in this section are concrete;
the security parameter λ is hidden in the formulas, but implicitly, it is λ = 128. For any integer m, let
‖m‖n denote bm/nc+ 1. We’ll first describe two building blocks: Fpoly, a polynomial-based AU hash that
operates on {0, 1}∗, and Ftree, a highly efficient AU hash based on reduced-round AES that operates on
{x ∈ ({0, 1}n)+ : |x| ≤ 2rn}. We then show how to combine them to produce a highly efficient AU hash
Faes4 whose domain is {0, 1}∗.

The Fpoly construction. We now describe a variant of a classic polynomial-based universal hash [14],
which we call Fpoly. Let Fpoly.ol = n. As described in the pseudocode below, the key fk is picked as a random
element of GF(2n). To hash, we parse the input string x ∈ {0, 1}∗ to a unique sequence (w0, . . . , wm), where
each wi ∈ GF(2n) and wm is not the zero element. This is performed by (i) parse v0 ‖ · · · ‖ vm ← x ‖ 10s1,
where s ∈ N is the smallest number such that s + |x| ≡ −2 (mod n) and each |wi| = n, and (ii) let each
wi be the encoding of vi in GF(2n). Then, the hash is computed as

∑m
i=0wi · fk

i.

Fpoly.Kg()

fk←$ GF(2n)

Return fk

Fpoly.Ev(fk, x, 1n)

(w0, . . . , wm)← x ; y ← w0

For i = 1 to m do y ← y + wi · fki

Return y

The proof of Proposition 6.1 below is in Appendix D.

Proposition 6.1 (a) For any m ∈ N, we have Coll1Fpoly
(m) ≤ ‖m‖n/2n, and (b) for any m0,m1 ∈ N, we

have Coll2Fpoly
(m0,m1) ≤ max{‖m0‖n, ‖m1‖n}/2n.

The Ftree construction. Let E : {0, 1}4n × {0, 1}n → {0, 1}n denote a function based on 4-round
AES which works as follows. Parse the key K as the concatenation of n-bit substrings S0, S1, S2, S3, and
let S4 = 0n. The input is initially xored with S0, and each Si is used as the subkey of the i-th AES
round, for i ∈ {1, 2, 3, 4}. One can build from E a hash of domain {n, 2n, 3n, . . . , 2rn} as illustrated
in Fig. 6. Formally, let Halve denote the following operation. On input (K,x) ∈ {0, 1}4n × ({0, 1}n)∗,
we partition x into n-bit blocks x1 · · ·xm. For every two consecutive blocks x2i−1 and x2i, we compute
yi ← EK(x2i−1)⊕x2i. If m is odd then let ydm/2e ← xm. Finally output y1 ‖ · · · ‖ ydm/2e. Consider the
following tree-hash construction Ftree, with Ftree.IL = {n, 2n, 3n, . . . , 2rn} and Ftree.ol = n:

13

x
�

x
�

x
�

x
�

E
K�

E
K�

y

E
K�

u
�

w
�

w
�

w
�

�
rn ���� nt ���� < n ����

F
����

F
����

F
����

u
�

w
�

u
�

u
�

F
�	
�

y

Figure 6: Left: Illustration of Ftree for r = 2. Right: Illustration of Ffast.

Ftree.Kg()

For i = 1 to r do Ki←$ {0, 1}4n

hk ← (K1, . . . ,Kr) ; Return fk

Ftree.Ev(fk, x, 1n)

z0 ← x ; (K1, . . . ,Kr)← fk

For i = 1 to r do zi ← Halve(Ki, zi−1)

Return zr

Minematsu and Tsunoo [22] show that

Coll2Ftree(m0,m1) ≤
Cr

2n
(6)

for any m0,m1 ≤ 2r. We stress that the result in [22] makes no assumption on AES. This is based on the
fact that four-round AES, with the subkeys chosen uniformly and independently, is an almost-xor-universal
hash [20].

Combining Ftree and Fpoly. One can “cascade” Ftree and Fpoly to produce a hash Ffast of domain {0, 1}∗
as shown in Fig. 6. The formal code is shown below.

Ffast.Kg()

fk1←$ Ftree.Kg()

fk2←$ Fpoly.Kg()

Return (fk1, fk2)

Ffast.Ev(fk, x, 1n)

(fk1, fk2)← fk

y ← Shrink(fk1, x)

z ← Fpoly.Ev(fk2, y, 1
n)

Return z

Shrink(fk1, x)

w1w2 · · ·wk ← x ; uk ← wk
For i = 1 to k − 1 do

ui ← Ftree.Ev(fk1, wi, 1
n)

y ← u1 ‖ · · · ‖uk ; Return y

In the procedure Shrink above, we parse a string x as the concatenation of substrings w1, . . . , wk,
where the length of each wi, with i ≤ k − 2, is exactly 2rn, and |wk−1| > 0 is a multiple of n but does not
exceed 2rn, and 0 ≤ |wk| < n−1. Note that on a large input x, the hash F will make at most (1−2−r)dx/ne
calls on E, and then run Fpoly on a string of length about |x|/2r. The proof of Proposition 6.2 below is in
Appendix E.

Proposition 6.2 For any m0,m1 ∈ N, we have CollFfast
(m0,m1) ≤ (Cr + max{‖m0‖n, ‖m1‖n})/2n.

Using with AU-then-Hash. The hash Ffast can’t be used directly with the AU-then-Hash transform in
Section 5, because the term (qAdvcoll

Ffast
(p, σ))1/2 in Theorem 5.1 is about (

√
qpσ + Crp

√
q)/2n/2, which is

inferior. The reason for this is that the output length of this hash is only n bits, which is too short. We

14

therefore need to “double” the output length. Formally, given a hash family F, the family F = Double[F],
with F.IL = F.IL and F.ol = 2F.ol, is constructed as follows.

F.Kg()

fk1, fk2←$ F.Kg()

fk ← (fk1, fk2) ; Return fk

F.Ev(fk, x, 1F.ol)

(fk1, fk2)← fk

For i = 1 to 2 do yi ← F.Ev(fki, x, 1
F.ol)

Return y1 ‖ y2

Let Faes4 denote Double[Ffast]. As shown in the term (qAdvcoll
Ffast

(p, σ))1/2 in Theorem 5.1 is bounded by
(Crp

√
2q + 2(‖σ‖n + p)

√
pq)/2n, which is good. The proof is in Appendix F.

Proposition 6.3 For any p and σ, we have Advcoll
Faes4

(p, σ) ≤ 2C2r2p2+4p(‖σ‖n+p)2
22n

.

Key length. The key material of FastHash = AU-then-Hash[Faes4,Hrom] is relatively large: 672B for r = 5.
It’s slightly bigger than that of some widely used schemes such as RSA [24] (256B). This is acceptable
because the key is used as a public parameter.

7 An example application

In Section 1, we introduced a two-step paradigm for using UCE to move VIL-ROM schemes to the FIL-
ROM: (1) Show that instantiating the VIL random oracle in the scheme with a VIL UCE function preserves
security, and (2) Implement the VIL UCE function as Ero to obtain a FIL-ROM scheme, where E is a UCE
domain extender. We explained that step (1) has already been done for many primitives [6], and what
remained was to build domain extenders E allowing step (2). At this point we have reached the latter goal,
providing two such constructions for E, namely Keyed-Indiff of Section 4 and AU-then-Hash of Section 5. We
now illustrate how to put things together to obtain a final FIL ROM scheme for an example application,
namely Message-locked Encryption (MLE) [7], by exploiting the results of [6] for the first step and our
results for the second step. Other applications may be obtained in the same way.

