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Abstract

The notion of indifferentiability, which is a stronger version of the classic notion of indistinguishability,
was introduced by Maurer et al. in [MRH03]. Indifferentiability, among other things, gives us a way
of “securely replacing” a random oracle of one type by a random oracle of a different type. Most
indifferentiability proofs in the literature are very complicated, which makes them difficult to verify and
in some cases, has even resulted in them being erroneous [CPS08]. In this paper, we use a simple yet
rigorous proof technique for proving indifferentiability theorems. This technique is a generalization of
the indistinguishability proof technique used by Bernstein in [Ber05] to prove the security of the Cipher
Block Chaining (CBC) construction. We use this technique to prove the indifferentiability result for
a very simple construction which processes just two blocks of input. This construction can be viewed
as bearing close resemblance to the so called Sponge construction [BDPVA11a], on which the winner
of SHA-3 competition [BDPVA11b] is based. Also as a warm up, we prove the indistinguishability
result for this construction using the coupling argument from probability theory. We also prove the
non-indifferentiability result for the CBC construction and some of its standard variants, and survey the
indifferentiability and non-indifferentiability results for the Merkle-Damg̊ard (MD) construction, some of
its standard variants, and the Feistel construction, from the literature.

1 Introduction

A random oracle of a certain type, is a large object, chosen uniformly at random from a class of objects of
that type. An example of a random oracle is a function f : {0, 1}n → {0, 1}n chosen uniformly at random
from the set of all functions mapping {0, 1}n to {0, 1}n, and that can be queried as an oracle by an algo-
rithm. Bellare and Rogaway, in [BR93], developed the “random oracle methodology”. In this methodology,
all the parties, including the adversary have access to a random oracle, and the security of a cryptosystem is
proved in this setting. This can be viewed as the proof of security of the cryptosystem in the “ideal world”.
However, there are no random oracles in the real world, and hence while implementing the cryptosystem in
the real world, the random oracle is replaced by an “appropriately chosen” concrete function, like the SHA-2
hash function (they stress that the cryptosystem should be “independent” of the concrete function which
replaces the random oracle) and hope that the cryptosystem is secure in the real world. They claim that
this method, when properly carried out, leads to secure and efficient protocols. In fact, several widely used
cryptosystems that have been proven secure in the random oracle model (for example, the RSAES-OAEP
encryption scheme which is a part of the PKCS #1 specification [JK03], is based on the OAEP scheme
originally introduced by Bellare et al. in [BR95], and versions of which have been proven secure in the
random oracle model [Sho01] [FOPS04]), and instantiated with a good hash function in the real world, have
resisted attacks in the real world.
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However, Canetti et al., in [CGH04], showed that there exists a cryptosystem (albeit an unnatural one) that
is secure in the random oracle model, but has no secure implementation in the real world. So, one should
be very cautious in using the random oracle model because security of a cryptosystem in the random oracle
model does not necessarily imply the security of the cryptosystem in the real world.

However, let us consider a different problem: the problem 1 of “securely replacing” a random oracle of one
type by a random oracle of a different type. For example, say the problem of securely replacing a random
oracle which takes inputs of arbitrary length by a random oracle which takes inputs of fixed length. By
“securely replace”, we mean the obvious thing: if a cryptosystem is secure in the random oracle model in
which the random oracle is of one type (say arbitrary input length random oracle), then the cryptosystem
is secure in the random oracle model in which the random oracle is of another type (say fixed input length
random oracle). The notion of indifferentiability, introduced by Maurer at al. in [MRH03], gives you a way
of rigorously defining this.

Since the notion of indifferentiability is a stronger version of the classic concept of indistinguishability, we
first give an overview of indistinguishability before giving the high level idea of indifferentiability. We give
rigorous definitions for both these notions in the next section.

The concept of indistinguishability was first rigorously defined by Blum and Micali in [BM84]. A crypto-
graphic construction C, that takes as input a random member (usually a large object) from a class of objects
of a certain type (chosen according to a certain distribution), as an oracle, and outputs an object (that is
usually large) of a certain type that can be queried by an algorithm as an oracle (so, effectively it has as
input an oracle of a certain type, and outputs an oracle of a certain type), is said to be indistinguishable
from ideally distributed version of the object it outputs (which is usually a random member from a class of
objects of that type, chosen according to a certain distribution), if no distinguisher, which when given an
oracle which is either the object output by the construction C or the ideally distributed version of the object
output by C, and is allowed to interactively query the oracle, can “significantly” tell the difference. There
are different flavours of indistinguishability depending on the running time we allow for the distinguisher
and the number of queries we allow it to make to the oracle. The flavour that we will be considering here is
what we term “bounded oracle indistinguishability”, where we allow the running time of the distinguisher
to be unbounded, but it is only allowed to make a bounded number of queries to the oracle. Consider the
following popular Cipher Block Chaining (CBC) construction.

Definition 1.1. Let f be a function such that, f : {0, 1}n → {0, 1}n for every n ∈ Z+. For every n ∈ Z+,
define CBCf : {0, 1}2n → {0, 1}n as follows

CBCf (xy) = f(f(x)⊕ y)

where x, y ∈ {0, 1}n.

It is a well known result [BKR00] [Ber05] that CBCf , for a uniform random f , is indistinguishable from a
uniform random function F mapping {0, 1}2n to {0, 1}n. However, note that in this model, the distinguisher
does not have access to the function f . Is this model strong enough for all scenarios? Consider the following
real world example. Cryptographic hash constructions like the MD5, SHA1 and SHA2 are usually iterations
(using a suitable method) over an underlying compression function that is publicly available. Say that our
goal is to prove that a cryptographic hash function, when modelled as iterating over a uniform random
compression function (a compression function chosen uniformly at random from the set of all compression
functions of its type), appears to be uniformly distributed 2. In this scenario, it makes sense to allow the

1Of course, this problem is only interesting if you have considerable faith in the random oracle model.
2One might ask the question “What does this type of modelling accomplish?”, as the publicly available compression functions

are certainly not uniform random functions. One might say that it says something about the method of iteration, since if we
have that a cryptographic hash function, when modelled as iterating over a uniform random compression function, can be
significantly told apart from a uniform function having the same domain and range as the hash function, then it means that
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adversary to have oracle access to the uniform random compression function, since in the real world, the
compression function is publicly available to all the parties, including the adversary. So the indistinguisha-
bility model is not a strong enough model for this scenario, since the distinguisher is not allowed to query
the uniform random compression function.

The indifferentiability model solves this problem. Let us informally define indifferentiability using the above
CBC example. The construction CBCf (for a uniform random f) is said to be indifferentiable from a uni-
form random F mapping {0, 1}2n to {0, 1}n, if there exists an “efficient” simulator algorithm S, that having
oracle access to F , tries to simulate f in response to a bounded number of queries made to it, such that,
no distinguisher, which when given a pair of oracles, which is either CBCf , f (for a uniform random f),
or F, SF (for a uniform random F ), and is allowed to interactively query both the oracles, can significantly
tell the difference. By an “efficient” simulator, we mean that the simulator has bounded running time (in
particular, it makes bounded number of oracle queries to F ). Again, there are different flavours of indiffer-
entiability depending on the running time we allow for the distinguisher and the number of queries we allow
it to make to the oracles. The flavour that we will be considering here is what we term “bounded oracle
indifferentiability”, where we allow the running time of the distinguisher to be unbounded, but it is only
allowed to make a bounded number of queries to the oracles.

This paper primarily deals with indifferentiability results and indifferentiability proofs for some popular
cryptographic constructions.

1.1 A Note on the Adversaries

Since the adversaries that we consider are distinguishing algorithms that are allowed to have unbounded
running time, it sufficient to consider only the deterministic distinguishers. This is because, if there is a
probabilistic distinguisher that does well, then we can fix the randomness and get a deterministic distinguisher
that does as well as the probabilistic distinguisher.

1.2 Motivation for Good Security Proofs

Security proofs form an integral part of cryptography. In addition to being correct and rigorous, it helps if a
security proof is easy to understand3, as it helps the readers to verify the proofs and hence making them less
error-prone. As an example, let us consider the different proofs available for the above CBC construction
in the literature. Though it was folklore that the construction is secure, the first rigorous treatment was
given by Bellare et al. in [BKR00]. Though the construction and the security notion (indistinguishability)
were quite simple, the proof was enormously complicated. Maurer, in [Mau02], provided a simpler proof
of indistinguishability for this construction, using the framework for proving indistinguishability theorems
that he introduced in the same paper. Bellare et al. further simplified the proof in [BR06] using their so
called “Code-based game-playing Framework”. In [Ber05], Bernstein gave a very short and elegant, albeit
less intuitive proof of security for the same construction. This proof is the simplest rigorous proof of the
construction we have seen in the literature so far.

Indifferentiability proofs are infamous for being highly complicated [CPS08][HKT10]. One might argue that,
since indifferentiability is a stronger notion than indistinguishability, it is not wrong to expect that the
indifferentiability proof of a construction to be at least as complicated as (and in most cases strictly more

there is a problem with the iteration method. However, if we have that the cryptographic hash function (when modelled as
iterating over a uniform random compression function) appears to be uniformly distributed, then this doesn’t tell us much
about the real world version of this hash function, since the real world compression function is certainly not a uniform random
function, and can have some bad properties which this model fails to capture. We conclude that we do not have a very good
answer for this question, and agree that the motivation here is not very concrete.

3Of course, a proof being easy to understand is a very subjective thing, as it depends on many factors like the cryptographic
construction under consideration, the security notion we want and even the sophistication of the reader.
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complicated than) its corresponding indistinguishability proof. While this is indeed true, the intricacy of
many of these proofs have made them difficult to understand and review, and in some cases, resulted in them
being erroneous. For example, Coron et al. in [CPS08] showed that a 6 round Feistel construction involving
six independent uniform random functions mapping {0, 1}n to {0, 1}n resulted in a permutation (together
with its inverse) mapping {0, 1}2n to {0, 1}2n that was indifferentiable from a uniform random permuta-
tion (together with its inverse) mapping {0, 1}2n to {0, 1}2n. The proof was quite complicated. However,
Holenstein et al. in [HKT10] gave a simple distinguishability attack which invalidated the whole proof of
[CPS08]. In [HKT10], they prove a similar theorem for a 14 round Feistel construction, which is again quite
complicated, but is believed to be true. The point is, an erroneous proof was thought to be correct by (most
of) the community for almost 2 years! One wouldn’t be entirely wrong if they were to attribute this to the
intricacy of the proof that made spotting the error much harder.

This motivates us to ask the following question: Is there a simple yet rigorous proof technique for proving
indifferentiability theorems that makes the proofs easy to understand and verify? One of the central goals
of this paper is to take steps towards resolving this question.

