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Abstract. In this article, we propose a new comparison metric, the figure of adversarial merit (FOAM),
which combines the inherent security provided by cryptographic structures and components with their im-
plementation properties. To the best of our knowledge, this is the first such metric proposed to ensure a
fairer comparison of cryptographic designs. We then apply this new metric to meaningful use cases by study-
ing Substitution-Permutation Network permutations that are suited for hardware implementations, and we
provide new results on hardware-friendly cryptographic building blocks. For practical reasons, we considered
linear and differential attacks and we restricted ourselves to fully serial and round-based implementations. We
explore several design strategies, from the geometry of the internal state to the size of the S-box, the field size
of the diffusion layer or even the irreducible polynomial defining the finite field. We finally test all possible
strategies to provide designers an exhaustive approach in building hardware-friendly cryptographic primitives
(according to area or FOAM metrics), also introducing a model for predicting the hardware performance of
round-based or serial-based implementations. In particular, we exhibit new diffusion matrices (circulant or
serial) that are surprisingly more efficient than the current best known, such as the ones used in AES, LED and
PHOTON.
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1 Introduction

RFID is a rising technology that is likely to be widely deployed in many different situations of everyday
life, leading to new security challenges that the cryptography community has to handle. Significant ad-
vances in this area have already been obtained. In particular, many lightweight block ciphers [10,12,17,22]
have recently been proposed, and designing such ciphers is not an easy task as showed by the numerous
candidates that eventually got broken. Moreover, it is interesting to note that in most privacy-preserving
RFID protocols proposed [3,18,19] a hash function is required, and since a hash function can be easily
built from a block cipher (for example with the Davies-Meyer mode) or a permutation (for example with
the sponge construction [9]), a crucial question for the researchers is how to design a hardware efficient
permutation (that can later be utilized to build a hash function and/or a block cipher).

Hardware efficiency can have very different meanings depending on the utilization scenario targeted
by the designer. For example, a classical metric is to estimate the minimum silicon area required by the
primitive to perform the cryptographic operations. This, of course, depends on the parameters of the
function itself (the area is highly dependent on the amount of memory required) and most lightweight
block ciphers have a rather small block size of 64 bits. It is to be noted that the area is usually not directly
linked to the security of a primitive, as adding extra rounds will have an impact on the throughput of
the implementation, but only a very limited one concerning the area (we assumed that the function has
no weakness that is independent of the number of rounds). Area and other metrics such as throughput,
latency or power dissipation can be traded-off for one another, making the comparison between different
primitives difficult. In the direction of fairer comparisons of hardware implementations of cryptographic
primitives, Bogdanov et al. [11] introduced the efficiency metric throughput/area in order to take in
account these tradeoffs. However, the possibility of trading off throughput for power was not taken in
account and Badel et al. [4] proposed instead a figure of merit, defined as FOM = throughput/area2.
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However, as of today, no metric takes in account the inherent security of a building block, therefore
making it hard to compare for example two diffusion matrices that have different area footprint and
different branching number.

The construction of good diffusion matrices has always been an important research topic in cryp-
tography, equally important as the search for good confusion functions. The AES [15] for example uses
a 4 × 4 matrix with elements in GF (28). This matrix is Maximum Distance Separable (MDS), which
means that it has a branching number of 5, optimal for a 4 × 4 matrix. However, this security feature
comes at a cost that computations in GF (28) might not be the best choice for some hardware purposes,
even though special care has been taken by the designers to choose a circulant matrix instantiated with
lightweight coefficient (i.e. low Hamming weight coefficients, such as 0x01, 0x02 and 0x03). Recently,
Guo et al. [16,17] described a new type of diffusion matrix, so-called serial, that trades more clock cycles
in the execution for a smaller area. This idea was later extended to the use of linear Feistel-like struc-
tures or Linear Feedback Shift Registers (LFSR) to build the diffusion matrix [21,23]. On the opposite
side, PRESENT [10] uses a simple bit permutation layer, the real diffusion coming in fact directly from
the S-box application. The advantage being of course that a bit permutation layer is basically free in
a hardware implementation. Now, one may ask the following question: what is better when the goal is
to maximize some hardware metric, a very weak diffusion matrix with a low area footprint, or a strong
diffusion matrix but requiring more silicon to be performed?

More generally, many different trade-offs exist when building an AES-like Substitution-Permutation
Network (SPN) primitive, such as the general geometry (number of lines and columns), what size of
S-box, what type of matrix, with what branching number, in what finite field, with which irreducible
polynomial, etc. When a cryptographer would like to design a permutation with a specific hardware
efficiency metric in mind, it is not trivial for him to make the best construction choices directly. Since
implementing many different trade-offs is very time consuming, he will have to rely on his own intuition
when picking the basic building blocks and choosing the general structure of the primitive, therefore
accepting that his final design might not be optimal.

Our contributions. In this article, we study the problem of designing hardware efficient permutations
for lightweight symmetric key cryptography purposes, and we propose new promising diffusion matrices
as building blocks. We first explain in Section 2 the family of functions that we will study, namely AES-
like SPN permutations, and we describe a new generalized diffusion layer (i.e. the ShiftRows function
in AES), that allows a provable optimal diffusion even for non-square internal state matrices. Then, we
introduce in Section 3 a new metric, the figure of adversarial merit (FOAM), that for the first time takes
into account the inherent security provided by the primitive. We then explain in Section 4 the various
SPN design tradeoffs that we will consider for our comparisons, such as the geometry of the SPN, the
S-box size, the type of matrix (circulant or serial), the field size for the diffusion or even the irreducible
polynomial. The goal being that the designer only has to input the type of implementation (round and/or
serial) and the size of the permutation he would like to build, and he can directly get the SPN structure
and its internal components that are the best suited for him. We study in Section 5 the security of the
AES-like SPN permutations by only taking in account simple linear/differential attacks. We then describe
how one can estimate the hardware implementations efficiency in Section 6 and in particular the non
trivial task of estimating the area consumption induced by the control logic. Moreover, we show that
in some situations, a coefficient rewrapping trick can be used to significantly improve the efficiency of a
diffusion matrix. We chose to focus our work on designing permutations only since many cryptographic
primitives can be built from them. Therefore, we will not cover other components such as key schedule
for a block cipher, or message expansion for a hash function. Moreover, due to the obviously vast amount
of implementation trade-offs, we restricted ourselves to the two most important cases: fully serialized
and round-based.

Finally, the results obtained by our analysis are given in Section 7, with the best diffusion matrices
and SPN parameters we could find for many different scenarios. Notably, we show that the diffusion
matrices of ciphers such as AES, LED or PHOTON are not the best possible choices. For example, in the
case of AES encryption, a circulant matrix with coefficients (0x01,0x01,0x04,0x8d) would have been,
surprisingly, a better choice in terms of implementation while keeping the same Maximum Distance
Separable (MDS) security.



2 Generic SPN with generalized optimal diffusion

In this section, we describe the family of AES-like SPN functions we are considering. Our scope is quite
classical, but we propose a new generalized diffusion layer (i.e. the ShiftRows function in AES), that
allows an optimal diffusion even for non-square internal state matrices.

2.1 Extended AES-like permutations

An n-bit AES-like SPN permutation transforms an r × c array of s-bit cells (n = r × c × s). During
one round, each cell is first transformed by an s-bit S-box (similar to the AES SubBytes operation).
Then each r-cell column is transformed by an r × r diffusion matrix (similar to the AES MixColumns

operation), followed by an optimal diffusion which permutes the c cells of each row to provide further
mixing (similar to the AES ShiftRows operation). Finally, an (r×c)-cell constant is XORred to complete
a round transformation (in a block-cipher design, this phase is a subkey addition, but we will not consider
key-schedules in this article). Note that in AES, we have a square array r = c = 4 and cell size s = 8-
bit. The diffusion matrix is usually defined over the finite field GF (2s) because of the s-bit cell size.
Sometimes, we might actually use a smaller subfield of size GF (2i), i divides s, in order to define the
diffusion matrix. This framework captures many known ciphers such as AES, PRESENT, LED, etc.

In this paper, a cell is called differentially (resp. linearly) active if its value (resp. mask value) is
non-zero in a differential (resp. linear) attack. The differential branch number of a diffusion matrix is
the minimum number of differentially active input and output cells (among all non-zero inputs). The
notion of linear branch number is similar, except that we consider the transpose of the diffusion matrix
instead. From this point onwards, we will not distinguish between differential and linear branch number
unless necessary. That is, if it is stated that a matrix has branch number, say, 3, we mean that both
the differential and linear branch number are 3. The maximum branch number for an r by r diffusion
matrix is r + 1, and a matrix which achieves this optimal branch number is called Maximum Distance
Separable (MDS). If the diffusion matrix has branch number r, then it is called almost-MDS.

2.2 The generalized optimal diffusion

In this section, we generalize the concept of optimal diffusion [15] for non-square state array. This has been
done already when r < c with a security bound equivalent to the case where r = c (square array) [15].
When r > c and c divides r, a simple generalization has been proposed in [13] where a 4-round security
bound is proven when the diffusion matrix is MDS. In this section, we propose a generalized optimal
diffusion for the case r > c where c may not divide r and the diffusion matrix may not be MDS, i.e. for
all branch number B ≤ r + 1.

An example of optimal diffusion is the ShiftRows operation of AES which helps to diffuse the effect of
the AES SubBytes and MixColumns operation over 32-bit to the whole 128-bit block. The AES ShiftRows

transforms a 4 × 4 byte-array by rotating row r to the left by r bytes, for r = 0, 1, 2, 3. The effect
of ShiftRows is that each byte of an input column is mapped to a different output column. This is
captured by the concept of optimal diffusion (another example is the ArrayTranspose map of the
SQUARE cipher [14]).

Definition 1. For an r-by-r cell-array, the optimal diffusion map is a cell-permutation that maps each
cell of an input column to a different output column.