MLE definitions. A MLE scheme can be used to provide space-efficient secure outsourced storage.
Formally an MLE scheme MLE specifies the following PT algorithms. Algorithm MLE.Pg(1λ) generates a
parameter p. Next, given a parameter p and a message m, algorithm MLE.Kg(1λ, p,m) deterministically
generates a key K. To encrypt a message m under key K, one calls c←$ MLE.Enc(1λ, p,K,m). One then
can decrypt a ciphertext c via m← MLE.Dec(1λ, p,K, c). The tag-generation algorithm MLE.Tag(1λ, p, c)
deterministically derives a tag t from a ciphertext c. The correctness requirement demands that for
all λ ∈ N,m ∈ {0, 1}, p ∈ [MLE.Pg(1λ)], and K1,K2 ∈ [MLE.Kg(1λ, p,m)] we have (1) For all c1 ∈
[MLE.Enc(1λ, p,K1,m)] and c2 ∈ [MLE.Enc(1λ, p,K2,m)], we have MLE.Tag(1λ, p, c1) = MLE.Tag(1λ, p, c2),
and (2) MLE.Dec(1λ, p,K2, c) = m for all c ∈ [MLE.Enc(1λ, p,K1,m)]. For privacy, the IND$-CDA security
is defined via the game in the left panel of Fig. 7. A IND$-CDA adversary A is a pair of PT algorithms
(A1, A2), where A1(1

λ) returns a string vector m that satisfies the following: (1) There is a polynomial
v and a function len : N × N → N, depending solely on A, such that |m| = v(λ) and |m[i]| = len(λ, i),
for every λ ∈ N,m ∈ [A1(1

λ)], and i ≤ |m|, and (2) the strings m[1], . . . ,m[|m|] are distinct. Define the
guessing probability GuessA of A as the function that on input λ ∈ N returns the maximum, over all i,m,
of Pr[m[i] = m], the probability over m←$A1(1

λ). We say that A has high min-entropy if GuessA(·) is
negligible. We let Advcda

MLE,A(λ) = 2 Pr[IND$-CDAA
MLE(λ)] − 1 and say that MLE is IND$-CDA-secure if

Advcda
MLE,A(·) is negligible for all PT A that have high min-entropy.

A FIL-ROM MLE scheme. BHK [6] describe a variant of the Convergent Encryption (CE) scheme
of [18] as shown in the right panel of Fig. 7. They then give the following result.

Proposition 7.1 [6] Let H be a UCE[Ssup]-secure hash with H.IL = H.OL = N.

Asymptotic result: CE[H] is IND$-CDA secure.

15

Game IND$-CDA
A
MLE(λ)

p←$ MLE.Pg(1λ) ; b←$ {0, 1}
m←$A1(1λ)

For i = 1 to |m| do

K[i]← MLE.Kg(1λ, p,m[i])

c1[i]← MLE.Enc(1λ, p,K[i],m[i])

c0[i]←$ {0, 1}|c1[i]|

b′←$A2(1λ, p, cb)

Return (b′ = b)

CE.Pg(1λ)

hk←$ H.Kg(1λ)

Return hk

CE.Kg(1λ,hk,m)

K ← H.Ev(1λ,hk,m, 12λ)

Return K

CE.Enc(1λ,hk,K,m)

c← m⊕H.Ev(1λ,hk,K, 1|m|)

Return c

CE.Dec(1λ,hk,K, c)

m← c⊕H.Ev(1λ,hk,K, 1|c|)

Return m

CE.Tag(1λ,hk, c)

Return c

Figure 7: Left: The IND$-CDA game. Right: MLE scheme CE[H].

Concrete result: Let A = (A1, A2) be an IND$-CDA adversary. We can construct a 1-source S and a
distinguisher D such that for any predictor P ,

Advcda
CE[H],A(λ) ≤ Advuce

H,S,D(λ) +
2v2

22λ

Advpred
S,P (λ) ≤ v` ·GuessA(λ) +

2v2 + v`

22λ

for every λ ∈ N, where v and ` are the maximum of the size of the vectors that A1 and P output,
respectively. Furthermore Qro

S = Qro
A1

; Qro
D = Qro

A2
; T(UCES,DH) ≤ T(IND$-CDAA

CE[H]), and QHash
S ≤ 2v.

By combining Theorem 5.2 and Proposition 7.1, we have the following result. This is the final end-product
of our methodology, namely a FIL-ROM scheme for the application in question.

Proposition 7.2 Construct Hrom from a PRP E as in Section 5. Let F be an AU hash function family
with F.ol = Hrom.il and F.IL = N. Let H = AU-then-Hash[F,Hrom].

Asymptotic result: CE[H] is IND$-CDA-secure.

Concrete result: Let A = (A1, A2) be an IND$-CDA adversary. We then can construct an adversary B
attacking E such that

Advcda
CE[H],A(λ) ≤ v

√
2q ·GuessA(λ) + 2v · Advprp

E,B(λ) + 2

√
qAdvcoll

F (λ, 2v, λ · (v + s)) +
2s2 + q2 + 4v

2λ

for all λ ∈ N, where q = Qro
A , s is the total λ-bit blocks in the string vector m that A1 outputs, and

v = |m|. Moreover, T(PRPBE) ≤ T(IND$-CDAA
CE[FastHash]) and QLR

B is the maximum of the number of
λ-bit blocks in the components of m.

Finally we can obtain a concrete scheme by instantiating F and E in Proposition 7.2. Namely, let λ = 128
and H = FastHash = AU-then-Hash[Faes4,Hrom]. Let E = AES. Then from Proposition 7.2 we have the
following corollary. For any IND$-CDA adversary A = (A1, A2), one can construct another adversary B
attacking AES such that

Advcda
CE[FastHash],A ≤ v

√
2q ·GuessA + 2v · Advprp

AES,B +
2s2 + q2 + (16v + 4s)

√
2vq

2128
+
v
√
q

2107

where q = Qro
A , s is the total 128-bit blocks in the string vector m that A1 outputs, and v = |m|. Moreover,

T(PRPBAES) ≤ T(IND$-CDAA
CE[FastHash]) and QLR

B is the maximum of the number of 128-bit blocks in the
components of m.

16

Hash function Setting
Speed (cycles per byte)
1MB 16MB 128MB

SHA-256 [1] 11.5 12.0 12.0

FastHash
sequential 2.1 2.2 2.2

parallel - 12 threads 0.4 0.4 0.5

Figure 8: Running time of the hash constructions. The first column lists the hash names, the
second column lists the setting, namely sequential or parallel, along with the number of threads, and the
last three columns list the running time on messages of sizes 1MB, 16MB, and 128MB respectively.

8 Implementation

In this section, we’ll describe how to instantiate the AU hash Faes4 in Section 6, and the FIL UCE-
secure hash Hrom in Section 5. We then compare the speed of FastHash, the resulting instantiation of
AU-then-Hash[Faes4,Hrom], with a standard hash function, SHA-256. We first describe our choices for com-
ponents and parameters to instantiate the construction, and then provide an overview of the implemen-
tation, before outlining the testing environment and test specifications. We also compare the convergent
encryption (CE) MLE scheme2from FastHash and SHA-256. Our results indicate a speedup of 5.3x for
our hash function over SHA-256 and 6.3x for CE in the sequential setting, and 24x and 20x speedups,
respectively, once parallelism is enabled.

Instantiations. To instantiate Faes4, we use the standard irreducible polynomial p(x) = x127 +x7 +x2 +
x+ 1 for multiplication over GF(2128). For Hrom, the FIL RO is instantiated by the compression function
of SHA-256, and the PRP by AES128.

Implementation. We implemented FastHash in C with inline assembly. We used Intel’s library for mul-
tiplication over GF(2128) [3], Intel’s optimized SHA256 implementation [1], and Intel’s AES-NI library [2]
for the code involving AES operations. We used the pthreads library for implementing threads for paral-
lelization.

Setup. We performed experiments on an Intel Core i7-970 processor clocking at 3201 MHz with a 12288
KB L1 cache. The machine provides hardware support for SSE4 vector instructions, AES operations (AES-
NI), and multiplication in GF(2128). Tests were compiled with gcc version 4.6 optimization level -O3, with
support for SSE4 via -msse4 flag, AES-NI instructions through the -maes flag, GF(2128) multiplications via
the -mpcmulqdq flag, and parallelization via the -pthread flag. We ran the tests in isolation, after turning
off processor frequency scaling. We used the rdtsc instruction to count cycles.

