
Curve41417: Karatsuba revisited

Daniel J. Bernstein1,2, Chitchanok Chuengsatiansup2, and Tanja Lange2

1 Department of Computer Science
University of Illinois at Chicago
Chicago, IL 60607–7045, USA

djb@cr.yp.to
2 Department of Mathematics and Computer Science

Technische Universiteit Eindhoven
P.O. Box 513, 5600 MB Eindhoven, The Netherlands

c.chuengsatiansup@tue.nl, tanja@hyperelliptic.org

Abstract. This paper introduces constant-time ARM Cortex-A8 ECDH
software that (1) is faster than the fastest ECDH option in the latest
version of OpenSSL but (2) achieves a security level above 2200 using a
prime above 2400. For comparison, this OpenSSL ECDH option is not
constant-time and has a security level of only 280. The new speeds are
achieved in a quite different way from typical prime-field ECC software:
they rely on a synergy between Karatsuba’s method and choices of radix
smaller than the CPU word size.

Keywords: performance, Karatsuba, refined Karatsuba, reduced refined
Karatsuba, radix choices, vectorization, Edwards curves, Curve41417

1 Introduction

This paper introduces new ECDH software for a standard ARM Cortex-A8 CPU.
This software is faster than the fastest ECDH option (secp160r1) in the latest
version of OpenSSL (version 1.0.2-beta1, released 24 February 2014).

This performance bar was already reached in one previous paper, “NEON
crypto” (CHES 2012) by Bernstein and Schwabe [11], implementing Bernstein’s
Curve25519 [2] elliptic curve. The difference is that we now reach the same
performance bar at a much higher security level, implementing a very strong
new “Curve41417” elliptic curve introduced informally by Bernstein and Lange
in [7, page 12] and introduced formally in this paper.

We are not saying that Curve41417 is as fast as Curve25519. We are saying
that it is fast enough for applications and provides a much higher security level
than Curve25519. This paper addresses the scalability challenges that appear at
higher security levels.

This work was supported by the National Science Foundation under grant
1018836 and by the Netherlands Organisation for Scientific Research (NWO)
under grants 639.073.005 and 613.001.011. Permanent ID of this document:
8302181bad3a3e2fcf91ee3e72b49edd. Date: 2014.07.06.



2 Bernstein, Chuengsatiansup, Lange

Hyperelliptic-curve DH has also recently reached this performance bar for the
Cortex-A8: the HECDH implementation in [4] is even faster than Curve25519.
However, the performance benefits of hyperelliptic curves are specific to DH,
as admitted in [4], while elliptic curves are easily adapted to other important
applications such as signatures. More importantly, the 128-bit hyperelliptic curve
used in [4] came from a massive computation by Gaudry and Schost in [20],
using more than 1000000 hours of CPU time. Finding a similar curve at a higher
security level would be extraordinarily difficult.

1.1. Karatsuba’s method in prime-field ECC software. The Cortex-A8
contains a large integer-multiplication unit that multiplies 32-bit words to pro-
duce 64-bit results. Of course, there are CPUs with even larger multipliers, and
CPUs (and FPGAs) with smaller multipliers, but 32-bit multipliers have been
a popular choice for many years and seem likely to remain in widespread use in
embedded systems for many years to come. We focus on the Cortex-A8 for the
same reasons as [11] and [4, Section 5].

The conventional approach in ECC software is to take advantage of 32-bit
multipliers by splitting, e.g., 160-bit prime-field elements into 5 words to be mul-
tiplied, or 256-bit prime-field elements into 8 words to be multiplied. Karatsuba’s
method [29, Theorem 2] is well known to be useful for binary fields, and is occa-
sionally also considered for prime-field ECC software, but is practically always
dismissed as having too much overhead: one Karatsuba level saves 25% of the
integer-multiply instructions, but this is outweighed by the cost of many extra
additions. (Of course, this comparison is biased by the availability of a large
multiplier and relatively little area spent on adders, but this is how mass-market
CPUs have always been designed.)

It should be obvious that scaling to larger and larger input sizes will even-
tually reach a cutoff where one Karatsuba level is useful: the overhead is linear
in the size, while the 25% savings is quadratic in the size. But the conventional
wisdom is that this cutoff is far beyond ECC sizes, so one would not expect that
aiming for high-security ECC would reach this cutoff. The heavily optimized
GMP multiprecision library [22], which includes automated searches for optimal
cutoffs, does not switch over from schoolbook multiplication to one Karatsuba
level on the Cortex-A8 until it reaches 832-bit inputs. A recent RSA performance
analysis by Bos, Montgomery, Shumow, and Zaverucha [15] avoided all use of
Karatsuba’s method even for 1024-bit modular multiplication.

We use two Karatsuba levels. There is a synergy between two design choices
here: (1) we use Karatsuba’s method; (2) we use a radix smaller than the CPU
word size.

The conventional choice for b-bit CPUs is to use radix 2b, minimizing the
number of words that need to be multiplied. See, for example, the recent DH
software from [24], [32], [13], [19], and [16]. However, a corner of the DH liter-
ature uses a smaller radix, with the goal of delaying carries, the same way that
hardware multipliers typically use carry-save adders. See, for example, [11] and
[4].



Curve41417: Karatsuba revisited 3

This corner of the literature does not seem to have exploited the fact that
Karatsuba’s method benefits heavily from a smaller radix. With radix 2b, the
extra additions in Karatsuba’s method are add-with-carry chains. With a smaller
radix, the extra additions in Karatsuba’s method are independent additions
without carries. Even on CPUs where add-with-carry is as cheap as add, having
independent operations creates tremendous extra flexibility in register allocation,
instruction scheduling, and vectorization.

Conversely, a smaller radix benefits from Karatsuba’s method, especially as
the security level increases. Reducing a radix from, e.g., 232 to 226 means that
instead of w words one now needs (32/26)w words and thus, without Karatsuba’s
method, (32/26)2w2 ≈ 1.5w2 multiplications instead of w2 multiplications; this
means that the benefits of eliminating carries have to be compared to the loss of
0.5w2 multiplications. Karatsuba’s method moves the number of multiplications
down to a smaller scale, improving this tradeoff.

1.2. Choice of prime and choice of curve. The standard NIST elliptic curves
[34] use primes p designed to allow easy computation of x mod p in radix 232.
For example, the popular NIST P-256 curve uses p = 2256−2224 +2192 +296−1,
and at a higher security level NIST P-384 uses p = 2384 − 2128 − 296 + 232 − 1.

We leave a gap between our radix and 232 to speed up multiplications, as
explained above, but this makes computation of x mod p quite painful for the
NIST primes p. The NIST primes are also suitable for a much smaller radix,
namely 216, but that radix would make our multiplications considerably slower.

The Curve25519 prime, 2255−19, is much less sensitive to the choice of radix,
but our objective is to provide as much security as possible subject to a specified
performance requirement, and in particular more security than Curve25519. An
initial performance estimate indicated that a carefully designed curve of 384 bits
or larger could meet our performance requirement, but we found very few 384-bit
curves in the literature, and all of them have obvious performance problems.