However, the optimal diffusion only applies for r × c cell array where r ≤ c. When r > c, there are
not enough output columns c to map each of the r cells of an input column. Thus, we extend a new
concept from [13] called Generalized Optimal Diffusion (GOD) for r × c cell-array when r > c, which we
describe below. Our strategy is to distribute the cells of an input column as uniformly as possible to
each output column.

Note that here, without loss of generality, we apply the permutation operations from right-to-left, i.e. SC (SubCells) is
first applied, followed by MC (MixColumn) and then the optimal diffusion.
The Generalized Optimal Diffusion (GOD) defined in [13] applies only when r is a multiple c. Here, we deinfe GOD for any
r > c.



Definition 2. For an r × c cell-array, a generalized optimal diffusion is a cell-permutation such that
looking at any r-cell column:

1. dr/ce input cells are mapped to each of (r mod c) output columns.

2. br/cc input cells are mapped to each of c− (r mod c) output columns.

Example 1. Consider r = 5, c = 3. For each input column of 5 cells, d5/3e = 2 input cells are mapped
to each of (5 mod 3) = 2 columns. b5/3c = 1 input cell is mapped to 3− (5 mod 3) = 1 column. One
example is given by the transform of the following arrays:

a1 b1 c1
a2 b2 c2
a3 b3 c3
a4 b4 c4
a5 b5 c5

 maps to


a1 b1 c1
a2 b2 c2
c3 a3 b3
c4 a4 b4
b5 c5 a5


Theorem 1. Consider a 4-round AES-like SPN as follows (omitting the constant addition since it has
no effect on our reasoning):

GOD ◦ MC ◦ SC ◦ GOD ◦ MC ◦ SC ◦ GOD ◦ MC ◦ SC ◦ GOD ◦ MC ◦ SC,

where

1. SubCells is a nonlinear substitution layer with r × c s-bit S-boxes acting in parallel.

2. MixColumns is a layer of c parallel MixColumn transforms each mapping r cells to r cells with branch
number B, i.e. MixColumns(x1, . . . , xc) = (MixColumn(x1), . . . , MixColumn(xc)), each xi correspond-
ing to a column of r cells.

3. GOD (generalized optimal diffusion) is as defined above which distributes the r cells of an input column
almost uniformly to c output columns.

Then the number of active S-boxes over 1 and 2 rounds are at least 1 and B respectively. For 4 rounds
it is at least B ×B′ where B′ = max{2;x+ y} and:{

y = min{2× (r mod c)); bB/dr/cec}
x = d(B − dr/ce × y)/br/cce

We provide the proof of this theorem in Appendix A.1. We note that it is tight in the sense that
it naturally provides a 4 round path that corresponds to a “luckiest” scenario for the attacker, which
involves the minimum number of active Super-Sboxes (the (c×s)-bit S-boxes composed of two SubCells

layers surrounding one MixColumns).

Let us look at an application example of Theorem 1 to derive the number of active S-boxes of an
AES-like SPN structure, which cannot be deduced by the known results of [13,15]. Consider an SPN
structure with state size 24-cell, the diffusion matrices being an 8× 8 matrix with branch number 7, i.e.
r = 8, c = 3 and B = 7. By Theorem 1, we have y = 2 and x = 1, therefore B′ = max{2;x+ y} = 3 and
there are B ×B′ = 7× 3 = 21 active S-boxes guaranteed over 4 rounds of this 24-cell SPN structure.

As a corollary, we explore the cases when the formula for the number of active S-boxes over 4 rounds
can be simplified (the proof is given in Appendix A.2).

Corollary 1. In Theorem 1, we have the following special cases:

1. If c > r, then the number of active S-boxes over four rounds is at least B2 (known result from [15]).

2. If c divides r and B = r + 1, i.e. MixColumn is MDS, then the number of active S-boxes over four
rounds is at least (r + 1)× (c+ 1) (known result from [13]).

3. If c divides r and B = r, i.e. MixColumn is almost-MDS, then the number of active S-boxes over four
rounds is at least r × c.



3 FOAM: Figure Of Adversarial Merit

As explained in the introduction, the various trade-offs inherent in any design of a cryptographic primitive
make a fair and consistent comparison of software and hardware implementations thereof a challenging
task. For hardware implementations exist a few metrics, like the Area-Time (AT) product, which multi-
plies the area in Gate Equivalents (GE) occupied by the design with the number of clock cycles required
(the smaller the number, the more efficient is the design). Closely related is the hardware efficiency [11],
which divides the throughput at a given frequency by the area (hence the greater the number, the bet-
ter the design). In order to also address the area-power trade-off, [4] proposed a new Figure of Merit
(FOM): throughput divided by the area squared. The latter two metrics are frequency dependent, which
can complicate comparisons.

We propose a new metric called Figure of Adversarial Merit (FOAM) in order to resolve the afore-
mentioned shortcomings. It is defined as

FOAM(x) =
1

S(x)×A2

where S(x) and A are basically equivalent to special definitions of speed and area, respectively. More
precisely, S(x) denotes the speed of the cipher based on the number of rounds required to achieve a
certain security x against some set of attacks (in this article, we will later restrict ourselves to simple
differential/linear attacks). For a round-based permutation, it is defined as S(x) = p(x) × t where p(x)
represents the number of rounds required to achieve security x, and t the number of clock cycles to
perform one round. Moreover, for SPN-based primitives, we decompose the area requirements A into six
parts: the intermediate state memory cost Cmem, the S-boxes implementation cost Csbox, the diffusion
matrix implementation cost Cdiff , the constant addition Ccst, the control logic cost Clog, and the IO
logic cost Cio:

FOAM(x) =
1

S(x)×A2
=

1

p(x)× t× (Cmem + Csbox + Cdiff + Ccst + Clog + Cio)2

This FOAM metric will be useful to compare different design strategies, different building blocks
(such as diffusion matrices) with a simple value computation. Even better, we would like to roughly
compare all these possible design trade-offs without having the hassle to implement all of them: in
Section 6 we will detail how to estimate these six subparts of the area cost and the number t of clock
cycles required to perform one round. The value p(x) can be deduced by the number of active S-boxes
proven in Theorem 1 and the S-box cryptographic properties (see Section 5). Note that in the rest of
the paper, we consider that the security aimed by the designer is equal to the permutation size, i.e. we
are aiming at a security of 2n computations (thus p(x) = p(2n)).

4 Trade-offs considered

In this section, we explain all the various trade-offs we will consider when building an AES-like SPN
permutation. The goal being that a designer specifies a permutation bitsize n, the metric he would like
to maximize (area, FOAM), the degree up to which serial or round-based implementations are important,
and he directly obtains the best parameters to build his permutation.

The S-box. One of the first choice of the designer is the size of the S-box, and we will consider two
possible trade-offs: s = 4 and s = 8. Note that, for simplicity, we will consider that the S-box chosen
has perfect differential and linear properties relative to its size (one could further extend the trade-offs
to non-optimal but smaller S-boxes, but the search space being very broad we leave this as an open
problem).

The geometry of the internal state. When building an AES-like SPN permutation, one can consider
several internal state geometries (the values r and c). The classical case is a square state, like for AES.
However, depending on the diffusion matrices available, it might be worth considering more line-shaped
or column-shaped designs.



Diffusion matrix field size. The designer can choose the field size 2i in which the matrix computations
will take place. The classical case, like in AES, being that the field size for the diffusion matrix is the
same as the S-box. However, depending on the diffusion matrices available, it might be worth considering
designs with thinner diffusion layers but repeated several times. For example, in the case of AES, instead
of the MixColumns matrix one could use a 4× 4 diffusion matrix on GF (24) applied two times (one time
on the 4 MSB and one time on the 4 LSB of the 8-bit cells in the AES column). Overall, we will cover a
scope from binary matrices (in GF(2)) up to matrices on the same field size as the S-box (in GF (2s)).

Irreducible polynomial for the diffusion matrix field. Once the field size 2i is fixed, the designer
can choose the irreducible polynomial defining the field. For i = 1 and i = 2 only a single polynomial
exists, while for i = 4 at most 3 choices are possible (α4 +α+ 1, α4 +α3 + 1 and α4 +α3 +α2 +α+ 1).
For the i = 8 case, many polynomials are possible (this was already observed by [5]), thus in order to
focus the search space we will only consider the irreducible polynomial used in AES (α8 +α4 +α3 +α+1)
and in WHIRLPOOL hash function [7] (α8 + α4 + α3 + α2 + 1).

Type of diffusion matrix. The designer can choose what type of matrix he will implement, the
two main hardware-friendly types being circulant or serial. In the circulant case, the designer picks r
coefficients Z = (Z0, . . . , Zr−1) and the matrix Z is defined as

Z0 Z1 Z2 . . . Zr−2 Zr−1
Zr−1 Z0 Z1 . . . Zr−3 Zr−2
Zr−2 Zr−1 Z0 . . . Zr−4 Zr−3

. . . . . . . .

. . . . . . . .
Z1 Z2 Z3 . . . Zr−1 Z0


In the serial case, the designer picks r coefficients Z = (Z0, . . . , Zr−1) and the matrix Z is defined as

0 1 0 0 . . 0 0
0 0 1 0 . . 0 0
0 0 0 1 . . 0 0
. . . . . . . .
. . . . . . . .
0 0 0 0 . . 0 1
Z0 Z1 Z2 . . . Zr−2 Zr−1



r

The matrix therefore takes r operations to be computed.

Branching number of the diffusion matrix. In general, implementing a matrix with very good
diffusion property will cost more area and/or cycles than a weak one. For example, the AES matrix has
ideal MDS diffusion property, but certainly requires more area to implement than a simple binary matrix
with weaker properties. Since the former is bigger but stronger and the latter is smaller and weaker, it
is not clear which alternative will lead to the best FOAM. Therefore, the designer can choose between
a wide range of possibilities concerning the branching number B of the diffusion matrix, from B = 3 to
B = r + 1 (MDS).