1.3 Our Contribution

As stated above, one of the main contributions of this paper is to use a proof technique for the indifferentia-
bility setting, which builds on the work of Bernstein in [Ber05] and Vaudenay in [Vau03] which were in the
indistinguishability setting. The technique we use also bears resemblance to the proofs of Maurer in [Mau02]
and Bellare in [BR06] which were again, in the indistinguishability setting. More particularly, consider the
following construction which resembles the CBC construction.

Definition 1.2. Let f be a function such that, for every positive even integer n, f : {0, 1}n → {0, 1}n. For
every positive even integer n, define If : {0, 1}n → {0, 1}n as follows

If (xy) = f(f(x0n/2)⊕ y0n/2)

where x, y ∈ {0, 1}n/2.

This construction can also be viewed as closely resembling the Sponge Construction [BDPVA11a] on which
the recent winner [BDPVA11b] of the SHA-3 competition is based. We describe the proof technique in
detail via the proof of the indifferentiability of the construction If (for a uniform random f), from a uni-
form random function F : {0, 1}n → {0, 1}n (chosen independently of f). That is, informally speaking, we
give an efficient simulator algorithm S that has oracle access to F and tries to simulate f (in response to
a polynomial number of queries made to it), such that no distinguisher that makes a polynomial number
of queries to a pair of oracles that is either (If , f) or (F, SF ), can distinguish between them, except with
negligible probability. Though there are proofs of more complicated versions of this construction (which we
will talk about in Section 8) in the literature, to the best of our knowledge, we have not come across a proof
of this particular construction, and hence this proof can be considered as one of our contributions in this
paper. Also, we find most of these proofs in the literature to be confusing, missing a few vital steps, or a
combination of both, and hence they are difficult to understand.

Since we will be closely following Bernstein’s technique and adapting it to the indifferentiability setting, we
first give an overview of his technique before presenting a brief outline of the technique we use. We present
a more detailed outline of the technique we use and an indifferentiability proof of the above construction
using this technique in Section 7. Bernstein in [Ber05], shows that CBCf , for a uniform random f , is indis-
tinguishable from a uniform random function F : {0, 1}2n → {0, 1}n. The outline is as follows. Let games
G1 and G2 correspond to D interacting with distributions F and CBCf respectively. For each i ∈ {1, 2},
let pi be the probability that D accepts in Game Gi. We want to show that |p2− p1| is close to 0. Bernstein
fixes the query-answer sequence and proves that for each fixed query-answer sequence, the probability (over
the choice of f) that we get the given answer sequence for the given query sequence in Game G2 is greater
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than equal to the (1− ε) times the probability (over the choice of F ) that we get the given answer sequence
for the given query sequence in Game G1. Then, he uses this theorem to give a fairly straightforward proof
that |p2 − p1| ≤ ε (Theorem 3.1 in [Ber05]).

We would like to see if we can directly use this technique in proving indifferentiability of the construction If

(for a uniform random f), from a uniform random function F : {0, 1}n → {0, 1}n. Let SF be the simulator
that we will define in Algorithm 1 of Section 7. Let games G1 and G2 correspond to D interacting with distri-
butions (F, SF ) and (If , f) respectively. For each i ∈ {1, 2}, let pi be the probability that D accepts in Game
Gi. We want to show that |p2 − p1| is close to 0. Following Bernstein, let us fix the query-answer sequence.
If we can prove that for each fixed query-answer sequence, the probability (over the choice of f) that we get
the given answer sequence for the given query sequence in Game G2 is greater than equal to the (1− ε) times
the probability (over the choice of F ) that we get the given answer sequence for the given query sequence in
Game G1, then we can use Theorem 3.1 of [Ber05] to prove that |p2− p1| ≤ ε and we will be done. However,
in Section 7, we will give a counter-example proving that is indeed not the case. More specifically, we will
exhibit a query-answer sequence that happens with a positive probability in Game G1 and zero probability
in Game G2. For this query-answer sequence, it is clear that the probability (over the choice of f) that we
get the given answer sequence for the given query sequence in Game G2 is less than (1− ε) times the prob-
ability (over the choice of F ) that we get the given answer sequence for the given query sequence in Game G1

So, we will rule out such query-answer sequences (that happen with a positive probability in Game G1 and
zero probability in Game G2), and prove that for every D, probability that D causes a ruled out query-answer
sequence in Game G1 is small, say ε1 (where ε1 is a function of the number of queries we allow D to make).
Now, for each query-answer sequence that have not been ruled out, we will prove that the probability (over
the choice of f) that we get the given answer sequence for the given query sequence in Game G2 is greater
than equal to the (1− ε) times the probability (over the choice of F ) that we get the given answer sequence
for the given query sequence in Game G1. Using these two results, we will extend Theorem 3.1 of [Ber05] to
prove that |p2 − p1| ≤ ε+ ε1. Summarizing the approach,

1. Define a notion of “ruled out query-answer sequences”. This notion will include query-answer sequences
that occur with zero probability in Game G2 but with some positive probability in Game G1, but also
some other query-answer sequences (that we include for convenience, see Section 7 for more details).

2. For every D, prove that the probability (over the choice of F ) that D causes a ruled out query-answer
sequence to occur in Game G1 is small, say ε1.

3. Prove that for all fixed query-answer sequences that have not been ruled out, the probability (over the
choice of f) that we get the given answer sequence for the given query sequence in Game 2 is greater
than or equal to (1 − ε) times the probability (over the choice of F ) that we get the given answer
sequence for the given query sequence in Game 1.

4. Use (2) and (3) to prove that |p2 − p1| ≤ ε+ ε1.

So, Steps 1 and 2 are a new addition compared to the original proof of [Ber05]. Step 4 is an extension of
Theorem 3.1 of [Ber05]. Also, for proving Step 3, we will be using a more intuitive Bayesian approach, as
opposed to the counting argument of [Ber05].

Of course, proving the indifferentiability of If (for a uniform random f) is just a starting step, since the
construction processes only two blocks of input. The fact that the output length of the construction equals
the input length of the construction makes this indifferentiability proof more of a curiosity than anything
else, since the construction by itself doesn’t seem very useful in practice. We aim to extend this technique to
get the indifferentiability proofs of more general constructions (such as the one similar to the construction
If , but processing inputs of arbitrary length), in our future work. More particularly, consider the following
generalization of If .
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Definition 1.3. Let f be a function such that, for every positive even integer n, f : {0, 1}n → {0, 1}n. For
every positive even integer n, define I ′f : ({0, 1}n/2)∗ → {0, 1}n recursively as follows.

I ′f (ε) = 0n

I ′f (xy) = f(I ′f (x)⊕ y0n/2)

where x ∈ ({0, 1}n/2)∗, y ∈ {0, 1}n/2 and ε is the empty string.

We would like to use the above proof technique to prove that I ′f (for a uniform random f) is indifferentiable
from a uniform random function F : ({0, 1}n/2)∗ → {0, 1}n. As we had stated earlier, though this construc-
tion resembles the sponge construction on which much work has been done, to the best of our knowledge
we have not yet found an indifferentiability proof for this particular construction (or even for the simpler
case If which processes only two blocks of input). People have proved indifferentiability results for much
more complicated versions of this construction, like the construction which is similar to I ′f , but some bits
are truncated from the output [BDPVA08]. People have also given the proof for a technically stronger indif-
ferentiability theorem for this version, where the uniform random function is replaced by a uniform random
permutation together with its inverse (technically stronger in the sense that, the simulator in that proof
simulates both the permutation and its inverse) [BDPVA08][AMP12]. We briefly talk about the indifferen-
tiability results of constructions like these, in Section 8. Specifically, we prove that the construction Ip, for a
uniform random permutation p (together with its inverse), is not indifferentiable from a uniform random func-
tion F : {0, 1}n → {0, 1}n, and one of the ways of making the construction work (that is, slightly modifying
the construction to getting an indifferentiability theorem out of it) is to drop some bits from the output of Ip.

Also, as a warm up before presenting the indifferentiability proof of If using this technique, we present the
proof of indistinguishabulity of If (for a uniform random f) from a uniform random function F : {0, 1}n →
{0, 1}n. Though this construction is similar to the CBC construction, it turns out that we can get an indis-
tinguishability proof that is much simpler and more intuitive than the technique Bernstein uses in [Ber05]
for the indistinguishability proof of the CBC construction. The trick we use here is called coupling [Lin92]
[Tho00], from probability theory. The high level idea is as follows. Using the conventions we used before, let
games G1 and G2 correspond to D interacting with distributions F and If respectively. For each i ∈ {1, 2},
let pi be the probability that D accepts in Game Gi. We want to show that |p2 − p1| is close to 0. That is,
we would like to show that with high probability, the outcomes (that is, the answers to the queries that D
makes) of both the games are identically distributed. To argue this, we couple the games by running both
the games together with common randomness and argue that with high probability, the outcome of both
the games (when run with common randomness) are identical.

We also provide negative results regarding the indifferentiability of the Cipher Block Chaining construction
CBCf (for a uniform random f) and some standard variants of the CBC construction.

In the beginning of the paper, we also survey some results regarding the indifferentiability of the Merkle-
Damgard (MD) construction and the Feistel construction.

After completing most of this work, we learned that a proof technique similar to the one we use in this paper,
had previously been used in the indifferentiability proof of a variant of the MD construction in [CN08a].

1.4 Related Work

As we mentioned earlier, the technique we use for proving indifferenitability theorems is an extension of the
technique used by Bernstein in [Ber05] to prove the security of the CBC construction in the indistinguisha-
bility setting. The technique we use also bears resemblance to the technique used by Vaudney in [Vau03],
Maurer in [Mau02] and Bellare et al. in [BR06], all in the indistinguishability setting. The construction
If closely resembles the sponge construction, which was introduced by Bertoni et al. in [BDPVA11a]. The
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indifferentiability proofs for the different versions of sponge construction appear in [BDPVA08], by the same
authors. Andreeva et al. generalized the sponge construction and proved the indifferentiability results for the
same in [AMP12]. The indifferentiability results for the MD construction and some of its standard variants
that we survey in this paper, are from [CDMP05]. The indifferentiability results for the Feistel construction
that we survey in this paper are from [CPS08],[HKT10] and [MPS12]. The instances of the use of coupling
arguments in cryptography that we could find were, for the analysis of RC4 cipher by Mironov in [Mir02],
and for the analysis of Feistel networks by Morris et al. in [MRS09] and Hoang et al. in [HR10].

1.5 Organization of the Paper

The paper is organized as follows. In Section 2, we present some notations and definitions that we will be
using in the rest of the paper. In Section 3, we present some negative results regarding the indifferentiability of
CBC construction and some of its standard variants. In Section 4, we survey some results from the literature
regarding the indifferentiability of the MD construction and some of its standard variants. In Section 5,
we survey some results from the literature regarding the indifferentiability of the Feistel construction. In
Section 6, we present the proof of indistinguishability of the construction If (for a uniform random f), from a
uniform random function F : {0, 1}n → {0, 1}n (chosen independently of f), using coupling. Our main result
is in Section 7, where we give a more detailed outline of the technique we use for proving indifferentiability
theorems and present the proof of indifferentiability of the construction If (for a uniform random f), from
a uniform random function F : {0, 1}n → {0, 1}n using the technique. In Section 8, we investigate the
indifferentiability of construction Ip, for a uniform random permutation p (together with its inverse), from
a uniform random function F : {0, 1}n → {0, 1}n. We conclude and present further directions for research
in Section 9.