We therefore designed a prime and curve from scratch. This also allowed
us to take advantage of state-of-the-art curve shapes, while meeting stringent
security criteria that are flunked by the NIST curves. See Section 2.

The prime we ended up with, namely p = 2414 − 17, has many attractive
features from a performance perspective. It is extremely close to a power of 2.
The difference 17 has just two bits set, allowing 2414x mod p to be computed
as 16x + x with a single shift-and-add operation. The exponent 414 is divisible
by 9, 18, 23, 46 and the exponent 416 (for 4p) is divisible by 8, 13, 16, 26, 32, 52,
allowing easy choices of integer radix suitable with low overhead for practically
any size of multiplier. A field element is easily transmitted in 32-bit words with
under 1% wasted space (13 · 32 = 416), while still allowing two extra bits for
extensions, such as a bit typically used in encoding a compressed curve point.

For our software we decided to use a slightly harder, but slightly more effi-
cient, non-integer radix, namely 2414/16 = 225.875. We split 414-bit prime-field
elements into 16 words, use one Karatsuba level to reduce 16-word multiplication
to three 8-word multiplications, and use another Karatsuba level to reduce each
8-word multiplication to three 4-word multiplications. See Section 4 for details



4 Bernstein, Chuengsatiansup, Lange

curve i.MX515 op/s cycles Sitara op/s cycles

secp160r1 379.2 ≈2.1 million 468.1 ≈2.1 million
nistp192 274.3 ≈2.9 million 350.9 ≈2.8 million
nistp224 200.4 ≈4.0 million 257.6 ≈3.9 million
nistp256 201.1 ≈4.0 million 258.7 ≈3.9 million
nistp384 60.1 ≈13.3 million 75.9 ≈13.2 million
nistp521 26.9 ≈29.7 million 33.7 ≈29.7 million

Table 1. Prime-field ECC timings from openssl speed ecdh on two Cortex-A8 de-
vices. Warning: openssl speed ecdh reports “operations per second” as the reciprocal
of average seconds per operation without indicating standard deviation or other sta-
bility metrics. “i.MX515 op/s” column is reported by OpenSSL 1.0.2-beta1 compiled
with gcc 4.4.3 on a Hercules eCafe laptop (h4mx515e) with a 2009 Freescale i.MX515
CPU running at 800MHz. “Sitara op/s” column is reported by OpenSSL 1.0.2-beta1
compiled with gcc 4.7.3 on a BeagleBone Black development board (bblack) with a
2012 TI Sitara XAM3359AZCZ100 CPU running at 1000MHz. The “cycles” columns
translate “op/s” into CPU cycles per operation.

of our multiplication strategy, and Section 5 for the extra challenges created by
vectorization.

1.3. Expected scalability. As a measurement of the conventional scaling of
ECC performance to higher security levels, we compiled OpenSSL 1.0.2-beta1
on two Cortex-A8 devices and ran openssl speed ecdh. The prime-field results
are shown in Table 1. We also checked that (as expected) the prime-field results
were faster than the binary-field results at each security level; the binary-field
results are not shown here. The fastest OpenSSL cycle count was 2.1 million
cycles for secp160r1 (280 security).

The following back-of-the-envelope calculation suggests that moving from 256
bits to 384 bits increases costs by a factor of 1.53 = 3.375: each multiplication
input is longer by a factor of 1.5, increasing the multiplication cost by a factor of
1.52; and the scalar in ECDH is 1.5× longer. The actual ratios between nistp256

and nistp384 in the table are close to this. The slowdown factor for nistp521

is about 7.5, noticeably better than (521/256)3 ≈ 8.4, presumably because of
the simpler prime shape used in P-521. The speedup factor for smaller curves is
considerably worse than this calculation would suggest; presumably this reflects
OpenSSL function-call overheads that become troublesome for smaller integers.

We also checked the eBACS [8] benchmarking site for Cortex-A8 results. The
only results faster than 2.1 million cycles were 0.46 million cycles (i.MX515) and
0.50 million cycles (Sitara) for the Curve25519 (2125 security) implementation
from [11]. The paper [4] reports better speeds, just 0.27 million Cortex-A8 cycles
for HECDH; but scaling HECDH to higher security levels is very difficult, as
mentioned earlier. The paper [14] reports 0.77 million Cortex-A8 cycles for 2103

security using a different type of curve, evidently not competitive.

The same type of back-of-the-envelope calculation suggests that moving from
Curve25519 up to Curve41417 would cost a factor of 4.3, increasing 0.50 million



Curve41417: Karatsuba revisited 5

Sitara Cortex-A8 cycles to 2.15 million cycles. We do considerably better than
this; see below.

1.4. Performance results. We tried our Curve41417 software on the same two
Cortex-A8 machines shown in Table 1. On the FreeScale i.MX515 (h4mx515e) our
software uses just 1648409 cycles (median; quartiles 1646391 and 1662710). On
the TI Sitara (bblack) our software uses just 1775804 cycles (median; quartiles
1774878 and 1782850). These figures are for a complete scalar-multiplication
operation, including unpacking a point from network format, precomputation,
main computation, final inversion, and converting the result back to network
format. We emphasize that our curve choice has security level above 2200, and
that the software is free of data-dependent branches and data-dependent array
indices.

These speeds are, despite their very high security level, considerably faster
than the 2.1 million cycles for the fastest ECDH in OpenSSL. These speeds are
also considerably faster than the 2.15 million cycles predicted above by extrap-
olation from Curve25519. This paper explains the design and implementation
choices that led to this performance.

As a followup to our initial Curve41417 announcement, Hamburg announced
a similar, slightly larger, curve “Ed448-Goldilocks”. Hamburg’s most recent per-
formance report [25] says 3.6 million Cortex-A9 cycles for Ed448-Goldilocks,
compared to 4.4 million Cortex-A9 cycles for the implementation of NIST P-256
in OpenSSL 1.0.1. There are several reasons that it is difficult to extrapolate
from these results: the Cortex-A9 is not the same as the Cortex-A8; Hamburg’s
Ed448-Goldilocks software is not vectorized; and OpenSSL 1.0.1 was missing
some NIST P-256 speedups that appear in the most recent version of OpenSSL.

1.5. Is high security useful? Most papers today consider security levels be-
tween 280 and 2128. The adequacy of 280 is frequently a subject of dispute. There
is general consensus that well-funded attackers and botnets can already perform
280 operations; most HTTPS web sites have now switched from RSA-1024 (280

security) to RSA-2048 (2112 security) or 256-bit ECC (2128 security). On the
other hand, there are also many papers continuing to study 280 security and
stating that 280 is ample protection for low-value targets.

The adequacy of 2128 is rarely a subject of dispute. It is easy to see that 2128

is far beyond any computation feasible today. Choosing 2128 is so common in
the current literature that papers studying a 2128 security level rarely bother to
justify this choice.

One can therefore reasonably ask whether there is any reason to go beyond
2128 security, and in particular whether we are accomplishing anything useful
by going beyond 2200 security. We give five answers to this question, in what we
consider to be increasing order of importance.