5 Security assessment of AES-like primitives

The FOAM metric takes into account the security of the permutation with regards to simple differen-
tial/linear attacks. We would like to evaluate this security for the AES-like SPN permutations we are
considering. Theorem 1 gives us the minimal number of active S-boxes for a given number of rounds,

We note that the number of active S-boxes given by Theorem 1 is tight if the number of rounds is not equal to 3 modulo
4 (even in that case the theorem gives a very close estimation). This does not mean that the maximum differential and
linear characteristic probabilities computed are tight, since it is unknown how many active S-boxes can use the maximum
differential and linear characteristic probabilities at the same time (this remains an open problem).



and knowing the S-box cryptographic properties we can compute the maximum differential and linear
characteristic probabilities of our generic SPN ciphers easily. In other words, we can easily compute the
number of rounds p(x) = p(2n) required to achieve the aimed security 2n.

As stated before, for simplicity, in the rest of this article we will consider that the S-boxes have perfect
differential and linear properties: for a 4-bit S-box the maximum differential and linear characteristic
probabilities are 2−2 (e.g. PRESENT S-box), while for a 8-bit S-box the maximum differential and
linear characteristic probabilities are 2−6 (e.g. AES S-box). Of course, one can extend the trade-off by
considering other S-boxes, that might require a smaller area, but will have worse security properties.

We reuse the example from Section 2.2 (i.e. SPN structure with state size 24-cell, the diffusion matrix
being a 8 × 8 matrix with branch number 7) as an illustration. Previously, we know from Theorem 1
that there are at least 21 active S-boxes over 4 rounds of this SPN permutation. Suppose that 8-bit S-
boxes (i.e. s = 8) having maximum differential and linear probabilities 2−6 are used. Then the maximum
differential and linear characteristic probabilities over four rounds are upper-bounded by (2−6)21 = 2−126.

We are aware that other attacks rather than simple differential/linear might exist, some perhaps much
more complex and powerful (it would be interesting to give some generic description of various attacks
like impossible differential attack, boomerang attack, etc. only using the parameters of the AES-like SPN
permutation). However, our goal here is not to fully specify a permutation, but it is to compare many
trade-offs and design strategies that will lead to good hardware performances. Therefore, we emphasize
that the number of rounds p(x) is of course not the number of rounds that should be chosen by a designer.
This number should be carefully chosen after thorough cryptanalysis work on the entire primitive. Yet,
we believe that this simple differential/linear criterion is a quite accurate way to compare the security
of various AES-like SPN permutations.

6 Implementations in ASIC

In this section, we introduce some notation before we present formulas to estimate serialized and round-
based implementations (we restricted ourselves to these two important practical cases due to the obvi-
ously vast amount of implementation trade-offs). Please note that all estimates have to be seen as lower
bounds, as we use scan flip-flops, and consider neither reset nor I/O requirements, which can significantly
impact the area count in practice. We argue that those requirements –though very important in practice–
are highly application specific, and thus need to be determined on a case by case basis. In practice, a
higher throughout can be achieved by using pipelining techniques to reduce the critical path at the cost
of additional area. As this design goal is, again, highly application specific and FOAM is designed to be
frequency independent, we have not considered it in our analysis.

We have estimated all serial architectures with the single optimization goal of minimal area in mind.
In practice, some design decisions will most likely use another trade-off point more in favor of smaller
time and larger area. To reflect this, we have estimated all round-based architectures optimized for
maximum FOAM.

The table below provides an overview over the hardware building blocks we used, their notation and
typical area requirements for a UMC 180 nm technology. In addition, we denote i the exponent for the
field GF (2i).

Notation Description GE

DFF 1-input flip-flop 4.67

SFF 2-input flip-flop 6

MUX 2-input multiplexer 2.33

Notation Description GE

XOR 2-input exclusive Or 2.67

SB4 4 x 4 S-box (PRESENT) 22

SB8 8 x 8 S-box (AES) 233

In this section, we give more details about the ASIC implementation estimates given in Section 6. A
general serialized architectures using a serial diffusion matrix is depicted in Figure 1a, while Figure 1b
shows the circulant diffusion matrix module. In the special case of c = 1 the state module can be
simplified to one of the two the architectures shown in Figure 1c, dependent whether i 6= s (left) or i = s
(right). Finally, Figure 1d depicts a round-based architecture.

This is just one example for a technology and the area of the building blocks can be easily adapted for other technologies.



(a) Serialized using a serialized diffusion matrix, c ≥ 2
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(b) Circulant diffusion matrix
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(c) State modules for c = 1, i 6= s (left) and i = s (right)
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Fig. 1: Hardware architectures.

6.1 Serial architectures

Memory cost. The memory is arranged in an r × c array of s-bit cells. In case c ≥ 2 the two outer
columns need to be 2-input flip-flops SFF , while 1-input flip-flops DFF suffice for the remaining c− 2
internal columns. In case c = 1 it depends whether i 6= s or i = s. In the former case the whole state
consists of 2-input flip-flops, while in the latter case it suffices to use 1-input flip-flops for the upper r−1
rows and only use 2-input flip-flops for the last row.

Cmem =

{
s · (r − b isc) · SFF + b iscs ·DFF , c = 1

2 · s · r · SFF + s · r · (c− 2) ·DFF , c ≥ 2

S-boxes cost. We use the S-boxes of AES and PRESENT to estimate the area for 8-bit and 4-bit
S-boxes, respectively. In a UMC 180 nm technology they require SB8 = 233 GE and SB4 = 22 GE.

Csbox =

{
SB4 , s = 4
SB8 , s = 8

Diffusion matrix cost. A denotes the numbers of XORs required to implement the last row of the
serial or circulant matrix, and we provide an extensive list of good matrices and their XOR count in
Section 7. In case a serial matrix is used A XORs is all that is required to implement the diffusion matrix.



Once one column has been computed, all columns are rotated by one column to the left and the next
column can be processed. In case a circulant matrix is used, additional temporary storage of s × r − i
1-input flip-flops are required before the result is fed back to the leftmost column. Then all columns are
rotated by one column to the left. One additional i-bit multiplexer is required.

Cdiff =

{
A ·XOR , for serial mat.

A ·XOR+ (s · r − i) ·DFF + i ·MUX , for circulant mat.

Constant addition cost. To add a constant s XOR gates are required.

Ccst = s ·XOR

Control logic cost. A particular challenge is to estimate the control logic Clog required for a given
architecture. Our estimates contain four parts: three counters ar (rows), ac (columns), and ap (rounds);
the finite state machine b; clock gating logic cg; and other combinational logic oc. The area for counters
is mainly determined by the storage required for the minimal number of bits, some simple (e.g. NOT,
NAND, NOR) feedback function and at least a 1-bit MUX. In total we estimate the area for any such
counter to be ax = DFF ×dlog2(x)e+5, where x denotes either the number of rows, columns or rounds.
The number of states is dependent on the geometry. In case c ≥ 2 the serialized architecture we based
our estimates on requires c − 1 states for GOD, two for MixColumns, and each one for SubCells, IDLE,
and INIT; thus in total c + 4 states are required. The area for the finite state machine is estimated
with bx = SFF × dlog2(c+ 4)e. Based on post-synthesis figures for different variants of PHOTON we have
derived the following formulas for clock gating (cg) and other combinational logic (oc): cg = r × 10 + 5
and oc = 8× r+ 20, respectively. In case c = 1 no clock gating logic, no column counter ac, and only one
state is required for MixColumns, thus the state machine estimates simplify to b = SFF × 2. In total we
get the following formula:

Clog =

{
ar + ap + SFF · 2 + oc , c = 1

ar + ac + ap + b+ cg + oc , c ≥ 2

Input/Output logic cost. For our serialized architecture we need only one additional s-bit multiplexer.

Cio = s ·MUX

Timing cost. Below are the formulas to estimate the time required to compute one round, dependent
on the geometry and whether a serial or a circulant matrix is used:

t =


r · c+ (c− 1) + ( si · r + 1− b isc) · c , c ≥ 2 serial mat.

r · c+ (c− 1) + (2 · si · r) · c , c ≥ 2 circulant mat.
r · c+ s

i · r , c = 1 serial mat.
r · c+ (2 · si · r − 1) , c = 1 circulant mat.

For c ≥ 2 the three summands represent the time required for: 1) AddConstant and SubCells; 2)
GOD; 3) MixColumns. Please note that in case a serial matrix is used and i = s, it is possible to optimize
the architecture in a way that for no extra hardware c clock cycles can be saved per round [1]. In case
c = 1 there is no GOD and the first summand stays the same, while MixColumns does not require to rotate
the columns regardless whether a circulant or serial diffusion matrix is used.

6.2 Round-based architectures

Memory cost. The n = s× r × c-bit state can be stored in 2-input flip-flops.

Cmem = s · r · c · SFF



S-boxes cost. In total r × c S-boxes are required.

Csbox =

{
r · c · SB4 , s = 4
r · c · SB8 , s = 8

Diffusion matrix cost. We need r × c × s
i implementations of the last row of the matrix regardless

whether a serial or circulant matrix is used.

Cdiff = A · r · c · s
i
·XOR

Constant addition cost. In total s× r × c XORs are required to add all constants.

Ccst = s · r · c ·XOR

Control logic cost. In a round-based implementation basically only a round-counter ap and -optionally-
a very simple finite state machine is required. If we assume only three states IDLE, INIT, and ROUND,
the area requirement for the finite state machine is b = 2 · SFF .

Clog = ap + b

Input/Output logic cost. One of the two inputs of the 2-input flip-flops used to store the state can
be used for multiplexing the input. Hence, no additional logic is required

Cio = 0

Timing cost. In a round-based implementation one round is computed in one clock cycle.

t = 1

We now present the formulas for the estimates for the various parts of the ASIC implementations in
Table 1.

