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Abstract. We find mathematically optimal side-channel distinguishers
by looking at the side-channel as a communication channel. Our method-
ology can be adapted to any given scenario (device, signal-to-noise ratio,
noise distribution, leakage model, etc.). When the model is known and
the noise is Gaussian, the optimal distinguisher outperforms CPA and
covariance. However, we show that CPA is optimal when the model is
only known on a proportional scale. For non-Gaussian noise, we obtain
different optimal distinguishers, one for each noise distribution. When
the model is imperfectly known, we consider the scenario of a weighted
sum of the sensitive variable bits where the weights are unknown and
drawn from a normal law. In this case, our optimal distinguisher performs
better than the classical linear regression analysis.
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1 Introduction

Any embedded system that contains secrets, such as a cryptographic key k?,
is prone to side-channel attacks, which proceed in two steps. First, a leakage
(power consumption, electromagnetic radiations, time, etc.) is measured, which
is a noisy signal dependent on internally manipulated data, some of which are
sensitive, meaning that they depend on the secret key k? and on some plain-text
or cipher-text (denoted by T ). A distinguisher is then used to quantify the
similarity between the measured leakage and an assumed leakage model. The
result is an estimation k̂ of the secret key k?.

In the literature, side-channel distinguishers are customarily presented as
statistical operators that confront the leakage and the sensitive variable, both
seen as random variables, in order to extract the secret key. Different choices of

? Annelie Heuser is a Google European fellow in the field of privacy and is partially
founded by this fellowship.
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distinguishers as statistical tools yield different performances, depending on the
scenario (device, signal-to-noise ratio, noise distributions, leakage models, etc.)

There are certainly various ways to appreciate the quality of distinguishers. In
this article, we focus on distinguishers that maximize the probability of revealing
the correct key. In the field of side-channel analysis , somewhat paradoxically,
most of the academic works have eluded the precise mathematical derivation of
the best distinguisher given a precise attack scenario. Specifically, the community
has introduced popular statistical tools (maximum likelihood (ML), difference
of means (DoM), covariance, Pearson correlation coefficient (correlation power
analysis (CPA)), Kolmogorov-Smirnov distance, etc.) and addressed two questions:
Q1: what distinguishes known distinguishers in terms of distinctive features?, and
Q2: given a side-channel context what is the best distinguisher among all known
ones?

As for Q1, there have been some publications that attempt to highlight
specificities of distinguishers. For instance, Doget et al. [4] show that some
distinguishers seemingly have different expressions, but are in practice the same
one fed with different variants of leakage models. Mangard et al. [11] argue that
some distinguishers achieve success performance all the more similar as the noise
variance increases; they conclude that only “statistical artifacts” can explain
the difference of success probability between a class of selected distinguishers
(notably maximum likelihood and correlation). Souissi et al. [21] note that the
closer the noise is to a normal distribution (measured by a gaussianity metric), the
better the correlation compared to other distinguishers. Besides, it was noticed by
Prouff and Rivain [17] that the way a distinguisher is estimated seriously impacts
its success rate. This is especially true for information-theoretic side-channel
distinguishers, because probability density functions are to be estimated, which
is a notoriously difficult problem. In contrast, Whitnall and Oswald [25] defined
metrics (such as RDM, the relative distinguishing margin) to rank distinguishers
according to exact values, independently of the way they are estimated (notably
mutual information). However, the RDM has recently been found questionable
in some situations [18]. All in one, it appears difficult to identify salient features
that make one distinguisher in particular more appropriate than another.

Regarding question Q2, a usual practice is to estimate the success rate
using enough simulations or experiments until an unambiguous ranking of the
distinguishers can be carried out. In [22], Standaert et al. also consider the
quality of the profiling stage when comparing distinguishers. But the fundamental
shortcoming of this approach is that the pool of investigated distinguishers is
always limited and does not necessarily contain the best possible distinguisher in
every scenario.

Contributions. In this paper, we answer the ultimate version of Q2, which is
also related to Q1, namely: Q3: given a side-channel scenario what is the best
distinguisher among all possible ones? The “best” distinguisher is to be understood
in terms of success probability maximization. Our analyses show that such an
objective coincides with the one pursued in digital communication theory [5, 24],
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where it is rather formulated as the minimization of the error probability (i.e., one
minus the success probability). Interestingly, in this approach, it is not necessary
to investigate how a distinguisher can be estimated as a stochastic tool, since
our analysis already gives the optimal way of estimating the secret key from the
measured data.

We show that, when the leakage model is perfectly known by the attacker
(on a direct scale [26]), the optimal distinguisher depends only on the noise
distribution, not necessarily Gaussian. Consideration of different noise models
(Gaussian, uniform, Laplacian) shows that there is no “universal” distinguisher,
only one best distinguisher per noise distribution type. Surprisingly, in the
additive Gaussian noise case, we find that neither the DoM, nor the CPA are
optimal: we exhibit the optimal distinguisher that slightly outperforms them all.
The optimal distinguishers for uniform and Laplacian noise are different from
Pearson correlation or covariance, and simulations show that they can be much
more efficient. When the leakage model is only known on a proportional scale [26]
(i.e., ax + b where a and b are unknown) and when the noise is Gaussian, we
show that the optimal expression leads exactly to Pearson correlation coefficient.
This in particular explains optimality of CPA in this context.

When the model drifts away from Hamming weight (or Hamming distance)
and is thus (at least partially) unknown to the attacker, we use a stochastic linear
leakage model with unknown coefficients drawn from a normal distribution and
derive an optimal distinguisher that outperforms the linear regression attack [4].
Our result has the merit of showing that a rigorous derivation of the optimal
attack is possible and that it yields a new expression, which is interpretable in
terms of stochastic vs. epistemic noise3.