First, cryptographic primitives need time to be reviewed before they are
standardized and deployed in embedded systems, so designers of cryptographic
primitives today should be considering embedded systems designed at least 10
years from now. Some of those systems will have a lifetime of 30 years, and at
the end of that lifetime could still be encrypting data that — even if recorded



6 Bernstein, Chuengsatiansup, Lange

by an attacker — should remain confidential for another 30 years, i.e., 70 years
from now.

Today’s mass-market GPUs perform approximately 258 floating-point oper-
ations per year per watt. If computation becomes a factor of 10 more efficient
each decade then mass-market chips in 70 years will perform approximately 281

floating-point operations per year per watt. Carrying out a 1-year computation
on the same scale as 2128 floating-point operations will thus require just 247

watts. For comparison, the Earth’s surface receives 256 watts from the Sun.

We do not mean to suggest that typical cryptographic applications should
worry about such large attacks. But we also see value in designing cryptographic
systems that are not broken by such large attacks.

Second, even though many researchers have studied the security of ECC
and expressed confidence in the security of prime-field ECC, there is still the
possibility of an algorithmic breakthrough that considerably reduces the amount
of computation required to break ECC. By moving to a much higher security level
we are providing a security margin against unexpected attack improvements.

For comparison, over the past 18 months the security of small-characteristic
multiplicative-group discrete logarithms has dropped dramatically. A very recent
paper [21] reports 259 security for a system previously thought to provide 2128

security. We do not mean to suggest that this is a threat to prime-field ECC
(there are clear barriers between small characteristic and prime fields, and more
importantly between multiplicative groups and ECC) but it does illustrate the
general principle that attack cost can suddenly drop.

Third, sometimes cryptographic protocols are not as secure as the underlying
cryptographic primitives. Often there is a security proof putting a bound on the
gap, but usually the security proofs are not “tight”. In particular, many ECC
protocols are not guaranteed to provide 2128 security using 256-bit curves, even
assuming the standard security conjectures for ECDLP on those curves. Achiev-
ing a 2128 guarantee requires taking larger curves. We thank an anonymous
referee for pointing out this argument.

Fourth, we suggest that the right question is not how efficiently a particular
security level can be achieved, but rather how much security can be provided
subject to the performance requirements set by the users. Of course, a typical
cryptographic system also relies on block ciphers, hash functions, etc., and if
those are breakable in time 2128 then the attacker does not have to bother
breaking a 414-bit elliptic curve; but AES-256 costs only 40% more than AES-
128, and standard hashes also provide high-security options. It is natural for
research into high-performance ECC to similarly provide high-security options
for users who can afford those options.

The normal reason for users to reject high-security options is not that the
users dislike high security, but rather that the high-security options are too slow.
If a user rejects OpenSSL’s nistp384 in favor of secp160r1, probably the reason
is that the user’s performance budget does not allow 13.3 million cycles, while
it does allow 2.1 million cycles. Unless there are severe bandwidth constraints,



Curve41417: Karatsuba revisited 7

the user will be happier with Curve41417, which provides much higher security
within the same performance budget.

Fifth, there are at least some users already demanding cryptography beyond
a 2128 security level. For example, NSA’s Suite B allows NIST P-256 for Secret
information, but for Top Secret information it requires NIST P-384, SHA-384,
and AES-256. This project began when Silent Circle requested a non-NIST curve
to replace NIST P-384; we realized that we could design a curve that simultane-
ously provided better performance and better security. Silent Circle is now using
Curve41417 by default.

2 Design of Curve41417

The IEEE standard P1363 [27] and the Brainpool recommendations [17] specify
procedures to generate secure elliptic curves. Research has identified several other
properties a secure curve should satisfy. A recent collection of these properties
is provided by Bernstein and Lange in the “SafeCurves” web site [10].

2.1. Standard security criteria. There are several standard criteria on which
all methods cited on [10] agree. The elliptic curve E must be defined over a prime
field Fp or a binary field F2p , for p a prime; its group order must be divisible
by a large prime `; this prime must not match the field characteristic; and the
embedding degree must be large. Over a prime field Fp the embedding degree
is defined as the smallest positive integer k so that ` divides pk − 1. Brainpool
requires k ≥ (`− 1)/100, and P1363 imposes a weaker requirement.

For efficiency and security reasons we focus on prime fields, a recommenda-
tion supported by Brainpool and the more recent NIST/NSA documents [35].

2.2. Additional security criteria. SafeCurves imposes several further require-
ments to avoid “conflicts between simplicity, efficiency, and security”. Specifi-
cally, it requires curves to support “simple, fast, complete, constant-time” al-
gorithms for single-coordinate single-scalar multiplication and for multi-scalar
multiplication. Montgomery curves [33] meet the single-coordinate single-scalar
requirement; Edwards curves [18], when chosen to be complete [6], meet all of
the requirements. Compared to Weierstrass curves, these curves make it easier
to implement the curve arithmetic correctly: scalar multiplication is a very reg-
ular operation without exceptional cases that require special handling and that
could reveal information about the scalar. The NIST curves do not meet these
requirements.

SafeCurves also requires curves to be twist-secure. Twist-security means that
the order of the twist, namely 2p + 2−#E(Fp), is nearly prime. This criterion
eliminates security problems caused by single-coordinate single-scalar multiplica-
tion algorithms that do not take extra effort to validate their inputs: for example,
when a curve is given in Montgomery form and only the x-coordinate is trans-
mitted and used, twist-security eliminates the need to check that the incoming
x-coordinate is on the curve.

The NIST curve constants are not explained: in the SafeCurves terminology,
the NIST curve choice is not “rigid”. This has led to speculation about how the



8 Bernstein, Chuengsatiansup, Lange

NIST curves were designed and about whether the NSA has implemented a back
door in the choice of the curves. Our curve is “fully rigid”: the prime and all
curve constants are fully explained here.

2.3. Choice of prime field. Our target in designing the new curve was to
generate an elliptic curve at a security level larger than 2192 that meets the
SafeCurves requirements and that supports efficient implementations. To this
aim we start with finding a prime for which field elements can be efficiently
represented and modulo which reductions are efficient. Prime numbers of the
form 2j − c for 12 ·32 < j < 13 ·32 and 0 < c < 32 are rare: the only possibilities
are 2389−21, 2401−31, 2413−21, and 2414−17. We selected p = 2414−17 because
17 is the smallest c in this list; it also has the lowest Hamming weight. Section 4
explains how we perform arithmetic in Fp; this prime also leaves enough space
in the limbs when we represent field elements as 16 words of 32 bits that carries
between the limbs and reductions modulo p can be delayed for long enough to
be useful in the curve arithmetic. The next larger candidate prime would be
2444 − 17 which does not have this feature; our p is already very large for our
security needs.

2.4. Choice of curve shape. For efficient and secure arithmetic in Diffie–
Hellman key exchange and digital signature applications we insist on a curve in
Edwards form. Note that each curve in Edwards form is birationally equivalent
to one in Montgomery form, so there is no need to choose one over the other.
The coefficient d in the Edwards curve x2 + y2 = 1 + dx2y2 appears as a factor
in the addition formulas, so choosing d to be small in absolute value is good for
efficiency. For security we choose a complete Edwards curve (d is not a square in
Fp) and insist on the same level of twist-security as Curve25519 — the cofactors
of the curve and its twist are in {4, 8}.