6.3 Discussion

Table 2 compares FOAM of some real implementations of LED and PHOTON with our estimated FOAM.
Please note that the authors of [17] and [16] did not use the special optimization trick, described above.
To reflect this, we provide two FOAMs, one taking the optimization into account and one which does not.
For LED [17] reports 966 GE for LED-64, where 299 GE are required to store the key state and around 40
GE are required for the key addition, multiplexers, and control logic. We thus compare with 627 GE. [20]
reports 2,400 GE for AES-128 out of which 835 GE are required for the key schedule, thus we compare
our FOAM to 1,565 GE. The authors chose a different optimization point, as can be seen in the higher
area and significantly lower cycle count. We used the formulas above with the parameters of PHOTON-224
(r = 8, c = 8, i = 4, s = 4, p = 8, serialized MDS) for the estimation of the 256-bit permutation. As
PHOTON is, contrary to LED, an unkeyed permutation, the last row of Table 2 is actually the best suited
comparison. In summary, Table 2 underlines how close FOAM is to real implementations.

Please note that this is an upper bound for serial matrices, as Z may have coefficients that require less XORs than r
times (Z0, . . . , Zr−1). At the same time is the critical path of the serial matrix around r times longer than the one for a
circulant matrix.
Note that it is not easy to compare to the implementation with a hard-wired key, as it is unclear how much area is
required for the selection multiplexer.



Table 1: ASIC implementations estimation for the intermediate state memory cost Cmem, the S-boxes
implementation cost Csbox, the diffusion matrix implementation cost Cdiff , the constant addition Ccst,
the control logic cost Clog, the IO logic cost Cio and the number t of clock cycles to perform one round.

Serial architectures Round-based architectures

Cmem

s · (r − b i
s
c) · SFF + b i

s
cs ·DFF , c = 1

2 · s · r · SFF + s · r · (c− 2) ·DFF , c ≥ 2
s · r · c · SFF

Csbox

SB4 , s = 4

SB8 , s = 8

r · c · SB4 , s = 4

r · c · SB8 , s = 8

Cdiff

A ·XOR , for serial mat.

A ·XOR+ (s · r − i) ·DFF + i ·MUX , for circulant mat.
A · r · c · s

i
·XOR

Ccst s ·XOR s · r · c ·XOR

Clog

ar + ap + SFF · 2 + oc , c = 1

ar + ac + ap + b+ cg + oc , c ≥ 2
ap + b

Cio s ·MUX 0

t

r · c+ (c− 1) + ( s
i
· r + 1− b i

s
c) · c , c ≥ 2 serial mat.

r · c+ (c− 1) + (2 · s
i
· r) · c , c ≥ 2 circulant mat.

r · c+ s
i
· r , c = 1 serial mat.

r · c+ (2 · s
i
· r − 1) , c = 1 circulant mat.

1

7 Results and new diffusion matrices

In this section we provide the results of our framework, as well as new diffusion matrices that are
very interesting for hardware implementations. As explained in Section 4, the designer’s input is the
permutation bitsize n, the metric he would like to maximize (area or FOAM), and the degree up to
which serial or round-based implementations are important. To illustrate our method, we focused on
the case where the designer would like to build a 64-bit permutation (which is a typical state size for
a lightweight block cipher). For the implementation types, we focused on three scenarios: only serial
implementation is important, only round-based implementation is important, serial and round-based
implementations are equally important for the designer.

Before describing our results, we first explain how we found good diffusion matrices (circulant and
serial) and then list these matrices in the next three subsections. Our optimal matrices outperform known
ones from the AES, LED ciphers and the PHOTON hash function.

7.1 Lightweight coefficients

Consider the AES matrix, a circulant matrix with coefficients (0x01, 0x01, 0x02, 0x03) over GF (28)
defined by the irreducible polynomial α8 + α4 + α3 + α+ 1. The matrix appears to be very lightweight
due to the low Hamming weight of its entries. But surprisingly, we found an even lighter circulant matrix
over the same field with coefficients (0x01,0x01,0x04,0x8d). We now explain why this is so.

We first illustrate how to compute the number of XORs required to implement a multiplication by
a finite field element x. To do so, we use GF (28) defined by α8 + α4 + α3 + α + 1 as an example. Let
x = x7 · α7 + x6 · α6 + · · ·x1 · α + x0 = (x7, x6, · · · , x1, x0). Further, for ease of explanation, we employ
hexadecimal encoding: (x7, x6, x5, x4, x3, x2, x1, x0) can be encoded as a tuple of hexadecimal numbers

We use the binary representation to represent finite field elements. E.g., 0x8d is 10001101 in binary, which corresponds
to the finite field element α7 + α3 + α2 + 1 in GF (28).



Table 2: Comparison of estimated FOAM with real implementations.

Bits Permutation p ts Area FOAM Notes

64
Table 7 row 3 8

35 586 10.39 using optimization trick

39 586 9.33 not optimized

LED-64 [17] 39 627 8.09 Area /wo key schedule

Difference +7.0% -13.3%

256
PHOTON-224 8

135 1842 0.27 using optimization trick

143 1842 0.26 not optimized

PHOTON-224 [16] 143 1735 0.29

Difference -5.6% +12.7%

(0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01). Then, the multiplication of 0x04 and 0x08 by x can
be represented respectively as:

0x04 · x =(x5, x4, x3 + x7, x2 + x6 + x7, x1 + x6, x0 + x7, x6 + x7, x6)

=(0x20, 0x10, 0x88, 0xc4, 0x42, 0x81, 0xc0, 0x40),

0x08 · x =(x4, x3 + x7, x2 + x6 + x7, x1 + x5 + x6, x0 + x5 + x7, x6 + x7, x5 + x6, x5)

=(0x10, 0x88, 0xc4, 0x62, 0xa1, 0xc0, 0x60, 0x20).

It can be seen that the number of XORs required for the multiplication of 0x04 and 0x08 by x is 6 and
9 respectively. Now we can compute

0x8d · x = (α7 + α3 + α2 + 1) · x
= (0xb1, 0x58, 0x2c, 0x96, 0xfa, 0x4c, 0xa6, 0x62)

⊕(0x10, 0x88, 0xc4, 0x62, 0xa1, 0xc0, 0x60, 0x20)

⊕(0x20, 0x10, 0x88, 0xc4, 0x42, 0x81, 0xc0, 0x40)

⊕(0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01)

= (0x01, 0x80, 0x40, 0x20, 0x11, 0x09, 0x04, 0x03)

= (x0, x7, x6, x5, x0 + x4, x0 + x3, x2, x0 + x1)

Due to the ’cancellation of XORs’, we see that multiplication of x by 0x8d requires only 3 XORs.
Similarly, the multiplication of x by 0x02 and 0x03 requires 3 and 11 XORs respectively.

In a similar fashion, for the purpose of finding lightweight diffusion matrices, we compute the XOR
count for each field element. Table 3 and Table 4 shows the XOR count for every element of the finite
fields GF (24) and GF (28) defined by different irreducible polynomials, respectively.

Now we explain how to use the tables to calculate the number of XORs required to implement a row
of a matrix, as denoted by A in Section 6. Denote a given row of an r × r matrix by (x1, x2, · · ·xr) over
a finite field GF (2i). Let γj be the XOR count in Table 3 and Table 4 (i = 4 and i = 8 respectively)
corresponding to the field element xj . Then A is equal to (γ1+· · ·+γr)+(z−1)·i, where z is the number of
non-zero elements in the row. We give some examples: row (0x1,0x1,0x4,0x9) uses (0 + 0 + 2 + 1) + 3× 4
= 15 XORs to implement over GF (24); the AES matrix with coefficients (0x01,0x01,0x02,0x03) uses
(0 + 0 + 3 + 11) + 3 × 8 = 38 XORs to implement per row over GF (28); the circulant matrix with
coefficients (0x01,0x01,0x04,0x8d) uses (0 + 0 + 6 + 3) + 3 × 8 = 33 XORs to implement per row over
GF (28). This explains why the circulant matrix with coefficients (0x01,0x01,0x04,0x8d) is lighter than
the AES matrix.

For a fair comparison, when decryption also needs to be lightweight, it is to be noted that this
matrix presents less interesting inverse coefficients (0x71,0x12,0xdd,0x20) compared to the ones in the
AES diffusion matrix inverse (0x11,0x13,0x09,0x14). According to Table 4, the former matrix requires 98
XORs, while the latter requires 70 XORs to be implemented.



Table 3: XORs required to implement a multiplication by x over GF (24) using different irreducible
polynomials.

x α4 + α+ 1 α4 + α3 + 1 α4 + α3 + α2 + α+ 1

0 0 0 0

0x1 0 0 0

0x2 1 1 3

0x3 5 3 5

0x4 2 3 3

0x5 6 5 5

0x6 5 2 6

0x7 9 6 6

0x8 3 6 3

0x9 1 8 5

0xa 8 5 6

0xb 6 9 6

0xc 5 1 6

0xd 3 5 6

0xe 8 6 5

0xf 6 8 3

7.2 Subfield construction

In this section, we describe the subfield construction which allows us to outperform the AES matrix
even more than the optimal matrix found in Section 7.1. As computed in the previous subsection, the
MDS circulant matrix circ(0x1, 0x1, 0x4, 0x9) over GF (24) defined by α4 + α + 1 requires 15 XORs to
implement per row. Using the method of [13, Section 3.3], we can form a circulant MDS matrix over
GF (28) by using two parallel copies of Q = circ(0x1, 0x1, 0x4, 0x9) over GF (24). The matrix is formed
by writing each byte qj as a concatenation of two nibbles qj = (qLj ||qRj ). Then the MDS multiplication is

computed on each half (uL1 , u
L
2 , u

L
3 , u

L
4 ) = Q · (qL1 , qL2 , qL3 , qL4 ) and (uR1 , u

R
2 , u

R
3 , u

R
4 ) = Q · (qR1 , qR2 , qR3 , qR4 )

over GF (24). The result is concatenated to form four output bytes (u1, u2, u3, u4) where uj = (uLj ||uRj ).
This matrix needs just 15 × 2 = 30 XORs to implement per row. In comparison, the lightest MDS
circulant matrix circ(0x01,0x01,0x04,0x8d) over GF (28) defined by α8 + α4 + α3 + α+ 1 requires more
XORs (33 XORs per row).