Outline. The remainder of the paper is organized as follows. We express the
problem of side-channel analysis (SCA) as a communication problem in Sect. 2.
The mathematical derivation of the optimal distinguishers in various scenarios is
carried out in Sect. 3 when the leakage model is known. Section 4 derives the
optimal distinguisher when the leakage model is partially known to the attacker.
Then, Sect. 5 validates the results using simulations. Conclusions and perspectives
are in Sect. 6.

2 Side-channel Analysis as a Communication Problem

2.1 Notations

Calligraphic letters (e.g., X ) denote sets, capital letters (e.g., X) denote random
variables taking values in these sets, and the corresponding lowercase letters
(e.g., x) denote their realizations. We write P for probability distributions, p for
densities, and let pX denote the density of X. For convenience, we sometimes

3 In our paper, we use the term stochastic for the independent noise N added to the
leakage model, and we resort to the term epistemic to characterize the distribution
of the leakage model when it is not deterministically known.
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abridge P{X = x} as P{x}. Symbols in bold are vectors: X or x; implicitly, the
length of all vectors is m, which is the number of queries (i.e., X = (Xi)1≤i≤m).
We denote the average of x by x = 1

m

∑m
i=1 xi, and the scalar product between

x and y by 〈x|y〉 =
∑m
i=1 xiyi. The norms 1, 2, . . . , q, . . . ,∞ are denoted as

‖x‖1 =
∑m
i=1 |xi|(Manhattan norm), ‖x‖2 =

√∑m
i=1 x

2
i (Euclidean norm), . . .,

‖x‖q = (
∑m
i=1 |xi|q)

1
q (q-norm) with q ∈ R, . . ., and ‖x‖∞ = maxi∈J1,mK |xi|

(uniform norm), respectively.

2.2 Modeling Through a Communication Channel

In this section, we rewrite the SCA problem as a communication channel problem
(Fig. 1). Our setup resembles the one presented by Standaert et al. [23], but
focuses specifically on key recovery.

Fig. 1: Side-channel analysis as a communication channel

The input message is the secret key K?. It is assumed uniformly distributed
over Fn2 in a Bayesian approach. We recall that in a Bayesian approach, a
parameter is unknown, and guessed as if it were a realization of a random
variable. Contrary to the usual situation in digital communications, the same
input message is actually sent again and again. So, to be rigorous, we should
write the input message as K?, but as every value K?

i in K? = (K?
i )1≤i≤m is the

same, i.e., K?
i = K?, we use K? to denote the sequence of m identical (albeit

unknown) keys. The key is most often recovered piece by piece (independently)
using a divide-and-conquer strategy, so n is typically equal to 8 (as in AES,
a byte-oriented block cipher). The encoder can be any function ϕ(f(K?,T)),
where T is the sequence of texts available by the attacker. In SCA, the mapping
between the secret key, the text, and the sensitive variable f(K?,T), is normally
assumed to be known, since it is part of the algorithm’s specification. Depending
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on the scenario, the leakage function ϕ : Fn2 → R can be known (see Sect. 3) or
partly unknown (see Sect. 4). Accordingly, ϕ(f(K?,T)) can be known or partly
unknown. The communication channel is the side-channel, typically with additive
noise N. The decoder to be optimized maximizes the value of the distinguisher
by taking its maximal argument over the keyspace4. The output of the decoder
is then the decoded message K̂ = D(X,T), where D is the optimal distinguishing
rule. Notice that we consider the distinguisher as a deterministic mapping from
Xm × T m to K, which allows us to rigorously derive optimal expressions. The
text is a side information5 T, which corresponds to the message or the ciphertext,
which is assumed to be known both at the encoder and the decoder.

Capturing m measurements means that the channel is used m times. Specif-
ically, the output of the encoder is an independent and identically distributed
(i.i.d.) sequence (“codeword”) ϕ(f(K?, T1)), ϕ(f(K?, T2)), . . . , ϕ(f(K?, Tm)) de-
pending on the i.i.d. sequence of side information T = (T1, T2, . . . , Tm). The
channel is assumed memoryless so that X = (X1, X2, . . . , Xm) (“received noisy
codeword”) again forms an i.i.d. sequence; this implies in particular that the addi-
tive noise (if present) is white, and successive noise samples N = (N1, N2, . . . , Nm)
are i.i.d.

The problem is to determine the optimum distinguishing (or decoding) rule D
so as to minimize the probability of error

Pe = P{K̂ 6= K?}, (1)

or equivalently to maximize the success probability Ps = 1− Pe, which is also
referred to as the theoretical or exact success rate [19]).

Theorem 1 (Optimal distinguishing rule). The optimal distinguishing rule
is given by the maximum a posteriori probability (MAP) rule

D(x, t) = arg max
k?

(
P{k?} · p(x|t, k?)

)
. (2)

If the keys are assumed equiprobable, i.e., P{k?} = 2−n, Eq. (2) reduces to the
maximum likelihood (ML) rule

D(x, t) = arg max
k?

p(x|t, k?). (3)

Proof. This is similar to a classical result in communication theory [24, Chap. 2]
or [5, Chap. 8], except that one should take the side information into account.
The optimal distinguishing rule maximizes

Ps = 1− Pe = P{K? = K̂} = P{K? = D(X,T)} (4)

=
∑
t

P{t}
∫
p(x|t) · P{K? = D(x, t)|x, t}dx. (5)