Experiments. We measured the performance of instantiations of the hash functions (i.e. FastHash and
SHA-256) as well as CE schemes based on these hash functions on messages of lengths 1MB, 16MB and
128MB. In each case, we measured the median running times of the different hash functions over 100
iterations, repeated this process 100 times and obtained the mean of the medians.

In the case of parallelizable constructions, viz. FastHash and CE[FastHash], we ran tests with multiple
levels of parallelism, starting from single-threaded, serial constructions, and increasing the number of
threads until we reached a point of thrashing where the performance starts to deteriorate because of other
bottlenecks in the system. We report both the single-thread sequential running time, and the optimal
parallel running time along with the optimal number of threads. In the latter case, the reported time does
not include the time to create and destroy the threads.

In Fig. 8, we report the median running times of the hash function instantiations, in cycles per byte. We
compare these times with the best times reported for SHA-256 on similar processors [1]. Our construction

2 In CE [7], one first hashes the message x to derive a key K, and then runs AES-CTR on key K to encrypt x.
To use FastHash on CE, one needs to use the CE variant of [6], in which AES-CTR on message m is replaced by
FastHash(hk,K, 1|x|)⊕x. Note that this doesn’t give us any speed advantage over the standard version of CE, as the masking
via FastHash is essentially AES-CTR. The only thing we gain is the abstraction of AES as part of the hash, so that one can
apply UCE[Ssup].

17

MLE Scheme Setting
Speed (cycles per byte)
1MB 16MB 128MB

CE implementation in [7] 22.1 22.3 22.6

CE[FastHash]
sequential 3.5 3.6 3.7

parallel - 12 threads 1.2 1.1 1.1

Figure 9: Running time of CE instantiations. The first column lists the instantiations, the second
column lists the setting, namely sequential or parallel, along with the number of threads, and the last three
columns list the running time (key generation + encryption) on messages of size 1MB, 16MB, and 128MB
respectively.

achieves substantially better running times. On messages of 1MB, SHA runs at 11.5 cycles per byte, but
our instantiation runs more than 5.3 times faster, at a cost of 2.1 cycles per byte. With parallelism, we
achieve much better speeds, below one cycle per byte.

In Fig. 9, we demonstrate the benefits of having faster hash functions by comparing the speeds of
CE implemented with FastHash with the implementation of CE by SHA-256 and AES-CTR in [7]. Our
experiments show that CE[FastHash], even in the sequential setting, is about 6.3x faster than the speeds
reported in [7]. When parallelism enabled, we achieve about 20x speedup.

References

[1] Fast SHA-256 Implementations on Intel Architecture Processors. goo.gl/Hh81eB. 17

[2] Intel AESNI Library. goo.gl/l2czm1. 17

[3] Intel Carry-Less Multiplication Instruction and its Usage for Computing the GCM Mode. goo.gl/qJLrF1. 17

[4] M. Bellare, A. Boldyreva, and A. O’Neill. Deterministic and efficiently searchable encryption. In A. Menezes,
editor, CRYPTO 2007, volume 4622 of LNCS, pages 535–552. Springer, Aug. 2007. 3

[5] M. Bellare, Z. Brakerski, M. Naor, T. Ristenpart, G. Segev, H. Shacham, and S. Yilek. Hedged public-key
encryption: How to protect against bad randomness. In M. Matsui, editor, ASIACRYPT 2009, volume 5912 of
LNCS, pages 232–249. Springer, Dec. 2009. 3

[6] M. Bellare, V. T. Hoang, and S. Keelveedhi. Instantiating random oracles via UCEs. Cryptology ePrint Archive,
Report 2013/424, 2013. Preliminary version appeared at CRYPTO 2013, pages 398–415, 2013. 3, 4, 7, 8, 10,
12, 15, 17, 24

[7] M. Bellare, S. Keelveedhi, and T. Ristenpart. Message-locked encryption and secure deduplication. In T. Jo-
hansson and P. Q. Nguyen, editors, Advances in Cryptology–EUROCRYPT 2013, volume 7881 of LNCS, pages
296–312. Springer, 2013. 3, 5, 15, 17, 18

[8] M. Bellare and T. Kohno. A theoretical treatment of related-key attacks: RKA-PRPs, RKA-PRFs, and appli-
cations. In E. Biham, editor, EUROCRYPT 2003, volume 2656 of LNCS, pages 491–506. Springer, May 2003.
3

[9] M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing efficient protocols. In
V. Ashby, editor, ACM CCS 93, pages 62–73. ACM Press, Nov. 1993. 3

[10] M. Bellare and P. Rogaway. The security of triple encryption and a framework for code-based game-playing
proofs. In S. Vaudenay, editor, EUROCRYPT 2006, volume 4004 of LNCS, pages 409–426. Springer, May / June
2006. 6, 22

[11] J. Black and P. Rogaway. CBC MACs for arbitrary-length messages: The three-key constructions. Journal of
Cryptology, 18(2):111–131, Apr. 2005. 11

[12] J. Black, P. Rogaway, and T. Shrimpton. Encryption-scheme security in the presence of key-dependent messages.
In K. Nyberg and H. M. Heys, editors, SAC 2002, volume 2595 of LNCS, pages 62–75. Springer, Aug. 2002. 3

[13] C. Brzuska, P. Farshim, and A. Mittelbach. Indistinguishability obfuscation and uces: The case of computation-
ally unpredictable sources. Cryptology ePrint Archive, Report 2014/099. To appear in CRYPTO 2014, 2014. 6,
8

18

goo.gl/Hh81eB
goo.gl/l2czm1
goo.gl/qJLrF1

[14] L. Carter and M. Wegman. Universal classes of hash functions. Journal of computer and system sciences,
18(2):143–154, 1979. 5, 11, 13

[15] J.-S. Coron, Y. Dodis, C. Malinaud, and P. Puniya. Merkle-Damg̊ard revisited: How to construct a hash
function. In V. Shoup, editor, CRYPTO 2005, volume 3621 of LNCS, pages 430–448. Springer, Aug. 2005. 3,
10, 11

[16] G. Demay, P. Gazi, M. Hirt, and U. Maurer. Resource-restricted indifferentiability. In T. Johansson and P. Q.
Nguyen, editors, EUROCRYPT 2013, volume 7881 of LNCS, pages 664–683. Springer, May 2013. 5

[17] Y. Dodis, T. Ristenpart, and T. Shrimpton. Salvaging Merkle-Damg̊ard for practical applications. In A. Joux,
editor, EUROCRYPT 2009, volume 5479 of LNCS, pages 371–388. Springer, Apr. 2009. 5

[18] J. Douceur, A. Adya, W. Bolosky, P. Simon, and M. Theimer. Reclaiming space from duplicate files in a
serverless distributed file system. In Distributed Computing Systems, 2002. Proceedings. 22nd International
Conference on, pages 617–624. IEEE, 2002. 5, 15

[19] R. Impagliazzo and S. Rudich. Limits on the provable consequences of one-way permutations. In S. Goldwasser,
editor, CRYPTO’88, volume 403 of LNCS, pages 8–26. Springer, Aug. 1988. 27

[20] L. Keliher and J. Sui. Exact maximum expected differential and linear probability for two-round advanced
encryption standard. IET Information Security, 1(2):53–57, 2007. 5, 14

[21] U. M. Maurer, R. Renner, and C. Holenstein. Indifferentiability, impossibility results on reductions, and appli-
cations to the random oracle methodology. In M. Naor, editor, TCC 2004, volume 2951 of LNCS, pages 21–39.
Springer, Feb. 2004. 3, 4, 6, 8

[22] K. Minematsu and Y. Tsunoo. Provably secure macs from differentially-uniform permutations and aes-based
implementations. In Fast Software Encryption, pages 226–241. Springer, 2006. 14

[23] A. Mittelbach. Salvaging indifferentiability in a multi-stage setting. In P. Q. Nguyen and E. Oswald, editors,
EUROCRYPT 2014, volume 8441 of LNCS, pages 603–621. Springer, 2014. 5, 6

[24] PKCS #1: RSA cryptography standard. RSA Data Security, Inc., Sept. 1998. Version 2.0. 15

[25] T. Ristenpart, H. Shacham, and T. Shrimpton. Careful with composition: Limitations of the indifferentiability
framework. In K. G. Paterson, editor, EUROCRYPT 2011, volume 6632 of LNCS, pages 487–506. Springer,
May 2011. 3, 4, 5

[26] M. N. Wegman and L. Carter. New hash functions and their use in authentication and set equality. Journal of
Computer and System Sciences, 22:265–279, 1981. 11

A Proofs of Theorem 4.1

For simplicity in analyzing concrete security, we’ll assume that for any N, q1, . . . , qN ∈ N, we have

N∑
i=1

TM,qi
≤ TM,q and

N∑
i=1

QM,qi
≤ QM,q,

where q = q1 + · · ·+ qN . That is, the maximum cost of running N separate instances of M for q1, . . . , qN
inputs, all starting from states st = ε, doesn’t exceed the cost of running a single instance of M starting
from state st = ε for q inputs.