2 Preliminaries

2.1 Notations

• N denotes the set of all natural numbers and Z+ denotes the set of all positive integers.

• For every m,n ∈ Z+, Fnm denotes the set of all functions mapping {0, 1}n to {0, 1}m

• For every n ∈ Z+, Pn denotes the set of all permutations (together with their inverses) mapping {0, 1}n
to {0, 1}n.

• For any distribution D, the notation d← D denotes randomly choosing a member d according to the
distribution D.

2.2 Indistinguishability

In this subsection, we give a meta-definition of indistinguishability. Since this is just a meta-definition, we
will be intentionally vague about the types of some objects here. We will be more explicit as to what these
types are, when we use this definition to state indistinguishability theorems about constructions, in the
upcoming sections.

Let F = {Fn}n∈Z+ and G = {Gn}n∈Z+ be two families of distributions parametrized by n. In each family,
for each n, the distribution is over functions or a tuple of functions having as domain and range a set of
strings (the length of which depends on n). Let C be a deterministic construction that has as input, the
parameter n and a random member f from Fn as an oracle, and outputs Cfn ∈ Gn that can be queried by an
algorithm. In effect, the construction C can be seen as outputting an oracle. We define what it means for the
construction C with oracle access to the distribution family F to be indistinguishable from the distribution
family G.
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Definition 2.1 (Indistinguishability). A deterministic construction C with oracle access to a distribution
family F is said to be indistinguishable from a distribution family G if {Cfn | f ← F} is bounded oracle
indistinguishable from {g | g ← G}.

By “bounded oracle indistinguishable” we mean that, for every bounded oracle distinguisher D (we will
shortly say what we mean by a bounded oracle distinguisher), the following holds. D is given 1n and an
oracle of type G with parameter n, which is either Cfn (for a random member f from Fn) or a random

member g from Gn. Let Pr[DCf
n(1n) = 1] denote the probability (over the choice of f) that D accepts if the

oracle was Cfn and Pr[Dg(1n) = 1] denote the probability (over the choice of g) that D accepts if the oracle
was g. Then, for every c and sufficiently large n, we have that

|Pr [DCf
n(1n) = 1]− Pr[Dg(1n) = 1]| ≤ 1

nc

By bounded oracle distinguisher, we mean that we do not care about the running time of the distinguisher
and we only care that it makes a bounded number of queries to the oracle, that is, the total number of
queries made by the distinguisher to the oracle is a polynomial in n.

We present an example here. Recall the CBC construction which we defined in the previous section. Using
the above meta-definition, we will be stating the theorem that CBCf (for a uniform random f : {0, 1}n →
{0, 1}n) is indistinguishable from a uniform random F : {0, 1}2n → {0, 1}n. We won’t be proving this
theorem since it is a well known result, as discussed in the previous section.

Theorem 2.2. Let Xn be the uniform distribution on the set F2n
n and let Yn be the uniform distribution on

the set Fnn, for every positive integer n. Let X = {Xn} and Y = {Yn}. Then, the construction CBC having
oracle access to the distribution family Y is indistinguishable from the distribution family X .

2.3 Indifferentiability

In this subsection, we give a meta-definition of indifferentiability. Since this is just a meta-definition, we will
be intentionally vague about the types of some objects here. We will be more explicit as to what these types
are, when we use this definition to state indifferentiability theorems about constructions, in the upcoming
sections.

Let F = {Fn}n∈Z+ and G = {Gn}n∈Z+ be two families of distributions parametrized by n. In each family,
for each n, the distribution is over functions or a tuple of functions having as domain and range a set of
strings (the length of which depends on n). Let C be a deterministic construction that has as input the
parameter n and a random member f from Fn as an oracle, and outputs an oracle Cfn ∈ Gn that can be
queried by an algorithm. A “simulator” is a probabilistic algorithm that has as input the parameter n
and a random member g from Gn as an oracle, and outputs an oracle Sgn ∈ Fn that can be queried by an
algorithm. We define what it means for the construction C with oracle access to the distribution family F
to be indifferentiable from the distribution family G.

Definition 2.3 (Indifferentiability). A deterministic construction C with oracle access to a distribution
family F is said to be indifferentiable from a distribution family G if there exists a probabilistic, effi-
cient, oracle simualtor algorithm S such that, {(Cfn , f) | f ← F} is bounded oracle indistinguishable from
{(g, Sgn) | g ← G}.

By “bounded oracle indistinguishable” we mean that, for every bounded oracle distinguisher D, the following
holds. D is given 1n, an oracle of type G with parameter n (let’s call it the Left oracle L) and an oracle of
type F with parameter n (let’s call it the Right oracle R), where the pair of oracles L,R, is either Cfn , f (for

a random member f from Fn) or g, Sgn (for a random member g from Gn). Let Pr[DCf
n,f (1n) = 1] denote

the probability (over the choice of f) that D accepts if the oracles were Cfn , f and Pr[Dg,Sg
n(1n) = 1] denote
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the probability (over the choice of g and the random choices made by the simulator) that D accepts if the
oracles were g, Sgn. Then, for every c and sufficiently large n, we have that

|Pr [DCf
n,f (1n) = 1]− Pr[Dg,Sg

n(1n) = 1]| ≤ 1

nc

By bounded oracle distinguisher, we mean that we do not care about the running time of the distinguisher
and we only care that it makes a bounded number of queries to the oracles, that is, the total number of
queries made by the distinguisher to the oracles is a polynomial in n.

We used the term “efficient” while describing the simulator S. By this we mean that the simulator S runs in
time polynomial in n and the number of queries made to it (and in particular, makes a polynomial number
of queries to g).

We present an example here, again using the CBC construction. Using the above meta-definition, we will
be stating the theorem that CBCf (for a uniform random f) is not indifferentiable from a uniform random
F : {0, 1}2n → {0, 1}n. We will be proving this in Section 3, by defining a distinguisher D which distinguishes
(CBCf , f) and (F, SF ) with overwhelming probability for any efficient simulator S.

Theorem 2.4. Let Xn be the uniform distribution on the set F2n
n and let Yn be the uniform distribution on

the set Fnn, for every n ∈ Z+. Let X = {Xn} and Y = {Yn}. Then, the construction CBC having oracle
access to the distribution family Y is not indifferentiable from the distribution family X .

Remark 2.5. Note that this proof of “non-indifferentiability” will be stronger than what Definition 2.3
requires. That is, the definition says, to prove non-indifferentiability it is sufficient to show for any efficient
simulator there exists a distinguisher, whereas we will be showing there exists a distinguisher for any efficient
simulator.

2.4 Sequential Indifferentiability

Sequential indifferentiability is a weaker form of indifferentiability, introduced by Mandal et al. in [MPS12].
In sequential indifferentiability, we consider a restricted class of distinguishers, called the sequential dis-
tinguishers, which can only make queries (to the oracles it is provided with) in a specific order. More
particularly, a sequential distinguisher D can first query the Right oracle as it wants and then query the
Left oracle as it wants. But once it starts querying the Left oracle, it cannot query the Right oracle again.
So the definition for sequential indifferentiability is similar to the definition of indifferentiability provided in
the previous subsection, with this additional restriction.

It is easy to see that indifferentiability implies sequential indifferentiability, but the other direction is not
necessarily true (as proved in [MPS12]).

We present an example here, again using the CBC construction. We will be stating the theorem that CBCf

(for a uniform random f) is not sequentially indifferentiable from a uniform random F : {0, 1}2n → {0, 1}n.
We won’t be proving this explicitly but it will be easy to see that the distinguisher we provide for the proof
of non-indifferentiability of CBC in Section 3, is actually a sequential distintinguisher.

Theorem 2.6. Let Xn be the uniform distribution on the set F2n
n and let Yn be the uniform distribution on

the set Fnn, for every n ∈ Z+. Let X = {Xn} and Y = {Yn}. Then, the construction CBC having oracle
access to the distribution family Y is not sequentially indifferentiable from the distribution family X .

9



3 Indifferentiability Results for the CBC Construction and Some
of its Standard Variants

In this section, we present some non-indifferentiability results for the well known Cipher Block Chaining
(CBC) construction and some of its standard variants.

3.1 CBC construction processing 2 blocks of input

We first restate the definition of the CBC construction processing two blocks of input.

Definition 3.1. Let f be a function such that, f : {0, 1}n → {0, 1}n for every n ∈ Z+. For every n ∈ Z+,
define CBCf : {0, 1}2n → {0, 1}n as follows

CBCf (xy) = f(f(x)⊕ y)

where x, y ∈ {0, 1}n.

We will prove that CBCf (for a uniform random f) does not give you indifferentiability from a uniform
random function F mapping {0, 1}2n to {0, 1}n, by giving a very simple attack. We restate the theorem
from the previous section.

Theorem 3.2. Let Xn be the uniform distribution on the set F2n
n and let Yn be the uniform distribution on

the set Fnn, for every positive integer n. Let X = {Xn} and Y = {Yn}. Then, the construction CBC having
oracle access to the distribution family Y is not indifferentiable from the distribution family X .

Proof. Fix n. Here we define a distinguisher D which distinguishes (CBCf , f) and (F, SF ) with overwhelm-
ing probability for any efficient simulator S, where f is a uniform random function from {0, 1}n to {0, 1}n
and F is a uniform random function from {0, 1}2n to {0, 1}n. D has access to oracles X : {0, 1}2n → {0, 1}n
and Y : {0, 1}n → {0, 1}n, which are either (CBCf , f) or (F, SF ). D works as follows,

1. Choose arbitrary n-bit strings a, b such that a 6= b.

2. Let α← Y (a) and β ← Y (b).

3. Let γ ← X(aα) and δ ← X(bβ).

4. If γ = δ accept, else reject.

It is clear that D accepts (CBCf , f) with probability 1. This is because for any f the following holds.
α = f(a); β = f(b). γ = CBCf (aα) = f(f(a) ⊕ α) = f(0n). δ = CBCf (bβ) = f(f(b) ⊕ α) = f(0n) = γ.

Also, D accepts (F, SF ) with probability at most q2

2n , for any simulator S that makes at most 2q queries to
F . This is because of the following reason. The simulator knows a, b and has to come up with α, β such
that F (aα) = F (bβ) where a 6= b, by making at most 2q queries to F (say that it makes at most q queries
whose first half is a and at most q queries whose first half is b). It is easy to see that for a uniform random

function F , this happens with probability at most q2

2n . Hence, we have that for any S that makes at most
2q queries to F ,

|Pr [DCBCf ,f (1n) = 1]− Pr [DF,SF

(1n) = 1]| ≥ 1− q2

2n

Hence we conclude that D distinguishes (CBCf , f) and (F, SF ) with overwhelming probability for any
efficient simulator S.
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3.2 CBC construction processing inputs of length that are multiples of n

Consider the following construction, which is the CBC construction processing inputs of length that are
multiples of n.