4 Given a function k? 7→ g(k?), we use the notation arg maxk? g(k?) to denote the
value of k? ∈ K that maximizes g(k?).

5 This term, not to be confused with the side-channel, is used in communication theory
to refer to a variable that is shared unaltered between the encoder and the decoder.
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Since P{t} ≥ 0 and pX(x|t) ≥ 0, it suffices to maximize the a posteriori probabil-
ity P{K? = k?|x, t} for every value of (x, t). Thus the optimal distinguishing rule
is D(x, t) = arg maxk? P{k?|x, t}. To evaluate the latter distribution, we apply
the Bayes’ rule P{k?|x, t} = P{k?} · p(x, t|k?)/p(x, t). This gives the MAP opti-
mal distinguishing rule D(x, t) = arg maxk? P{k?}·p(x, t|k?). Furthermore, since
T is obviously key-independent, one can simplify p(x, t|k?) = P{t|k?}p(x|t, k?) =
P{t}p(x|t, k?) so that the MAP and ML rules become as stated. ut

Remark 1. Distinguishing rule in Eq. (2) is useful if there is some a priori
knowledge about the distribution of the secret key k? (e.g., in DES [12], weak or
semi-weak keys are never used, since screened out at key generation).

Remark 2. Provided p(x, t|k?) is known (for instance through a profiling stage),
optimal distinguishing rules (2) and (3) can be readily used as an attack. They
are known as template attacks [2], which are indeed optimal.

3 Optimal Attacks when the Leakage Model is Known

3.1 Derivation

We first consider the scenario of an attacker who knows precisely the leakage
model of the device under attack on a “direct scale”, in such a way that the
leakage prediction Y (k?) coincides exactly with the deterministic part of the
leakage. For example, in an AES software implementation, the device might leak
in the Hamming weight (HW) model as X = HW[Sbox[T ⊕K?]]+N , where Sbox

is the SubBytes transformation and Y (K?) = HW[Sbox[T ⊕K?]] for all k? ∈ K.

Proposition 2 (Maximum likelihood). When f and ϕ are known to the
attacker and Y(K?) = ϕ(f(K?,T)), the optimal decision becomes

D(x, t) = arg max
k?

(
P{k?} · p(x|y(k?))

)
. (6)

For equiprobable keys this reduces to

D(x, t) = arg max
k?

p(x|y(k?)). (7)

Proof. Since (K?,T)→ Y(K?)→ X forms a Markov chain, we have the identity
p(x|t, k?) = p(x|t, k?,y(k?)) = p(x|y(k?)). Apply Theorem 1. ut

Remark 3. The digital communication setup of Fig. 1 illustrates the fact one key
K? = k? impacts Y and then X. The MAP and ML strategies consist for the
attacker to maximize a probability for possible values k? ∈ K of random variable
K?. In Proposition 2 (and in particular in Eq. (6) and (7)), we present k? as a
key guess, as usually done in side-channel analysis.

Remark 4. Notice that the optimal distinguisher selects the largest value of
p(x|y(k?)), irrespective of their relative values when k? ∈ K. Therefore, the
suggestion made in [15] that side-channel analysis can be improved by analyzing
the distribution of the values p(x|y(k?)) when the key varies is theoretically
unfounded.
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Corollary 3. When the leakage arises from X = Y(K?) + N,

p(x|y(k?)) = pN(x− y(k?)) =

m∏
i=1

pNi(xi − yi(k?)). (8)

This expression, which can be substituted in Eq. (6) or (7), depends only on the
noise probability distribution pN.

Proof. Trivial, since N is independent of Y(K?). ut

Most publications [2, 13,19] examine the scenario of Gaussian noise, which
we consider next. However, this might not always be valid in practice. Due to
other activities on the device, or to some sampling/quantization process for X,
or even due to countermeasures, the distribution of the noise might differ from
Gaussian. This is addressed in SubSect. 3.3.

3.2 Gaussian Noise Assumption

Theorem 4 (Optimal expression for Gaussian noise). When the noise is
zero mean Gaussian, N ∼ N (0, σ2), the optimal distinguishing rule is

DM,G
opt (x, t) = arg max

k?
〈x|y(k?)〉 − 1

2
‖y(k?)‖22. (9)

Proof. Applying Corollary 3, a straightforward computation yields

arg max
k?

p(x|y(k?)) = arg max
k?

1

(σ
√

2π)m
e−
‖x−y(k?)‖22

2σ2

= arg min
k?
‖x− y(k?)‖22 (10)

= arg min
k?
‖x‖22 + ‖y(k?)‖22 − 2〈x|y(k?)〉. (11)

Since ‖x‖22 is not key dependent, we obtain Eq. (9). ut

Remark 5. Notice that the optimal distinguisher corresponding to the optimal dis-
tinguishing rule of Eq. (9) is E

{
X · Y (k?)− 1

2Y (k?)2
}
, which does not normally

reduce to a covariance or correlation coefficient.

Remark 6. The scalar product 〈x|y(k?)〉 can be negative, but the optimal ex-
pression in Eq. (9) does not involve absolute values. This would only be necessary
if the sign of the model was unknown.

Remark 7. In the mono-bit case (i.e., Yi(K
?) takes two opposite values), the

distinguisher simplifies to arg maxk? 〈x|y(k?)〉. However, somewhat surprisingly,
this distinguisher is not the same as the usual DoM from the literature [3, 8]
and empirical results show that indeed our optimal distinguishing rule is slightly
more efficient. This is detailed in Appendix A.
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Remark 8. For a very large number of traces 1
2‖y(k?)‖22 becomes key indepen-

dent6. However, as we will show in Sect. 5 this factor plays an important role,
especially when the signal-to-noise ratio (SNR) is high and thus the number of
traces needed to reveal the secret key is low.

We insist that the expression in Eq. (9) is a deterministic value that can
be computed from a series of m sampled pairs of leakages and corresponding
texts. As the second term (− 1

2‖y(k?)‖22) becomes key independent when m→∞,
this expression approximates to 〈x|y(k?)〉 or even 〈x|y(k?) − y(k?)〉 (similar
assumption as done in Footnote 6), which is an estimator of the covariance. This
is why it can be claimed that when the leakage model is known, the noise is
Gaussian and m→∞ the optimal distinguisher is very close to the covariance
(or to the correlation, since the normalization factor of the Pearson correlation
coefficient is also key-independent for large m).