Further, we can serialize the above multiplication to do the left half followed by the right half, in
which case only 15 XORs are needed to implement one row of the MDS matrix over GF (28). Another
advantage of subfield construction is exemplified by the SPN-Hash construction [13]. It is difficult to find
an 8 × 8 serial MDS matrix over GF (28) exhaustively. Instead, two parallel copies of the PHOTON 8 × 8
serial MDS matrix over GF (24) were concatenated to form the 8× 8 serial MDS matrix over GF (28) for
SPN-Hash.

It is straightforward to generalize this method to form a diffusion matrix with branch number B over
GF (2s) from s/i copies of a diffusion matrix of the same branch number over a subfield GF (2i), where
i divides s.

7.3 Good matrices

In this section, we list optimal low-weight circulant and serial matrices of different branch number over
the finite fields GF (2), GF (22), GF (24) and GF (28). Using the construction of Section 7.2, we can form
diffusion matrices to transform nibbles and bytes from these subfields.

The optimal matrices are found by exhaustively checking the branch number of all matrices and
choosing the one with the least number of XORs according to the method explained in Section 7.1. To

This idea of subfield construction was used in the SHA3 submission ECHO [8] and later in WHIRLWIND [6] and SPN-Hash [13].



Table 4: XORs required to implement a multiplication by x over GF (28) using different irreducible
polynomials. 11b and 11d denote α8 + α4 + α3 + α+ 1 and α8 + α4 + α3 + α2 + 1 respectively

x 11b 11d x 11b 11d x 11b 11d x 11b 11d x 11b 11d x 11b 11d x 11b 11d x 11b 11d

0 0 0 0x20 16 16 0x40 19 19 0x60 23 19 0x80 22 21 0xa0 28 29 0xc0 27 20 0xe0 25 24

0x01 0 0 0x21 14 14 0x41 27 15 0x61 21 25 0x81 16 29 0xa1 32 27 0xc1 21 16 0xe1 29 30

0x02 3 3 0x22 13 13 0x42 16 16 0x62 30 26 0x82 27 16 0xa2 27 30 0xc2 22 25 0xe2 30 19

0x03 11 11 0x23 11 11 0x43 24 12 0x63 28 32 0x83 21 24 0xa3 31 28 0xc3 16 21 0xe3 34 25

0x04 6 6 0x24 22 26 0x44 17 17 0x64 17 17 0x84 18 17 0xa4 24 21 0xc4 31 28 0xe4 25 32

0x05 14 14 0x25 20 24 0x45 25 13 0x65 15 23 0x85 12 25 0xa5 28 19 0xc5 25 24 0xe5 29 38

0x06 13 13 0x26 19 23 0x46 10 10 0x66 24 24 0x86 27 12 0xa6 23 26 0xc6 30 33 0xe6 30 31

0x07 21 21 0x27 17 21 0x47 18 6 0x67 22 30 0x87 21 20 0xa7 27 24 0xc7 24 29 0xe7 34 37

0x08 9 9 0x28 25 21 0x48 22 30 0x68 26 26 0x88 21 20 0xa8 27 20 0xc8 20 17 0xe8 10 21

0x09 17 17 0x29 23 19 0x49 30 26 0x69 24 32 0x89 15 28 0xa9 31 18 0xc9 14 13 0xe9 14 27

0x0a 18 16 0x2a 24 18 0x4a 21 27 0x6a 31 29 0x8a 28 15 0xaa 24 25 0xca 13 26 0xea 17 16

0x0b 26 24 0x2b 22 16 0x4b 29 23 0x6b 29 35 0x8b 22 23 0xab 28 23 0xcb 7 22 0xeb 21 22

0x0c 15 15 0x2c 31 27 0x4c 20 24 0x6c 28 16 0x8c 9 12 0xac 23 12 0xcc 24 25 0xec 18 25

0x0d 23 23 0x2d 29 25 0x4d 28 20 0x6d 26 22 0x8d 3 20 0xad 27 10 0xcd 18 21 0xed 22 31

0x0e 20 22 0x2e 30 28 0x4e 15 21 0x6e 33 23 0x8e 20 3 0xae 20 17 0xce 21 30 0xee 25 20

0x0f 28 30 0x2f 28 26 0x4f 23 17 0x6f 31 29 0x8f 14 11 0xaf 24 15 0xcf 15 26 0xef 29 26

0x10 12 12 0x30 20 18 0x50 27 25 0x70 23 23 0x90 22 35 0xb0 36 29 0xd0 27 28 0xf0 25 34

0x11 12 12 0x31 26 24 0x51 27 29 0x71 29 21 0x91 24 35 0xb1 32 35 0xd1 29 32 0xf1 21 32

0x12 19 21 0x32 17 17 0x52 24 20 0x72 26 32 0x92 31 28 0xb2 35 32 0xd2 22 31 0xf2 34 31

0x13 19 21 0x33 23 23 0x53 24 24 0x73 32 30 0x93 33 28 0xb3 31 38 0xd3 24 35 0xf3 30 29

0x14 22 18 0x34 26 24 0x54 25 19 0x74 13 21 0x94 22 27 0xb4 32 21 0xd4 31 28 0xf4 29 38

0x15 22 18 0x35 32 30 0x55 25 23 0x75 19 19 0x95 24 27 0xb5 28 27 0xd5 33 32 0xf5 25 36

0x16 29 27 0x36 27 19 0x56 22 14 0x76 20 26 0x96 31 24 0xb6 27 24 0xd6 26 35 0xf6 34 35

0x17 29 27 0x37 33 25 0x57 22 18 0x77 26 24 0x97 33 24 0xb7 23 30 0xd7 28 39 0xf7 30 33

0x18 17 17 0x38 21 23 0x58 34 28 0x78 26 34 0x98 21 26 0xb8 31 24 0xd8 28 13 0xf8 22 31

0x19 17 17 0x39 27 29 0x59 34 32 0x79 32 32 0x99 23 26 0xb9 27 30 0xd9 30 17 0xf9 18 29

0x1a 26 22 0x3a 16 22 0x5a 29 23 0x7a 31 39 0x9a 28 19 0xba 32 31 0xda 25 20 0xfa 29 28

0x1b 26 22 0x3b 22 28 0x5b 29 27 0x7b 37 37 0x9b 30 19 0xbb 28 37 0xdb 27 24 0xfb 25 26

0x1c 19 23 0x3c 27 33 0x5c 32 26 0x7c 24 32 0x9c 13 22 0xbc 27 24 0xdc 32 21 0xfc 34 39

0x1d 19 23 0x3d 33 39 0x5d 32 30 0x7d 30 30 0x9d 15 22 0xbd 23 30 0xdd 34 25 0xfd 30 37

0x1e 28 32 0x3e 26 32 0x5e 27 25 0x7e 33 37 0x9e 20 15 0xbe 24 27 0xde 29 28 0xfe 37 32

0x1f 28 32 0x3f 32 38 0x5f 27 29 0x7f 39 35 0x9f 22 15 0xbf 20 33 0xdf 31 32 0xff 33 30



check the branch number of matrix Q, we concatenate it with the identity matrix Ir to form (Ir|Q), the
generating matrix of the corresponding linear code, and use the MAGMA software to find the distance.
When we say a matrix has branch number B, we mean the matrix has both differential and linear branch
number equal to B. That is, we check that both Q and its transpose Qt has branch number B.

We are aware that better techniques than naive exhaustive search might be used here. However, such
improvements are not the goal of this article and we leave them as potential future work.

Circulant matrices. In Table 5, we list optimal r × r circulant matrices with branch numbers 3 to
r + 1. The “First Row” column represents the first row of the circulant matrix (as described in Section
4). The “Number of XORs” column represents the number of XOR gates needed to implement one row
of the circulant matrix.

The matrices are optimal in the sense that they need minimal number of XORs to implement. In
the events of a tie between two matrices, possibly over different finite field representations, we just list
one of them. For example, the circulant matrices circ(0x01,0x01,0x04,0x8d) over GF (28) defined by
α8 +α4 +α3 +α+ 1 and circ(0x01,0x01,0x04,0x8e) over GF (28) defined by α8 +α4 +α3 +α2 + 1 both
outperforms the AES matrix by using 33 XORs to implement one row, so we just list the latter. We use
“-” to represent that no circulant matrix with branch number B exists (verified either by exhaustive
search or by coding theory bounds). For example, it can be verified that 8 × 8 circulant MDS matrix
does not exist in the finite field GF (24).

The only exception where we did not find the optimal matrix is for 8 × 8 circulant MDS matrix over
GF (28). Because the search space is too big to exhaust, we just list the WHIRLPOOL matrix which is MDS
and low weight.

Serial matrices. Here, in a similar fashion to the case of circulant matrices, we provide optimal
low-weight serial matrices of various branch numbers over different finite fields.

In Tables 5, we list optimal r × r serial matrices with branch numbers 3 to r + 1. The “Last Row”
column represents the last row of the serial matrix (as described in Section 4). The “Number of XORs”
column represents the number of XOR gates needed to implement the last row. Again, we simply list
one matrix in the event of a tie, and use “-” to represent that no serial matrix with branch number B
exists. In addition, we use “*” to denote that we have not found the serial matrix with branch number
B at this point of time due to the huge search space. For instance, as the search space is too big to
exhaust, we could not find a 8 × 8 serial MDS matrix over GF (28). In this case, we can employ the
method of subfield construction (described in Section 7.2), i.e. use two parallel copies of the 8 × 8 MDS
serial matrix with last row (0x2,0xd,0x2,0x4,0x3,0xd,0x5,0x2) (refer to second row of 8 × 8 subtable of
Table 5) over GF (24) to obtain the desired 8 × 8 serial MDS matrix over GF (28).