In this proof, we’ll use the following conventions. First, ro refers to the random oracle that everybody
has access in UCE/Reset games, RO and ro refer to the VIL and FIL random oracles in the definition of in-
differentiability, and roSim refers to the simulated random-oracle interface implemented by our constructed
adversaries, respectively.

We’ll give a proof for UCE[Scrs]; the proof for UCE[Ssrs] is the same. Let S be a PT computationally
reset-secure N -key source and D be a PT distinguisher. Consider the following source S.

19

S
ro

(1λ, ε)

(1n, t)←$ Sro(1λ, ε) ; Return (1n, t)

S
Hash,ro

(1λ, t)

L←$ SHashSim,ro(1λ, t) ; Return L

HashSim(x, 1`, i)

y ← MHash(·,1H.ol(λ),i)(1λ, x) ; Return y

Next, we’ll reduce (S,D) to an adversary A attacking the indifferentiability of M . Note that here S
may have access up to N(λ) oracles Hash, yet A has only two oracles Prim and Func. To resolve this,
we’ll employ a hybrid argument. Adversary A picks r←$ {1, . . . , N(λ)}, and implements VIL random
oracles RO1, . . . ,RON(λ) : {0, 1}∗ → {0, 1}M.fol(λ) and FIL random oracle ro1, . . . , roN(λ) : {0, 1}M.pil(λ) →
{0, 1}M.pol(λ). For a query on the ith oracle, if i = r then it queries its Func oracle. Otherwise, it responds
by querying ROi if i < r, and running Mroi if i > r. The code of A is shown below.

APrim,Func(1λ)

r←$ {1, . . . , N(λ)}
(1n, t)←$ SroSim(1λ, ε) ; L←$ SHashSim,roSim(1λ, t)
For i = 1 to n do hk[i]←$ H.Kg(1λ)
b′←$DroSim(1λ,hk, L) ; Return b′

HashSim(x, 1`, i)

If i = r then (y ← Func(x) ; Return y)
If i < r then return ROi(x)
Else return Mroi(1λ, x)

Let M be the corresponding PT universal simulator for M. Let a, b, and b be the challenge bits of games

IndiffA,MM , UCES,DH , and UCES,D
H

respectively. Then

Pr[UCES,D
H

(·)⇒ true | b = 1] = Pr[UCES,DH (·)⇒ true | b = 1] .

Moreover,

Pr[UCES,D
H

(·)⇒ false | b = 0]− Pr[UCES,DH (·)⇒ false | b = 0]

= N ·
(
Pr[IndiffA,MM (·)⇒ true | a = 1]− Pr[IndiffA,MM (·)⇒ false | a = 0]

)
.

Subtracting, we have Advuce
H,S,D

(·) = Advuce
H,S,D(·)−N ·Advindiff

A,M,M
(·), thus the UCE security of H follows from

the UCE security of H and the indifferentiability of M. What’s left is to prove that S is computationally
reset-secure. Let R be a PT reset adversary. Consider the following reset adversary R.

RHash,ro(1λ, 1n, L)

For i = 1 to n do sti ← ε

b′←$R
HashSim,ro

(1λ, 1n, L) ; Return b′

HashSim(x, 1`, i)

(y, sti)←$ M
Hash(·,1H.ol(λ),i)

(1λ, sti, x) ; Return y

In the code above, R maintains N(λ) independent instances of M. We now describe how to reduce
(S,R) to an adversary B attacking the indifferentiability of M . Adversary B implements VIL random
oracles RO1, . . . ,RO2N(λ) : {0, 1}∗ → {0, 1}M.fol(λ) and FIL random oracles ro1, . . . , ro2N(λ) : {0, 1}M.pil(λ) →
{0, 1}M.pol(λ). It also maintains N(λ) independent instances of M. The code of B is shown below.

BPrim,Func(1λ)

s←$ {1, 2, 3} ; r←$ {1, . . . , N(λ)}
(1n, t)←$ SroSim(1λ, ε)
For i = 1 to n do sti ← ε
L←$ SHash,roSim(1n, t)

b′←$R
HashSim,roSim

(1λ, 1n, L)
If s = 1 then return b′

Else return 1− b′

Hash(x, 1`, i)

If s = 2 then j ← i+N(λ) else j ← i
If i < r then return ROj(x) elsif i > r then return Mroj (1λ, x)
If s = 2 then return ROj(x) else return Func(x)

HashSim(x, 1`, i)

If s = 3 then j ← i+N(λ) else j ← i

If i < r then (y, sti)←$ M
ROj (1λ, sti, x) ; Return y

Elsif i > r return roj(x)
If s = 3 then return roj(x) else return Prim(x)

20

Let c, d, and d be challenge bits of game IndiffB,MM , ResetRS , and ResetR
S

respectively. Let s ∈ {1, 2, 3}
be the random coin that B samples. Then

Pr[ResetRS (·)⇒ true | d = 1]− Pr[ResetR
S

(·)⇒ true | d = 1]

= N · (Pr[IndiffB,MM (·)⇒ false | (c = 0) ∧ (s = 1)]− Pr[IndiffB,MM (·)⇒ true | (c = 1) ∧ (s = 1)])

On the other hand,

Pr[ResetRS (·)⇒ false | d = 0]− Pr[ResetR
S

(·)⇒ false | d = 0]

= N · (Pr[IndiffB,MM (·)⇒ true | (c = 0) ∧ (s = 2)]− Pr[IndiffB,MM (·)⇒ false | (c = 1) ∧ (s = 3)])

Moreover,

Pr[IndiffB,MM (·)⇒ false | (c = 1) ∧ (s = 2)] = Pr[IndiffB,MM (·)⇒ true | (c = 0) ∧ (s = 3)] .

Summing up,

Advreset
S,R (·) = Advreset

S,R
(·)−N

3∑
j=1

(
2Pr[IndiffB,MM (·)⇒ true | s = j]− 1

)
= Advreset

S,R
(·)− 3NAdvindiff

B,M,M
(·) .

The computational reset-security of S then follows from the computational reset-security of S and the fact
that M is a PRO.

B Proof of Theorem 5.1

Let S be a PT statistically unpredictable source and D be a PT distinguisher. Consider the following
source S and distinguisher D.

S
ro

(1λ, ε)

(1n, t)←$ Sro(1λ, ε) ; t← (1λ, t) ; Return (1n, t)

S
Hash,ro

(1n, t)

For i = 1 to n do fk[i]←$ F.Kg(1λ)
(1λ, t)← t ; L←$ SHashSim,ro(1n, t) ; Return (fk, L)

HashSim(x, 1`, i)

u← F.Ev(1λ, fk[i], x, 1F.ol(λ)) ; Return Hash(u, 1`, i)

D
ro

(1λ,hk, L)

(fk, L)← L ; hk← (fk,hk)
b′←$Dro(1λ,hk, L) ; Return b′

Let b and b be the challenge bits of games UCES,DH , and UCES,D
H

respectively. Then

Pr[UCES,D
H

(·)⇒ true | b = 1] = Pr[UCES,DH (·)⇒ true | b = 1] .