Remark 9. As already mentioned in Remark 2, the best distinguisher when the
model is known boils down to a template attack (ML). When the model is known
and the noise is Gaussian, it specializes to an equivalent distinguisher which is
all the closer to correlation as the SNR is low (by previous Remark 8). This is an
independent proof of the main result of [11]. More precisely, the CPA is tolerant
to any scaling of the leakage function, provided it is positive; otherwise, the
attacker must resort to the absolute value of the Pearson correlation coefficient.
It is known to be less efficient as depicted in our empirical results in Sect. 5 since
there exists more rivals, and the soundness can even be impacted (e.g., if there
exists a key kc 6= k? that satisfies f(k?, t) = −f(kc, t) for all t ∈ Fn2 ).

Remark 10. The expression in Eq. (9) can be computed only if the leakage model
is known, including its scaling factor (denoted direct scale in [26]). In contrast,
for CPA the relationship between X and Y (K?) is only known up to some affine
law (denoted proportional scale in [26]) such that X = aY (K?) + b+N , where a
and b are unknown. These coefficients have to be estimated such as to maximize
the attacker’s performance, i.e., minimize ‖x − ay(k?) − b‖2 in Eq. (10) so as
to maximize the likelihood. The following theorem shows that this is equivalent
to CPA (see also the preliminary study [21], which describes also normality tests).

Theorem 5 (Correlation power analysis). When the leakage arises from

X = aY (K?)+ b+N where N is zero-mean Gaussian, k̂ = arg mink? mina,b ‖x−
ay(k?) − b‖2, is equivalent to maximizing the absolute value of the empirical
Pearson’s coefficient:

k̂ = arg max
k?
|ρ̂(k?)| = ̂|Cov(x,y(k?))|

/√
V̂ar(x)V̂ar(y(k?)) (12)

6 Informally, let us make the hypothesis that T is uniformly distributed in Fn2 and that
Y (k?) has the following expression Y (k?) = ϕ(f(T ⊕ k?)); then, for large m, we have
1
m

∑m
i=1 ϕ(f(ti ⊕ k?)) ≈ 1

2n

∑
t∈Fn2

ϕ(f(t⊕ k?)) = 1
2n

∑
t′∈Fn2

ϕ(f(t′)) (by the law of

large numbers) which clearly does not depend on k?. See also the EIS (Equal Images
under the Same key) assumption in [20].
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(a) Uniform distribution (b) Laplacian distribution

Fig. 2: Probability distributions for σ ∈ {1, 3, 6}

where the empirical (co)variances are defined by Ĉov(x,y) =
∑m
i=1(xi− x̄)(yi− ȳ)

and V̂ar(x) = Ĉov(x,x).

Proof. The minimization mina,b ‖x−ay(k?)− b‖2 corresponds to the well-known
linear regression analysis (ordinary least squares) [6]. The optimal values of a and

b are a∗ = Ĉov(x,y)/V̂ar(y), b∗ = x̄ − a∗ȳ, and the minimized mean-squared

error takes the well-known expression mina,b ‖x − ay − b‖2 = V̂ar(x) · (1 − ρ̂2)
therefore minimizing mina,b ‖x− ay − b‖2 amounts to maximizing |ρ̂|. ut

3.3 Non-Gaussian Noise

The assumption of Gaussian noise may not always hold in practice. We first
consider the case of uniform U(0, σ2) and Laplacian noise distribution L(0, σ2)
as depicted in Fig. 2.

Definition 6 (Noise distributions). Let N be a zero-mean variable with vari-
ance σ2 modeling the noise. Its distribution is:

– Uniform, N ∼ U(0, σ2) if pN (n) =

{
1

2σ
√
3

for n ∈ [−
√

3σ,
√

3σ],

0 otherwise.

– Laplacian, N ∼ L(0, σ2) if pN (n) = 1√
2σ
e
− |n|
σ/
√

2 .

For example, uniform noise can arise in side-channel analysis in the case
where the only measurement error is the quantization noise. “Oscilloscopes” or
most “digital sampling devices” use Analog-to-Digital Converters with only 8 bit
resolution. Appendix B shows that Laplacian noise is a good approximation to
the noise when combining multiplicatively two (or more) leakage samples.

Theorem 7 (Optimal expression for uniform and Laplacian noises).
When f and ϕ are known such that Y (K?) = ϕ(f(K?, T )), and the leakage
arises from X = Y (K?) + N with N ∼ U(0, σ2) or N ∼ L(0, σ2), then the
optimal distinguishing rule becomes
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– Uniform noise distribution: DM,U
opt (x, t) = arg maxk? −‖x− y(k?)‖∞,

– Laplace noise distribution: DM,L
opt (x, t) = arg maxk? −‖x− y(k?)‖1.

Proof. In case of a uniform noise distribution U(0, σ2) we have

p(x|y(k?)) = pN (x− y(k?)) =

{
0 if ∃i | xi − yi(k?) 6∈ [−

√
3σ,
√

3σ],

(2σ
√

3)−m otherwise.
(13)

Hence, arg maxk? pN (x|y(k?)) = 0 if and only if ‖x − y(k?)‖∞ >
√

3σ, i.e.,

DM,U
opt (x, t) = arg mink? ‖x− y(k?)‖∞ = arg maxk? −‖x− y(k?)‖∞.

Assuming a Laplacian noise distribution L(0, σ2) we have

arg max
k?

p(x|y(k?)) = arg max
k?