2.5. A safe curve. Curve41417 (named after the prime field) is defined as

x2 + y2 = 1 + 3617x2y2 over Fp, p = 2414 − 17.

Its order is 8`, where
` = 2411−3336414086375514252081017769409838517898472720041120858959475.
The order of the twist is also 8 times a prime. The value d = 3617 is the smallest
integer in absolute value meeting the above security requirements.

3 ECC arithmetic

Our featured application is static Diffie–Hellman in which a user Alice computes
her private key a and her public key PA = aP once and then publishes PA. If
Alice wants to communicate with user Bob she looks up Bob’s public key PB

and computes aPB . This means that the computations use variable base points.
The computations involve the long-term secret key a and need to be protected
against side-channel attacks by attackers sitting on the same device or having a
connection to it. This means in particular that the scalar multiplication should



Curve41417: Karatsuba revisited 9

run in constant time, independent of the scalar a, and that there should be no
data-dependent branches or table lookups involving a.

We use a windowing method with fixed window width for constant-time
single-scalar multiplication on Curve41417 in Edwards form. Our analysis also
allows good estimates of, e.g., the cost of signature verification using Curve41417.
Another option for single-scalar multiplication is the Montgomery ladder for the
Montgomery form of Curve41417; this is not quite as fast as the Edwards form
but has the advantage of fitting the computation into less SRAM.

3.1. Coordinate systems. The fastest doubling formulas in the EFD [9] for
curves in Edwards form are in projective coordinates X,Y, Z with x = X/Z, y =
Y/Z for Z 6= 0. These take 3M + 4S per doubling where M and S denote field
multiplication and field squaring respectively. See Appendix A for the formulas
used in this paper.

The fastest addition formulas are in extended coordinates X,Y, Z, T with
x = X/Z, y = Y/Z, and xy = T/Z for Z 6= 0. These take 9M + 1Md. Here Md

is a multiplication by curve constant d; for us d = 3617, which is significantly
smaller than p, so this multiplication Md is cheaper than general multiplications
M. (The curve −x2 + y2 = 1− dx2y2 allows faster additions, saving 1M in each
addition. If −1 were a square in Fp then we could apply an isomorphism to that
curve. However, −1 is not a square in Fp, so that curve is not complete.)

Achieving the best performance requires combining these two coordinate sys-
tems: computing the extra T coordinate for a doubling output that will be used
for addition, and skipping the extra T coordinate for an addition output that
will be used only for doubling. This suggestion was made in [26], the paper
introducing extended coordinates.

3.2. Scalar multiplication. Constant-time sliding windows are difficult so we
use fixed windows. We analyzed operation counts for signed fixed windows for
window widths w = 4, w = 5, and w = 6, and concluded that w = 5 is optimal.
We therefore precompute 0PB = (0, 1), PB , 2PB , . . . , 16PB and store the results
in a table. We do table lookups in constant time using the same technique as
in, e.g., [5]: we load the entire table into registers and perform the selection via
arithmetic.

Precomputation is done as follows. We double PB to obtain 2PB ; add PB to
obtain 3PB ; double 2PB to obtain 4PB ; add PB to obtain 5PB ; double 3PB to
obtain 6PB ; add PB to obtain 7PB ; and so on through 16PB . We also multiply
each resulting T coordinate by d = 3617, eliminating the multiplications by d in
the main computation.

In total 8 doublings, 7 additions, and 16 multiplications by d are required.
Note that these doublings are followed by additions and thus need one extra
M for the T coordinate in the transition to extended coordinates. Note also
that we have to compute T for PB which costs 1M. For the first doubling,
(X,Y, Z, T ) is (x, y, 1, xy). We save 1S by not having to compute Z2 since Z = 1;
we save another 1S by not having to compute (x + y)2 but using the equality
(x + y)2 − x2 − y2 = 2xy = 2T ; and we use Z = 1 again for an S−M tradeoff.
The overall cost for the first doubling is 3M+3S while for the rest it is 4M+4S.



10 Bernstein, Chuengsatiansup, Lange

Note that all additions in the precomputation are adding PB which has Z = 1.
We thus use mixed addition which saves 1M. This results in the total cost
for precomputation of 1M + (3M + 3S) + 7(4M + 4S) + 7(8M) + 16Md =
88M + 31S + 16Md.

The main computation uses a fixed pattern of five doublings followed by one
addition. Four regular doublings in a block of five take 3M + 4S each. The fifth
doubling in a block requires 1 more M to calculate T for the following addition.
On the other hand, addition does not need to compute T since the following
doubling is in projective coordinates. Furthermore, dT was precomputed for each
T in the table. Therefore the addition takes only 8M. In total the five doublings
and one addition take only 4(3M + 4S) + (4M + 4S) + (8M) = 24M + 20S.

Note that, since the Edwards addition law is complete, no special handling
is required for the neutral element 0PB . An addition when the coefficient of the
scalar happens to be 0 is handled the same way as any other addition.

A scalar between 0 and 2414 − 1 uses 82 signed windows of width 5, after an
initial selection from 0PB , 1PB , . . . , 16PB . The total cost for scalar multiplication
including precomputation is (88M + 31S + 16Md) + 82(24M + 20S) = 2056M +
1671S + 16Md, plus 1 inversion and 2M to convert to X/Z, Y/Z for output.

4 Karatsuba multiplication

Karatsuba, Toom, and the FFT are polynomial-multiplication methods that
are asymptotically faster than schoolbook multiplication. However, for small
input sizes the speedups are outweighed by the expense of more additions and
subtractions, which in turn require more carries. These effects are particularly
noticeable for polynomials of low degree — or equivalently for integers occupying
just a few words. In software implementations of cryptography we rarely find
integers large enough to justify use of FFT or Toom, and even Karatsuba’s
method is commonly only used in implementations of RSA and not ECC.

In this section we explain how to reduce the cost of carries by working with
multiple levels of redundancy in the representation and thereby delaying carries.
We also introduce “reduced refined Karatsuba”, a new variant of the “refined
Karatsuba” method; this variant eliminates some additions by merging Karat-
suba multiplication with a subsequent modular reduction.

4.1. Redundant number representation. We decompose an integer f mod-
ulo 2414 − 17 into 16 integer pieces in radix 2414/16 = 225.875, i.e., we write f as
f0 + 226f1 + 252f2 + 278f3 + 2104f4 + 2130f5 + 2156f6 + 2182f7 + 2207f8 + 2233f9 +
2259f10 + 2285f11 + 2311f12 + 2337f13 + 2363f14 + 2389f15. With this decompo-
sition, each limb f0, f1, . . . , f14, f15 is small enough to fit into a 32-bit integer
and to still have space to delay carries occurring when adding these pieces. The
results of the 32-bit-by-32-bit multiplications fit into 64-bit words, and we can
add thousands of them together before causing an overflow.

Note that f7 is multiplied by 2207, not 2208. Having f7 and f15 contain 25 bits
makes f0, . . . , f7 symmetric to f8, . . . , f15, aiding vectorization. We considered



Curve41417: Karatsuba revisited 11

using fewer limbs, but the advantage of saving multiplications is outweighed by
the disadvantages of (1) extra carries and (2) extra vectorization overhead.