Wlog, assume that S doesn’t repeat a prior query to Hash. Consider the following games H1 and H2,
where game H1 contains the boxed statement but game H2 does not.

Game HS,D
1 (λ) , HS,D

2 (λ)

(1n, t)←$ Sro(1λ)
For i = 1 to n do

fk[i]←$ F.Kg(1λ) ; hk[i]←$ H.Kg(1λ) ; hk[i]← (fk[i],hk[i])
L←$ SHashSim,ro(1n, t) ; b′←$Dro(1λ,hk, L) ; Return (b′ = 1)

HashSim(x, 1`, i)

u← F.Ev(1λ, fk[i], x, 1F.ol(λ))
y←$ {0, 1}`
If H[u, `, i] 6= ⊥ then

bad← true ; y ← H[u, `, i]
H[u, `, i]← y ; Return y

21

Then

Pr[UCES,D
H

(·)⇒ false | b = 0] = Pr[HS,D
1 (·)] and Pr[UCES,DH (·)⇒ false | b = 0] = Pr[HS,D

2 (·)] .

Let σ be a polynomial that bounds the total length of the first components in Hash queries in UCES,DH ,
and p = QHash

S . Since the games H1 and H2 are identical-until-bad, by the Fundamental lemma of game-
playing [10],

Pr[HS,D
1 (·)]− Pr[HS,D

2 (·)] ≤ Pr[HS,D
2 (·) sets bad] .

Suppose that S makes ` queries whose first components have length m1, . . . ,m`. Then the chance that
game HS,D

2 sets bad is at most∑̀
i=1

∑̀
j=1

Coll2F(λ,mi,mj) ≤ Advcoll
F (λ, p, σ) .

Hence

Advuce
H,S,D

(λ) ≥ Advuce
H,S,D(λ)− Advcoll

F (λ, p, σ) .

We claim that S is statistically unpredictable, and thus the UCE-security of H follows from the UCE-
security of H. To justify this claim, let P be an arbitrary predictor. Since P is computationally-unbounded
and can make as many ro queries as it likes, wlog, assume that P is deterministic. Let ρ1 and ρ2 be
polynomials that bound the number of coins that S uses in the first and the second phases in executing
UCES,DH , respectively. Let µ be a polynomial that bounds the total output length of Hash queries in

executing UCES,DH . Let T be the set of (x, i) in from the queries (x, 1`, i) that S makes. Consider the
predictor P below. Here Samplero(1λ, n, L) is an algorithm that computes the multiset T such that the
random variable T , given that the leakage L of S and the number of hash keys n, is uniformly distributed
over T , and then return a uniformly random element T ′ of T . Then |T ′| ≤ p(λ).

P ro(1λ, 1n, L)

T ′←$ Samplero(1λ, n, L) ; Q′ ← ∅
For (x, i) ∈ T do Q′ ← Q′ ∪ {x}
Return Q′

Samplero(1λ, n, L)

T ← ∅ // T is a multiset

For (r1, r2, R) ∈ {0, 1}ρ1(λ) × {0, 1}ρ2(λ) × {0, 1}µ(λ) do
(1d, t)← Sro(1λ, ε; r1) ; Q← ∅ ; j ← 1
L′←$ SHashSim,ro(1d, t; r2) ; R← R[1, j − 1]
If (L′ = L) ∧ (M [r1, r2, R] = ⊥) ∧ (d = n) then T ← T ∪ {T }
M [r1, r2, R]← 1

T ′←$ T ; Return T ′

HashSim(x, 1`, i)

T ← T ∪ {(x, i)} ; y ← R[j, j + `− 1] ; j ← j + ` ; Return y

Consider games G1–G4 in Fig. 10, where games G1 and G4 contain the corresponding boxed statements,

but games G2 and G3 do not. We explain the game chain up to the terminal one. Game GS,P1 coincides

with game PredP
S

. Game GS,P2 is identical to GS,P1 , except for the following difference. In game G1, the

simulated HashSim oracle of S will return the same answer for queries (x0, 1
`, i) and (x1, 1

`, i) such that
F.Ev(1λ, fk[i], x0, 1

F.ol(λ)) = F.Ev(1λ, fk[i], x1, 1
F.ol(λ)). In game G2, HashSim acts as a random oracle. The

two games are identical-until-bad, and thus

Pr[GS,P1 (λ)]− Pr[GS,P2 (λ)] ≤ Pr[GS,P2 (λ) sets bad] ≤ Advcoll
F (λ, p, σ) .

Game GS,P3 is identical to game GS,P2 , except for the following difference. Each game samples a vector fk
of n keys for F and maintains an (initially empty) set U . For each query (x, 1`, i) of S, we add u =
F.EvF(1λ,hk[i], x, 1F.ol(λ)) to U . Let the multiset U be computed as follows. Initially, U = ∅. For every
T ′ ∈ T , we add the set U ′ = { F.Ev(1λ, fk[i], z, 1F.ol(λ) : (z, i) ∈ T ′ } as a new element of U . Then the

22

Game GS,P1 (λ) , GS,P2 (λ)

(1n, t)←$ Sro(1λ, ε) ; T,U ← ∅
For i = 1 to n do fk[i]←$ F.Kg(1λ)

L←$ SHashSim,ro(1n, t)

L← (fk, L) ; V ← P
ro

(1λ, 1n, L) ; Return (V ∩ U 6= ∅)

Hash(x, 1`, i)

If H[x, `, i] = ⊥ then H[x, `, i]←$ {0, 1}`

Return H[x, `, i]

HashSim(x, 1`, i)

u← F.Ev(1λ, fk[i], x, 1F.ol(λ))

U ← U ∪ {u} ; T ← T ∪ {(x, i)}
For (z, i) ∈ T do

If (u = F.Ev(1λ, fk[i], z, 1F.ol(λ)))∧(H[z, `, i] 6= ⊥) then

bad← true ; Return H[z, `, i]

Return Hash(x, 1`, i)

Game GS,P3 (λ), GS,P4 (λ)

(1n, t)←$ Sro(1λ, ε) ; Q,T, U, U ′ ← ∅
For i = 1 to n do fk[i]←$ F.Kg(1λ)

L←$ SHashSim,ro(1n, t) ; L← (fk, L)

T ′←$ Samplero(1λ, n, L) ; V ← P
ro

(1λ, 1n, L)

For (x, i) ∈ T ′ do Q′ ← Q′ ∪ {x}
If Q ∩Q′ 6= ⊥ then bad← true ; T ′ ← T ′\T
For (x, i) ∈ T ′ do

u← F.Ev(1λ, fk[i], x, 1F.ol(λ)) ; U ′ ← U ′ ∪ {u}
Return (V ∩ U ∩ U ′ 6= ∅)

Hash(x, 1`, i)

If H[x, `, i] = ⊥ then H[x, `, i]←$ {0, 1}`

Return H[x, `, i]

HashSim(x, 1`, i)

T ← T ∪ {(x, i)} ; u← F.Ev(1λ, fk[i], x, 1F.ol(λ))

U ← U ∪{u} ; Q← Q∪{x} ; Return Hash(x, 1`, i)

Figure 10: Games G1–G4 in the proof of Theorem 5.1.

random variable U , given that the leakage L of S and the key vectors fk for F, is uniformly distributed
over U . In game G2, we return (V ∩ U 6= ∅), where V is the output of P . In game G3, we choose U ′←$ U
and return (V ∩ U ∩ U ′ 6= ∅). Let q be a polynomial that bounds the size of P ’s output in PredP

S
, and let

V = {v1, . . . , vk}, with k ≤ q(λ). For each i ≤ k, let Vi = {W ∈ U : vi ∈W }, and let pi = |Vi|/|U|. Then

Pr[vi ∈ U] = Pr[U ∈ Vi] = pi,

whereas

Pr[vi ∈ U ∩ U ′] = Pr[(U ∈ Vi) ∧ (U ′ ∈ Vi)] = p2i .

