
1

On the Pitfalls of using Arbiter-PUFs as Building
Blocks

Georg T. Becker

Abstract—Physical Unclonable Functions (PUFs)
have emerged as a promising solution for securing
resource-constrained embedded devices such as RFID-
tokens. PUFs use the inherent physical differences of
every chip to either securely authenticate the chip or
generate cryptographic keys without the need of non-
volatile memory. Securing non-volatile memory and
cryptographic algorithms against hardware attacks is
very costly and hence PUFs are believed to be a good
alternative to traditional cryptographic algorithms and
key generation on constrained embedded devices. How-
ever, PUFs have shown to be vulnerable to model
building attacks if the attacker has access to challenge
and response pairs. In these model building attacks,
machine learning is used to determine the internal
parameters of the PUF to build an accurate soft-
ware model. Nevertheless, PUFs are still a promising
building block and several protocols and designs have
been proposed that are believed to be resistant against
machine learning attacks. In this paper we take a closer
look at a two such protocols, one based on reverse fuzzy
extractors [10] and one based on pattern matching [15],
[17]. We show that it is possible to attack these proto-
cols using machine learning despite the fact that an
attacker does not have access to direct challenge and
response pairs. The introduced attacks demonstrate
that even highly obfuscated responses or helper data
can be used to attack PUF protocols. Hence, our work
shows that even protocols in which it would be compu-
tationally infeasible to compute enough challenge and
response pairs for a direct machine learning attack can
be attacked using machine learning.

Index Terms—Physical Unclonable Functions, Ma-
chine Learning, Reverse Fuzzy Extractor, Evolution
Strategies

I. Introduction
Physical Unclonable Functions (PUFs) have gained

wide-spread attention in the research community as a
new cryptographic primitive for hardware security ap-
plications. PUFs make use of the fact that two manu-
factured computer chips are never completely identical
due to process variations. A PUF exploits these process
variations to build a unique identity for every chip. There
are many applications for which PUFs can be used. Two
prominent examples are its use in challenge-and-response
protocols to authenticate devices as well as for secure key
generation and storage. The advantage of using a PUF
to generate cryptographic keys is that the PUF ensures
that each chip will have its own unique secret without the
need to program it first. Furthermore, securely storing a

G.T. Becker is with the Horst Görtz Institute for IT-Security, Ruhr
University Bochum, Germany. (E-mail:Georg.Becker@rub.de)

cryptographic key in embedded devices in a way that they
are resistant to physical attacks such as probing,reverse-
engineering and side-channel attacks is extremely difficult.
Using PUFs, no key needs to be stored in non-volatile
memory since the secret is instead derived from internal
physical characteristics which are hard to measure from
the outside.

A PUF usually gets a challenge and answers with a
response that depends on its process variation. PUFs can
be classified into two categories: weak PUFs and strong
PUFs. In a weak PUF, the number of challenges the
PUF can accept is very limited so that an attacker can
try all possible challenges and store their corresponding
responses. This way an attacker could easily forge the PUF
by replacing the PUF with a simple memory look-up. A
strong PUF on the other hand has a challenge space that
is large enough so that it is computationally infeasible
to try and store all possible challenges. Strong PUFs can
be used in challenge-and-response protocols as well as for
secure key generation. A weak PUF cannot be used for
challenge-and-response protocols, but can still be used for
secure key generation. Note that the terminology strong
PUF and weak PUF might falsely give the impression
that a strong PUF is “better” than a weak PUF. However,
this terminology only defines the challenge space without
judging the PUFs reliability, uniqueness or other security
properties.

Current strong PUF designs face two big problems that
are related: they suffer from unreliability [12] and are
prone to machine learning attacks [18], [19]. In an ideal
case, a PUF always generates the same response for a
given challenge. However, due to environmental effects and
thermal noise, the response to the same challenge can vary.
In practice, PUFs protocols therefore either need to allow
for a few false response bits or need error correction codes
to correct the faulty responses. The second problem is that
even strong PUFs can be modeled in software and the
needed parameters to model a specific PUF instance can
be determined using machine learning techniques if chal-
lenge and response pairs are known to the attacker [18].

To overcome this problem, new protocols and designs
have been proposed that are believed to be resistant
against machine learning attacks. Furthermore, some of
these protocols actually make use of the fact that model
building attacks on delay based PUFs are possible so that
one party can build software models of the PUF. During
a set-up, phase challenge and response pairs are revealed
and an accurate software model of the PUF is constructed
using machine learning techniques. After the set-up phase,

2

direct access to the PUF is permanently disabled and
an authentication protocol is used that does not directly
reveal the challenge and response pairs. Two prominent
examples of PUF based authentication protocols are the
reverse fuzzy extractor based protocol by van Herrewege et
al. [10] and a pattern matching based protocol by Ma-
jzoobi et al. [15], [17]. These PUF protocols can be
implemented very efficiently in terms of area and power.
Hence, they are very promising alternatives to traditional
cryptography for constrained devices such as RFID tokens
or medical implants.

A. Our Contribution and Outline
In this paper we take a closer look at two prominent

PUF protocols that are supposedly resistant against ma-
chine learning attacks, the reverse fuzzy extractor based
protocol by van Herrewege et al. [10] and the Slender PUF
protocol based on pattern matching [15], [17]. Despite the
security claims, we show that it is possible to attack both
protocols using an evolution strategy (ES) based machine
learning attack. It was shown using empirical tests that
given a certain number of challenge and responses a
PUF can be modeled with a certain accuracy. However,
a common mistake that was also done in these protocols
is that the false conclusion is drawn from these empirical
tests: It is assumed that to attack a PUF a certain number
of direct challenge and responses are needed. However,
while such tests might tells us the model accuracy that
can be achieved if we have a certain number of direct
challenge and responses, it does not mean that we need di-
rect challenge and responses for machine learning attacks.
In this paper we demonstrate, by attacking the Slender
PUF protocol and the reverse fuzzy extractor protocol,
that other information than direct responses can be used
instead. In both cases only obfuscated responses in the
form of a padded substring or helper data of an error
correction code were used to perform successful machine
learning attacks. The attack on the reverse fuzzy extractor
protocol also shows that not only information about the
value of response bits can be used for attacking a protocol,
but also the information about the reliability of response
bits. Since this information is often provided by the helper
data of error correction codes, this attack is of importance
for many different protocols and systems.

In the next Section an introduction to Arbiter PUFs is
given and the ES-based machine learning algorithm which
is used to attack the PUF protocols is introduced. In Sec-
tion III two machine learning attacks on the reverse fuzzy
extractor protocol are described: One machine learning
attack that directly uses eavesdropped helper data and
one attack that uses the reliability information provided
by the helper data when the same challenges are used more
than once. Section IV shows that both the conference as
well as the journal version of the Slender PUF protocol
can be attacked using ES-based machine learning attacks.
The implications of these attacks are summarized in the
conclusion.

II. Background
The Arbiter-PUF is the most popular electrical strong

PUF in the literature and most PUF protocols are based
on Arbiter PUFs or similar structures.