4.2. Two-level Karatsuba: decomposition strategy. As mentioned in Sec-
tion 1, we use 2 Karatsuba levels. This fits nicely into the 128-bit Cortex-A8
vector units, and uses less arithmetic than 3 or 1 (or 0) Karatsuba levels.

We start with what Bernstein in [3] calls the “refined Karatsuba identity”

(F0 + tnF1)(G0 + tnG1) = (1− tn)(F0G0 − tnF1G1) + tn(F0 + F1)(G0 + G1).

This uses fewer additions than the original Karatsuba identity from [29].
For the first level of Karatsuba, we split one 16-limb integer f into two 8-limb

integers F0 and F1 with f = F0 + 2207F1 as:

F0 = f0 + 226f1 + 252f2 + 278f3 + 2104f4 + 2130f5 + 2156f6 + 2182f7 ;

F1 = f8 + 226f9 + 252f10 + 278f11 + 2104f12 + 2130f13 + 2156f14 + 2182f15.

We also decompose another integer g similarly to f . Then, we have

fg = (1− 2207)(F0G0 − 2207F1G1) + 2207(F0 + F1)(G0 + G1).

For the second level of Karatsuba, we further split the 8 limbs of F0 (and those
of F1) into two 4-limb integers F00, F01 (and F10, F11) with F0 = F00 + 2104F01

(and F1 = F10 + 2104F11) as:

F00 = f0 + 226f1 + 252f2 + 278f3 ; F01 = f4 + 226f5 + 252f6 + 278f7;

F10 = f8 + 226f9 + 252f10 + 278f11; F11 = f12 + 226f13 + 252f14 + 278f15.

We similarly split G0 and G1 to obtain G00, G01, G10, and G11. Then

F0G0 = (1− 2104)(F00G00 − 2104F01G01) + 2104(F00 + F01)(G00 + G01);

F1G1 = (1− 2104)(F10G10 − 2104F11G11) + 2104(F10 + F11)(G10 + G11).

To compute (F0+F1)(G0+G1) we first compute F0+F1 and G0+G1 without
carries and then apply the same type of decomposition. For example, we split
F0 + F1 into two 4-limb integers, namely F00 + F10 and F01 + F11.

4.3. Lowest-level multiplication. On the lowest level we need to multiply
two 4-limb integers; we do this by schoolbook multiplication. For F00G00 this
works as follows:

h0 = f0g0,

h1 = f0g1 + f1g0, h4 = f1g3 + f2g2 + f3g1,

h2 = f0g2 + f1g1 + f2g0, h5 = f2g3 + f3g2,

h3 = f0g3 + f1g2 + f2g1 + f3g0, h6 = f3g3.

We store each input limb fi and gi in a word of 32 bits and use the processor’s
multiplication and addition units to compute each hi. This takes 16 32-bit-by-
32-bit multiplications and 9 64-bit additions. Each of the initial limbs has at



12 Bernstein, Chuengsatiansup, Lange

most 26 bits and each of the hi fits into 64 bits. The values h4, h5, and h6 belong
to the powers 2104, 2130, and 2156, i.e., they are implicitly multiplied by 2104.

4.4. Middle-level recombination. After computing the three lowest-level
products F00G00, F01G01 and (F00+F01)(G00+G01), we obtain F0G0 as follows.

Step 1.1: Compute F00G00−2104F01G01. We merge F01G01 to F00G00 at the
2104 boundary using 3 subtractions of 64-bit words. In other words, we align the
5th limb of F00G00 with the 1st limb of F01G01 as shown in the following diagram.
The result is thus 11 limbs long. The top limbs are not actually subtracted from
0; they are tracked as being implicitly negated.

F00G00

F01G01

subtract

Step 1.2: Compute (1 − 2104)(F00G00 − 2104F01G01). This is equivalent to
merging F00G00 − 2104F01G01 to itself at the 2104 boundary. We conduct this
merge similarly to Step 1.1: we align the 5th limb of F00G00 − 2104F01G01 with
the 1st limb and subtract. The following diagram depicts this step. This merge
requires 7 subtractions of 64-bit words, and the result is 15 limbs long.

F00G00 - 2104F01G01

F00G00 - 2104F01G01

subtract

Step 1.3: Compute F0G0. We finish this level of computation by adding
2104(F00 + F01)(G00 + G01) to (1 − 2104)(F00G00 − 2104F01G01). This is done
by merging the former to the latter at the 2104 boundary, i.e., the 5th limb of
(1−2104)(F00G00−2104F01G01) is aligned with the 1st limb of (F00+F01)(G00+
G01) as shown in the following diagram. Note that this merge requires 7 additions
of 64-bit words, and the result remains 15 limbs long.

(1−2104)(F00G00 - 2104F01G01)

(F00+F01)(G00+G01)

subtract

When combining the results we need to pay attention to the 9th through
15th limbs. Those limbs are implicitly multiplied by 2207. However, during the
above computation they appear naturally as multiples of 2208 instead of 2207.
We therefore shift those seven limbs by one bit.

To summarize, the computation of the product F0G0 consists of

• 2× 4 32-bit additions for F00 + F01 and G00 + G01;
• 3× 16 32-bit-by-32-bit-producing-64-bit multiplications for F00G00, F01G01,

and (F00 + F01)(G00 + G01);



Curve41417: Karatsuba revisited 13

• 3× 9 64-bit additions for computing the hi;
• 1× 3 64-bit subtractions for computing Step 1.1;
• 1× 7 64-bit subtractions for computing Step 1.2;
• 1× 7 64-bit additions for computing Step 1.3;
• 1× 7 64-bit shifts for handling 2207 and 2208.

The total is 8 32-bit additions (counting subtractions as additions), 48 32-bit-
by-32-bit multiplications, 44 64-bit additions, and 7 64-bit shifts.

We compute products F1G1 and (F0 + F1)(G0 + G1) in the same way as
F0G0. The total cost for these three products and the computation of F0 + F1

and G0 + G1 is 40 32-bit additions, 144 32-bit-by-32-bit multiplications, 132
64-bit additions, and 21 64-bit shifts.

4.5. Top-level recombination and reduction. After computing F0G0 etc.,
we compute fg = (1 − 2207)(F0G0 − 2207F1G1) + 2207(F0 + F1)(G0 + G1) as
follows. This top-level recombination is immediately followed by a reduction, and
we save some additions by interleaving the reduction into the refined-Karatsuba
computation, a technique that we call “reduced refined Karatsuba”. What is
important here is that we reduce F0G0−2207F1G1 before multiplying by 1−2207.

Step 2.1: Compute F0G0−2207F1G1. This is similar to Step 1.1 but includes
an extra reduction. The merge of F1G1 to F0G0 is at the 2207 boundary and
uses 7 subtractions of 64-bit words; the 9th limb of F0G0 is aligned with the
1st limb of F1G1. The intermediate result is 23 limbs long. Then we reduce
modulo 2414 − 17: we multiply the 17th through 23rd limbs by 17 (using shifts
and additions) and add to the 1st through 7th limbs. This requires another 7
shifts and 14 additions of 64-bit words. The result is thus only 16 limbs long, as
indicated in the following diagram.