Note that the special structure of the serial matrices leads to the fact that only XORs for the last
row are required. In particular, for an r × r serial matrix, we just need to implement the last row as an
LFSR feedback function and iterate it r times to obtain the required matrix multiplication. This tactic
has been adopted in [16,17] to define the PHOTON and LED MDS matrices over GF (24) respectively. The
last rows of the serial matrices are (0x2,0x4,0x2,0xb,0x2,0x8,0x5,0x6) and (0x4,0x1,0x2,0x2) respectively,
which require 53 and 16 XORs to implement per row. In fact, we have found lighter serial matrices over
the same finite field: 8 × 8 serial matrix with last row (0x2,0xd,0x2,0x4,0x3,0xd,0x5,0x2) requiring 50
XORs; and 4 × 4 serial matrix with last row (0x2,0x1,0x1,0x4) requiring 15 XORs (refer to 4 × 4 and
8× 8 subtables of Table 5).

7.4 Application: FOAM Comparison for 64-bit SPN Structures

In this section, we compare the FOAM metric for 64-bit SPN Structures (a typical blocksize for lightweight
block ciphers). Table 6 (resp. Table 7) gives the results for a SPN structure based circulant matrices
(resp. serial matrices) and with 4-bit PRESENT S-box or 8-bit AES S-box. The diffusion matrices are based
on the optimal matrices found in Section 7.3. To compute p(264), the number of rounds to achieve differ-
ential/linear probability ≤ 2−64, we use the fact that the differential/linear probability of the PRESENT

S-box is 2−2 and that of the AES S-box is 2−6. Then we lower bound the number of active S-boxes by
concatenating 4-round bounds with B × B′ active S-boxes from Theorem 1, 2-round bounds with B



Table 5: Good circulant and serial matrices of Size 2 × 2, 4 × 4 and 8 × 8

2 × 2

Finite Field

Branch Circulant matrices Serial matrices

Number First Row Number of Last Row Number of

B (hexadecimal) XORs A (hexadecimal) XORs A

GF (28), α8 + α4 + α3 + α2 + 1 3 1,2 11 1,2 11

GF (24), α4 + α+ 1 3 1,2 5 1,2 5

GF (22), α2 + α+ 1 3 1,2 3 1,2 3

GF (2) 3 - - - -

4 × 4

Finite Field

Branch Circulant matrices Serial matrices

Number First Row Number of Last Row Number of

B (hexadecimal) XORs A (hexadecimal) XORs A

5 1,1,4,8e 33 1,2,1,4 33

GF (28), α8 + α4 + α3 + α2 + 1 4 1,1,1,0 16 1,0,2,1 19

3 1,0,0,2 11 1,0,0,1 8

5 1,1,4,9 15 2,1,1,4 15

GF (24), α4 + α+ 1 4 1,1,1,0 8 1,0,2,1 9

3 1,0,0,2 5 1,0,0,1 4

5 - - - -

GF (22), α2 + α+ 1 4 1,1,1,0 4 1,0,2,1 5

3 1,0,0,2 3 1,0,0,1 2

5 - - - -

GF (2) 4 1,1,1,0 2 - -

3 - - 1,0,0,1 1

8 × 8

Finite Field

Branch Circulant matrices Serial matrices

Number First Row Number of Last Row Number of

B (hexadecimal) XORs A (hexadecimal) XORs A

9 1,1,4,1,8,5,2,9 105 * *

8 1,0,1,1,2,2,1,8e 57 1,1,2,0,1,8d,2,1 57

7 1,0,0,1,1,1,2,8e 46 1,1,2,1,0,0,1,8d 46

GF (28), α8 + α4 + α3 + α2 + 1 6 1,0,0,0,1,1,1,2 35 1,1,0,0,1,1,2,0 35

5 1,0,0,0,0,1,1,2 27 1,0,0,1,1,1,0,0 24

4 1,0,0,0,0,0,1,1 16 1,0,0,0,0,1,1,0 16

3 1,0,0,0,0,0,0,2 11 1,0,0,0,0,0,1,0 8

9 - - 2,d,2,4,3,d,5,2 50

8 1,0,1,1,2,9,2,1 27 * *

7 1,0,0,1,1,1,2,9 22 1,0,2,1,1,1,2,0 22

GF (24), α4 + α+ 1 6 1,0,0,0,1,1,1,2 17 1,1,0,0,1,1,2,0 17

5 1,0,0,0,0,1,1,2 13 1,0,0,1,1,1,0,0 12

4 1,0,0,0,0,0,1,1 8 1,0,0,0,0,1,1,0 8

3 1,0,0,0,0,0,0,2 5 1,0,0,0,0,0,1,0 4

GF (22), α2 + α+ 1

9 - 8 - - - -

7 - - 2,1,0,3,1,2,0,1 13

6 1,0,0,0,1,1,1,2 9 1,0,0,1,1,1,0,2 9

5 1,0,0,0,0,1,1,2 7 1,0,0,1,1,1,0,0 6

4 1,0,0,0,0,0,1,1 4 1,0,0,0,0,1,1,0 4

3 1,0,0,0,0,0,0,2 3 1,0,0,0,0,0,1,0 2

GF (2)

9 - 6 - - - -

5 - - 1,0,0,1,1,1,0,0 3

4 1,0,0,0,0,0,1,1 2 1,0,0,0,0,1,1,0 2

3 - - 1,0,0,0,0,0,1,0 1



active S-boxes and 1-round bound which involves only 1 active S-box. We also write down t, the time
to compute one round for serialized implementation (the time t for round based implementation is the
constant 1, so it is not presented).

We compute the FOAM for round-based and serialized implementation based on the formula found
in Section 6. We also present the FOAM for half-half implementation, where we take the average, i.e.
equal weighting, of the round-based and serialized FOAM. This corresponds to implementations which
are good for both scenarios. However, please note that this represents just one example, as the weighting
of the scenarios is clearly a designer’s choice. The structure with the best area and FOAMs are presented
in bold font.

We see that for designing 64-bit SPN:

1. For minimal area the geometry is the most important criterion, while the choice of the field of
the MDS matrix is of less importance. The geometry should be chosen, such that c is maximized,
and consequently, many internal columns can be realized with 1-input flip-flops. A serial matrix is
favorable over a circulant matrix and in general smaller fields allow to save a few GE, but come at a
high timing overhead.

2. When circulant matrices are used with PRESENT S-box in Table 6, the 4 × 4 almost-MDS circulant
matrix circ(0x1, 0x1, 0x1, 0x0) over GF (24) gives the best FOAM for round-based, serial and half-half
implementations.

3. When circulant matrices are used with AES S-box in Table 6, two parallel copies of the 4 × 4 MDS
circulant matrix circ(0x1, 0x1, 0x4, 0x9) over GF (24) defined by α4 + α + 1 gives the best FOAM
for round-based implementation. The 4× 4 MDS circulant matrix circ(0x01, 0x01, 0x04, 0x8e) over
GF (28) defined by α8+α4+α3+α2+1 gives the best FOAM for serial and half-half implementations.

4. When serial matrices are used with PRESENT S-box in Table 7, the 4 × 4 almost-MDS serial matrix
with last row (0x1, 0x0, 0x2, 0x1) over GF (24) defined by α4 + α + 1 gives the best FOAM for
round-based, serial and half-half implementations.

5. When serial matrices are used with AES S-box in Table 7, two parallel copies of the 4× 4 MDS serial
matrix with last row (0x2, 0x1, 0x1, 0x4) over GF (24) defined by α4 + α + 1 gives the best FOAM
for round-based implementation. The 8 × 8 serial matrix (having branch number 6) with last row
(0x01, 0x01, 0x00, 0x00, 0x01, 0x01, 0x02, 0x00) over GF (28) defined by α8 + α4 + α3 + α+ 1 gives
the best FOAM for serial and half-half implementations and is also very competitive for round-based
FOAMs. It is thus a very interesting choice for many different applications.

6. Structures based on PRESENT S-box have higher FOAM for round-based and half-half implementations
than those based on AES S-box. On the other hand, structures based on AES S-box have higher FOAM
for serial implementation than PRESENT S-box, because they need significantly less rounds.

7. For structures using both types of S-boxes, 4× 4 matrices have higher FOAM than 2× 2 and 8× 8
matrices.

8. Based on the above observations, we do not always go for the matrix with the best branch number:
for PRESENT S-box in Tables 6 and 7, we use almost-MDS 4× 4 matrix which gives better trade-offs
and a higher FOAM than MDS matrix. Moreover in Tables 6 and 7, when AES S-box is used with
8× 8 matrices, we go for the one with branch number 6 instead of the optimal 9.

7.5 Designs with Optimal FOAM for Different Block Sizes

In Section 7.4, we showed a detailed comparison table for all possible configurations of 64-bit SPN
structures based on AES and PRESENT S-box. From it, we extract the optimal design with the highest
FOAM, which gives the best trade-off between speed, area and security.

In this section, we apply the same computations to other common block sizes which are used in the
construction of block ciphers and hash functions. The block sizes we consider are 48, 64, 96, 128, 256
and 512 bits. For conciseness and ease of reference, we only list the best FOAM values for each of these
block sizes. In Table 8, we list the designs with the best FOAM values based on circulant matrices. In
Table 9, we list the designs with the best FOAM values based on serial matrices.

When computing Table 8, we found that out of the 19 configurations for 128-bit block size based on
AES S-box and circulant matrices, the best FOAM is given by a 4× 4 state array with an MDS matrix.
This corresponds to the AES block cipher structure and shows that the best design picked by our FOAM
measure corresponds to the best design picked by human intuition.