A. Arbiter PUF
The basic idea of the Arbiter PUF [13] is to apply a

race signal to two identical delay paths and determine
which of the two paths is faster. The two paths have an
identical layout so that the delay difference ∆D between
the two signals mainly depends on process variations. This
dependency on process variations ensures that each chip
will have a unique delay behavior. The Arbiter PUF gets
a challenge as its input which defines the exact paths
the race signals take. Figure 1 shows the schematic of
an Arbiter PUF. It consists of a top and bottom signal
that is fed through delay stages. Each individual delay
stage consists of two 2-bit multiplexers (MUXes) that
have identical layouts and that both get the bottom and
top signals as inputs. If the challenge bit for the current
stage is ’1’, the multiplexers switch the top and bottom
signals, otherwise the two signals are not switched. Each
transistor in the multiplexers has a slightly different delay
characteristic due to process variations and hence the
delay difference between the top and bottom signal is
different for a ’1’ and a ’0’. This way, the race signal
can take many different paths: an n-stage Arbiter PUF
has 2n different paths the race signals can take. However,
challenges that only differ in a few bits have a very similar
behavior so that an Arbiter PUF does not necessarily have
2n unique challenges. An Arbiter at the end of the PUF
determines which of the two signals is faster. The Arbiter
consists of two cross-coupled AND gates which form a
latch. The Arbiter has an output of ’1’ if the top signal
arrives first and ’0’ if the bottom signal is the first to arrive.
The Arbiter can have a slight bias so that the PUF result
might be slightly biased towards ’0’ or ’1’.

Fig. 1. Schematic of an n-bit Arbiter PUF.

To increase the resistance of Arbiter PUFs against
machine learning attacks it is proposed to add a non-linear
element to the PUF design. One of the most common
methods to add non-linearity to a PUF design is the XOR
Arbiter PUF. In an k-XOR Arbiter PUF, k PUF instances
are placed on the chip. Each of the PUF instances gets
the same challenge and the responses of the k PUFs
are XORed to build the final response bits. While the
machine learning resistance increases by XORing more
PUFs, adding additional PUF instances obviously also
increases the area overhead of the design. Furthermore,
the XOR PUFs become increasingly unreliable the more

3

PUFs are XORed. Hence, in practice only a small number
of PUFs can be used to build an XOR Arbiter-PUF.

B. Modeling an Arbiter PUF
The response of an n-stage Arbiter PUF is determined

by the delay difference between the top and bottom signal.
This delay difference is simply the sum of the delay
differences of the individual stages. The delay difference
of each stage depends on the corresponding challenge.
Hence, there are two delay differences per stage, one
corresponding to a challenge of ‘1’ and one of ‘0’. This way
the PUF can be modeled using 2∗n parameters. However,
there exists a more efficient, way of modeling an n-stage
Arbiter PUF using only n+1 parameters. A PUF instance
is described by the delay vector ~w = (w1, ..., wn+1) with:

w1 = δ0,1 − δ1,1, (1a)
wi = δ0,i−1 + δ1,i−1 + δ0,i − δ1,i for 2 ≤ i ≤ n, (1b)

wn+1 = δ0,n + δ1,n (1c)

The delay difference ∆Dn at the end of the Arbiter is the
result of the scalar multiplication of the transposed delay
vector ~w with a feature vector ~Φ that is derived from the
challenge c:

∆Dn = ~wT ~Φ (2)

The feature vector ~Φ is derived from the challenge vector
~c as follows:

Φi =
n∏

l=i

(1− 2cl) for 1 ≤ i ≤ n

Φn+1 = 1

Modeling a PUF in this way can significantly decreases
the simulation time and also reduces the parameters that
need to be known to n+ 1. It was shown in the past how
these parameters can be computed (approximated) easily
using different machine learning techniques. In practice,
only a few hundred challenge and response pairs are
needed to model an Arbiter PUF with a predication rate
very close to the reliability of the attacked PUF [11].

C. Evolution Strategies
Evolution Strategies (ES) is a widely used machine

learning techniques that gets its inspiration from the
evolution theory. In evolution, a species can adapt itself
to environmental changes by means of natural selection,
also called survival of the fittest. In every generation,
only the fittest specimen survive and reproduce, while the
weak specimen die and hence do not reproduce. Since the
specimen of the next generation inherit the genes of the
fittest specimen of the previous generation, the species
continuously improves.
In ES-based machine learning attacks on PUFs, the

same principle of survival of the fittest is used. As dis-
cussed in the previous Section, a PUF instance can be
described by its delay vector w. The goal of a machine
learning attack on an Arbiter PUF is to find a delay vector

w that most precisely resembles the real PUF instance.
The main idea of an ES machine learning attack is to
generate random PUF instances and check which of these
PUF instances are the fittest, i.e. which PUF instances
resemble the real PUF model the best. These fittest PUF
instances are kept as parents for the next generation
while the other PUF instances are discarded. In the next
generation, children are generated using the parent’s delay
vectors together with some random mutations, i.e., some
random modifications of the delay vectors. From these
child instances the fittest instances are determined again
and kept for the next generation as parent instances. This
process is repeated for many generations in which the PUF
instances gradually improve and resemble the real PUF
behavior more and more.

To be able to perform an ES machine learning attack
two requirements are needed: 1) It needs to be possible
to described a PUF instance by a vector w and 2) a
fitness test is needed that, given the delay vectors w, can
determine which instances are the fittest.

Since Arbiter based PUFs can be modeled using the
delay vector w, whether or not an ES machine learning
attack is feasible depends on requirement 2), whether or
not a fitness test for these PUF models exist. Typically, the
used fitness test for an Arbiter PUF is the model accuracy
between the l measured responses R from the physical
PUF and the computed responses R′ of the PUF instance
under test:

A = HD(R′, R)
l

(3)

The PUF instances with the highest model accuracies
are considered the fittest. This fitness test can be used
whenever the attacker has access to challenge and response
pairs.

There exists many variants of ES-machine learning al-
gorithms that mainly differ in how many parents are kept
in each generation, how the children are derived from the
parents and how the random mutation is controlled. Typi-
cally, the mutation is done my adding a random Gaussian
variable N(0, σ) to each parameter. Different approaches
exist how the mutation parameter σ is controlled. The
closer the PUF instances are to the optimal solution, the
smaller σ should be. One approach to control σ is to
deterministically decrease σ in every generation. In self-
adaption on the other hand, the mutation parameters
adapt themselves depending on how the machine learning
algorithm is currently performing. In this paper we use
the CMA-ES machine learning algorithm with the default
parameters [9]. CMA-ES uses recombination, i.e., one child
instance depends on several parent instances. It also uses
self-adaption, i.e. the mutation strength is not controlled
deterministically but adapts itself depending on how the
ES algorithm is performing. We chose CMA-ES since due
to the self-adaption one does not need to carefully select
the parameters and it performed very well in our tests
compared to other ES algorithms.