F0G0

F1G1

subtract

reduce

Step 2.2: Compute (1− 2207)(F0G0 − 2207F1G1). This is similar to Step 1.2.
The earlier reduction in Step 2.1 means that Step 2.2 uses only 8 subtractions of
64-bit words. The result is 24 limbs long as shown in the following diagram. We
do not perform an extra reduction here: by keeping this long result of 24 limbs,
we save 8 shifts and 16 additions.

F0G0 - 2207F1G1

F0G0 - 2207F1G1

subtract

Step 2.3: Compute fg. We finish by adding 15-limb 2207(F0+F1)(G0+G1) to
24-limb (1− 2207)(F0G0− 2207F1G1). This is done by merging the former to the
latter at the 2207 boundary: i.e., the 9th limb of (1− 2207)(F0G0 − 2207F1G1) is



14 Bernstein, Chuengsatiansup, Lange

aligned with the 1st limb of (F0+F1)(G0+G1). This merge requires 15 additions
of 64-bit words and results in 24 limbs. We do another reduction similar to Step
2.1 to bring the result back to 16 limbs; this requires another 8 shifts and 16
additions of 64-bit words. The following diagram illustrates this step.

(1-2207)(F0G0-2
207F1G1)

(F0+F1)(G0+G1)

subtract

reduce

To summarize, computing fg from F0G0, F1G1 and (F0 +F1)(G0 +G1) uses

• 7 64-bit subtractions for computing Step 2.1;
• 7 64-bit shift instructions for reduction in Step 2.1;
• 14 64-bit additions for reduction in Step 2.1;
• 8 64-bit subtractions for computing Step 2.2;
• 15 64-bit additions for computing Step 2.3;
• 8 64-bit shift instructions for reduction in Step 2.3;
• 16 64-bit additions for reduction in Step 2.3.

This sums up to 60 64-bit additions and 15 64-bit shift instructions. There-
fore, the total cost for computing fg is 40 32-bit additions, 144 32-bit-by-32-bit
multiplications, 132 + 60 = 192 64-bit additions, and 21 + 15 = 36 64-bit shifts.

4.6. Principles behind reduced refined Karatsuba. Our elimination of
some additions can be viewed as following the general strategy of reducing inputs
to a multiplication rather than outputs of a multiplication. Specifically, we reduce
F0G0−2207F1G1 before multiplying it by 1−2207; we do not reduce the product
until after adding it to (F0 + F1)(G0 + G1); if fg were being added to other
products then we would similarly delay the reduction until after the addition.
What is new here is seeing the multiplication by 1− tn inside refined Karatsuba
as a useful target of the general strategy, despite the sparsity of 1− tn.

5 Vectorization

The “NEON” vector unit in each Cortex-A8 core can compute a vector of two
64-bit products ac and bd in just 2 cycles given 32-bit inputs a, b, c, d. It can
compute a vector of two 64-bit sums or four 32-bit sums in just 1 cycle. The
latencies of these operations are actually higher, up to 7 cycles, but throughput is
improved by pipelining. Taking advantage of this computational power requires
that at every moment there are 2 or 4 identical computations to perform, and
on top of this enough independent computations to hide latencies.

5.1. Karatsuba vectorization. Most of the computations in Section 4 are
suitable for vectorization. For example, F01G01 takes f4, f5, f6, f7, g4, g5, g6, g7
as input; F10G10 takes f8, f9, f10, f11, g8, g9, g10, g11. There are no dependencies



Curve41417: Karatsuba revisited 15

between these two identical sets of multiplications. Similar comments apply to
F00G00 and F11G11; (F00 + F10)(G00 + G10) and (F01 + F11)(G01 + G11); and
(F00+F01)(G00+G01) and (F10+F11)(G10+G11). The remaining multiplication
consists of 16 32-bit products, which we partition into 8 vectorized products
at the cost of some shuffling. Similarly, we vectorize between combining F0G0

and combining F1G1, and at the cost of some shuffling we vectorize within the
computation of (F0 +F1)(G0 +G1). NEON also supports a multiply-accumulate
instruction, allowing us to eliminate many addition instructions.

5.2. Carry vectorization. At the end of the Karatsuba computation, reduction
modulo p produces a product of the form

∑7
i=0 mi2

26i +2207
∑7

i=0 mi+8226i. We
then use a sequence of carries to bring each limb down to 26 (or in some cases
25) bits. We vectorize between a carry m0 → m1 and a carry m8 → m9, between
a carry m1 → m2 and a carry m9 → m10, etc.

Each carry has very high latency, so we perform four carry chains in parallel.
Specifically, we vectorize between a carry m0 → m1 and a carry m8 → m9, and
in parallel vectorize between a carry m4 → m5 and a carry m12 → m13; we then
vectorize between a carry m1 → m2 and a carry m9 → m10, and in parallel
vectorize between a carry m5 → m6 and a carry m13 → m14; and so on. This
hides almost all latency.

5.3. Performance. See Section 1.4 for our Cortex-A8 performance results.

References

[1] Josh Benaloh (editor), Topics in cryptology — CT-RSA 2014 — The cryptogra-
pher’s track at the RSA conference 2014, San Francisco, CA, USA, February
25–28, 2014, proceedings, Lecture Notes in Computer Science, 8366, Springer,
2014. ISBN 978-3-319-04851-2. See [19].

[2] Daniel J. Bernstein, Curve25519: new Diffie-Hellman speed records, in PKC 2006
[41] (2006), 207–228. URL: http://cr.yp.to/papers.html#curve25519. Cita-
tions in this document: §1.

[3] Daniel J. Bernstein, Batch binary Edwards, in Crypto 2009 [23] (2009), 317–336.
URL: http://cr.yp.to/papers.html#bbe. Citations in this document: §4.2.

[4] Daniel J. Bernstein, Chitchanok Chuengsatiansup, Tanja Lange, Peter Schwabe,
Kummer strikes back: new DH speed records (2014). URL: https://eprint.iacr.
org/2014/134. Citations in this document: §1, §1, §1, §1.1, §1.1, §1.3.

[5] Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, Bo-Yin Yang, High-
speed high-security signatures, in CHES 2011 [38] (2011). URL: http://eprint.
iacr.org/2011/368. Citations in this document: §3.2.

[6] Daniel J. Bernstein, Tanja Lange, Faster addition and doubling on elliptic curves,
in Asiacrypt 2007 [30] (2007), 29–50. URL: http://eprint.iacr.org/2007/286.
Citations in this document: §2.2.

[7] Daniel J. Bernstein, Tanja Lange, Security dangers of the NIST curves (2013).
URL: http://cr.yp.to/talks/2013.09.16/slides-djb-20130916-a4.pdf. Ci-
tations in this document: §1.