In other words,

(
Pr[GS,P2 (·)]

)2
=
(k∑
i=1

pi

)2
≤ k

k∑
i=1

p2i ≤ q
k∑
i=1

p2i = qPr[GS,P3 (·)],

where the first inequality is due to Cauchy-Schwartz inequality. Game GS,P4 is identical to game GS,P3 ,
except for the following difference. Let Q be the set of input x in Hash queries (x, 1`, i) of S, and let Q′

be the output of P , which is derived from T ′←$ Samplero(1λ, n, L). In game G4, if Q ∩ Q′ 6= ∅, then we
replace the set T ′ by T ′\T , before we compute the set U ′ from T ′. Since Q∩Q′ 6= ∅ whenever T ∩ T ′ 6= ∅,
it follows that in game G4, when we compute U ′ from T ′, we always have T ∩ T ′ = ∅. The two games are
identical-until-bad, and thus

Pr[GS,P3 (·)]− Pr[GS,P4 (·)] ≤ Pr[GS,P4 (·) sets bad] = Pr[PredS,PH (·)] .

As game GS,P4 returns (V ∩U∩U ′ 6= ∅), it follows that Pr[GS,P4 (·)] is bounded by the chance that U∩U ′ 6= ∅.
The latter happens if there are (x0, i) ∈ T and (x1, j) ∈ T ′ such that

F.Ev(1λ, fk[i], x0, 1
F.ol(λ)) = F.Ev(1λ, fk[j], x1, 1

F.ol(λ)) . (7)

If i = j, since T ∩ T ′ = ∅, it follows that x0 6= x1, and thus Equation (7) happens with probability at
most Coll2F(λ, |x0|, |x1|) ≤ CollF(λ, |x0|, |x1|). If i 6= j, wlog, suppose that |x0| ≤ |x1|. Since fk[i] is

23

independent of F.Ev(1λ, fk[j], x1, 1
F.ol(λ)), it follows that Equation (7) happens with probability at most

Coll1F(λ, |x0|) ≤ CollF(λ, |x0|, |x1|). Suppose that the first components in the elements of T and T ′ have
length m1, . . . ,m` and m′1, . . . ,m

′
`′ respectively. Then

Pr[GS,P4 (λ)] ≤
∑̀
i=1

`′∑
j=1

CollF(λ,mi,m
′
j) ≤ Advcoll

F (λ, p, σ) .

Summing up,

Advpred

S,P
(λ) ≤ Advcoll

F (λ, p, σ) +
√
qAdvpred

S,P (λ) + qAdvcoll
F (λ, p, σ)

≤
√

2qAdvcoll
F (λ, p, σ) +

√
qAdvpred

S,P (λ) .

Hence the unpredictability of S follows from the unpredictability of S.

C Constructing FIL UCE-secure hash in the FIL-ROM

BHK’s construction. Bellare, Hoang, and Keelveedhi [6] show how to build a UCE[Scrs]-secure hash H

in the ROM via (i) H.Kg(1λ) returns hk←$ {0, 1}λ, and (ii) H.Evro(1λ, hk, x, 1H.ol(λ)) returns ro(hk ‖x).

Proposition C.1 [6] The family H above is UCE[Scrs]-secure. Concretely, for any N -key source S and
distinguisher D, we can construct a reset adversary R such that

Advuce
H,S,D

(λ) ≤ Advreset
S,R (λ) +

2N(λ) · q(λ) +N2(λ)

2λ

for every λ ∈ N, where q is a polynomial that bounds the total number of ro queries of both S and D. The
reset adversary R makes at most q(λ) Hash queries and q(λ) random-oracle queries, and uses the same
running time as D.

Fast VOL UCE[Ssup]-secure hash. In Section 5, we described how to construct a FIL, VOL hash Hrom

from a PRP E in FIL-ROM. Below, we’ll show that Hrom is UCE[Ssup]-secure.

Proposition C.2 Let E be a PRP. Let H = Hrom as constructed in Section 5.

Asymptotic result: H is UCE[Ssup]-secure.

Concrete result: For any N -key source S and any distinguisher D, we can construct a predictor P and a
PRP adversary A such that

Advuce
H,S,D(λ) ≤ 2p(λ) · Advprp

E,A(λ) + Advpred
S,P (λ) +

2s2(λ) +N2(λ) + q2(λ)

2λ
,

where p = QHash
S ; q = Qro

S + Qro
D; s is the maximum of the total of λ-blocks in the second components of

Hash queries in the execution of UCES,DHrom
. Furthermore

QLR
A is maximum of the number of λ-bit blocks in the second component of a Hash query in UCES,DH

T(PRPAE) = T(UCES,DH), and P outputs a set of at most Qro
S + Qro

D elements.

Proof: Let S be a PT statistically unpredictable N -key source and D be a PT distinguisher. Let p = QHash
S ;

q = Qro
S + Qro

D; and s be the maximum of the total of λ-blocks in the second components of Hash queries

in the execution of UCES,DHrom
.

Wlog, assume that S and D never repeat a prior query to their oracles, and assume that q(λ) ≤ 2λ−1.
Consider games G1–G8 in Figures 11 and 12. For clarity, in each game, we write ro1 and ro2 to denote

24

Game GS,D1 (λ), GS,D2 (λ)

U ← ∅
For i = 1 to N(λ) do

k[i]←$ {0, 1}λ

If k[i] ∈ U then

bad← true ; k[i]←$ {0, 1}λ\U
U ← U ∪ {k[i]}

(1n, t)←$ Sro1(1λ, ε) ; L←$ SHash,ro1(1n, t)

k← (k[1], . . . ,k[n]) ; b′←$Dro2(1λ,k, L)

Return (b′ = 1)

Hash(x, 1`, i)

v ← k[i] ‖x ‖ ` ; m← d`/λe ; K ← H[v]

If H[v] = ⊥ then K ← H[v]←$ {0, 1}E.kl(λ)

For i = 1 to m do yi ← E.Ev(1λ,K, ` ‖ i, 1λ)

y ← y1 ‖ · · · ‖ ym ; y ← y[1, `] ; Return y

ro1(v)

If H[v] = ⊥ then H[v]←$ {0, 1}E.kl(λ)

Return H[v]

ro2(v)

If H[v] = ⊥ then H[v]←$ {0, 1}E.kl(λ)

Return H[v]

Game GS,D3 (λ), GS,D4 (λ)

U ← ∅
For i = 1 to N(λ) do

k[i]←$ {0, 1}λ\U ; U ← U ∪ {k[i]}
(1n, t)←$ Sro1(1λ, ε) ; L←$ SHash,ro1(1n, t)

k← (k[1], . . . ,k[n])

b′←$Dro2(1λ,k, L) ; Return (b′ = 1)

Hash(x, 1`, i)

v ← k[i] ‖x ‖ ` ; m← d`/λe ; K ← H[v]

If H[v] = ⊥ then K ← H[v]←$ {0, 1}E.kl(λ)

For i = 1 to m do yi ← E.Ev(1λ,K, ` ‖ i, 1λ)

y ← y1 ‖ · · · ‖ ym ; y ← y[1, `] ; Return y

ro1(v)

If v[1, λ] ∈ U then

bad← true ; T [v]←$ {0, 1}E.kl(λ) ; Return T [v]

If H[v] = ⊥ then H[v]←$ {0, 1}E.kl(λ)

Return H[v]

ro2(v)

If H[v] = ⊥ then H[v]←$ {0, 1}E.kl(λ)

Return H[v]

Figure 11: Games G1–G4 in the proof of Proposition C.2. Games G2 and G4 contain the corre-
sponding boxed statements but game G1 and G3 do not.

the random oracles of S and D respectively. Game GS,D1 corresponds to game UCES,DHrom
with challenge bit

b = 1, and Pr[GS,D8 (·)] = Pr[UCES,DHrom
(·) ⇒ false | b = 0]. We explain the game chain up to the terminal

one. In game GS,D2 , instead of sampling the hash keys independently, we sample so that they are distinct.