4

III. Attacking Reverse Fuzzy Extractor PUF
protocol

Van Herrewege et al. proposed a PUF based mutual
authentication protocol based on a so called reverse fuzzy
extractor [10]. The protocol has many similarities to
a controlled PUF [7]. The main idea is to not directly
reveal the PUF responses during the authentication phase.
Instead, only the helper data of an error correction code
of the PUF response is transmitted to the verifier. By only
revealing the helper data, the protocol is supposed to be
resistant against machine learning attacks. However, we
will show that it is possible to use this helper data to
attack the PUF protocol. In the following, we will first
introduce the reverse fuzzy extractor protocol and then
discuss possible attacks on the design.

A. Reverse Fuzzy Extractor Protocol

The protocol’s security is based on building a secure
sketch using a fuzzy extractor. Since PUF responses can
be unreliable, fuzzy extractors and secure sketches have
been proposed for secure and reliable PUF based key
generation [6]. Van Herrewege et al. extended this idea
to build a reverse fuzzy extractor that can be used in a
very lightweight challenge and response protocol. Fuzzy
extractors are built on error correction codes. An error
correction code typically consists of two functions, a gen-
eration function h = Gen(r) that generates the helper
data h for a PUF response r and a reproduction function
r = Rep(h, r′) that recovers the response r given the
helper data h and a noisy response r′. In a controlled
PUF, both Gen as well as Rep are executed on the PUF-
token. However, Rep is usually computationally expensive.
The key idea of the reverse fuzzy extractor is to avoid
the need of the computational expensive Rep function
on the token side and outsource it to the verifier. This
makes the protocol considerably more lightweight and a
very promising solution for constrained devices such as an
RFID tag.

The protocol is a mutual authentication protocol, i.e.,
the two participating parties authenticate each other.
The two parties in this protocol are the token with the
embedded PUF and the verifier. The protocol is based
on a generation function Gen() and reproduction function
Rep. Given a PUF response string r, the token computes
the helper data h = Gen(r). This helper data can be used
by the verifier with a noisy response r′ to recover r using
the reproduction function Rep with r = Rep(h, r′) as long
as the hamming distance between r and r′ is below the
error correction threshold t. If the response r′ is too noisy,
i.e. HD(r, r′) > t, the reproduction phase can fail and
r 6= Rep(h, r′).

In [10], the syndrome construction of the BCH(n,k,t)
error correction code with n=255, k=21, and t=55 is used
for the generation phase. BCH is a very common error
correction code that has been proposed for various PUF
applications before, e.g. in [21], [8], [1], [14]. The syndrome

construction consists of a matrix multiplication of an n-
bit PUF response r with the transpose of the n× (n− k)
parity check matrix H of the used BCH error correcting
code.

h = Gen(r) = r ×HT (4)

The BCH(255,21,55) error correcting code can correct
up to 55 erroneous bits of a n = 255 bit PUF response
using a n−k = 234 bit helper data h. In the reproduction
function, an error vector e is computed by decoding the
syndrome s = h − r′ ×HT using the decoding algorithm
of the used BCH code. This error vector e is subtracted
from r′ to recover r.

s = h− r′ ×HT (5a)
e = Dec(s) (5b)
r = r′ − e (5c)

Due to the special form of the parity check matrix
H of the BCH code, the matrix multiplication r × HT

can be computed very efficiently using a single LFSR.
This makes the generation function extremely lightweight
in hardware. In contrast, the decoding of the syndrome
s is computationally much more complex. However, the
decoding is only needed for the reproduction function and
is outsourced from the computationally restricted token
to verifier. This is the key feature that makes the reverse
fuzzy Extractor more lightweight than e.g. a controlled
PUF that uses BCH for error correction.

The protocol consists of two phases, an initialization
phase that is used once to set up the protocol and an
authentication phase. In the initialization phase the veri-
fier generates random challenges ci and sends these to the
token. The token computes the responses ri = PUF (ci)
and directly sends these responses to the verifier who
stores them in a database. At the end of the initialization
phase, the initialization phase is permanently disabled so
that the token never again directly reveals challenge and
response pairs.

The authentication protocol is depicted in Table I. The
authentication process is started by the verifier with an
authentication request to the token. The token replies with
an ID and the verifier then chooses a random nonce N
and selects q challenge and response pairs ci, ri from the
database. The verifier sends the q challenges ci together
with the nonce N to the token. The token computes the
responses r′i using its PUF, i.e. r′i = PUF (ci). In the next
step the token computes the syndromes hi = Gen(r′i) us-
ing the generation function Gen. The token computes the
hash a = Hash(ID,N, r′1, .., r′q, h1, .., hq) and transmits
a and h1, .., hq to the verifier. The verifier computes r′i
using the helper data hi and the stored responses r′i with
r′i = Rep(ri, hi). If a 6= Hash(ID,N, r′1, .., r′q, h1, .., hq)
the verifier rejects the authentication and aborts. Other-
wise the verifier computes b = Hash(a, r′1, ..., r′q) and sends
b to the prover. The prover accepts the authentication if
b = Hash(a, r′1, ..., r′q).

5

TABLE I
Reverse Fuzzy Extractor Protocol

Token Verifier
ID, physical PUF ID′, (c1, r1), .., (cq , rq))

auth←−−−−−−−−−−−−−−−−
ID−−−−−−−−−−−−−−−−→ if ID′ 6= ID reject and abort

N ∈R {0, 1}l

c1,..,cq,N
←−−−−−−−−−−−−−−−−

r′
i ← P UF (ci)

hi ← Gen(r′
i)

a← Hash(ID, N, r′
1, .., r′

q , h1, .., hq)
h1,..,hq,a

−−−−−−−−−−−−−−−−→
r′

i ← Rep(ri, hi)
a′ ← Hash(ID, N, r′

1, .., r′
q , h1, .., hq)

if a′ 6= a reject and abort
b← Hash(a, r′

1, .., r′
q)

b←−−−−−−−−−−−−−−−
if Hash(a, r′

1, .., r′
q) 6= b reject and abort

B. Discussion

The security of the protocol relies on the fact that the
syndrome construction is a secure sketch as defined in [3].
For every syndrome h there are 2k possible responses r
with h = Gen(r). Each of the responses is equally likely.
Therefore, an attacker cannot recover direct challenge-
and-response pairs with a probability higher than 2k for
a given h. This is also true if the attacker as access to
multiple different syndromes for noisy response of the same
challenge. The reason for this is that multiple syndromes
do not carry information about the value of the response
bits, but only the positions of the bit errors. This means
that given multiple helper data for noisy responses, the
attacker only learns which bits have flipped, but not the
value of the flipped bits. Therefore, an attacker cannot
determine the response for a challenge even if he has access
to multiple different helper data for the same challenge.

Since it is impossible to recover the correct response
from helper data from the same challenge, the protocol is
assumed to be secure against model building attacks [10].
However, we will show that the protocol can still be
attacked. The main reason is that the starting assumption,
that for a model building attack an attacker needs to know
challenge and response pairs turns out to be wrong. The
helper data leaks enough information to attack the PUF
using an ES-based machine learning attack. Furthermore,
while multiple different helper data for the same challenge
do not reveal the response, they indicate which response
bits are unstable. Using the unreliability information to
attack Arbiter PUFs has recently been proposed as a fault
attack in [2]. Hence, the unreliability information provided
by BCH codes can be used to model arbiter PUFs using
machine learning.