Definition 3.3. Let f be a function such that, for every n ∈ Z+, f : {0, 1}n → {0, 1}n. For every n ∈ Z+,
define CBC ′f : ({0, 1}n)∗ → {0, 1}n recursively as follows.

CBC ′f (ε) = 0n

CBC ′f (m1m2) = f(CBC ′f (m1)⊕m2)

where m1 ∈ ({0, 1}n)∗, m2 ∈ {0, 1}n and ε is the empty string.

It is a well known result that CBC ′f (for a uniform random f) does not give us indistinguishability from a
uniform random function mapping ({0, 1}n)∗ to {0, 1}n (and hence, it doesn’t give us indifferentiability too).
However, there are three popular fixes for this construction in the literature, to make the indistinguishability
theorem go through. We would like to see if any of these fixes would make the indifferentiability theorem go
through for this construction. However, the answer is a negative one as for each of the fixes, we can come
up with a distinguisher that is similar to the one in the previous subsection.

3.2.1 Variant 1: Prefix-free encoding

The first fix that makes the indistinguishability theorem go through is making sure that the inputs to CBC ′f

are not prefixes of each other. We first define what we mean by a prefix-free encoding. We use the definition
(and example) from [CDMP05].

Definition 3.4 (Prefix-free encoding). Let n be a positive integer. A prefix-free encoding over {0, 1}n is an
injective function p : {0, 1}∗ → ({0, 1}n)∗ such that for every x, y ∈ {0, 1}∗ where x 6= y, p(x) is not a prefix
of p(y).

In practice, we want p to be an easy to compute function. Now, we define a particular prefix-free encoding
p1 which will serve as an example, and also be used in a theorem shortly.

Definition 3.5. For every positive integer n, define enc : {0, 1}∗ → ({0, 1}n)∗ as follows.

enc(m) = m10x

where m ∈ {0, 1}∗ and x ≥ 0 is the least number of zeroes such that |enc(m)| is divisible by n.
For sufficiently large positive integers n, define p1 : {0, 1}∗ → ({0, 1}n)∗ as follows.

p1(m) = κ enc(m)

where m ∈ {0, 1}∗ and κ is the n− bit binary encoding of |enc(m)|
n

4.

Definition 3.6. Let f be a function such that, for every n ∈ Z+, f : {0, 1}n → {0, 1}n. Let p be a prefix free
encoding over {0, 1}n, for every n ∈ Z+. For every n ∈ Z+ define prefixFreeCBCf,p : {0, 1}∗ → {0, 1}n
as follows

prefixFreeCBCf,p(m) = CBC ′f (p(m))

where m ∈ {0, 1}∗.

4Technically, it should be
|enc(m)|

n
mod 2n.
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Petrank et al. in [PR00] proved that for any prefix-free encoding p, the construction prefixFreeCBCf,p (for
a uniform random f) is indistinguishable from a uniform random function mapping {0, 1}∗ to {0, 1}n, by
extending the proofs in [BKR00]. In [GR10], Gorbunov et al. provided an alternate proof for this theorem,
by extending the proofs from [Ber05]. In [BPR05], Bellare et al. gave another different proof for this theo-
rem, using the so called “Code-based game-playing Framework” and obtained a better quantitative result.

However, it is easy to see that the indifferentiability version of this theorem is not true. That is, there exists
a prefix-free encoding p such that prefixFreeCBCf,p (for a uniform random f) is not indifferentiable from
a uniform random function mapping {0, 1}∗ to {0, 1}n. The particular prefix-free encoding we consider is
p1. The distinguisher (let’s call it D′) for the proof of this theorem is very similar to the distinguisher D
we presented in the previous subsection for the construction CBCf . D′ has access to oracles X : {0, 1}∗ →
{0, 1}n and Y : {0, 1}n → {0, 1}n, which are either (prefixFreeCBCf,p1 , f) or (F, SF ). D′ works as follows.

1. Choose arbitrary n-bit strings a, b such that a 6= b.

2. Let t← Y (3) (where 3 is the n-bit binary encoding of 3).

3. Let α← Y (t⊕ a) and β ← Y (t⊕ b).

4. Let γ ← X(aα) and δ ← X(bβ).

5. If γ = δ accept, else reject.

It is easy to see that D′ accepts prefixFreeCBCf,p1 , f with probability 1. This is because
γ = prefixFreeCBCf,p1(aα) = CBC ′f (p1(aα)) = CBC ′f (3 a α 10n−1) = f(f(0n)⊕ 10n−1)
(since α = f(f(3)⊕ a)) and
δ = prefixFreeCBCf,p1(bβ) = CBC ′f (p1(bβ)) = CBC ′f (3 b β 10n−1) = f(f(0n)⊕ 10n−1)
(since β = f(f(3)⊕ b)).
Again, when D′ is querying F, SF , the simulator knows a, b and has to come up with α, β such that F (aα) =
F (bβ) where a 6= b and a simulator making polynomial number of queries to a uniform random F cannot do
this except with negligible probability. We skip the details here, and present just the theorem.

Theorem 3.7. Let Xn be the uniform distribution on the set of all functions mapping {0, 1}∗ to {0, 1}n and
let Yn be the uniform distribution on the set Fnn, for every n ∈ Z+. Let X = {Xn} and Y = {Yn}. Then,
the construction prefixFreeCBCp1 having oracle access to the distribution family Y is not indifferentiable
from the distribution family X .

We expect that this theorem is not true for any prefix-free encoding. This is because, we can achieve
indifferentiability for CBC ′f (for a uniform random f) when we apply it to a very simple encoding that
is not even prefix-free (but is injective). The encoding is as follows. Recall the construction I ′f that we
introduced in the first section (that is the generalization of the If ). We give an equivalent definition of I ′f

here: as CBC ′f applied to a particular encoding.

Definition 3.8. For every positive even integer n, define the encoding e : ({0, 1}n/2)∗ → ({0, 1}n)∗ recur-
sively as follows,

e(ε) = ε

e(xy) = e(x)y0n/2

where x ∈ ({0, 1}n/2)∗, y ∈ {0, 1}n/2 and ε is the empty string.
Let f be a function such that, for every positive even integer n, f : {0, 1}n → {0, 1}n. For every positive
even integer n, define I ′f : ({0, 1}n/2)∗ → {0, 1}n as follows.

I ′f (m) = CBC ′f (e(m))

where m ∈ ({0, 1}n/2)∗

12



We expect that the indifferentiability result holds for I ′f (for a uniform random f), though we will only be
proving the indifferentiability result for If (for a uniform random f). As stated in the first section, proving
the indifferentiability result for I ′f (for a uniform random f) is one of our future goals.

3.2.2 Variant 2: Applying a uniform random function, chosen independently of f , to the
output of CBC ′f

The second fix that makes the indistinguishability theorem go through, is to apply a uniform random function
(let’s call it g), chosen independently of f , to the output of CBC ′f . This construction was introduced
in [PR00] as a variant of the CBC construction, that processes inputs of arbitrary length (no prefix-free
restriction).

Definition 3.9. Let f, g be functions such that, for every n ∈ Z+, f, g : {0, 1}n → {0, 1}n. For every
n ∈ Z+, define doubleCBCf,g : ({0, 1}n)∗ → {0, 1}n as follows.

doubleCBCf,g(m) = g(CBC ′f (m))

where m ∈ ({0, 1}n)∗.

Petrank et al. in [PR00] proved that, the construction doubleCBCf,g (for f, g chosen independently and
uniformly at random) is indistinguishable from a uniform random function mapping ({0, 1}n)∗ to {0, 1}n,
by extending the proofs in [BKR00].

However, it is easy to see that the indifferentiability version of this theorem is not true. That is, doubleCBCf,g

(for f, g chosen independently and uniformly at random) is not indifferentiable from a uniform random
function mapping ({0, 1}n)∗ to {0, 1}n. Again the distinguisher for the proof of this non-differentiability
theorem is very similar to the distinguisher D we presented in the previous subsection for the construction
CBCf and the analysis is quite similar too (the simulator’s job, while trying to simulate g, is to come up
with α, β such that F (aα) = F (bβ) where a 6= b and a simulator making polynomial number of queries to a
uniform random F cannot do this except with negligible probability). We skip the details, and present just
the theorem.

Theorem 3.10. Let Xn be a uniform distribution on the set of all functions mapping ({0, 1}n)∗ to {0, 1}n
and let Yn be a uniform distribution on the set of all 2-tuples of functions where each function maps {0, 1}n
to {0, 1}n, for every n ∈ Z+. Let X = {Xn} and Y = {Yn}. Then, the construction doubleCBC having
oracle access to the distribution family Y is not indifferentiable from the distribution family X .

3.2.3 Variant 3: The Truncated CBC construction

The final fix we see here is truncating a certain amount of bits (say bn/2c bits) from the output of CBC ′f .

Definition 3.11. Let f be a function such that, for every n ∈ Z+ such that n > 1, f : {0, 1}n → {0, 1}n.
For every n ∈ Z+ such that n > 1, define trCBCf : ({0, 1}n)∗ → {0, 1}dn/2e as follows

trCBCf (m) = first dn/2e bits of CBC ′f (m)

where m ∈ ({0, 1}n)∗.

It is a well known result that the construction trCBCf (for uniform random f) is indistinguishable from a
uniform random function mapping ({0, 1}n)∗ to {0, 1}dn/2e. However, the construction trCBCf (for uniform
random f) is not indifferentiable from a uniform random function mapping ({0, 1}n)∗ to {0, 1}dn/2e. Since
trCBCf can be viewed as being similar to doubleCBCf,g where the outer function g is a fixed function that
truncates a certain amount of bits, instead of a uniform random function, the same argument as the previous
subsection holds here too. Again, we skip the details, and present just the theorem.
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Theorem 3.12. Let Xn be the uniform distribution on the set of all functions mapping ({0, 1}n)∗ to
{0, 1}dn/2e and let Yn be the uniform distribution on the set Fnn, for every n ∈ Z+ such that n > 1. Let
X = {Xn} and Y = {Yn}. Then, the construction trCBC having oracle access to the distribution family Y
is not indifferentiable from the distribution family X .

Remark 3.13. Note that it doesn’t matter how many bits we drop from the output of CBCf (bn/2c was
an arbitrary number). The attack would still go through if say we drop k bits, for any 0 < k < n, from the
output of CBCf .

Remark 3.14. Note that the distinguisher we described in the proof of Theorem 3.2 is a sequential distin-
guisher. So, the CBC construction and its variants we described above, do not even satisfy the weaker form
of indifferentiability, namely, sequential indifferentiability.