[8] Daniel J. Bernstein, Tanja Lange (editors), eBACS: ECRYPT Benchmarking of
Cryptographic Systems, accessed 13 June 2014 (2014). URL: http://bench.cr.
yp.to. Citations in this document: §1.3.

http://cr.yp.to/papers.html#curve25519
http://cr.yp.to/papers.html#bbe
https://eprint.iacr.org/2014/134
https://eprint.iacr.org/2014/134
http://eprint.iacr.org/2011/368
http://eprint.iacr.org/2011/368
http://eprint.iacr.org/2007/286
http://cr.yp.to/talks/2013.09.16/slides-djb-20130916-a4.pdf
http://bench.cr.yp.to
http://bench.cr.yp.to


16 Bernstein, Chuengsatiansup, Lange

[9] Daniel J. Bernstein, Tanja Lange (editors), Explicit Formulas Database, accessed
13 June 2014 (2014). URL: http://hyperelliptic.org/EFD. Citations in this
document: §3.1, §A.

[10] Daniel J. Bernstein, Tanja Lange, SafeCurves: choosing safe curves for elliptic-
curve cryptography, accessed 13 June 2014 (2014). URL: http://safecurves.cr.
yp.to. Citations in this document: §2, §2.1.

[11] Daniel J. Bernstein, Peter Schwabe, NEON crypto, in CHES 2012 [39] (2012),
320–339. URL: http://cr.yp.to/papers.html#neoncrypto. Citations in this
document: §1, §1.1, §1.1, §1.3.

[12] Guido Bertoni, Jean-Sébastien Coron (editors), Cryptographic hardware and em-
bedded systems — CHES 2013 — 15th international workshop, Santa Barbara, CA,
USA, August 20–23, 2013, proceedings, Lecture Notes in Computer Science, 8086,
Springer, 2013. ISBN 978-3-642-40348-4. See [14].

[13] Joppe W. Bos, Craig Costello, Huseyin Hisil, Kristin Lauter, Fast cryptography
in genus 2, in Eurocrypt 2013 [28] (2013), 194–210. URL: http://eprint.iacr.
org/2012/670. Citations in this document: §1.1.

[14] Joppe W. Bos, Craig Costello, Huseyin Hisil, Kristin Lauter, High-performance
scalar multiplication using 8-dimensional GLV/GLS decomposition, in CHES 2013
[12] (2013), 331–348. URL: http://eprint.iacr.org/2013/146. Citations in this
document: §1.3.

[15] Joppe W. Bos, Peter L. Montgomery, Daniel Shumow, Gregory M. Zaverucha,
Montgomery multiplication using vector instructions, in SAC 2013 [31] (2014),
471–489. URL: http://eprint.iacr.org/2013/519. Citations in this document:
§1.1.

[16] Craig Costello, Huseyin Hisil, Benjamin Smith, Faster compact Diffie–Hellman:
endomorphisms on the x-line, in Eurocrypt 2014 [36] (2014), 183–200. URL:
http://eprint.iacr.org/2013/692. Citations in this document: §1.1.

[17] ECC Brainpool, ECC Brainpool standard curves and curve generation (2005).
URL: http://www.ecc-brainpool.org/download/Domain-parameters.pdf. Ci-
tations in this document: §2.

[18] Harold M. Edwards, A normal form for elliptic curves, Bulletin of the Amer-
ican Mathematical Society 44 (2007), 393–422. URL: http://www.ams.org/

bull/2007-44-03/S0273-0979-07-01153-6/home.html. Citations in this docu-
ment: §2.2.

[19] Armando Faz-Hernández, Patrick Longa, Ana H. Sánchez, Efficient and secure
algorithms for GLV-based scalar multiplication and their implementation on GLV-
GLS curves, in CT-RSA 2014 [1] (2014), 1–27. URL: http://eprint.iacr.org/
2013/158. Citations in this document: §1.1.

[20] Pierrick Gaudry, Éric Schost, Genus 2 point counting over prime fields, Journal
of Symbolic Computation 47 (2012), 368–400. URL: http://www.csd.uwo.ca/
~eschost/publications/countg2.pdf. Citations in this document: §1.

[21] Robert Granger, Thorsten Kleinjung, Jens Zumbrägel, Breaking “128-bit secure”
supersingular binary curves (or how to solve discrete logarithms in F24·1223 and
F212·367), Crypto 2014, to appear (2014). URL: http://eprint.iacr.org/2014/
119. Citations in this document: §1.5.

[22] Torbjörn Granlund (editor), GMP 5.1.3: GNU multiple precision arithmetic li-
brary (2014). URL: http://gmplib.org. Citations in this document: §1.1.

[23] Shai Halevi (editor), Advances in cryptology — CRYPTO 2009, 29th annual in-
ternational cryptology conference, Santa Barbara, CA, USA, August 16–20, 2009,
proceedings, Lecture Notes in Computer Science, 5677, Springer, 2009. See [3].

http://hyperelliptic.org/EFD
http://safecurves.cr.yp.to
http://safecurves.cr.yp.to
http://cr.yp.to/papers.html#neoncrypto
http://eprint.iacr.org/2012/670
http://eprint.iacr.org/2012/670
http://eprint.iacr.org/2013/146
http://eprint.iacr.org/2013/519
http://eprint.iacr.org/2013/692
http://www.ecc-brainpool.org/download/Domain-parameters.pdf
http://www.ams.org/bull/2007-44-03/S0273-0979-07-01153-6/home.html
http://www.ams.org/bull/2007-44-03/S0273-0979-07-01153-6/home.html
http://eprint.iacr.org/2013/158
http://eprint.iacr.org/2013/158
http://www.csd.uwo.ca/~eschost/publications/countg2.pdf
http://www.csd.uwo.ca/~eschost/publications/countg2.pdf
http://eprint.iacr.org/2014/119
http://eprint.iacr.org/2014/119
http://gmplib.org


Curve41417: Karatsuba revisited 17

[24] Mike Hamburg, Fast and compact elliptic-curve cryptography (2012). URL:
http://eprint.iacr.org/2012/309. Citations in this document: §1.1.

[25] Mike Hamburg, New Ed448-Goldilocks release (2014). URL: https://

moderncrypto.org/mail-archive/curves/2014/000101.html. Citations in this
document: §1.4.

[26] Hüseyin Hisil, Kenneth Koon-Ho Wong, Gary Carter, Ed Dawson, Twisted Ed-
wards curves revisited, in Asiacrypt 2008 [37] (2008), 326–343. URL: http://

eprint.iacr.org/2008/522. Citations in this document: §3.1.
[27] Institute of Electrical and Electronics Engineers, IEEE 1363-2000: Standard

specifications for public key cryptography, Preliminary draft at (2000). URL:
http://grouper.ieee.org/groups/1363/P1363/draft.html. Citations in this
document: §2.

[28] Thomas Johansson, Phong Q. Nguyen (editors), Advances in cryptology —
EUROCRYPT 2013, 32nd annual international conference on the theory and
applications of cryptographic techniques, Athens, Greece, May 26–30, 2013, pro-
ceedings, Lecture Notes in Computer Science, 7881, Springer, 2013. ISBN 978-3-
642-38347-2. See [13].

[29] Anatoly A. Karatsuba, Y. Ofman, Multiplication of multidigit numbers on au-
tomata, Soviet Physics Doklady 7 (1963), 595–596. ISSN 0038-5689. Citations in
this document: §1.1, §4.2.