Table 6: FOAM for 64-bit SPN based on circulant matrices and 4-bit PRESENT S-box or 8-bit AES S-box
4-bit PRESENT S-box

Finite
r c B p(264) t

Area (GE) Area (GE) FOAM ×10−9 FOAM ×10−9 FOAM ×10−9

Field rd based serial rd based serial half-half

GF (24) 2 8 3 16 55 1156 541 46.76 3.88 25.32

GF (22) 2 8 3 16 87 1199 540 43.48 2.46 22.97

4 4 5 8 1579 652 50.16 5.77 27.96

GF (24) 4 4 4 8 51 1280 633 76.34 6.12 41.23

4 4 3 16 1156 630 46.76 3.09 24.92

GF (22)
4 4 4 8

83
1280 627 76.34 3.83 40.08

4 4 3 16 1199 629 43.48 1.90 22.69

GF (2) 4 4 4 8 147 1280 624 76.34 2.18 39.26

GF (24)

8 2 8 8

49

2091 873 28.58 3.35 15.96

8 2 7 10 1882 864 28.22 2.73 15.48

8 2 6 12 1669 851 29.92 2.35 16.14

8 2 5 14 1498 840 31.83 2.07 16.95

8 2 4 16 1284 827 37.89 1.87 19.88

8 2 3 22 1161 823 33.73 1.37 17.55

GF (22)

8 2 6 12

81

1712 834 28.45 1.48 14.96

8 2 5 14 1541 829 30.09 1.28 15.69

8 2 4 16 1284 821 37.89 1.15 19.52

8 2 3 22 1204 823 31.38 0.83 16.10

GF (2) 8 2 4 16 145 1284 818 37.89 0.64 19.27

8-bit AES S-box

Finite
r c B p(264) t

Area (GE) Area (GE) FOAM ×10−9 FOAM ×10−9 FOAM ×10−9

Field rd based serial rd based serial half-half

GF (28) 2 4 3 6 27 2685 822 23.12 9.14 16.13

GF (24) 2 4 3 6 43 2663 815 23.49 5.83 14.66

GF (22) 2 4 3 6 75 2706 815 22.76 3.35 13.05

4 2 5 4 3150 1029 25.19 9.44 17.32

GF (28) 4 2 4 6 25 2792 988 21.39 6.82 14.10

4 2 3 8 2685 975 17.34 5.26 11.30

4 2 5 4 3086 990 26.25 6.22 16.23

GF (24) 4 2 4 6 41 2792 976 21.39 4.26 12.82

4 2 3 8 2663 968 17.62 3.25 10.44

GF (22)
4 2 4 6

73
2792 970 21.39 2.42 11.91

4 2 3 8 2706 968 17.07 1.83 9.45

GF (2) 4 2 4 6 137 2792 967 21.39 1.30 11.34

8 1 9 4 4688 1336 11.38 6.09 8.73

8 1 8 4 3663 1208 18.63 7.45 13.04

8 1 7 4 3428 1179 21.28 7.82 14.55

GF (28) 8 1 6 4 23 3193 1149 24.52 8.23 16.38

8 1 5 5 3027 1133 21.83 6.78 14.31

8 1 4 6 2792 1103 21.39 5.95 13.67

8 1 3 8 2685 1090 17.34 4.58 10.96

GF (24)

8 1 8 4

39

3599 1148 19.30 4.86 12.08

8 1 7 4 3385 1135 21.82 4.98 13.40

8 1 6 4 3171 1121 24.86 5.10 14.98

8 1 5 5 3005 1115 22.14 4.12 13.13

8 1 4 6 2792 1102 21.39 3.52 12.45

8 1 3 8 2663 1094 17.62 2.68 10.15

GF (22)

8 1 6 4

71

3214 1105 24.20 2.89 13.54

8 1 5 5 3048 1104 21.53 2.31 11.92

8 1 4 6 2792 1096 21.39 1.95 11.67

8 1 3 8 2706 1093 17.07 1.47 9.27

GF (2) 8 1 4 6 135 2792 1093 21.39 1.03 11.21



Table 7: FOAM for 64-bit SPN based on serial matrices and 4-bit PRESENT S-box or 8-bit AES S-box
4-bit PRESENT S-box

Finite
r c B p(264) t

Area (GE) Area (GE) FOAM ×10−9 FOAM ×10−9 FOAM ×10−9

Field rd based serial rd based serial half-half

GF (24) 2 8 3 16 39 1156 513 46.76 6.09 26.42

GF (22) 2 8 3 16 63 1199 508 43.48 3.85 23.67

4 4 5 8 1579 586 50.16 10.39 30.27

GF (24) 4 4 4 8 35 1322 570 71.48 10.99 41.23

4 4 3 16 1113 561 50.41 5.66 28.04

GF (22)
4 4 4 8

55
1365 559 67.08 7.26 37.17

4 4 3 16 1113 556 50.41 3.67 27.04

GF (2) 4 4 3 16 87 1113 553 50.41 2.35 26.38

GF (24)

8 2 9 6

33

3074 794 17.64 8.01 12.82

8 2 7 10 1882 724 28.22 5.78 17.00

8 2 6 12 1669 711 29.92 5.00 17.46

8 2 5 14 1455 697 33.73 4.45 19.09

8 2 4 16 1284 687 37.89 4.02 20.95

8 2 3 22 1118 681 36.36 2.97 19.67

8 2 7 10 2053 700 23.72 4.00 13.86

8 2 6 12 1712 689 28.45 3.44 15.94

GF (22) 8 2 5 14 51 1455 681 33.73 3.02 18.37

8 2 4 16 1284 676 37.89 2.68 20.29

8 2 3 22 1118 675 36.36 1.95 19.16

8 2 5 14 1455 673 33.73 1.90 17.81

GF (2) 8 2 4 16 83 1284 671 37.89 1.67 19.78

8 2 3 22 1118 673 36.36 1.21 18.78

8-bit AES S-box

Finite
r c B p(264) t

Area (GE) Area (GE) FOAM ×10−9 FOAM ×10−9 FOAM ×10−9

Field rd based serial rd based serial half-half

GF (28) 2 4 3 6 19 2685 766 23.12 14.96 19.04

GF (24) 2 4 3 6 31 2663 750 23.49 9.56 16.53

GF (22) 2 4 3 6 47 2706 744 22.76 6.40 14.58

4 2 5 4 3150 898 25.19 18.22 21.71

GF (28) 4 2 4 6 17 2856 866 20.44 13.08 16.76

4 2 3 8 2621 836 18.20 10.51 14.36

4 2 5 4 3086 850 26.25 12.80 19.53

GF (24) 4 2 4 6 27 2834 839 20.75 8.77 14.76

4 2 3 8 2621 826 18.20 6.79 12.49

GF (22)
4 2 4 6

43
2877 828 20.13 5.65 12.89

4 2 3 8 2621 820 18.20 4.32 11.26

GF (2) 4 2 3 8 75 2621 818 18.20 2.49 10.35

GF (28)

8 1 8 4

16

3663 928 18.63 18.15 18.39

8 1 7 4 3428 899 21.28 19.35 20.32

8 1 6 4 3193 869 24.52 20.68 22.60

8 1 5 5 2963 844 22.79 17.53 20.16

8 1 4 6 2792 823 21.39 15.38 18.38

8 1 3 8 2621 802 18.20 12.15 15.18

GF (24)

8 1 9 4

24

4581 920 11.91 12.31 12.11

8 1 7 4 3385 845 21.82 14.59 18.20

8 1 6 4 3171 832 24.86 15.06 19.96

8 1 5 5 2963 823 22.79 12.30 17.54

8 1 4 6 2792 812 21.39 10.52 15.95

8 1 3 8 2621 802 18.20 8.10 13.15

8 1 7 4 3556 821 19.77 9.27 14.52

8 1 6 4 3214 810 24.20 9.52 16.86

GF (22) 8 1 5 5 40 2963 807 22.79 7.68 15.23

8 1 4 6 2792 802 21.39 6.48 13.93

8 1 3 8 2621 796 18.20 4.93 11.56

8 1 5 5 2963 799 22.79 4.35 13.57

GF (2) 8 1 4 6 72 2792 796 21.39 3.65 12.52

8 1 3 8 2621 794 18.20 2.76 10.48



Table 8: FOAM for different block sizes based on circulant matrices and 4-bit PRESENT S-box or 8-bit
AES S-box