(
√

2σ)−m · e−
‖x−y(k?)‖1

σ/
√

2 , (14)

which reduces to arg maxk? −‖x− y(k?)‖1. ut

We can even be more general. Let q ∈ R. Consider the generalized Gaussian
noise distributions [14] of variance σ2:

p(x|y(k?)) =

(
q

2α
Γ

(
1

q

))m
e−
(
‖x−y(k?)‖q

α

)q
, (15)

where Γ (·) is the Gamma function and α =
√

Γ (1/q)
Γ (3/q) σ. The optimal distinguish-

ing rule becomes DM,q
opt (x, t) = arg maxk? −‖x − y(k?)‖qq = arg maxk? −‖x −

y(k?)‖q. The Gaussian, Laplacian and uniform distributions are particular cases
obtained for q = 2, 1,∞, respectively.

4 Optimal Attacks when the Leakage Model is Partially
Unknown

For standard technologies, the leakage model is either predictable or can be
profiled accurately, while being portable from one implementation to another.
However, in some contexts, profiling is not possible (the key can neither be chosen
nor varied), or changes from one device to the other because of the technological
dispersion. Accordingly, the model might not be known exactly to the attacker
yielding epistemic noise. We now extend our assumptions made in Sect. 3. We
assume a linear leakage model as in [4, 20, 26] arising from a weighted sum of the
bits of the sensitive variable and additive Gaussian noise N , i.e.,

X =

n∑
j=1

αj [f(K?, T )]j +N, (16)

where [·]j : Fn2 → F2 is the projection mapping onto the jth bit. But now, the
attacker has no knowledge about α = (α1, · · · , αn) (except that α is distributed
according to a given law). This α is unknown but fixed for the whole experiment
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(series of m measurements). This setting is just one (stochastic) way of considering
a leakage model that is not entirely known7. See e.g. [1] for a motivation of this
scenario, and [4, 25] for assuming and evaluating similar scenarios.

Theorem 8 (Optimal expression for unknown weights). Let Yα(K?) =∑n
j=1 αj [f(K?,T)]j and Yj(K

?) = [f(K?,T)]j, where the weights are indepen-
dently deviating normally from the Hamming weight model, i.e., ∀j ∈ J1, 8K, αj ∼
N (1, σ2

α). Then the optimal distinguishing rule is

Dα,Gopt (x, t) = arg max
k?

(γ〈x|y(k?)〉+ 1)t · (γZ(k?) + I)−1 · (γ〈x|y(k?)〉+ 1)

− σ2
α ln det(γZ(k?) + I), (17)

where γ =
σ2
α

σ2 is the epistemic to stochastic noise ratio (ESNR), 〈x|y〉 is the
vector with elements (〈x|y(k?)〉)j = 〈x|yj(k?)〉, Z(k?) is the n× n Gram matrix
with entries Zj,j′(k

?) = 〈yj(k?)|yj′(k?)〉, 1 is the all-one vector, and I is the
identity matrix.

Proof. Again we start from Eq. (7):

D(x, t) = arg max
k?

p(x|yα(k?)) = arg max
k?

∫
Rn
p(x|yα(k?),α) p(α) dα (18)

= arg max
k?

∫
Rn

1

(
√

2πσ)m
e−

1
2σ ‖x−yα(k?)‖22 1

(
√

2πσα)n
e−

1
2σα
‖α−1‖22 dα

= arg max
k?

∫
Rn

1

(
√

2πσ)m
exp
(
− 1

2σ2
‖x−

n∑
j=1

αjyj(k
?)‖2

)
×

1

(
√

2πσα)n
exp
(
− 1

2σ2
α

n∑
j=1

(αj − 1)2
)

dα. (19)

Now expanding the squares and dropping all multiplicative constants that are
independent of k?, the distinguishing rule takes the form

arg max
k?

∫
Rn

exp
(
−R(α)/2

)
dα, (20)

where R(α) =
1

σ2
(‖

n∑
j=1

αjyj‖2 − 2

n∑
j=1

αj〈x | yj〉) +
1

σ2
α

n∑
j=1

(α2
j − 2αj) = (21)

n∑
j,j′=1

αjαj′(σ
−2〈yj(k?) | yj′(k?)〉+ σ−2α δj,j′)− 2

n∑
j=1

αj(σ
−2〈x|yj(k?)〉+ σ−2α ) .

7 For example, diversion of bit loads due to routing, fanout gates, etc. are difficult to
model; we used randomly weighted bit sums, randomization being due to technological
dispersing (like for PUFs, i.e., physically unclonable functions, analog characterization
is highly device-dependent due to unpredictable manufacturing defects) and with the
idea that the design is balanced (e.g., FPGA, full custom ASIC designs) so that αj ’s
have equal means.
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Using an n × n matrix notation as αtQα =
∑n
j,j′=1 αjαj′Qj,j′ and atα =∑n

j=1 ajαj , Eq. (21) takes the form αtQα−2atα, where Q = σ−2Z(k?)+σ−2α I =

σ−2α (γZ(k?) + I), a = σ−2〈x|y(k?)〉+ σ−2α 1 = σ−2α (γ〈x|y(k?)〉+ 1) and I is the
identity matrix, Z is the Gram matrix with entries Zj,j′(k

?) = 〈yj(k?)|yj′(k?)〉,
1 is the all-one vector, 〈x|y〉 is the vector with entries (〈x|y〉)j = 〈x|yj〉. Now,
αtQα− 2atα = (α−Q−1a)tQ(α−Q−1a)− atQ−1a. So,

arg max
k?

∫
exp
(
− 1

2 ((α−Q−1a)tQ(α−Q−1a)− at ·Q−1 · a)
)

dα (22)

= arg max
k?

(2π)n/2|detQ|−1/2 exp( 1
2atQ−1a) (23)

= arg max
k?