4 Indifferentiability Results for the MD Construction and Some
of its Standard Variants

In this section, we present the indifferentiability results for the MD (Merkle-Damgard) construction and
some of its standard variants. All the results stated in this section are from [CDMP05]. We restate the
results using our notations and definitions. We won’t be proving any of the results and suggest the reader
to peruse the original paper for the proofs.

4.1 MD construction processing 2 blocks of input

We first give the definition of the MD construction processing 2 blocks of input.

Definition 4.1. Let f be a function such that, for every n ∈ Z+, f : {0, 1}n × {0, 1}n → {0, 1}n. For every
n ∈ Z+, define MDf : {0, 1}2n → {0, 1}n as follows

MDf (xy) = f(f(0n, (x)), (y))

where x, y ∈ {0, 1}n.

Theorem 4.2. Let Xn be the uniform distribution on the set F2n
n and let Yn be the uniform distribution on

the set of all functions mapping {0, 1}n×{0, 1}n to {0, 1}n, for every n ∈ Z+. Let X = {Xn} and Y = {Yn}.
Then, the construction MD having oracle access to the distribution family Y is indifferentiable from the
distribution family X .

4.2 MD construction processing inputs of length that are multiples of n

We now define the more general MD construction which processes inputs of length that are multiples of n.

Definition 4.3. Let f be a function such that, for every n ∈ Z+, f : {0, 1}n × {0, 1}n → {0, 1}n. For every
n ∈ Z+, define MD′f : ({0, 1}n)∗ → {0, 1}n recursively as follows.

MD′f (ε) = 0n

MD′f (m1m2) = f(MD′f (m1),m2)

where m1 ∈ ({0, 1}n)∗, m2 ∈ {0, 1}n and ε is the empty string.

It is a well known result that MD′f , for a uniform random f , is indistinguishable from a uniform random
function mapping ({0, 1}n)∗ to {0, 1}n.
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Theorem 4.4. Let Xn be the uniform distribution on the set of all functions mapping ({0, 1}n)∗ to {0, 1}n
and let Yn be the uniform distribution on the set of all functions mapping {0, 1}n × {0, 1}n to {0, 1}n, for
every n ∈ Z+. Let X = {Xn} and Y = {Yn}. Then, the construction MD′ having oracle access to the
distribution family Y is indistinguishable from the distribution family X .

However, Coron et al. in [CDMP05], via a simple attack showed that MD′f , for a uniform random f , is not
indifferentiable from a uniform random function mapping ({0, 1}n)∗ to {0, 1}n. Formally,

Theorem 4.5. Let Xn be the uniform distribution on the set of all functions mapping ({0, 1}n)∗ to {0, 1}n
and let Yn be the uniform distribution on the set of all functions mapping {0, 1}n × {0, 1}n to {0, 1}n, for
every n ∈ Z+. Let X = {Xn} and Y = {Yn}. Then, the construction MD′ having oracle access to the
distribution family Y is not indifferentiable from the distribution family X .

Coron et al. suggested a few ways of modifying the above construction so that the indifferentiability theorem
goes through for the modified construction. We present a few of their fixes here.

4.2.1 Fix 1: Prefix-free encoding

One way of making the construction work is to ensure that the messages to the MD′f construction are
prefix-free. So, one could employ a suitable prefix free encoding (such as the one presented in the previous
section) to the messages before they are processed by the MD′f construction. Coron et al. were able to
prove the indifferentiability theorem for such a prefix-free MD construction.

Definition 4.6. Let f be a function such that, for every n ∈ Z+, f : {0, 1}n ×{0, 1}n → {0, 1}n. Let p be a
prefix-free encoding over {0, 1}n, for every n ∈ Z+. For every n ∈ Z+, define prefixFreeMDf,p : {0, 1}∗ →
{0, 1}n as follows

prefixFreeMDf,p(m) = MD′f (p(m))

where m ∈ {0, 1}∗.

Theorem 4.7. Let Xn be the uniform distribution on the set of all functions mapping {0, 1}∗ to {0, 1}n and
let Yn be the uniform distribution on the set of all functions mapping {0, 1}n × {0, 1}n to {0, 1}n, for every
n ∈ Z+. Let X = {Xn} and Y = {Yn}. Then, for every p, the construction prefixFreeMDp having oracle
access to the distribution family Y is indifferentiable from the distribution family X .

4.2.2 Fix 2: Applying a uniform random function, chosen independently from f , to the output
of the MD′f

Another way of fixing the MD′f is to apply a random function chosen independently from f to the output
of the MD′f construction.

Definition 4.8. Let f, g be functions such that, for every n ∈ Z+, let f, g : {0, 1}n → {0, 1}n. For every
n ∈ Z+, define doubleMDf,g : ({0, 1}n)∗ → {0, 1}n as follows.

doubleMDf,g(m) = g(MD′f (m))

where m ∈ ({0, 1}n)∗.

Theorem 4.9. Let Xn be the uniform distribution on the set of all functions mapping ({0, 1}n)∗ to {0, 1}n
and let Yn be the uniform distribution on the set of all 2-tuples of functions where each function maps {0, 1}n
to {0, 1}n, for every n ∈ Z+. Let X = {Xn} and Y = {Yn}. Then, the construction doubleMD having oracle
access to the distribution family Y is indifferentiable from the distribution family X .
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4.2.3 Fix 3: The Truncated MD construction

The final fix that we will be presenting here is to drop a fraction (say bn/2c) bits from from output of the
construction MD′f .

Definition 4.10. Let f be a function such that, for every n ∈ Z+ such that n > 1, f : {0, 1}n → {0, 1}n.
For every n ∈ Z+ such that n > 1, define trMDf : ({0, 1}n)∗ → {0, 1}dn/2e as follows

trMDf (m) = first dn/2e bits of MD′f (m)

where m ∈ ({0, 1}n)∗.

Theorem 4.11. Let Xn be the uniform distribution on the set of all functions mapping ({0, 1}n)∗ to
{0, 1}dn/2e and let Yn be the uniform distribution on the set Fnn, for every n ∈ Z+ such that n > 1. Let
X = {Xn} and Y = {Yn}. Then, the construction trMD having oracle access to the distribution family Y
is indifferentiable from the distribution family X .

Coron et al. observed that this construction is not very useful when the output of MD′f is small (say 128
bits, which is case for the MD5 hash function). This is because, when you drop half the number of bits from
the output (say drop 64 bits for a function with 128 bit output), you are left with a function that outputs too
few bits to be secure and useful, when used in various protocols. In subsequent work, Maurer et al. [MT07]
combined the fixes 1 and 3 to get a “truncated prefix-free MD construction” and got a better quantitative
indifferentiability result out of it.

5 Indifferentiability Results for the Feistel Construction

In this section, we survey some indifferentiability results for the Feistel Construction, which we define below.

Definition 5.1. Let f be a function such that, f : {0, 1}n → {0, 1}n for every n ∈ Z+. For every n ∈ Z+,
define Gf , G

−1
f : {0, 1}2n → {0, 1}2n (where G−1f is the inverse of Gf ) as follows

Gf (LR) = R(L⊕ f(R))

G−1f (ST ) = (T ⊕ f(S))S

where L,R, S, T ∈ {0, 1}n

We now define what we mean by an i− round Feistel network.

Definition 5.2. For every i ∈ Z+, let F i = {f1, ...., fi} be an i− tuple of functions, where for every j,
1 ≤ j ≤ i, fj : {0, 1}n → {0, 1}n, for every n. For every i ∈ Z+, for every n ∈ Z+, define Φi,Fi

,Φ−1i,Fi
:

{0, 1}2n → {0, 1}2n (where Φ−1i,Fi
is the inverse of Φi,Fi

) as follows

Φi,Fi
(LR) = Gfi(....(Gf2(Gf1(LR)))....)

Φ−1i,Fi
(ST ) = G−1f1 (....(G−1fi−1

(G−1fi (ST )))....)

where L,R, S, T ∈ {0, 1}n

Luby and Rackoff, in their paper [LR88], showed that the 4-round Feistel network Φ4,F4 ,Φ
−1
4,F4

, for a
uniform random F4, where each function maps {0, 1}n to {0, 1}n (by uniform random F4, we refer to a
4-tuple of functions chosen uniformly at random from all possible 4-tuples of functions), is indistinguishable
from a uniform random permutation, together with its inverse, mapping {0, 1}2n to {0, 1}2n.

However, Coron et al., in [CPS08], showed that even the 5-round Feistel network Φ5,F5 ,Φ
−1
5,F5

, for a uniform
random F5 (where each function maps {0, 1}n to {0, 1}n), is not indifferentiable from a uniform random
permutation, together with its inverse, mapping {0, 1}2n to {0, 1}2n. We restate the theorem here, using our
notations and definitions. Recall that for every n ∈ Z+, Pn denotes the set of all permutations (together
with their inverses) mapping {0, 1}n to {0, 1}n.
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Theorem 5.3. Let Xn be the uniform distribution on the set P2n and let Yn be the uniform distribution
on the set of all 5-tuples of functions where each function maps {0, 1}n to {0, 1}n, for every n ∈ Z+. Let
X = {Xn} and Y = {Yn}. Then, the 5-round Feistel network Φ5,Φ

−1
5 having oracle access to the distribution

family Y is not indifferentiable from the distribution family X .

To prove the theorem, they gave a distinguisherD and claimed thatD that distinguished between ((Φ5,F5
,Φ−15,F5

), F5)

and ((P, P−1), SP,P
−1

) with overwhelming probability for any efficient simulator S, where F5 is a uniform
random 5-tuple of functions (where each function maps {0, 1}n to {0, 1}n), (P, P−1) is a uniform random
permutation and its inverse, mapping {0, 1}2n to {0, 1}2n. However, we have found a minor technical flaw in
this proof which makes their claim incorrect. We refer the reader to the appendix for a detailed explanation
the flaw and the suggested fix.

Mandal et al., in [MPS12], showed that the 6-round Feistel network Φ6,F6
,Φ−16,F6

, for a uniform random
F6 (where each function maps {0, 1}n to {0, 1}n), is sequentially indifferentiable from a uniform random
permutation, together with its inverse, mapping {0, 1}2n to {0, 1}2n. We restate the theorem here, using our
notations and definitions.

Theorem 5.4. Let Xn be the uniform distribution on the set P2n and let Yn be the uniform distribution
on the set of all 6-tuples of functions where each function maps {0, 1}n to {0, 1}n, for every n ∈ Z+. Let
X = {Xn} and Y = {Yn}. Then, the 6-round Feistel network Φ6,Φ

−1
6 having oracle access to the distribution

family Y is sequentially indifferentiable from the distribution family X .