The security analysis only considered how much infor-
mation was leaked by helper data from a single challenge
and did not consider related challenges. In the reverse
fuzzy extractor protocol [10] an LFSR is used to generate
the individual n subchallenges from the master challenge.
However, this approach to generated subchallenges is very

problematic, as recently pointed out by Delvaux et al.
in [4]. An attacker can send related challenges to the
token to be able to recover the response bits. A single
challenge c1 actually consists of 255 64-bit subchallenges
c1,1, c1,2, .., c1,255. These subchallenges are computed using
a 64-bit LFSR with c1,1 being equal to the initial state
of the LFSR. For each subchallenge, the LFSR is clocked
64 times. Assume the attacker has sent challenge c1,1
as a master challenge to the token. The token will then
use c1,1, c1,2, .., c1,255 as the subchallenges to compute
r1 = r1,1, r1,2, .., r1,255 and the corresponding helper data
h1 = r1 ×HT .

In the next step the attacker sends challenge c1,2
as the master challenge to the token. The token will
now use the challenges c1,2, c1,3, .., c1,256 to get response
r1,2, r1,3, .., r1,256 and the corresponding helper data h2.
This gives the attacker a system of linear equations with
256 unknowns and 255× 2 = 510 equations:

h1 = (r1,1, r1,2, .., r1,255)×HT (6a)
h2 = (r1,2, r1,3, .., r1,256)×HT (6b)

The attacker can simply solve this over-defined system
of liner equations to recover the response bits r1,1, .., r1,256.
Hence, due to the challenge generator an attacker can very
easily compute the challenge and responses by sending a
second related challenge to the token. In practice, PUF re-
sponses might be unstable so that a few errors might occur.
However, this makes the attack only slightly more difficult
and an attacker can average over multiple responses to
reduce or eliminate these errors.

We would like to note that this problem is due to the
specific implementation of the challenge generator. In par-
ticular, this problem occurred because the authors did not
consider chosen-challenge and related challenge attacks.
LFSRs are very popular for challenge generation due to
their lightweight nature. However, this attack illustrates
how dangerous it can be if the challenge generator is
only chosen for performance reason. A good challenge
generator should make it computationally infeasible for an
attacker to apply related challenges to the PUF. Since the

6

reverse fuzzy protocol uses a hash function, one possible
fix could be to use this hash function with secure padding
to generate the subchallenges.

C. Direct ES-machine learning attacks on helper data
In this Section we will discuss how to attack the protocol

using an ES-based machine learning attack with the helper
data as input. Recall that in an ES machine learning attack
we need a fitness test that can determine which of a given
set of PUF models resembles the correct PUF model the
best. Typically, known challenge and response pairs are
used to compute the model accuracy which then serves
as a fitness metric. However, the direct responses are not
available in the reverse fuzzy extractor protocol and we
therefore need a different fitness test based on the helper
data.

Assume that the PUF models we test in our ES machine
learning algorithm have an accuracy large enough so that
the hamming distance between the modeled response r′
and the correct response r is HD(r′, r) < t. Then an
attacker can compute the syndrome h′ = Gen(r′) and
compute the error vector e = Dec(h−h′). This error vector
e directly reveals the hamming distance between r and r′
since e = r−r′. Hence, once the PUF models are accurate
enough that the hamming distance between the modeled
PUF responses and the measured PUF responses is below
t, it is easy to determine the fitness of the PUF models.
The question is if we can also find a fitness test for PUF

models with hamming distances larger than t. Our solution
is rather simple. Assume that we have l challenges ci and
their corresponding helper data hi. For every helper data
hi we compute all 2k = 221 responses ri,j for which hi =
Gen(ri,j) = ri,j × HT holds true. Then we compute the
modeled responses r′i using the delay vector w of the PUF
model PUF ′ under test with r′i = PUF ′(ci). In the next
step we compute the minimum hamming distance between
all possible ri,j and the modeled response r′i.

fi = minj=1,..,2k{HD(ri,j , r
′
i)} (7)

The fitness f of a PUF model is then simply given by
the sum f =

∑
fi. The smaller f , the fitter the PUF

model. However, when the PUF model accuracy is very
low, it is likely that for the computation of fi the wrong
response candidate ri,j is used, i.e. ri 6= ri,j . In this case
the fitness value fi is misleading. However, the higher the
model accuracy and the more inputs are used, the more
likely it becomes that the correct PUF model is chosen as
the fittest.

We have simulated the attack using a 64-bit Arbiter
PUF and 7 inputs each consisting of 234-bit helper data
corresponding to a 255 response string. Note that q = 7 is
the default value of the reverse fuzzy protocol and hence
a single execution of the authentication protocol reveals
7 inputs. To measure the model accuracy we used 10k
challenge and responses as a reference set. The results of
the attack are shown in Figure 2. ES-machine learning
attacks are non-deterministic. Given the same input, the

algorithm can lead to different results. From 100 tries with
the same inputs, 24 tries were successful and achieved
a model accuracy of at least 96% percent. In a second
experiment we applied Gaussian noise to the delay values
so that 5% of the responses flipped to test the impact
of noise to our attack. The number of successful tries
decreased only slightly from 24 runs without noise to 19
runs with 5% noise. A single run with 7 inputs took around
23 minutes using around 16 cores on a cluster.
From Figure 3 and 4 one can see that once a PUF model

accuracy of more than about ≈ 60% is achieved, the attack
is successful and the model accuracy quickly increase to
98%. This is due to the fact that for small model accuracies
the fitness value f is not very meaningful. Only for model
accuracies above ≈ 60% is the fitness value meaningful as
can be seen in Figure 4. We also tested the attack against
128-bit Arbiter PUFs. While for small number of inputs
the attack was not successful we were able to model a
128-bit Arbiter PUF with 200 inputs. From 15 runs, two
achieved a model accuracy of more than 98% after 500
generations while the other runs did not converged. A
single run with 500 generations took about 210 minutes.
Hence, larger Arbiter PUFs increase the attack complexity
but cannot prevent the machine learning attack.

Fig. 2. Result of CMA-ES on the reverse fuzzy extractor using
7 inputs i.e. 7 syndromes on simulated responses from a 64-bit
Arbiter PUF. The model accuracy was computed using 10k reference
challenge and responses. 100 runs with the same challenges and
PUF instance were performed from which 24 runs achieved a model
accuracy of more than 96%.

D. ES-machine learning attack using noisy responses
The information for which challenges the PUF is un-

reliable, i.e. for which challenges the response might flip
contains valuable information from an attackers perspec-
tive. Becker et al. [2] proposed a fault attack on controlled
PUFs that uses the information which challenge bits are
unstable under voltage variations to build an accurate
PUF model. For this attack the attacker only needs to
know which challenges are unstable, i.e., for which chal-
lenges the response might flip due to environmental or
thermal noise. The response bits on the other hand are not
needed for this attack to work. Delvaux et al. [5] used the
amount of bit flips under thermal noise in addition to the
response bits for a model building attack on an Arbiter
PUF. The main observation in both attacks is that the

7

Fig. 3. Progression of 100 runs of the CMA-ES on the reverse fuzzy
extractor with 7 inputs and a 64-bit Arbiter PUF. The Y-axis shows
the achieved model accuracy after each generation.