1

2
at Q−1a− 1

2
ln detQ. (24)

Finally, multiplying by 2σ2
α we achieve the optimal distinguishing rule. ut

Remark 11. For Eq. (17) to work the ESNR γ should be somehow known from
some experiments (e.g., Pelgrom coefficients [16] for σα and platform noise for σ).

Remark 12. If the ESNR γ is small, i.e., σα is small w.r.t. σ, expanding about
γ = 0 and neglecting the term σ2

αγ in the expansion of the logarithm gives (at
first order in γ):

(1 + γ〈x|y(k?)〉)t(I + γZ(k?))−1(1 + γ〈x|y(k?)〉) (25)

≈ n+ 2γ 1t〈x|y(k?)〉 − γ1tZ(k?) · 1t. (26)

Since 1ty(k?) =
∑n
j=1 yj(k

?) = HW[y] and

1tZ(k?)1t =

n∑
j,j′=1

〈yj(k?)|yj′(k?)〉 = 〈
n∑
j=1

yj(k
?)|

n∑
j′=1

yj′(k
?)〉 = ‖HW[y]‖22,

(27)

Eq. (26) boils down to maximizing 〈x|HW[y]〉 − 1
2‖HW[y]‖22. As expected, we

recover the optimal distinguishing rule when the Hamming weight model is
assumed to be known and αj ≈ 1 (see SubSect. 3.2).

Remark 13. If ESNR γ is large (σα is large w.r.t. σ), a similar calculation as
done in Remark 12 shows that the optimal distinguishing rule becomes

γ〈x|y(k?)〉t · Z−1(k?) · 〈x|y(k?)〉 − σ2
α ln det(Z(k?)), (28)

where det(Z(k?)) = ‖y1(k?)∧· · ·∧yn(k?)‖22 is the Gram determinant, the squared
norm of the exterior product of the yj(k

?)’s . This simpler formula can be useful
to be directly implemented for small stochastic noise.

Remark 14. Note that, in contrast to the linear regression attack (LRA) [4], Dα,G
does not require an estimation of α explicitly; Dα,G is already optimal given
the a priori probability distribution of α. An empirical comparison is shown in
Subsec 5.2.
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5 Experimental Validation

5.1 Known Model: Stochastic Noise

As an application we choose Y = HW[Sbox[T ⊕K?]] and X = Y (K?) +N , where
Sbox : F8

2 → F8
2 is the AES Substitution box and T is uniformly distributed

over F8
2. We simulated noise from several distributions pN and for σ ∈ {1, 3, 6}

resulting in an SNR of V ar(Y )
V ar(N) = 2

σ2 ∈ {2, 0.222, 0.056}. Note that since the SNR

is equivalent for all noise distributions, we can compare the performance of the
distinguishers across different noise distributions. For reliability, we conducted
500 independent experiments in each setting with uniformly distributed k? to
compute the empirical success rate (noted P̂s). Moreover, as suggested in [10],
when plotting the empirical success rate, we highlight the standard deviation of the
success rate by error bars. In particular, since P̂s follows a binomial distribution,

we shaded the confidence interval

[
P̂s ±

√
P̂s(1−P̂s)
nexp

]
, where nexp = 500 is the

number of experiments. If the error bars do not overlap, we can unambiguously
conclude that one distinguisher is better than the other [10].

In the scenario where the model is known, we implemented the following
distinguishers, where the labels for the figures are put within parentheses:

DM,G
opt (x, t) = arg max

k?
〈x|y(k?)〉 − 1

2
‖y(k?)‖22, (Euclidean norm) (29)

DM,G
opt-s(x, t) = arg max

k?
〈x|y(k?)〉, (Scalar product) (30)

DM,L
opt (x, t) = arg max

k?
−‖x− y(k?)‖1, (Manhattan norm)

(31)

DM,U
opt (x, t) = arg max

k?
−‖x− y(k?)‖∞, (Uniform norm) (32)

DCov(x, t) = arg max
k?
|〈x− x|y(k?)〉|, (Covariance) (33)

DCPA(x, t) = arg max
k?

∣∣∣∣∣ 〈x− x|y(k?)〉
‖x− x‖2 · ‖y(k?)− y(k?)‖2

∣∣∣∣∣ . (CPA) (34)

Figures 3a, 3c and 3e show empirical success rate curves for Gaussian noise.
One can see that for all levels of SNR DM,G

opt outperforms the other distinguishers,
including CPA. As expected from Remark 8, scalar product, covariance, and
correlation have poorer but comparable performance than DM,G

opt for high noise.
Figures 3b, 3d and 3f show the empirical success rate curves for Laplacian

noise. For low noise, DM,L
opt is the most efficient and DM,G

opt is the nearest rival,
whereas DCPA and DCov are less efficient. As the noise increases the difference
becomes more significant. As expected, DCPA and DCov become equivalent for
high noise, and DM,U

opt fails to distinguish.
In case of uniform noise (see Fig. 4) all optimal distinguishers behave similarly

for σ = 1, whereas CPA, covariance and the scalar product are less efficient.
When the noise increases, DM,U

opt is the most efficient distinguisher. One can see
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(a) Gaussian Noise, σ = 1 (b) Laplacian Noise, σ = 1

(c) Gaussian Noise, σ = 3 (d) Laplacian Noise, σ = 3

(e) Gaussian Noise, σ = 6 (f) Laplacian Noise, σ = 6

Fig. 3: Success rate various σ, with a known model

that DM,U
opt for uniform noise and DM,L

opt for Laplacian noise require less traces

to succeed than DM,G
opt does for Gaussian noise. More precisely, for σ = 6, DM,U

opt

requires only 28 traces to reach P̂s ≥ 90%, DM,L
opt requires 200 traces, whereas

DM,G
opt in case of Gaussian noise needs 300 measurements. This is in keeping with
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(a) σ = 1 (b) σ = 3 (c) σ = 6

Fig. 4: Success rate for a uniform noise distribution, with a known model

the known information-theoretic fact that detection (or decoding) in Gaussian
noise is harder than in any other type of noise.