4-bit PRESENT S-box

Block Finite
r c B p(264) t

Area (GE) Area (GE) FOAM ×10−9 FOAM ×10−9 FOAM ×10−9

Size Field rd based serial rd based serial half-half

GF (22) 2 6 3 12 65 908 465 101.06 5.92 53.49

48 GF (24) 2 6 3 12 41 876 466 108.59 9.35 58.97

GF (24) 4 3 5 8 38 1192 577 88.01 9.89 48.95

64
GF (22) 2 8 3 16 87 1199 540 43.48 2.46 22.97

GF (24) 4 4 4 8 51 1280 633 76.34 6.12 41.23

GF (22) 2 12 3 22 131 1785 699 14.26 0.71 7.49

96 GF (24) 4 6 5 8 77 2353 812 22.59 2.46 12.53

GF (24) 4 6 4 12 77 1909 798 22.88 1.70 12.29

GF (22) 2 16 3 29 175 2367 854 6.16 0.27 3.21

GF (24) 4 8 4 16 103 2533 947 9.74 0.68 5.21

128 GF (22) 4 8 4 16 167 2533 941 9.74 0.42 5.08

GF (2) 4 8 4 16 295 2533 938 9.74 0.24 4.99

GF (24) 8 4 8 8 99 4152 1176 7.25 0.91 4.08

GF (24) 2 32 3 58 223 4527 1468 0.84 0.04 0.44

256 GF (22) 2 32 3 58 351 4698 1468 0.78 0.02 0.40

GF (24) 8 8 8 8 199 8272 1785 1.83 0.20 1.01

512
GF (22) 2 64 3 115 703 9355 2678 0.099 0.002 0.051

GF (24) 8 16 8 16 399 16518 2996 0.229 0.017 0.123

8-bit AES S-box

Block Finite
r c B p(264) t

Area (GE) Area (GE) FOAM ×10−9 FOAM ×10−9 FOAM ×10−9

Size Field rd based serial rd based serial half-half

GF (22) 2 3 3 4 56 2033 735 60.50 8.26 34.38

48 GF (24) 2 3 3 4 20 2017 742 61.47 22.68 42.07

GF (28) 2 3 3 4 32 2001 736 62.46 14.43 38.44

GF (24) 2 4 3 6 43 2663 815 23.49 5.83 14.66

64
GF (22) 2 4 3 6 75 2706 815 22.76 3.35 13.05

GF (28) 4 2 5 4 25 3150 1029 25.19 9.44 17.32

GF (24) 4 2 5 4 41 3086 990 26.25 6.22 16.23

GF (24) 2 6 3 8 65 3980 975 7.89 2.02 4.96

96
GF (22) 2 6 3 8 113 4044 975 7.64 1.16 4.40

GF (28) 4 3 5 5 38 4717 1188 8.99 3.73 6.36

GF (24) 4 3 5 5 62 4621 1149 9.37 2.44 5.91

GF (24) 2 8 3 11 87 5301 1129 3.24 0.82 2.03

128
GF (22) 2 8 3 11 151 5386 1129 3.13 0.47 1.80

GF (28) 4 4 5 4 51 6274 1333 6.35 2.76 4.56

GF (24) 4 4 5 4 83 6146 1294 6.62 1.80 4.21

GF (24) 2 16 3 20 175 10570 1742 0.45 0.09 0.27

256
GF (22) 2 16 3 20 303 10741 1742 0.43 0.05 0.24

GF (24) 4 8 5 8 167 12270 1907 0.83 0.21 0.52

GF (28) 8 4 9 4 99 18673 2434 0.72 0.43 0.57

GF (24) 2 32 3 40 351 21105 2953 0.056 0.008 0.032

GF (22) 2 32 3 40 607 21447 2953 0.054 0.005 0.030

512 GF (28) 8 8 9 6 199 37324 3645 0.120 0.063 0.091

GF (28) 8 8 7 8 199 27243 3487 0.168 0.052 0.110

GF (24) 8 8 7 8 327 26901 3433 0.173 0.032 0.103



Table 9: FOAM for different block sizes based on serial matrices and 4-bit PRESENT S-box or 8-bit AES

S-box
4-bit PRESENT S-box

Block Finite
r c B p(264) t

Area (GE) Area (GE) FOAM ×10−9 FOAM ×10−9 FOAM ×10−9

Size Field rd based serial rd based serial half-half

GF (22) 2 6 3 12 47 908 433 101.06 9.47 55.26

48 GF (24) 2 6 3 12 29 876 438 108.59 14.97 61.78

GF (24) 4 3 5 8 26 1192 511 88.01 18.38 53.19

64
GF (22) 2 8 3 16 63 1199 508 43.48 3.85 23.67

GF (24) 4 4 4 8 35 1322 570 71.48 10.99 41.23

96
GF (22) 2 12 3 22 95 1785 666 14.26 1.08 7.67

GF (24) 4 6 5 8 53 2353 746 22.59 4.23 13.41

GF (22) 2 16 3 29 175 2367 854 6.16 0.27 3.21

128 GF (24) 4 8 5 12 103 3131 966 8.50 0.87 4.68

GF (24) 4 8 4 16 103 2618 950 9.12 0.67 4.89

GF (24) 2 32 3 58 159 4527 1468 0.84 0.05 0.45

256
GF (22) 2 32 3 58 255 4698 1468 0.78 0.03 0.41

GF (24) 8 8 9 8 135 12198 1842 0.84 0.27 0.56

GF (24) 8 8 7 12 135 7423 1776 1.51 0.20 0.85

GF (22) 2 64 3 115 703 9355 2678 0.099 0.002 0.051

512 GF (24) 8 16 9 16 399 24379 3057 0.105 0.017 0.061

GF (24) 8 16 6 30 399 13105 2974 0.194 0.009 0.102

8-bit AES S-box

Block Finite
r c B p(264) t

Area (GE) Area (GE) FOAM ×10−9 FOAM ×10−9 FOAM ×10−9

Size Field rd based serial rd based serial half-half

GF (22) 2 3 3 4 35 2033 665 60.50 16.15 38.33

48 GF (28) 2 3 3 4 14 2017 686 61.47 37.90 49.68

GF (24) 2 3 3 4 23 2001 670 62.46 24.18 43.32

GF (22) 2 4 3 6 47 2706 744 22.76 6.40 14.58

64 GF (24) 4 2 5 4 27 3086 850 26.25 12.80 19.53

GF (28) 8 1 6 4 16 3193 869 24.52 20.68 22.60

GF (22) 2 6 3 8 71 4044 905 7.64 2.15 4.90

96 GF (28) 4 3 5 5 26 4717 1057 8.99 6.88 7.94

GF (24) 4 3 5 5 41 4621 1009 9.37 4.79 7.08

GF (24) 2 8 3 11 87 5301 1129 3.24 0.82 2.03

128
GF (22) 2 8 3 11 151 5386 1129 3.13 0.47 1.80

GF (28) 4 4 5 4 51 6274 1333 6.35 2.76 4.56

GF (24) 4 4 5 4 83 6146 1294 6.62 1.80 4.21

GF (24) 2 16 3 20 175 10570 1742 0.45 0.09 0.27

256
GF (22) 2 16 3 20 303 10741 1742 0.43 0.05 0.24

GF (28) 4 8 5 8 103 12526 1946 0.80 0.32 0.56

GF (24) 4 8 5 8 167 12270 1907 0.83 0.21 0.52

GF (24) 2 32 3 40 351 21105 2953 0.056 0.008 0.032

512
GF (22) 2 32 3 40 607 21447 2953 0.054 0.005 0.030

GF (28) 8 8 7 8 199 27243 3487 0.168 0.052 0.110

GF (24) 8 8 7 8 327 26901 3433 0.173 0.032 0.103



8 Conclusion

We have introduced FOAM (Figure of Adversarial Merit) which for the first time allows comparison of
security-time-area trade-offs. Previous metrics, such as FOM only take into account the trade-off between
speed and power, or in other words implementation trade-offs. By integrating the cryptographic strength
(due to the vast amount of distinct attacks, we only took in account the simple but most meaningful
cryptanalysis techniques), FOAM enables a fairer comparison of the vast amount of design choices, thus
easing the optimization of designs for target applications. Implementation estimates are crucial at an
early design stage to make the right choices, as, e.g. for serialized architectures, the choice of the S-box
size, geometry, subfield and type of matrix leads to an area range from 508 GE to 1336 GE (×2.6). In
this work we have made a step into a generic hardware estimation metric that for the first time also
considers control logic, which is hard to estimate.

Furthermore, we have generalized the SPN structure from a square array to a rectangular array
which allows us to construct structures with more flexible sizes. A new bound for the number of active
S-boxes for such structures is proven in Theorem 1. We also introduced new ways to compute lightweight
coefficients of diffusion matrices, which we use to find circulant matrices which are lighter than the AES

matrix and serial matrices which are lighter than the LED and PHOTON matrices.

Possible future works include defining a similar FOAM for software, finding new ways to define
lightweight diffusion matrices (other than circulant and serial) and compute their FOAM. For example,
we can construct the FOAM for SPN structures using the diffusion matrices from [2], which are baesd on
BCH codes. Lastly, we need not limit ourselves to SPN structures, but also extend FOAM to different
Feistel and generalized Feistel structures such as CLEFIA, SMS4 and Skipjack structures.
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A Proof for number of active S-boxes in a GOD

A.1 Proof for Theorem 1

Proof. The case of 1 and 2 rounds being trivial (with a direct reasoning with the branching number B
of the diffusion layer), we will only give the proof for the 4-round case. We can interchange the order of
S-box and GOD and still get the same output because GOD is a cell-permutation. So we transform

GOD ◦ MC ◦ SC ◦ GOD ◦ MC ◦ SC ◦ GOD ◦ MC ◦ SC ◦ GOD ◦ MC ◦ SC

to
GOD ◦ MC ◦ GOD ◦ SC ◦ MC ◦ SC ◦ GOD ◦ MC ◦ GOD ◦ SC ◦ MC ◦ SC

This is the well-known SuperSbox structure for analyzing the number of active S-boxes in an SPN
structure, where SuperSbox = SubCells◦MixColumns◦SubCells and SuperMix = GOD◦MixColumns◦GOD.
The number of active S-boxes in an active SuperSbox is B.

SuperMix takes in c columns and output c columns, and the minimum number of active columns in
both input-output is its branch number B′. This implies there are at least B′ number of active SuperSbox
and B′×B number of active S-boxes in total. To lower bound the number of active input-output columns
in SuperMix, we concentrate on the MixColumns layer.

There is at least one active MixColumn among the c MixColumn transforms in Mix. This MixColumn

has B active cells in its input and output. The minimum number of active input-output columns after
propagating these B active cells in the forward and backward directions through the two GOD transforms
happens when there is a maximum number of columns taking dr/ce cells (call this y) with the rest of
the columns taking br/cc cells (call this x) from the active MixColumn. I.e. we want:

x× br/cc+ y × dr/ce = B, where x and y are integers.

Actually since x and y are integers, we can only get as close to B as possible. y is upper bounded by
2(r mod c) because by definition of GOD, there are at most (r mod c) columns in the input and output
taking dr/ce input cells each. It is also naturally upper bounded by bB/dr/cec for the integer equation
x×br/cc+y×dr/ce = B to be true. These are the only two upper bounds on y, so we take the minimum
of them to bound y.

Then x is just computed directly from y as (B−dr/ce×y)/br/cc. But since x may not be an integer,
we need to round it up by taking ceiling. Finally, there may be cases where x+y is 1 but branch number
is always lower bounded by 2. So we need to use max{2;x+ y} to compute B′.

A.2 Special cases in Corollary 1

Proof. 1. This is equivalent to the case c = r where the generalized optimal diffusion is an optimal
diffusion from [15]. For c = r, we have (r mod c) = 0 and y = 0, x = B from Theorem 1. So B′ = B
and number of active S-boxes at least B ×B′ = B2.

2. When c divides r, we have (r mod c) = 0 and y = 0, x = dB × c/re from Theorem 1. If B = r + 1,
then x = c+ 1 and B′ = c+ 1. Number of active S-boxes is at least B ×B′ = (r + 1)× (c+ 1).

3. When c divides r, we have y = 0 and x = dB × c/re as above. If B = r, then x = c and B′ = c.
Number of active S-boxes is at least B ×B′ = r × c.
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