Coron et al., in [CPS08], showed that the 6-round Feistel network Φ6,F6
,Φ−16,F6

, for a uniform random F6

(where each function maps {0, 1}n to {0, 1}n), is indifferentiable from a uniform random permutation, to-
gether with its inverse, mapping {0, 1}2n to {0, 1}2n. However, this was shown to be false in [HKT10]
by Holenstein et al, where they gave a distinguisher D that distinguished between ((Φ6,F6 ,Φ

−1
6,F6

), F6) and

((P, P−1), SP,P
−1

) with overwhelming probability, where F6 is a uniform random 6-tuple of functions (where
each function maps {0, 1}n to {0, 1}n), (P, P−1) is a uniform random permuation and its inverse, mapping

{0, 1}2n to {0, 1}2n and SP,P
−1

is the simulator defined in [CPS08].

Holenstein et al., in [HKT10], showed that the 14-round Feistel network Φ14,F14 ,Φ
−1
14,F14

, for a uniform random
F14 (where each function maps {0, 1}n to {0, 1}n), is indifferentiable from a uniform random permutation,
together with its inverse, mapping {0, 1}2n to {0, 1}2n. We restate the theorem here, using our notations
and definitions.

Theorem 5.5. Let Xn be the uniform distribution on the set P2n and let Yn be the uniform distribution
on the set of all 14-tuples of functions where each function maps {0, 1}n to {0, 1}n, for every n ∈ Z+.
Let X = {Xn} and Y = {Yn}. Then, the 14-round Feistel network Φ14,Φ

−1
14 having oracle access to the

distribution family Y is indifferentiable from the distribution family X .

Remark 5.6. Note that the distinguisher of [HKT10] does not prove that the 6-round Feistel network, for
a uniform random F6 (where each function maps {0, 1}n to {0, 1}n), is not indifferentiable from a uniform
random permutation, together with its inverse, mapping {0, 1}2n to {0, 1}2n. It just shows that the simulator
of [CPS08] is incorrect. Currently it is not known if the i−round Feistel Network (for a uniform random
Fi) for each i, 6 ≤ i ≤ 13 is indifferentiable from a uniform random permutation, together with its inverse,
mapping {0, 1}2n to {0, 1}2n.

Remark 5.7. Note that in the indifferentiability setting for an i−round Feistel network (say i ≥ 6), to
have any hope of achieving indifferentiability, it is quite necessary that the simulator be given access to the
inverse permutation oracle. This is because of the inherent invertibility of Feistel in the indifferentiability
setting: since the adversary has access to the i round functions, it can do inverse permutation operations by
just querying the i round functions (so the adversary doesn’t need the inverse oracle).
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6 Indistinguishability Proof of If , for a Uniform Random f

Consider the following construction (which we introduced in the first section and restate it here).

Definition 6.1. Let f be a function such that, for every positive even integer n, f : {0, 1}n → {0, 1}n. For
every positive even integer n, define If : {0, 1}n → {0, 1}n as follows

If (xy) = f(f(x0n/2)⊕ y0n/2)

where x, y ∈ {0, 1}n/2.

This construction closely resembles the sponge construction [BDPVA11a], on which the winner of SHA-3
competition [BDPVA11b] is based. Our main goal is to give an easy to understand indifferentiability proof
for this construction using a simple and rigorous technique. But first, we give an indistinguishability proof
for this construction. Since this construction also resembles CBC, one would expect that the easiest way to
prove the indistinguishability result for this construction, is using the technique that Bernstein uses to prove
the security of CBC in [Ber05]. However, it turns out that we can get a much simpler and more intuitive
proof, using a technique called coupling [Lin92][Tho00] from probability theory.

We now proceed to use coupling to prove that the construction If , for a uniform random a f , is indistin-
guishable from a uniform random function F : {0, 1}n → {0, 1}n.

We only consider distinguishers that make exactly q queries to an oracle that is either If or F . It is not
difficult to see that this can be assumed without loss of generality. We fix n to be a sufficiently large
positive even integer and q to be a polynomial in n. Now we proceed to prove the following theorem which
would directly imply the main indistinguishability theorem (which we will be stating after the proof of this
theorem).

Theorem 6.2. Let f, F be functions chosen independently and uniformly at random from all functions
mapping {0, 1}n to {0, 1}n . Let the construction If be as defined before. Then for any distinguisher D that
makes q queries to an oracle that is either If or F , we have that

|Pr [DIf (1n) = 1]− Pr[DF (1n) = 1]| ≤ 1

2

q(q + 1)

2n/2

Proof. We fix D. Without loss of generality, we can assume that the distinguisher D is deterministic and
never repeats a query.

We define Games G1, G2 (Figure 1) such that they correspond to D interacting with the distributions F and
If respectively. For the sake of clarity, we introduce an oracle A in each game such that D only queries A
in each game, and A queries either F or computes If by making two queries to f , depending on the game.
We choose f, F independently and uniformly at random from all functions mapping {0, 1}n to {0, 1}n and
run Games G1 and G2 using f, F as follows.

• Game G1. In Game G1, on ith query uv (where 1 ≤ i ≤ q and u, v ∈ {0, 1}n/2) to A by D, A returns
F (uv).

• Game G2. In Game G2, on the ith query uv (where 1 ≤ i ≤ q and u, v ∈ {0, 1}n/2) to A by D, A
computes If (uv) by making two queries to f and returns the result.

In both G1 and G2, we abuse the notation A(uv) to refer to two things. When we say query A(uv), we refer
to a query uv made by D to A, and when A(uv) is preceded or followed by an assignment or ⊕ operation,
we refer to the result of a query uv made by D to A. Also, the notation Aj(uv) (where 1 ≤ j ≤ q) refers
to the jth query uv made by D or the output of the jth query uv made by D, depending on the sense in
which it is used. Here u, v ∈ {0, 1}n/2. Also in Game G2, we abuse the notation f(uv) to refer to two things.
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Figure 1: Illustrations representing Games G1 and G2. In Game G2, the double arrow from A to f denotes
that, on each query made to A by D, A makes two queries to f .

When we say query f(uv), we refer to a query uv made to f , and when f(uv) is preceded or followed by an
assignment or ⊕ operation, we refer to the the result of a query uv made to f . Here u, v ∈ {0, 1}n/2.

For each i ∈ {1, 2}, let pi be the probability that D accepts in Game Gi (The probability p1 is over the
choice of F and the probability p2 is over the choice of f). We would like to show to show that |p2 − p1| is

small, that is, at most 1
2
q(q+1)
2n/2 .

The intuition is as follows. In the Game G1 where D queries A, and A queries F , the queries made to F
are answered randomly. In the Game G2 where D queries A, and A computes If , on a query uv (where
u, v ∈ {0, 1}n/2) to A, Amakes two queries to f and returns the result of the second query f(f(u0n/2)⊕v0n/2).
Now, as long as the query f(f(u0n/2) ⊕ v0n/2) is a query that has not been made to f before, the result
of the query will be a value chosen uniformly at random. We will argue that with high probability, this is
indeed the case and hence say that with high probability, the outcomes (that is, the answer to the queries
that D makes) of both the games are distributed identically.

Here is a rigorous way to argue this. We couple the games by running both the games together using com-
mon randomness (Figure 2) and argue that with high probability, the outcomes of the coupled games are
identical. This is a well known technique from probability theory, called coupling [Lin92][Tho00]. Consider
the following experiment.

BEGIN EXPERIMENT

• Initialization- Choose 2q strings r1, r2, ..., rq, s1, s2, ..., sq randomly from {0, 1}n. For every i, 1 ≤ i ≤
q, let si = s1i s

2
i where |s1i | = |s2i | = n/2.

• We run the Game G1 using the the 2q strings as follows. On the ith query uv (where 1 ≤ i ≤ q and
u, v ∈ {0, 1}n/2) by A, we return ri. Let us call this (slightly) modified game as G′1. Let p′1 be the
probability that the D accepts in Game G′1. It is easy to see that the p′1 = p1.
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 D    D   

Game G1'  Game G2' 

A A

r1, r2,......,rq

s1, s2,......,sq

Figure 2: Illustrations representing Games G′1 and G′2. In Game G′2, the double arrow from A to f denotes
that, on each query made to A by D, A makes two queries to f .

• We run the Game G2 using the the 2q strings as follows. Intuitively, on a query Ai(uv) (where 1 ≤ i ≤ q
and u, v ∈ {0, 1}n/2) we would like to simulate f(f(u0n/2) ⊕ v0n/2) using the 2q strings by returning
si for the first call made by A, and ri for the second call made by A, as long as the calls are new. Here
is how we do this. On a query Ai(uv), if the first call (that is, u0n/2) made by A is a new call, we
return si. Else, we return what we returned before when the call was previously made. Let Si be the
value returned. If the second call (that is, Si ⊕ v0n/2) made by A is a new call, we return ri. Else, we
return what we returned before when the call was previously made. Let us call this (slightly) modified
game as G′2. Let p′2 be the probability that the D accepts in Game G′2. It is not difficult to see that
the p′2 = p2.

END EXPERIMENT

Since p′1 = p1 and p′2 = p2, it is sufficient to show that |p′2 − p′1| is small, that is, at most 1
2
q(q+1)
2n/2 . We do

this as follows.

We define the event B that can happen in Game G′2. Intuitively, in Game G′2 an event B represents the
scenarios in which ri is not returned on the query Ai(uv) made by D for some 1 ≤ i ≤ q, u, v ∈ {0, 1}n/2.
That is, it represents the scenarios in which the second call made by A is a previous first call made by A, or
a previous second call made by A (and hence is not a new call).

Definition 6.3 (Event B). In Game G′2, we say that an event B has happened if the following occurs.

• We have queries Ai(uv), At(u
′v′) for some 1 ≤ t, i ≤ q, u, v, u′, v′ ∈ {0, 1}n/2 and

t ≤ i and Si ⊕ v0n/2 = u′0n/2 or
t < i and Si ⊕ v0n/2 = St ⊕ v′0n/2.

Note that in the above definition, if we have queries Ai(uv), At(u
′v′) for some 1 ≤ t < i ≤ q, u, v, u′, v′ ∈

{0, 1}n/2 and Si ⊕ v0n/2 = St ⊕ v′0n/2, then we have that u 6= u′. This is due the following reason. Suppose
u = u′. Then by the definition of Game G′2, we have that Si = St. Since we have that Si⊕v0n/2 = St⊕v′0n/2,
we would get that v = v′ and hence uv = u′v′. But this would contradict the assumption that the queries
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made by D are distinct.

Now, we define the event B′ that can occur in the Initialization step. The intuition behind defining B′ is
as follows.

1. It will turn out that if B′ does not occur, then the event B (in Game G′2) does not occur.

2. We will see that the probability that B′ occurs (over the choice of s1, ..., sq) will be easy to calculate
and is small.

Definition 6.4 (Event B′). In the Initialization step, we say that an event B′ has happened if the following
occurs.