5.2 Unknown Model: Epistemic and Stochastic Noise

To account for a partially unknown model, we choose Yj = [Sbox[T ⊕K?]]j for

j = 1, . . . , 8 and X =
∑8
j=1 αjYj(K

?) +N , where αj ∼ N (1, σα) are unknown
and changing for each experiment. Note that in this scenario Y(K?) is a column
and not a value as in the previous subsection. Figure 5 shows typical values
for σα ∈ {2, 4}, showing that the assumption about α is realistic (see e.g., [7]).
We compare our new optimal distinguisher with the linear regression analysis

Fig. 5: Exemplary values of α for σα = 2 (blue) and σα = 4 (red dashed)

(LRA) [4], which is a non-profiling variant of the stochastic approach [20] and
the most efficient attack so far in the case where the model drifts away from the
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Hamming weight model [4, 9]. LRA is defined as

DLRA(x, t) = arg min
k?

‖x− y′(k?) · β(k?)‖22
‖x− x‖22

, (35)

where y′(k?) = (1,y1(k?),y2(k?), . . . ,y8(k?)) is an m× 9 matrix and β(k?) =
(β1(k?), . . . , β9(k?)) are the regression coefficients β(k?) = (y′(k?)t·y′(k?))−1y′(k?)tx.
Criterion (35) is also known as the coefficient of determination [6]. We com-
pared the optimal distinguisher to LRA and CPA, for which we used Y =
HW[Sbox[T ⊕ K?]]. Apart from this we used the same experimental setup as
above.

Figure 6 displays the success rate for σ ∈ {1, 3, 6} and σα ∈ {2, 4}. As
expected CPA is performing worse than both other attacks. Remarkably, in all
scenarios Dα,Gopt (labeled Optimal dist alpha) is more efficient than LRA. This is
perhaps not surprising as regression analysis involves mean squared minimization
rather than direct success probability maximization as Dα,Gopt does. As already
observed in [4], LRA needs a large enough number of traces for estimation, that

is why P̂s stays low until around 10 traces (Fig. 6a and 6b). One can observe
that both distinguishers perform better for σα = 4 (Figures 6b, 6d and 6f) than
for σα = 2 (Figures 6a, 6c and 6e). This can be explained by the improved
distinguishability through the distinct influence of each bit. On the contrary,
DCPA becomes worse when σα increases, because the model drifts father away
from the Hamming weight model.

6 Conclusion

We examined the key extraction problem in a side-channel context as a digital
communication problem. Following the reasoning used in digital communication
theory, we derived the optimal distinguisher (called optimal decoder in digital
communication theory). It is a formula that takes as input a multiplicity of pairs
of side-channel leakage measurements and corresponding text chunks, and that
returns the key guess that maximizes the success probability. The methodical
derivation of distinguishers yields an estimator that can be directly computed
from the measured data.

In the case where no information is known about the channel (Sect. 2.2), we
recovered the template attack. When the leakage function is known (Sect. 3),
the approach yields a different distinguisher for each noise distribution. For the
classical case of additive Gaussian noise, the optimal distinguisher cannot be
interpreted as a covariance nor as a correlation, albeit very close for low SNR. In
addition, when the leakage model is known only on a proportional scale we recover
CPA exactly. When the noise is non-Gaussian, the optimal distinguishers are
very different from CPA or correlation and each optimal distinguisher is the most
efficient in its scenario. When the leakage model is partially unknown (Sect. 4)
and modeled as an unevenly weighted sum of bits with unknown weights, our
method outperforms the non-profiled version of the stochastic approach (LRA).
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(a) σα = 2, σ = 1 (b) σα = 4, σ = 1

(c) σα = 2, σ = 3 (d) σα = 4, σ = 3

(e) σα = 2, σ = 6 (f) σα = 4, σ = 6

Fig. 6: Success rate for various ESNRs, unknown model
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This study suggests that a mathematical study of distinguishers should prevail
in the field of side-channel analysis. As a perspective, our optimal distinguishers
may be tested on real measurements. This should include a preliminary step to
determine the underlying scenario as precisely and efficiently as possible in terms
of the number of traces. Especially, the determination of the noise distribution is
a notoriously difficult problem. Moreover, the extension of our work to higher-
order attacks (when the noise distribution might differ from Gaussian) seems
promising.
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9. Victor Lomné, Emmanuel Prouff, and Thomas Roche. Behind the scene of side
channel attacks. In Kazue Sako and Palash Sarkar, editors, ASIACRYPT (1),
volume 8269 of Lecture Notes in Computer Science, pages 506–525. Springer, 2013.

10. Houssem Maghrebi, Olivier Rioul, Sylvain Guilley, and Jean-Luc Danger. Com-
parison between Side Channel Analysis Distinguishers. In Tat Wing Chim and
Tsz Hon Yuen, editors, ICICS, volume 7618 of LNCS, pages 331–340. Springer,
October 29-31 2012. Hong Kong.

11. Stefan Mangard, Elisabeth Oswald, and François-Xavier Standaert. One for All - All
for One: Unifying Standard DPA Attacks. Information Security, IET, 5(2):100–111,
2011. ISSN: 1751-8709 ; Digital Object Identifier: 10.1049/iet-ifs.2010.0096.

12. Judy H. Moore and Gustavus J. Simmons. Cycle Structures of the DES with Weak
and Semi-Weak Keys. In Andrew M. Odlyzko, editor, CRYPTO, volume 263 of
Lecture Notes in Computer Science, pages 9–32. Springer, 1986.