Games GS,D1 and GS,D2 are identical-until-bad, and thus

Pr[GS,D1 (λ)]− Pr[GS,D2 (λ)] ≤ Pr[GS,D2 (λ) sets bad] ≤ N2(λ)

2λ+1

for every λ ∈ N. Game GS,D3 is the simplified version of GS,D2 . In game GS,D4 , if S makes a ro1 query whose
prefix is a hash key then it will get a random answer, independent of Hash and ro2. Since whatever S
receives will be independent of the hash keys and games GS,D3 and GS,D4 are identical-until-bad, it follows
that

Pr[GS,D3 (λ)]− Pr[GS,D4 (λ)] ≤ Pr[GS,D4 (λ) sets bad] ≤
q(λ)−1∑
i=0

i

2λ − i
≤

q(λ)−1∑
i=0

i

2λ−1
≤ q2(λ)

2λ

for every λ ∈ N. Game GS,D5 is identical to game GS,D4 , making it explicit that for each Hash query,
we sample a fresh key for E that is independent of whatever S has received so far. The reason is that
inside Hash the queries to ro always have different λ-bit prefixes. In game GS,D6 , we sample the hash keys

independently. Games GS,D5 and GS,D6 are identical-until-bad, and thus

Pr[GS,D5 (λ)]− Pr[GS,D6 (λ)] ≤ Pr[GS,D6 (λ) sets bad] ≤ N2(λ)

2λ+1

25

Game GS,D5 (λ) , GS,D6 (λ)

U ← ∅
For i = 1 to N(λ) do

k[i]←$ {0, 1}λ

If k[i] ∈ U then

bad← true ; k[i]←$ {0, 1}λ\U
U ← U ∪ {k[i]}

(1n, t)←$ Sro1(1λ, ε) ; L←$ SHash,ro1(1n, t)

k← (k[1], . . . ,k[n])

b′←$Dro2(1λ,k, L) ; Return (b′ = 1)

Hash(x, 1`, i)

v ← k[i] ‖x ‖ ` ; m← d`/λe
K ← H[v]←$ {0, 1}E.kl(λ)

For i = 1 to m do yi ← E.Ev(1λ,K, ` ‖ i, 1λ)

y ← y1 ‖ · · · ‖ ym ; y ← y[1, `] ; Return y

ro1(v)

If v[1, λ] ∈ U then

T [v]←$ {0, 1}E.kl(λ) ; Return T [v]

If H[v] = ⊥ then H[v]←$ {0, 1}E.kl(λ)

Return H[v]

ro2(v)

If H[v] = ⊥ then H[v]←$ {0, 1}E.kl(λ)

Return H[v]

Game GS,D7 (λ), GS,D8 (λ)

Q,U ← ∅
For i = 1 to N(λ) do k[i]←$ {0, 1}λ ; U ← U ∪ {k[i]}
(1n, t)←$ Sro1(1λ, ε) ; L←$ SHash,ro1(1n, t)

k← (k[1], . . . ,k[n])

b′←$Dro2(1λ,k, L) ; Return (b′ = 1)

Hash(x, 1`, i)

v ← k[i] ‖x ‖ ` ; m← d`/λe ; K ← H[v]←$ {0, 1}E.kl(λ)

For i = 1 to m do

yi ← E.Ev(1λ,K, ` ‖ i, 1λ) ; yi←$ {0, 1}λ

y ← y1 ‖ · · · ‖ ym ; y ← y[1, `] ; Q← Q ∪ {x} ; Return y

ro1(v)

If v[1, λ] ∈ U then T [v]←$ {0, 1}E.kl(λ) ; Return T [v]

If H[v] = ⊥ then H[v]←$ {0, 1}E.kl(λ)

Return H[v]

ro2(v)

x← v[λ+ 1, ro.il(λ)− dλ/2e]
If (v[1, λ] ∈ U) ∧ (x ∈ Q) then

bad← true ; y←$ {0, 1}E.kl(λ)

If T [v] 6= ⊥ then return T [v] else return y

If H[v] = ⊥ then H[v]←$ {0, 1}E.kl(λ)

Return H[v]

Figure 12: Games G5–G6 in the proof of Proposition C.2. Games G5 and G8 contain the corre-
sponding boxed statements but game G6 and G7 do not.

ARR
0 (1λ), ARR

1 (1λ)

j←$ {1, . . . , p(λ)} ; U,Q← ∅
For i = 1 to N(λ) do

k[i]←$ {0, 1}λ ; U ← U ∪ {k[i]}
cnt← 0 ; (1n, t)←$ SroSim1(1λ, ε)

L←$ SHashSim,roSim1(1n, t) ; k← (k[1], . . . ,k[n])

a′ ← 0 ; b′←$DroSim2(1λ,k, L)

a′ ← b′ ; Return a′

roSim1(v)

If H[v] = ⊥ then H[v]←$ {0, 1}E.kl(λ)

Return H[v]

HashSim(x, 1`, i)

cnt← cnt + 1 ; m← d`/λe ; K←$ {0, 1}E.kl(λ) ; Ran← ∅
For i = 1 to m do

If cnt = j then yi ← RR(` ‖ i)
Elsif cnt > j then yi←$ {0, 1}λ\Ran ; Ran← Ran∪{yi}
Else yi ← E.Ev(λ,K, ` ‖ i, 1λ)

y ← y1 ‖ · · · ‖ ym ; y ← y[1, `] ; Return y

roSim2(v)

x← v[λ+ 1, ro.il(λ)− dλ/2e]
If (v[1, λ] ∈ U) ∧ (x ∈ Q) then a′ ← 1

If H[v] = ⊥ then H[v]←$ {0, 1}E.kl(λ)

Return H[v]

Figure 13: Adversaries A0, A1 in the proof of Proposition C.2. Adversary A1 contains the boxed
statement but A0 does not.

for every λ ∈ N. In game GS,D7 , if D make a ro2 query v whose prefix is a hash key then there are two
possibilities. If S previously made the same query to ro1 then we return the consistent answer to D.

26

Otherwise, if the string v[λ + 1, ro.il(λ) − dλ/2e] is a Hash query of S then we return a random answer,
independent of Hash and ro1. Then

Pr[GS,D6 (λ)]− Pr[GS,D7 (λ)] ≤ Pr[GS,D7 (λ) sets bad] .

In game GS,D8 , instead of invoking E to compute the outputs of Hash, we return independent, uniformly
random strings. We now construct an PRP adversary A. It first samples a uniformly random bit. If the
bit is 0 then it runs an adversary A0; otherwise it runs another adversary A1. The code of A0 and A1 is
given in Fig. 13. Then

2Advprp
E,A(·) = Advprp

E,A0
(·) + Advprp

E,A1
(·) .

Let us now study the adversaries A0 and A1 in details. Recall that in gamesG1–G8, we use E on several keys,
whereas in the PRP game, there is a single key. Hence in constructing A0, we employ the following hybrid
argument. The adversary A0 samples j ← {1, . . . , p(λ)} and emulates game UCES,DHrom

on its simulated
random oracle roSim, with the following differences. First, A0 doesn’t sample the challenge bit. Next, on
the ith Hash query, if i < j then it samples a fresh key for E, and uses E to generate the output. Otherwise,
if i > j then instead of calling E, it will simulate a truly random permutation. Otherwise, if i = j then
each invocation of E is replaced by the corresponding query to the oracle RR. If D can make a roSim
query v whose prefix is a hash key and v[λ + 1, ro.il(λ) − dλ/2e] is a Hash query of S, then A0 returns 1.
It returns 0 otherwise. The adversary A1 is identical to A0, except that it returns D’s guess. Then

Pr[PRPA0
E (·)⇒ true | a = 1] =

1

p
Pr[GS,D7 (·) sets bad],

Pr[PRPA1
E (·)⇒ true | d = 1] =

1

p
Pr[GS,D7 (·)],

where a and d are the challenge bits in games PRPA0
E and PRPA1

E respectively. Now suppose that in game

GS,D8 , the source makes queries to Hash of output lengths `1, . . . , `t, with `1+ · · ·+`t ≤ λ ·s(λ) and t ≤ p(λ).
Due to the PRP/PRF Switching Lemma [19],

p(λ) · Pr[PRPA1
E (λ)⇒ false | d = 0] ≤ Pr[GS,D8 (λ)] +

t∑
i=1

(d`i/λe − 1)d`i/λe
2λ+1

≤ Pr[GS,D8 (λ)] +
s2(λ)

2λ

for all λ ∈ N. Hence

p(λ) · Advprp
E,A1

(λ) ≥ Pr[GS,D7 (λ)]− Pr[GS,D8 (λ)]− s2(λ)

2λ

Now consider the following predictor P .