• For some i, j s.t. 1 ≤ i 6= j ≤ q, we have that
s2i = 0n/2 or
s2i = s2j

First, we prove a lemma regarding what the value of Si will be (for every i, 1 ≤ i ≤ q) in Game G′2.
Intuitively, for a query Ai(uv) (for some u, v ∈ {0, 1}n/2), Si will be equal to sj for some 1 ≤ j ≤ i such that
the the jth A query is the query where u appears for the first time as the first half of an A query.

Lemma 6.5. Assume B′ does not occur in the Initialization step. Then in Game G′2, for every i, 1 ≤ i ≤ q,
the following holds.

Consider the query Ai(uv) (for some u, v ∈ {0, 1}n/2). Let the query Aj(uv
′) (for some j, 1 ≤ j ≤ i and for

some v′ ∈ {0, 1}n/2) be such that there exists no query of the form Ak(uv′′) (for some k, 1 ≤ k < j and for
some v′′ ∈ {0, 1}n/2). Then, we have that Si = sj.

Proof. We prove this lemma using complete induction on i.

Say 1 ≤ i ≤ q and for all l, 1 ≤ l < i, the following holds. Consider the query Al(uv) (for some
u, v ∈ {0, 1}n/2). Let the query Am(uv′) (for some m, 1 ≤ m ≤ l and for some v′ ∈ {0, 1}n/2) be such
that there exists no query of the form An(uv′′) (for some n, 1 ≤ n < m and for some v′′ ∈ {0, 1}n/2). Then,
we have that Sl = sm.

We want to show the following. Consider the query Ai(uv) (for some u, v ∈ {0, 1}n/2). Let the query Aj(uv
′)

(for some j, 1 ≤ j ≤ i and for some v′ ∈ {0, 1}n/2) be such that there exists no query of the form Ak(uv′′)
(for some k, 1 ≤ k < j and for some v′′ ∈ {0, 1}n/2). Then, we have that Si = sj .

On the query Ai(uv), the first call made by A is u0n/2. This can either be a new call or not. We consider
both the cases.

1. We have that u0n/2 is a new call made by A. Hence, by the definition of Game G′2, we have that
Si = si. Hence, by induction, the lemma holds for this case.

2. We have that u0n/2 is not a new call made by A. Now, this call could have been made as a previous
first call or a previous second call by A. If it was a previous first call by A, then we have that Si = Sk
for some 1 ≤ k < i. But by induction hypothesis, we have that Sk = sj for some 1 ≤ j ≤ k where
the query Aj(uv

′) (for some v′ ∈ {0, 1}n/2) is such that there exists no query of the form Ak(uv′′) (for
some k, 1 ≤ k < j and for some v′′ ∈ {0, 1}n/2). Hence, we have that Si = sj . Hence, by induction,
the lemma holds for this sub-case. If it was a previous second call by A for some query Ak(st) (for
some k, 1 ≤ k < i+ 1 and for some s, t ∈ {0, 1}n/2), then we have that u0n/2 = Sk ⊕ t0n/2. But, this
must mean that the last n/2 bits of Sk is 0n/2. By induction hypothesis, we have that Sk = sj for
some 1 ≤ j ≤ k where the query Aj(sv

′) (for some v′ ∈ {0, 1}n/2) is such that there exists no query of
the form Ak(sv′′) (for some k, 1 ≤ k < j and for some v′′ ∈ {0, 1}n/2). Hence, this would mean that
s2j = 0n/2 and hence B′ would have occurred in the Initialization step.
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Now, we proceed to prove the following lemma.

Lemma 6.6. If the event B′ does not occur, then the event B does not occur.

Proof. Suppose event B has occurred (in Game G2). So, this means that we have queries Ai(uv), At(u
′v′)

for some 1 ≤ t, i ≤ q, u, v, u′, v′ ∈ {0, 1}n/2 and
t ≤ i and Si ⊕ v0n/2 = u′0n/2 or
t < i and Si ⊕ v0n/2 = St ⊕ v′0n/2.

If t ≤ i and Si ⊕ v0n/2 = u′0n/2, then we have that the last n/2 bits of Si is 0n/2. Now, according to the
lemma 6.5, Si = sj for some 1 ≤ j ≤ i where the query Aj(uw

′) (for some w′ ∈ {0, 1}n/2) is such that there
exists no query of the form Ak(uw′′) (for some k, 1 ≤ k < j and for some w′′ ∈ {0, 1}n/2). So, we have that
s2j = 0n/2 for some 1 ≤ j ≤ i. Hence, we have that event B′ had occurred (in the Initialization step).

If t < i and Si ⊕ v0n/2 = St ⊕ v′0n/2 (and thereby u 6= u′), then we have that the last n/2 bits of Si and
St are equal. By Lemma 6.5, we have that Si = sk for some 1 ≤ k ≤ i where the query Ak(uw′) (for some
w′ ∈ {0, 1}n/2) is such that there exists no query of the form Ap(uw

′′) (for some p, 1 ≤ p < k and for some
w′′ ∈ {0, 1}n/2). Also, by Lemma 6.5, we have that St = sl for some 1 ≤ l ≤ t where the query Al(u

′w′) (for
some w′ ∈ {0, 1}n/2) is such that there exists no query of the form Ap(u

′w′′) (for some p, 1 ≤ p < l and for
some w′′ ∈ {0, 1}n/2). Also, since Si 6= St (because u 6= u′), we have that k 6= l. So, we have that s2k = s2l
where k 6= l. Hence, we have that event B′ occurs had occurred (in the Initialization step).

Now, we prove that for most choices of s1, .., sq, the event B′ does not occur.

Lemma 6.7. Pr[B′] ≤ 1
2
q(q+1)
2n/2 . The probability is over the choice of s1, ..., sq.

Proof. In the set s1, ..., sq, the probability that s2i = 0n/2 or s2i = s2j for some i, j, 1 ≤ i 6= j ≤ q is at most
q+(q

2)
2n/2 . Hence, we have that Pr[B′] ≤ 1

2
q(q+1)
2n/2 .

Now, we conclude the proof of the theorem as follows.

Lemma 6.8. Given that the event B does not happen (in Game G′2), in both the games G′1 and G′2, for
every i, 1 ≤ i ≤ q, the result of the ith query by D is ri. Therefore, D accepts in Game G′1 iff it accepts in
Game G′2.

Proof. By the definition of Game G′1, for every i, 1 ≤ i ≤ q, the result of the ith query by D is ri. In Game
G′2, as long as the event B does not occur, the second query made by A is a new query. Hence, by the
definition of Game G′2, for every i, 1 ≤ i ≤ q, the result of the ith query by D is ri. Since D sees identical
replies in both the games, it is easy to see that D accepts in Game G′1 iff it accepts in Game G′2.

Hence, by Lemma 6.8 we have that |p′2 − p′1| ≤ Pr[B]. By Lemma 6.6, we have that Pr[B] ≤ Pr[B′]. By

Lemma 6.7, we have that Pr[B′] ≤ 1
2
q(q+1)
2n/2 . Hence, we have that |p′2 − p′1| ≤ 1

2
q(q+1)
2n/2 .

Hence, we conclude that |p2 − p1| ≤ 1
2
q(q+1)
2n/2 .

We now state the indistinguishability theorem about the construction If , for a uniform random f . The
proof of the theorem directly follows from Theorem 6.2.

Theorem 6.9. Let Xn be the uniform distributions on Fnn, for every positive even integer n. Let X =
{Xn}. Then, construction I having oracle access to the distribution family X is indistinguishable from the
distribution family X .

Proof. Directly follows from Theorem 6.2.
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6.1 Generalization to k blocks of input

It is not difficult to see that the above proof can be generalized to get indistinguishability for the following
construction.

Definition 6.10. Let k be a positive integer. Let f be a function such that f : {0, 1}n → {0, 1}n, for every

positive even integer n. For every positive even integer n, define If1 : ({0, 1}n/2)k → {0, 1}n as follows

If1 (x1x2....xk) = f(f(.....f(f(x10n/2)⊕ x20n/2)⊕ x30n/2.....)⊕ xk0n/2)

where x1, x2, ..., xk ∈ {0, 1}n/2.

We state the following theorem about If1 , for a uniform random f (without giving the proof), which would

imply the indistinguishability theorem about If1 , for a uniform random f . We fix k. We fix n to be a
sufficiently large positive even integer and q to be a polynomial in n.

Theorem 6.11. Let f be a function chosen uniformly at random from all functions mapping {0, 1}n to
{0, 1}n. Let F be a function chosen uniformly at random from all functions mapping from ({0, 1}n/2)k to

{0, 1}n. Let the construction If1 be as defined before. Then, for any distinguisher D that makes q queries to

an oracle that is either If1 or F , we have that

|Pr [DIf1 (1n) = 1]− Pr[DF (1n) = 1]| ≤ 1

2

(k − 1)(q2 − q) + 2q

2n/2

7 Indifferentiability Proof of If , for a Uniform Random f

We now proceed to prove that the construction If , for a uniform random f : {0, 1}n → {0, 1}n, is indifferen-
tiable from a uniform random function F : {0, 1}n → {0, 1}n, and in the process give a detailed explanation
of the technique we use for proving it. We restate the definition of the construction I.

Definition 7.1. Let f be a function such that, for every positive even integer n, f : {0, 1}n → {0, 1}n. For
every positive even integer n, define If : {0, 1}n → {0, 1}n as follows

If (xy) = f(f(x0n/2)⊕ y0n/2)

where x, y ∈ {0, 1}n/2.

We have to prove that the construction If , for a uniform random f : {0, 1}n → {0, 1}n, is indifferentiable
from a uniform random function F : {0, 1}n → {0, 1}n. To this effect, we define an efficient simulator S that
has oracle access to F and simulates f (in response to a polynomial number of queries made to it), such
that no distinguisher that makes a polynomial number of queries to a pair of oracles, that is either (If , f)
or (F, SF ), can distinguish between them, except with negligible probability.

Overview of Simulator. We let the simulator S to be a deterministic algorithm as follows- in addition
to having oracle access to F , we let the simulator have oracle access to a random function f that it queries
whenever it has to make a random choice. From here onwards, we use the notation SF,f to refer to the
simulator, since it has oracle access to functions F, f . The simulator SF,f maintains a history of the the
queries it has received and its corresponding responses so far, in form of a set as defined below.

HS : {(α, β) ∈ {0, 1}n × {0, 1}n | the simulator has responded withβ to a queryα}

HS is initially empty. On a query uv (where u, v ∈ {0, 1}n/2), the simulator calls an internal procedure
Query(uv). The procedure first checks if ∃z such that, (uv, z) ∈ HS (that is, the simulator had previously
been queried uv and had returned z). If yes, the procedure returns z. This is captured by lines 3 − 4 of
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Algorithm 1. If that is not the case, the procedure checks if ∃a, b ∈ {0, 1}n/2 such that, (a0n/2, bv) ∈ HS . If
that is the case, the procedure makes an oracle query (a(b⊕u)) to F . Let z be the result of the oracle query.
The procedure adds (uv, z) to the history HS and returns z. This is captured by lines 7− 11 of Algorithm
1. If that is not the case, the procedure makes calls the function f on uv. Let z be the value returned. The
procedure stores (uv, z) to the history HS and returns z. This is captured by lines 13− 15 of Algorithm 1.
Finally, the simulator returns whatever the procedure returns. That is, the simulator SF,f on a new input,
queries either F (line 9 of Algorithm 1) or f (line 13 of Algorithm 1) and adds the input-output pair (the
input to the simulator and the output of the simulator’s query to either F or f) to HS before returning
the output. This makes HS a binary relation between {0, 1}n and {0, 1}n. However, HS is also a partial
function from {0, 1}n to {0, 1}n, because of lines 3− 4 of Algorithm 1.