Fig. 4. Progression of 100 runs of the CMA-ES on the reverse fuzzy
extractor with 7 inputs and a 64-bit Arbiter PUF. The Y-axis shows
the computed fitness value f after each generation.

closer the delay difference for a given challenge is to zero,
the more likely is it that the bit flips. On the other hand,
the larger the delay difference, the less likely it is that a
challenge bit flips. Figure 5 [2] shows the circuit-level sim-
ulated delay differences for different challenges of an 128-
bit Arbiter PUF. The delay differences are approximately
Gaussian and lie between roughly -100ps and +100ps.
When the supply voltage is changed from the default 1.1V
to 1V and 1.2V some of the challenges flipped, i.e. the
sign of the delay difference changed. These challenges are
highlighted in black. All flipped responses had a delay
difference between -13ps and +13ps. Hence, every flipped
bit gives us an important piece of information: the absolute
delay difference for this challenge is very likely smaller
than a threshold τ , where τ depends on the specific PUF
instance (13 ps in this example).

It was demonstrated in [2] that an ES-based machine
learning algorithm can be used to build an accurate model
of an Arbiter PUF knowing only which responses are
unstable. The question is, how do we determine the bits
that are unreliable in the reverse Fuzzy extractor protocol?
As it turns out, the BCH code hands us this information
on a silver platter: For a response r and a noisy response r′

Fig. 5. The delay difference in pico seconds of an 128-bit Arbiter
PUF for 49k different traces. Colored in blue are the delay differences
of all traces and in black are the delay differences for the traces whose
output flipped when the supply voltage was altered from 1.1V to 1V
and 1.2V.

with HD(r, r′) < t and their corresponding public helper
data h and h′, one simply has to compute the error vector
e from the reproduction function:

s = h− h′ (8a)
e = Decode(s) (8b)

Since e = r − r′, the error vector tells us which bits
have flipped and which bits were stable. This is exactly the
information that is needed to perform a machine learning
based fault attack.

The used ES-machine learning attack is very similar to
the attack described in the previous Section. The main
difference is the computation of the fitness test of the
PUF models. The input of the fitness test is not the helper
data hi, but the error vector ei that was computed from
multiple helper data for the same challenge under different
environmental conditions1. To evaluate the fitness of a
PUF model, a modeled error vector e′ is computed for
every challenge. To do this, the delay difference for every
challenge is computed and if the delay difference is below
a threshold τ a bit flip is expected. The measured error
vectors ei are then correlated with these modeled error
vectors e′i and the corresponding correlation coefficient
is used as a fitness indicator. Please note that the error
vector ei does not exactly match the modeled error vectors
e′i, since not all challenges whose delay value is below τ
necessarily flipped during the measurement (see Figure 5).
However, if the correct PUF model was used, the two error
vectors should be similar. In our experiments the correla-
tion coefficient worked very well to test this similarity.

One open question is how to set the threshold value
τ , since this value depends on the PUF instance as well
as the environmental conditions. A good solution is to
simply add τ to the parameters that are to be determined
by the ES-machine learning algorithm. By making it part
of the machine learning parameters, the optimal value is
determined by the algorithm on the fly and does not need
to be chosen by the attacker.

We implemented this attack by assuming that Gaussian
noise is added to the delay differences of each challenge.

1It is also possible to challenge the PUF using the same environ-
mental conditions, since PUFs in practice also show some unreliabil-
ity without changing environmental conditions.

8

We added Gaussian noise to the delay difference of each
challenge so that 5% of the responses flipped, i.e. for 5%
of the challenges the sign of the delay difference changed.
The results of the attack for a 64-stage Arbiter PUF are
depicted in Figure 6 and for a 128-stage Arbiter PUF in
Figure 7. While the number of needed traces is slightly
higher (14 input block instead of 7) compared to direct
ES-machine learning attack, the needed number of inputs
is still extremely small and the attack time is magnitudes
faster. The biggest advantage of the attack however is that
the attack is independent of the used BCH parameters as
long as all errors are corrected.

Fig. 6. CMA-ES attack on 64-stage Arbiter based on the information
of which bits have flipped. The responses were generated by adding
Gaussian noise to simulated delay values so that 5% of the responses
flipped. On the left Y-axis, the highest achieved accuracy from 100
runs with 800 generations each are shown. On the right Y-axis the
number of runs that converged, i.e. that achieved a model accuracy
of at least 90% are shown. The X-Axis depicts the used number of
input blocks, each input block consisting of 255 response bits.

Fig. 7. CMA-ES attack on 128-stage Arbiter based on the infor-
mation of which bits have flipped. The responses were generated by
adding Gaussian noise to simulated delay values so that 5% of the
responses flipped. On the left Y-axis, the highest achieved accuracy
from 100 runs with 800 generations each are shown. On the right Y-
axis the number of runs that converged, i.e. that achieved a model
accuracy of at least 90% are shown. The X-Axis depicts the used
number of input blocks, each input block consisting of 255 response
bits.

This is a significant difference to the direct ES-machine
learning attack on the helper data. In the previous attack,
changing the parameters of the used BCH code and using a

different PUF as a building block might be able to prevent
the attack, since the attack complexity directly depends on
the used BCH code. However, changing the parameters of
the BCH code does not affect this attack. The information
of which bits are unstable will always be leaked by a BCH
code if the attacker can send the same challenge twice.

Hence, while the other machine learning attack might
be prevented by using larger BCH codes and a harder to
model PUF architecture, this attack exploits a fundamen-
tal weakness of BCH codes that cannot be easily fixed. The
results presented in this section also have consequences
beyond the reverse fuzzy extractor. Every protocol that
uses BCH codes or other error correction codes that
reveal information about which bits are unreliable need
to carefully consider these fault attacks.

IV. Attacking the Slender PUF Protocol
The Slender PUF protocol was first introduced in [15],

which we will refer to as the conference version and
has also been published with small modifications in [17],
which we will refer to as the journal version. The Slender
PUF protocol is based on pattern matching, which has
previously been proposed for correcting errors in PUF
based key generation [16].