P ro(1λ, 1n, L)

U,Q′ ← ∅
For i = 1 to N(λ) do

k[i]←$ {0, 1}λ ; U ← U ∪ {k[i]}
k← (k[1], . . . ,k[n]) ; b′←$DroSim(1λ,k, L)
Return Q′

roSim(v)

x← v[λ+ 1, ro.il(λ)− dλ/2e]
If v[1, λ] ∈ U then Q′ ← Q′ ∪ {x}
Return ro(v)

Again, by PRP/PRF Switching Lemma,

p(λ) · Pr[PRPA0
E (λ)⇒ false | a = 0] ≤ Pr[GS,D8 (λ) sets bad] +

s2(λ)

2λ

≤ Pr[PredPS (λ)] +
s2(λ)

2λ

27

for all λ ∈ N. Hence

p(λ) · Advprp
E,A0

(λ) + Advpred
S,P (λ) ≥ Pr[GS,D7 (λ) sets bad]− s2(λ)

2λ

for all λ ∈ N. Summing up,

Advuce
H,S,D(λ) = Pr[GS,D1 (λ)]− Pr[GS,D8 (λ)]

≤ 2p(λ) · Advprp
E,A(λ) + Advpred

S,P (λ) +
2s2(λ) +N2(λ) + q2(λ)

2λ

for all λ ∈ N. The predictor outputs a set of at most q(λ) elements, QLR
A is maximum of the number of

λ-bit blocks in the second component of a Hash query in UCES,DH , and T(PRPAE) = T(UCES,DH).

D Proof of Proposition 6.1

For part (a), consider an arbitrary string x such that |x| ≤ m. Parse (w0, w1, . . . , wk)← x, where each wi
is in GF(2n). Consider an arbitrary y ∈ GF(2n). Consider polynomial f(t) ∈ GF(2n)[t] defined as

f(t) =
k∑
i=0

wi · ti − y .

The polynomial f has degree k ≤ ‖m‖n, and thus it has at most ‖m‖n roots. On the other hand,
Fpoly.Ev(fk, x) = y if and only if fk is a root of f . Hence

Pr
fk←$ GF(2n)

[f(fk) = 0] ≤ ‖m‖n
2n

and thus Coll1Fpoly
(m) ≤ ‖m‖n/2n, as claimed.

For part (b), consider arbitrary distinct string x0, x1 such that each |xi| ≤ mi. Parse (w0, w1, . . . , wk)← x0
and (v0, . . . , v`) ← x1, where each wi and vj are in GF(2n). Consider the polynomial f(t) ∈ GF(2n)[t]
defined as follows:

f(t) =
k∑
i=0

wi · ti −
∑̀
j=0

vj · tj .

We claim that f is not the zero polynomial. If k = ` then the polynomial f(t) =
∑k

i=0(wi⊕vi)ti is nonzero
because (w0, . . . , wk) 6= (v0, . . . , v`). If k 6= ` then wlog, assume that k > `. Then the leading coefficient of
f(t) is wk that is not the zero element of GF(2n), and the claim follows. Since the degree of f is at most
max{k, `} ≤ max{‖m0‖n, ‖m1‖n}, it follows that f has at most max{‖m0‖n, ‖m1‖n} roots. On the other
hand,

Fpoly.Ev(fk, x0) = Fpoly.Ev(fk, x1)

if and only if f(fk) = 0. Hence

Pr
fk←$ GF(2n)

[f(fk) = 0] ≤ max{‖m0‖n, ‖m1‖n}
2n

and thus Coll2Fpoly
(m0,m1) ≤ (max{‖m0‖n, ‖m1‖n})/2n, as claimed.

E Proof of Proposition 6.2

From Proposition 6.1, Coll1Fpoly
(m) ≤ ‖m‖n/2n. It follows that Coll1Ffast

(m) ≤ ‖m‖n/2n. It remains to
show that Coll2Ffast

(m0,m1) ≤ (Cr+ max{‖m0‖n, ‖m1‖n})/2n. Consider two arbitrary distinct strings x0

28

and x1 such that each |xi| ≤ mi. Fix fk1 ∈ [Ftree.Kg()]. Let yi = Shrink(fk1, xi) and `i = |yi|, for i ∈ {0, 1}.
If y0 6= y1 then from Proposition 6.1,

Pr
fk2←$ F.Kg()

[Fpoly.Ev(fk2, y0, 1
n) = Fpoly.Ev(fk2, y1, 1

n)] ≤ max{‖`0‖n, ‖`1‖n}
2n

≤ max{‖m0‖n, ‖m1‖n}
2n

.

What’s left is to prove that

Pr
fk1←$ Ftree.Kg()

[Shrink(fk1, x0) = Shrink(fk1, x1)] ≤
Cr

2n
.

Parse w1 . . . wk ← x0 and v1 · · · vd ← x1. Note that k = ‖`0‖n and d = ‖`1‖n. This means that if
Shrink(fk1, x0) = Shrink(fk1, x1), we’ll have `0 = `1, and thus k = d. It there is some i ≤ k − 1 such that
wi 6= vi then the claim follows from Equation (6). Otherwise, since x0 6= x1, we must have wk 6= vk. When
we break Shrink(fk1, x0) into n-bit blocks such that the last block is strictly shorter than n bits, vk is the last
block of Shrink(fk1, x0). The same holds for wk and Shrink(fk1, x1). Hence Shrink(fk1, x0) 6= Shrink(fk1, x1)
for every fk1.

F Proof of Proposition 6.3

Note that

CollFaes4(m0,m1) ≤ (CollFfast
(m0,m1))

2 ≤
(
Cr + max{‖m0‖n, ‖m1‖n}

)2
22n

≤ 2C2r2 + 2(max{‖m0‖n, ‖m1‖n})2

22n
.

Then

Advcoll
Faes4

(p, σ) ≤ max
`≤p,`′≤p,m1+···+m`≤σ,m′

1+···+m′
`′≤σ

{∑̀
i=1

`′∑
j=1

2C2r2 + 2(max{‖mi‖n, ‖m′j‖n})2

22n

}

≤ 2C2r2p2

22n
+ max
`≤p,`′≤p,m1+···+m`≤σ,m′

1+···+m′
`′≤σ

{∑̀
i=1

`′∑
j=1

2(‖mi‖n)2 + 2(‖m′j‖n)2

22n

}

≤ 2C2r2p2

22n
+

2p

22n
· max
`≤p,`′≤p,m1+···+m`≤σ,m′

1+···+m′
`′≤σ

{∑̀
i=1

(‖mi‖n)2 +

`′∑
j=1

(‖m′j‖n)2
}

≤ 2C2r2p2 + 4p(‖σ‖n + p)2

22n
,

as claimed.

29

	Introduction
	Preliminaries
	UCE framework
	UCE from indifferentiability
	UCE from universal hashing
	Fast, parallelizable AU hash from reduced-round AES
	An example application
	Implementation
	Proofs of Theorem 4.1
	Proof of Theorem 5.1
	Constructing FIL UCE-secure hash in the FIL-ROM
	Proof of Proposition 6.1
	Proof of Proposition 6.2
	Proof of Proposition 6.3