[30] Kaoru Kurosawa (editor), Advances in cryptology — ASIACRYPT 2007, 13th in-
ternational conference on the theory and application of cryptology and information
security, Kuching, Malaysia, December 2–6, 2007, proceedings, Lecture Notes in
Computer Science, 4833, Springer, 2007. ISBN 978-3-540-76899-9. See [6].

[31] Tanja Lange, Kristin Lauter, Petr Lisonek (editors), Selected areas in
cryptography — SAC 2013 — 20th international conference, Burnaby, BC,
Canada, August 14–16, 2013, revised selected papers, Lecture Notes in Computer
Science, 8282, Springer, 2014. ISBN 978-3-662-43413-0. See [15].

[32] Patrick Longa, Francesco Sica, Four-dimensional Gallant–Lambert–Vanstone
scalar multiplication, in Asiacrypt 2012 [40] (2012), 718–739. URL: http://

eprint.iacr.org/2011/608. Citations in this document: §1.1.
[33] Peter L. Montgomery, Speeding the Pollard and elliptic curve methods of factor-

ization, Mathematics of Computation 48 (1987), 243–264. ISSN 0025-5718. MR
88e:11130. URL: http://links.jstor.org/sici?sici=0025-5718(198701)48:

177<243:STPAEC>2.0.CO;2-3. Citations in this document: §2.2.
[34] National Institute for Standards and Technology, Digital signature standard. Fed-

eral Information Processing Standards Publication 186-2 (2000). URL: http://
csrc.nist.gov/publications/fips/archive/fips186-2/fips186-2.pdf. Cita-
tions in this document: §1.2.

[35] National Security Agency, Suite B Cryptography / Cryptographic Interoperability
(2009). URL: http://www.nsa.gov/ia/programs/suiteb_cryptography/. Cita-
tions in this document: §2.1.

[36] Phong Q. Nguyen, Elisabeth Oswald (editors), Advances in cryptology —
EUROCRYPT 2014 — 33rd annual international conference on the theory and ap-
plications of cryptographic techniques, Copenhagen, Denmark, May 11–15, 2014,
proceedings, Lecture Notes in Computer Science, 8441, Springer, 2014. ISBN 978-
3-642-55219-9. See [16].

[37] Josef Pieprzyk (editor), Advances in cryptology — ASIACRYPT 2008, 14th inter-
national conference on the theory and application of cryptology and information
security, Melbourne, Australia, December 7–11, 2008, Lecture Notes in Computer
Science, 5350, 2008. ISBN 978-3-540-89254-0. See [26].

http://eprint.iacr.org/2012/309
https://moderncrypto.org/mail-archive/curves/2014/000101.html
https://moderncrypto.org/mail-archive/curves/2014/000101.html
http://eprint.iacr.org/2008/522
http://eprint.iacr.org/2008/522
http://grouper.ieee.org/groups/1363/P1363/draft.html
http://eprint.iacr.org/2011/608
http://eprint.iacr.org/2011/608
http://links.jstor.org/sici?sici=0025-5718(198701)48:177<243:STPAEC>2.0.CO;2-3
http://links.jstor.org/sici?sici=0025-5718(198701)48:177<243:STPAEC>2.0.CO;2-3
http://csrc.nist.gov/publications/fips/archive/fips186-2/fips186-2.pdf
http://csrc.nist.gov/publications/fips/archive/fips186-2/fips186-2.pdf
http://www.nsa.gov/ia/programs/suiteb_cryptography/


18 Bernstein, Chuengsatiansup, Lange

[38] Bart Preneel, Tsuyoshi Takagi (editors), Cryptographic hardware and embedded
systems — CHES 2011, 13th international workshop, Nara, Japan, September 28–
October 1, 2011, proceedings, Lecture Notes in Computer Science, 6917, Springer,
2011. ISBN 978-3-642-23950-2. See [5].

[39] Emmanuel Prouff, Patrick Schaumont (editors), Cryptographic hardware and em-
bedded systems — CHES 2012 — 14th international workshop, Leuven, Belgium,
September 9–12, 2012, proceedings, Lecture Notes in Computer Science, 7428,
Springer, 2012. ISBN 978-3-642-33026-1. See [11].

[40] Xiaoyun Wang, Kazue Sako (editors), Advances in cryptology — ASIACRYPT
2012, 18th international conference on the theory and application of cryptology
and information security, Beijing, China, December 2–6, 2012, proceedings, Lec-
ture Notes in Computer Science, Springer, 2012. ISBN 978-3-642-34960-7. See
[32].

[41] Moti Yung, Yevgeniy Dodis, Aggelos Kiayias, Tal Malkin (editors), Public key
cryptography — 9th international conference on theory and practice in public-key
cryptography, New York, NY, USA, April 24–26, 2006, proceedings, Lecture Notes
in Computer Science, 3958, Springer, 2006. ISBN 978-3-540-33851-2. See [2].

A Point arithmetic formulas

This appendix presents the formulas that we use for doubling and addition of
curve points. Most of these formulas are taken from the EFD [9]. To simplify the
cost statements we count only field multiplications and squarings, not additions
and subtractions.

A.1. Formulas for doubling. We use three different formulas for point dou-
bling. The slowest formulas are the following:

Input: X1, Y1, Z1

Output: X3, Y3, Z3, T3

Cost: 4M + 4S

A = X2
1 , G = A + B, X3 = EF,

B = Y 2
1 , F = G− C, Y3 = GH,

C = 2Z2
1 , H = A−B, Z3 = FG,

E = (X1 + Y1)2 −A−B, T3 = EH.

We use these formulas once in each five-doubling window, specifically for the
last doubling before point addition. Each of the other four doublings costs just
3M + 4S: we save 1M by skipping the computation of T3.

For the first doubling in the precomputation we use the following faster
formulas.



Curve41417: Karatsuba revisited 19

Input: X1, Y1, T1 where Z1 = 1
Output: X3, Y3, Z3, T3

Cost: 3M + 3S

A = X2
1 , G = A + B, X3 = EF,

B = Y 2
1 , F = G− 2, Y3 = GH,

E = 2T1, H = A−B, Z3 = G2 − 2G,

T3 = EH.

A.2. Formulas for addition. All additions in the precomputation use the
following formulas. These formulas save 1M using Z2 = 1.

Input: X1, Y1, Z1, T1, X2, Y2, dT2 where Z2 = 1
Output: X3, Y3, Z3, T3

Cost: 8M

A = X1X2, F = Z1 − C, X3 = EF,

B = Y1Y2, G = Z1 + C, Y3 = GH,

C = T1dT2, H = B −A, Z3 = FG,

E = (X1 + Y1)(X2 + Y2)−A−B, T3 = EH.

All additions in the main computation use the following formulas. These
formulas save 1M by skipping the computation of T3; the next operation is
doubling, which does not use T .

Input: X1, Y1, Z1, T1, X2, Y2, Z2, dT2

Output: X3, Y3, Z3

Cost: 8M

A = X1X2, E = (X1 + Y1)(X2 + Y2)−A−B,

B = Y1Y2, F = D − C, X3 = EF,

C = T1dT2, G = D + C, Y3 = GH,

D = Z1Z2, H = B −A, Z3 = FG.