The protocol enables a token (called prover [15]) with
physical access to the PUF to authenticate itself to a
verifier. To do so, the verifier first builds an accurate
model of the PUF during an initialization phase. During
this initialization phase, the verifier received challenge and
response pairs from the token which can be used to build
an accurate PUF model using machine learning. After
the verifier has built an accurate software model of the
PUF, the initialization phase is permanently disabled and
the token will never again directly reveal any challenge-
and-response pairs. Instead, the token will only reveal a
permuted substring of the response bits. The protocol of
the conference version is shown in Table II. The protocol
is started by the verifier by sending a nonce noncev to
the PUF. The token responds with a randomly generated
nonce noncet. The two nonces are used as a seed for a
pseudo random number generator (PRNG). This PRNG is
then used in step 4 to generate L challenges C. The token
computes the corresponding responses R using its physical
PUF instance, i.e. R=PUF(C). In step 6 the token ran-
domly chooses an index ind, with 1 ≤ ind ≤ L, that points
to a location of the response string R. The index is used
to generate a substring W from the response string with a
predefined length Lsub, with W = Rind, .., Rind+Lsub

. The
response string R is used in a circular manner, so that if
ind+ Lsub > L, W = Rind, .., RL, R1, ..Rind−Lsub

.
This substring W is then sent to the verifier. The

verifier computes its own response string R′ using the
software model of the PUF with R′=PUF_model(C).
In the last step the verifier uses its computed response
string R′ to search for the index ind that points to W
using a maximum-sequence alignment. Note that ideally
R = R′ and hence the hamming distance between the
transmitted substring W and the verifiers substring W ′

9

is 0. However, in practice R and R′ will differ slightly due
to inaccuracies in the verifiers PUF model as well as noise
in the physical PUF at the token side. Therefore the token
accepts a few false response bits in the substring W . If the
hamming distance between is below a certain threshold,
HD(W,W ′) < e, then the authentication is successful.
Otherwise the authentication fails and the protocol needs
to be restarted.

TABLE II
Conference version of the Slender PUF Protocol [15]

Token Verifier
physical PUF P UFmodel

noncev−−−−−−−−→
noncet←−−−−−−−

C = G(noncev , noncet) C = G(noncev , noncet)
R = P UF (C) R′ = P UFmodel(C)
W = SEL(ind, Lsub, R)

W−−−−−−−→
T = match(R′, W, e)
T=true?

TABLE III
Journal version of the Slender PUF Protocol [17]

Token Verifier
physical PUF P UFmodel

noncev−−−−−−−−→
noncet←−−−−−−−

C = G(noncev , noncet) C = G(noncev , noncet)
R = P UF (C) R′ = P UFmodel(C)
W = SEL(ind, Lsub, R)
P W = P AD(ind2, W)

P W−−−−−−−→
T = match(R′, P W, e)
T=true?

For the journal version [17] the protocol was modified
slightly as can be seen in Table III. In the journal version of
the protocol, the substring W is not directly revealed but
a padding is applied to W . In the first step of the padding
process, Lpw random padding bits are generated. Then a
second random index ind2 is chosen with 1 ≤ ind2 ≤ Lpw

and the string W is inserted into the padding bits at
position ind2. This process is illustrated in Figure 8. The
padded substring PW is transmitted to the verifier. The
verifier then performs a circular maximum-sequence align-
ment of the received string PW and its simulated PUF
output sequence R′. This way the verifier can determine
the substring W and the secret indices ind1 and ind2. If
the hamming distance between the simulated substringW ′
and the received substring W is below a certain threshold,
the authentication was successful.

The journal version has the disadvantage that the trans-
mitted string PW is longer than W and the verifier has
to do more computations to find the substring W . On the
other hand, in the journal version two secret indices are
used and [17] proposes to use these indices to extend the
authentication protocol to a session key exchange protocol.

Fig. 8. Generation of the substring W and P W for the case ind1 <
L− Lsub and for the case ind1 > L− Lsub.

A. Security of the Slender PUF protocol

The security analysis of the Slender PUF protocol
provided in relies on the fact that an attacker does not
have access to direct challenge and response pairs. The
Slender PUF Protocol uses XOR-Arbiter PUFs in which
the responses of multiple arbiter PUFs are XORed to
generate a single output bit [20]. XOR-Arbiter PUFs
are known to be much more resistant against machine
learning attacks than simple Arbiter PUFs [18]. However,
the number of XORs that can be used is limited since
the reliability decreases with each added XOR. In [17]
a worst case error rate e of 24.7%, 34.6%, and 43.2%
for an 2-input, 3-input and 4-input XOR Arbiter PUF
with 64 stages respectively was measured in their FPGA
prototype. But as also pointed out by Majzoobi et al. ,
much smaller error rates have been reported for ASIC
implementations [12]. While modeling attacks on XOR
Arbiter PUFs are more difficult than on single Arbiter
PUFs, model building attacks are still possible if enough
challenge and response pairs are known. For their reference
FPGA implementation in [18], empirical results show that
for the used 3-XOR Arbiter PUF 64k challenges and
responses are needed for a successful machine learning
attack. However, please note that this result is only valid
for their PUF measurements with the very high error rate
of 34.5%. If the used responses are more reliable much
fewer challenges are needed to accurately model a 3-XOR
Arbiter PUF. Figure 9 shows our result of an ES-machine
learning on a 3-XOR arbiter PUF using simulated noise-
free challenge and responses. From Figure 9 we can see
that more than Nmin = 6000 challenge and responses are
needed to model a 3-input XOR-Arbiter PUF with the
employed CMA-ES machine learning algorithm.

The main security argument why the Slender PUF
protocol is resistant to machine learning attacks is that
it would be computationally infeasible to compute enough
direct challenge and response pairs to model the used
XOR PUF [15], [17]. To get Nmin challenge and responses,
an attacker would need Nmin/Lsub correct substrings W .
To guess a substring W , an attacker has to guess the
indices ind1 and ind2 correctly. For the proposed values of
L = 1300, Lsub = 1250 and LP W = 512 an attacker would

10

Fig. 9. CMA-ES attack on 3-Xor Arbiter PUF with 64-stages for
different number of used responses. Noise-free simulated challenge
and responses were used for this analysis.

need to perform

O((L× LP W)
⌈

Nmin
Lsub

⌉
)

= O(1300× 512)d
6000
1250e) ≈ O(296)

(9)

machine learning attacks to attack the journal version of
the protocol. Hence, according to this analysis, it would
be computational infeasible to attack the protocol using a
machine learning attack. Using the same logic, the attack
complexity against the conference version of the protocol
with L = 1024, Lsub = 256 would be:

O(L
⌈

Nmin
Lsub

⌉
) = O(1024d

6000
256 e) ≈ O(2230) (10)

However, we will show that a ES-based machine learning
attack on these protocols is feasible. This is due to the
fact that in an ES machine learning attack the attacker
does not need to guess the correct indices ind1 and ind2.
Instead of trying to guess the indices to get more than 6000
challenge and response pairs, the attacker can directly
use the strings PW or W as inputs to a CMA-ES based
machine learning attack.

B. ES-Machine Learning Attack on the Slender PUF pro-
tocol

As discussed in Section II-C, for a successful ES machine
learning attack on a PUF design, an attacker needs to
be able to model the underlying PUF and needs a fitness
test that can determine which PUF instances from a given
set of PUF instances are the fittest, i.e. which instances
model the PUF the best. In the Slender PUF protocol,
the challenges and responses are never directly revealed.
Hence, an attacker cannot use the model accuracy as the
fitness test. Let us first take a look at the conference
version of the Slender PUF Protocol. In the conference
version, the substring W of length Lsub is transmitted
without applying any padding. To find the correct index
ind1, the verifier performs a maximum sequence alignment
with his string R′ andW . That is, the verifier computes for
all possible indices ind1 all substrings W ′ and computes

the hamming distance HD(W ′,W). The authentication
passes if min{HD(W,W ′)} < t.