13. Amir Moradi, Nima Mousavi, Christof Paar, and Mahmoud Salmasizadeh. A
Comparative Study of Mutual Information Analysis under a Gaussian Assumption.



Good is Not Good Enough 19

In WISA (Information Security Applications, 10th International Workshop), volume
5932 of Lecture Notes in Computer Science, pages 193–205. Springer, August 25-27
2009. Busan, Korea.

14. Saralees Nadarajah. A generalized normal distribution. Journal of Applied Statistics,
32(7):685–694, 2005.

15. Jing Pan, Jasper G. J. van Woudenberg, Jerry den Hartog, and Marc F. Witteman.
Improving DPA by Peak Distribution Analysis. In Alex Biryukov, Guang Gong, and
Douglas R. Stinson, editors, Selected Areas in Cryptography - 17th International
Workshop, SAC 2010, Waterloo, Ontario, Canada, August 12-13, 2010, Revised
Selected Papers, volume 6544 of Lecture Notes in Computer Science, pages 241–261.
Springer, 2010.

16. Marcel J.M. Pelgrom, Aad C.J. Duinmaijer, and Anton P.G. Welbers. Matching
properties of MOS transistors. IEEE Journal of Solid State Circuits, 24(5):1433–
1439, 1989. DOI: 10.1109/JSSC.1989.572629.

17. Emmanuel Prouff and Matthieu Rivain. Theoretical and practical aspects of
mutual information-based side channel analysis. International Journal of Applied
Cryptography (IJACT), 2(2):121–138, 2010.

18. Oscar Reparaz, Benedikt Gierlichs, and Ingrid Verbauwhede. A note on the use
of margins to compare distinguishers. In COSADE ( to appear), Lecture Notes in
Computer Science. Springer, April 14-15 2014. Paris, France.

19. Matthieu Rivain. On the Exact Success Rate of Side Channel Analysis in the
Gaussian Model. In Selected Areas in Cryptography, volume 5381 of LNCS, pages
165–183. Springer, August 14-15 2008. Sackville, New Brunswick, Canada.

20. Werner Schindler, Kerstin Lemke, and Christof Paar. A Stochastic Model for
Differential Side Channel Cryptanalysis. In LNCS, editor, CHES, volume 3659 of
LNCS, pages 30–46. Springer, Sept 2005. Edinburgh, Scotland, UK.

21. Youssef Souissi, Nicolas Debande, Sami Mekki, Sylvain Guilley, Ali Maalaoui, and
Jean-Luc Danger. On the Optimality of Correlation Power Attack on Embedded
Cryptographic Systems. In Ioannis G. Askoxylakis, Henrich Christopher Pöhls,
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A Optimal Mono-Bit Distinguisher for Known model
and Gaussian Noise

In the mono-bit case, every Yi(K
?) (0 ≤ i < m) takes only two different val-

ues. W.l.o.g., let us assume Yi(K
?) = ±1. Then, ‖y(K?)‖22 = m and is thus

independent on the key. Thus,

DM,G
opt(1 bit)(x, t) = arg maxk?

∑
i|yi(k?)=1 xi −

∑
i|yi(k?)=−1 xi. (36)

Surprisingly, this distinguisher is not any variant of DoM presented in the seminal
paper [8] by Kocher, Jaffe and Jun (DM,G

KJJ ) nor in the alleged t-test improve-

ment [3] by Coron, Kocher and Naccache (DM,G
CKN). In particular, DM,G

KJJ (x, t) =

arg maxk? x+1 − x−1 and DM,G
CKN(x, t) = arg maxk? (x+1 − x−1)

/√σ2
x+1

n+1
+

σ2
x−1

n−1

where n±1 =
∑
i|yi(k?)=±1 1, σ2

x±1
= 1

n±1−1
∑
i|yi(k?)=±1(xi − x±1)2 and x±1 =

1
n±1

∑
i|yi(k?)=±1 xi . However, when m is large, the two distinguishers DM,G

opt(1 bit)

and DM,G
KJJ become equivalent, as n±1 ≈ m/2 (independently of k?, using an

argument similar to that of Footnote 6). But even in this case, DM,G
CKN is non-

equivalent with them. We notice that the normalization DM,G
CKN is useful when

there are many samples, since it normalizes the difference between Y (k?) = −1
and Y (k?) = +1 (hence avoid ghost peaks), but this consideration is out of the
scope of this paper.

The success rate of all three attacks for σ = 1 is displayed in Fig. 7 showing
that the optimal distinguishing rule (Eq. (36)) is the most efficient to reach

a empirical success rate P̂s = 90%. For σ > 1 all 3 distinguishers were found
almost equivalent, which is reasonable. Those results highlight that intuitive
distinguishers (such as DM,G

KJJ , that aims at showing a difference of leakage) or

classic (such as DM,G
CKN, based on the well-established t-test) distinguishers are

not necessarily the best.

Fig. 7: Success rate for one-bit attacks Fig. 8: Empirical distribution of X1X2
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B Noise Distribution Resulting from Multiplication

When combining two leakage samples multiplicatively in case of Gaussian noise,
the noise distribution is no longer following a Gaussian distribution. More precisely,
let us assume we have two leakages X1 = Y1(K?) +N1 and X2 = Y2(K?) +N2

that are multiplied, then X1X2 = (Y1(K?) + N1) · (Y2(K?) + N2) = Y1(K?) ·
Y2(K?)+Y2(K?) ·N2+Y2(K?) ·N1+N1 ·N2. Due to the product, the distribution
of X1X2 is no longer Gaussian. Figure 8 displays the empirical distribution in
this case, which looks similar to a Laplacian distribution (compare to Fig. 2b).
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