The attacker uses the same method for his fitness test.
Assume the attacker has eavesdropped (or initialized)
n executions of the protocol and collected n substrings
W1, ...,Wn and their corresponding challenges Ci, ..., Cn.
To test the fitness of a PUF instance generated during
the ES-machine learning attack, the attacker computes
responses R′1, .., R′n with R′i = PUFmodel(Ci). In the next
step he performs a maximum sequence alignment of the
computed responses Ri with the eavesdropped substrings
Wi to find the minimum hamming distance for every sub-
string. These minimum hamming distances are summed
up and are used as a fitness metric f :

f =
N∑

i=1
min{HD(R′i,Wi)}

A PUF instance with a high model accuracy will have a
smaller hamming distance f than a PUF instance with
a low model accuracy. When the model accuracy of a
PUF instance is high, it is very likely that the minimal
Hamming distance corresponds to the correct index. If
the PUF model accuracy is very low, it is possible that
the correct index might have a higher hamming distance
than a false index. However, if enough strings W are used
to evaluate the fitness of the PUF models, it is more
likely that the PUF models with a higher model accuracy
are chosen as parents for the next generation than PUF
instances with a worse model accuracy. And as long as
fitter instances have a higher chance to be used as parents
ES-based machine learning can be used.

We performed an CMA-ES machine learning attack on
the conference version of the Slender PUF protocol with
the default parameter provided in [15], l = 1024 and
lsub = 256. For our attack we used Matlab together with
C functions for the computationally expensive steps, the
response generation and the determination of minimal
hamming distance. We followed the general approach of
assuming a Gaussian distribution of the delay parame-
ters [18] and used this delay model to simulate the PUFs.
We generated two random sets of challenges. One set of
challenges was used to compute the responses R that are
used to generate the strings W . The other set of 10k
challenges was used to evaluate the model accuracy at the
end of the attack. A CMA-ES run with 350 generations
and 60k inputs (each input consisting of the 256-bit string
W) took around 17 hours using 16 cores of a multi-
core workstation. From 8 runs, one run achieved a model
accuracy of 95%, one run only partially converged to 36.5%
while the other runs did not converge and stayed close
to 50%. Please note that each run was aborted after 350
generations due to the long execution time of the attack
although the model accuracy of the successful run was
still improving. But with a model accuracy of 95% an
attacker can recover the secret indices and hence the direct
challenge and responses. With this information a machine
learning attack that achieved an accuracy grater than 99%

11

just takes a few seconds.
The results show that the Slender PUF protocol can

be attacked if a 3-XOR Arbiter PUF is used and that
the Formula 9 cannot be used to estimate the attack
complexity of a machine learning attack. This is mainly
due to the fact that the substring itself can be used as the
input to the machine learning algorithm and the correct
indices do not need to be guessed. Instead, the correct
indices will be one of the outputs of the machine learning
attack.

C. Attacking the journal version
In the journal version of the Slender PUF protocol a

padded string PW is transmitted instead of W . In [17]
the proposed parameters for a 3-input XOR Arbiter PUF
are L = 1300, Lsub = 1250 and LP W = 512. In principle,
the same attack as described for the conference version
of the protocol can be used to attack the journal version.
However, in the journal version two secret indices are used
to generate the string PW so that a verifier needs to
compare L×Lpw = 1300×512 = 665600 different strings to
determine the minimal hamming weight. For comparison,
in the conference version only L = 1024 comparisons
are needed. While in theory it is possible to test all
665600 substrings, doing so will considerably increase the
computation time. Since computing the minimal hamming
distance is the most time consuming operation in this
machine learning attack, it is recommended to use a more
efficient method.

The main idea is to reduce the number of comparisons
at the cost of using stings with less bits (and hence less
information). We know that a Lsub bit string W is present
in PW . If we assume that ind1 < L−Lsub we can see from
Figure 8 that the stringW consists of two string A and B.
The string A consists of the first |A| bits of the response
R and the string B consists of the last |B| bits of response
R. Since |A|+ |B| = Lsub, this means that either the first
Lsub/2 bits of R or the last Lsub/2 bits of R are present in
W . Instead of trying to detect the entire string W in PW
we only try to find either the first Lsub/2 or last Lsub/2 bits
of R in W . To do this we only need 2×LP W comparisons
which reduces the computation complexity considerably.

However, we also have to consider the case that ind1 <
L − Lsub. If ind1 > L − Lsub we can see from the left
side of Figure 8 that in this case the string W does not
contain the first |C1| bits of R nor the last |C2| bits of R.
But since L−Lsub = |C1|+ |C2| = 50 this does not change
much. We simply ignore the first and the last 25 bits of the
response R for our analysis and only search for Lsub/2 −
15 = 600 bits. Using this methods we make 2×|PW | = 2×
(Lsub +Lpw) = 3524 hamming distance computations per
input in our fitness test at the cost of only using 600 bits
instead of 1250 bits of substring W . Compared to 665600
computations this is a significant speedup that makes the
attack much more practical.

We used lazy evaluation for our attack, i.e. we only used
a subset of the all inputs to evaluate in each generation. We

used 200k inputs of which we used 60k in each generation.
From 13 runs 1 runs were successful with an achieved
model accuracy of 92% after 340 generations. The PUF
model accuracy for this run was still increasing and would
have reached a much higher level if the run would not
have been stopped. However, just as was the case for the
conference version, with such a high model accuracy an
attacker can compute the secret indices and then directly
use challenge and responses in a second machine learning
algorithm. This is considerably faster than continuing the
attack with the substring method. The computation time
of 340 generations using ≈16 threats on a multi-core
cluster took about 31 hours. However, the sigma value in
conjunction with the fitness test can often indicate if an
attack was successful or not and hence some unsuccessful
tries can be aborted earlier.

The presented results show that it is possible to attack
the Slender PUF protocol using machine learning attacks.
The results indicate that the computation complexity
is non-trivial, but far from computational infeasible. An
attacker can model the PUF with moderate resources in
reasonable time.

V. Conclusion
In this paper we have demonstrated at the example of

the reverse fuzzy extractor and the Slender PUF protocol
how powerful machine learning attacks can be. The main
lesson learned is that machine learning attacks are possible
even if no direct challenge and responses are available to
an attacker. Access to highly obfuscated responses such as
the substrings in the Slender PUF protocol or the helper
data of error correction codes can be enough to perform an
ES-based machine learning attack. A common approach to
proof the security of a PUF protocol is to show that an
attacker does not have access to a certain number of direct
challenges and responses. This comes from the common
believe that for a successful machine learning attack the
attacker needs to know a certain number of challenges and
responses. However, as demonstrated in this paper, direct
challenge and responses are not always needed to perform
machine learning attacks. Highly obfuscated responses can
still be used to accurately model a PUF. Hence, the
machine learning complexity of a PUF protocol is not the
same as the complexity of computing a certain number of
direct challenges and responses.

Furthermore, the attack on the reverse fuzzy extractor
demonstrated how much valuable information helper data
from error correction codes can contain. The important
point is that these error correction codes do not necessarily
need to leak the individual response bits to be useful for
an attacker. The information which challenges are more
robust than others can be used for a machine learning
algorithm as well. This is especially problematic for error
correction codes such as the BCH codes that directly
reveal which bits have flipped if the same challenge is
applied twice. But other error correction codes can contain
similar information that can be exploited by an attacker.
Hence, when choosing error correction codes for delay

12

TABLE IV
Summary of the machine learning attacks on the different protocols.

Protocol maximum accuracy successful runs used inputs execution time per run
Reverse Fuzzy Extractor 64-bit 97% 24/100 7 ≈ 23 minutes
Reverse Fuzzy Extractor 64-bit (Fault Attack) 97% 10/100 21 <1 minute
Reverse Fuzzy Extractor 128-bit 99% 2/15 200 ≈ 210 minutes
Reverse Fuzzy Extractor 128-bit (Fault Attack) 97% 6/100 56 <1 minute
Slender conference version 95% 1/8 60k ≈ 20 hours
Slender journal version 92% 1/13 (60k)200k ≈ 31 hours

based PUFs, machine learning attacks need to be carefully
considered.

References

[1] F. Armknecht, R. Maes, A. Sadeghi, O.-X. Standaert, and
C. Wachsmann. A formalization of the security features of
physical functions. In Security and Privacy (SP), 2011 IEEE
Symposium on, pages 397–412, May 2011.

[2] G. T. Becker and R. Kumar. Active and passive side-channel
attacks on delay based puf designs. IACR Cryptology ePrint
Archive, 2014:287, 2014.

[3] X. Boyen. Reusable cryptographic fuzzy extractors. In Proceed-
ings of the 11th ACM conference on Computer and communi-
cations security, pages 82–91. ACM, 2004.

[4] J. Delvaux, D. Gu, D. Schellekens, and I. Verbauwhede. Se-
cure lightweight entity authentication with strong pufs: Mission
impossible? In To appear in Cryptographic Hardware and
Embedded Systems (CHES 2014), 2014.

[5] J. Delvaux and I. Verbauwhede. Side channel modeling attacks
on 65nm arbiter pufs exploiting cmos device noise. In 6th IEEE
International Symposium on Hardware-Oriented Security and
Trust (HOST 2013), June 2013.

[6] Y. Dodis, L. Reyzin, and A. Smith. Fuzzy extractors: How
to generate strong keys from biometrics and other noisy data.
In Advances in cryptology-Eurocrypt 2004, pages 523–540.
Springer, 2004.

[7] B. Gassend, D. Clarke, M. van Dijk, and S. Devadas. Controlled
physical random functions. In Computer Security Applications
Conference, 2002. Proceedings. 18th Annual, pages 149–160,
2002.

[8] J. Guajardo, S. Kumar, G.-J. Schrijen, and P. Tuyls. Fpga
intrinsic pufs and their use for ip protection. In Cryptographic
Hardware and Embedded Systems - CHES 2007, volume 4727
of Lecture Notes in Computer Science, pages 63–80. Springer
Berlin Heidelberg, 2007.

[9] N. Hansen. The cma evolution strategy: A comparing review. In
Towards a New Evolutionary Computation, volume 192 of Stud-
ies in Fuzziness and Soft Computing, pages 75–102. Springer
Berlin Heidelberg, 2006.

[10] A. Herrewege, S. Katzenbeisser, R. Maes, R. Peeters, A.-R.
Sadeghi, I. Verbauwhede, and C. Wachsmann. Reverse fuzzy
extractors: Enabling lightweight mutual authentication for puf-
enabled rfids. In Financial Cryptography and Data Security,
volume 7397 of Lecture Notes in Computer Science, pages 374–
389. Springer Berlin Heidelberg, 2012.

[11] G. Hospodar, R. Maes, and I. Verbauwhede. Machine learning
attacks on 65nm arbiter pufs: Accurate modeling poses strict
bounds on usability. In IEEE International Workshop on In-
formation Forensics and Security (WIFS), pages 37–42. IEEE,
2012.

[12] S. Katzenbeisser, Ü. Koçabas, V. Rozic, A.-R. Sadeghi, I. Ver-
bauwhede, and C. Wachsmann. Pufs: Myth, fact or busted? a
security evaluation of physically unclonable functions (pufs) cast
in silicon. In Cryptographic Hardware and Embedded Systems -
CHES 2012, volume 7428 of Lecture Notes in Computer Science,
pages 283–301. Springer Berlin Heidelberg, 2012.

[13] J. W. Lee, D. Lim, B. Gassend, G. E. Suh, M. Van Dijk, and
S. Devadas. A technique to build a secret key in integrated cir-
cuits for identification and authentication applications. In VLSI
Circuits, 2004. Digest of Technical Papers. 2004 Symposium on,
pages 176–179. IEEE, 2004.

[14] R. Maes, A. Van Herrewege, and I. Verbauwhede. Pufky:
A fully functional puf-based cryptographic key generator. In
Cryptographic Hardware and Embedded Systems - CHES 2012,
volume 7428 of Lecture Notes in Computer Science, pages 302–
319. Springer Berlin Heidelberg, 2012.

[15] M. Majzoobi, M. Rostami, F. Koushanfar, D. Wallach, and
S. Devadas. Slender puf protocol: A lightweight, robust, and
secure authentication by substring matching. In Security and
Privacy Workshops (SPW), 2012 IEEE Symposium on, pages
33–44, May 2012.

[16] Z. Paral and S. Devadas. Reliable and efficient puf-based key
generation using pattern matching. In Hardware-Oriented Se-
curity and Trust (HOST), 2011 IEEE International Symposium
on, pages 128–133. IEEE, 2011.

[17] M. Rostami, M. Majzoobi, F. Koushanfar, D. Wallach, and
S. Devadas. Robust and reverse-engineering resilient puf au-
thentication and key-exchange by substring matching. Emerging
Topics in Computing, IEEE Transactions on, PP(99):1–1, 2014.

[18] U. Rührmair, F. Sehnke, J. Sölter, G. Dror, S. Devadas, and
J. Schmidhuber. Modeling attacks on physical unclonable func-
tions. In Proceedings of the 17th ACM conference on Computer
and communications security, CCS ’10, pages 237–249, New
York, NY, USA, 2010. ACM.

[19] U. Ruhrmair, J. Solter, F. Sehnke, X. Xu, A. Mahmoud, V. Stoy-
anova, G. Dror, J. Schmidhuber, W. Burleson, and S. Devadas.
Puf modeling attacks on simulated and silicon data. Information
Forensics and Security, IEEE Transactions on, 8(11):1876–
1891, Nov 2013.

[20] G. Suh and S. Devadas. Physical unclonable functions for device
authentication and secret key generation. In Design Automation
Conference, 2007. DAC ’07. 44th ACM/IEEE, pages 9–14, June
2007.

[21] G. E. Suh, C. W. O’Donnell, I. Sachdev, and S. Devadas. Design
and implementation of the aegis single-chip secure processor
using physical random functions. In ACM SIGARCH Computer
Architecture News, volume 33, pages 25–36. IEEE Computer
Society, 2005.