The intuition here is that the simulator keeps returning random values (using f) unless it detects that there
has already been a query a0n/2 (for some a ∈ {0, 1}n/2) such that it had replied with bv for some b ∈ {0, 1}n/2
(that is, the value it had replied with has the same last n/2 bits as the current query). In that case, it returns
F (a(b⊕ u)) (here uv is the current query where u, v ∈ {0, 1}n/2). The idea here is to return a value ‘consis-
tent’ with the construction If , so that no distinguisher that makes a polynomial number of queries to a pair
of oracles, that is either (If , f) or (F, SF,f ), can distinguish between them, except with negligible probability.

Algorithm 1 Simulator SF,f

1: variable: Simulator history HS

2: procedure Query(uv)
3: if ∃z s.t. (uv, z) ∈ HS then
4: return z
5: else
6: if ∃a, b ∈ {0, 1}n/2 s.t. (a0n/2, bv) ∈ HS then
7: Choose the first such (a, b) pair . We will see that for every D, with high probability (over

the randomness of F, f), there will exist a unique (a, b) pair.
8: Let z ← F (a(b⊕ u))
9: Add (uv, z) to HS

10: return z
11: else
12: Let z ← f(uv)
13: Add (uv, z) to HS

14: return z
15: end if
16: end if
17: end procedure

In the discussions below, we refer a query to If or F as a query to the left oracle L and a query to f or SF,f

as a query to the right oracle R. We only consider the distinguishers that make exactly q queries to the Left
oracle L and exactly q queries to the Right oracle R and the queries are of the form an L query, an R query,
an L query, an R query and so on (so the distinguisher totally makes 2q queries). It is not difficult to see
that this can be assumed without loss of generality. We fix n to be a sufficiently large positive even integer
and q to be a polynomial in n. Now we proceed to prove the following theorem which would directly imply
the main indifferentiability theorem (which we will be stating after the proof of this theorem).

Theorem 7.2. Let f, F be functions chosen independently and uniformly at random from all functions
mapping {0, 1}n to {0, 1}n. Let the construction If be as defined before. Let SF,f be the simulator as defined
above. Then for any distinguisher D that makes q queries to L and q queries to R in the manner specified
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Figure 3: Illustrations representing Games G1 and G2. In Game G1, the arrow from S which branches to
F and f denotes that, on each query made to the simulator by R, the simulator queries either F or f . In
Game G2, the double arrow from L to f denotes that, on each query made to L by D, L makes two queries
to f .

above, we have that

|Pr [DIf ,f (1n) = 1]− Pr[DF,SF

(1n) = 1]| ≤ 1

2

7q2 + 3q

2n/2
+

q

2n

Note that the simulator SF,f makes at most q oracle queries to F and runs in time tS = O(q).

Proof. We fix D. Without loss of generality, we can assume that the distinguisher D is deterministic and
never repeats a query to the Left oracle L and never repeats a query to the Right oracle R.

Now we define Games G1, G2 (Figure 3) such that they correspond to D interacting with (F, SF,f ) and
(If , f) respectively. In each of the games, the distinguisher D interacts with a Left oracle L and a right
oracle R. We choose f, F independently and uniformly at random from all functions mapping {0, 1}n to
{0, 1}n and run Games G1 and G2 using f, F as follows.

• Game G1. In Game G1, on a Left oracle query uv by D (where u, v ∈ {0, 1}n/2), L returns F (uv).
On a Right oracle query uv by D (where u, v ∈ {0, 1}n/2), R returns SF,f (uv).

• Game G2. In Game G2, on a Left oracle query uv by D (where u, v ∈ {0, 1}n/2), L computes
If (uv) by making two queries to f and returns the result. On a Right oracle query uv by D (where
u, v ∈ {0, 1}n/2), R returns f(uv).

In the discussions below, in both G1 and G2, we abuse the notation L(uv) to refer to two things. When we
say query L(uv), we refer to a query uv made by D to the Left oracle L and when L(uv) is preceded or fol-
lowed by an assignment or ⊕ operation, we refer to the the result of a query uv made by D to the Left oracle
L. When L(uv) is used in the latter sense, we let L(uv) = L1(uv)L2(uv) where |L1(uv)| = |L2(uv)| = n/2.
Also, the notation L2j−1(uv) (where 1 ≤ j ≤ q) refers to the jth L query uv made by D or the output of
the jth L query uv made by D, depending on the sense in which it is used. Similarly, when we say query
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R(uv), we refer to a query uv made by D to the Right oracle R and when R(uv) is preceded or followed by
an assignment or ⊕ operation, we refer to the the result of a query uv made by D to the Right oracle R.
When R(uv) is used in the latter sense, we let R(uv) = R1(uv)R2(uv) where |R1(uv)| = |R2(uv)| = n/2.
Also, the notation R2j(uv) (where 1 ≤ j ≤ q) refers to the jth R query uv made by D or the output of the
jth R query uv made by D, depending on the sense in which it is used. Here u, v ∈ {0, 1}n/2. So, the query
sequence made by D in each game is as follows.

Query sequence

L1(x1y1), R2(x2y2), L3(x3y3), R4(x4y4), ...., L2q−1(x2q−1y2q−1), R2q(x2qy2q)

for some x1, y1, ..., x2q, y2q ∈ {0, 1}n/2.

For each i ∈ {1, 2}, let pi be the probability that D accepts in Game Gi (The probability p1 is over the
choice of f, F and the probability p2 is over the choice of f). We would like to show to show that |p2 − p1|
is close to 0. To this extent, we take the following approach.

Following Bernstein [Ber05], we would like to fix a query-answer sequence of length 2q, corresponding to the
2q queries (q queries to L and q queries to R and the queries are in the form of an L query, an R query, L
query, an R query and so on) and say that for each such fixed query-answer sequence, the probability (over
the choice of f) that we get that answer sequence for the given query sequence in Game 2 is greater than or
equal to (1− ε) times the probability (over the choice of f, F ) that we get that answer sequence for the given
query sequence in Game 1. Then we can use that to prove that |p1 − p2| is close to 0 in a straightforward
way by using Theorem 3.1 of Bernstein [Ber05].

However, this is clearly not true for all such fixed query-answer sequences of length 2q, because there exists
some query-answer sequences that occur with zero probability in Game 2, but occur with a positive probabil-
ity in Game 1. For example, consider the following event. Suppose there exists queries Li(uv) and Rj(u0n/2)
(for some u, v ∈ {0, 1}n/2 and for some i, j, 1 ≤ i 6= j ≤ 2q) made by D, such that Rj(u0n/2) = (u⊕ v)0n/2

and Li(uv) 6= (u ⊕ v)0n/2. It is clear that in Game G2, this event occurs with zero probability. This is
because of the definition of L and R in Game G2: if Rj(u0n/2) = (u ⊕ v)0n/2, then Li(uv) = (u ⊕ v)0n/2.
However, this is not the case in Game G1. If Li(uv) 6= (u ⊕ v)0n/2, then Rj(u0n/2) can still be equal to
(u ⊕ v)0n/2 (although with some small probability), because of the definition of L and R in Game G1. So,
for a fixed query-answer sequence of length 2q containing a query-answer sequence of this form, it is clear
that the probability (over the choice of f) that we get that answer sequence for the given query sequence in
Game 2 is less than (1− ε) times the probability (over the choice of f, F ) that we get that answer sequence
for the given query sequence in Game 1.

We want to rule out such query-answer sequences. For convenience, we will also rule out the query-answer
sequences that happen with zero probability in both games and some query-answer sequences that happen
with a positive probability in both games, and show that the probability (over the choice of f, F ) that D
causes a ruled out query-answer sequences to occur in Game G1 is small, say ε1. Then, we can proceed to
show that, for all fixed query-answer sequences of length 2q that have not been not ruled out, the probability
(over the choice of f) that we get that answer sequence for the given query sequence in Game 2 is greater
than or equal to (1− ε) times the probability (over the choice of f, F ) that we get that answer sequence for
the given query sequence in Game 15. This, combined with the proof that the probability (over the choice
of f, F ) that D causes a ruled out query-answer sequences to occur in Game G1 is small, can be used in a

5 However it is interesting to note that, the probability (over the choice of f) that we get that answer sequence for the given
query sequence in Game 2 will not be too much greater than the probability (over the choice of f, F ) that we get that answer
sequence for the given query sequence in Game 1. That is, we will have that the ratio of the probability (over the choice of f)
that we get that answer sequence for the given query sequence in Game 2, to the probability (over the choice of f, F ) that we
get that answer sequence for the given query sequence in Game 1, will be close to 1. However, we would not be showing this
explicitly as it is not required to do so in the proof.

26



to prove that |p2 − p1| ≤ ε+ ε1 by extending Theorem 3.1 of Bernstein [Ber05] in a natural way (which we
will see shortly). Summarizing the approach,

1. Define a notion of “ruled out query-answer sequences”. This notion will include query-answer sequences
that occur with zero probability in Game G2 but with some positive probability in Game G1, query-
answer sequences that happen with zero probability in both games, and some query-answer sequences
that happen with a positive probability in both games.

2. Prove that the probability (over the choice of f, F ) that D causes a ruled out query-answer sequence
to occur in Game G1 is small, say ε1.

3. Prove that for all fixed query-answer sequences (of length 2q) that have not been ruled out, the
probability (over the choice of f) that we get that answer sequence for the given query sequence in
Game 2 is greater than or equal to (1 − ε) times the probability (over the choice of f, F ) that we get
that answer sequence for the given query sequence in Game 1.

4. Use (2) and (3) to prove that |p2 − p1| ≤ ε+ ε1.

Given 2,3, here is how one would prove 4. Note that the following lemma is a natural extension of Theorem
3.1 of Bernstein [Ber05].

Lemma 7.3. Let A be the set of query-answer sequences of length 2q (corresponding to q queries to L and
q queries to R) such that for each query-answer sequence a ∈ A, the queries in a are what D would make
in response to the answers in a. Let A = A1 ∪ A2 where A1 is the set of query-answer sequences that have
not been ruled out and A2 is the set of query-answer sequences that have been ruled out. Assume that the
following two equations (that correspond to Points 2,3 above) hold,

∑
a∈A2

Pr[D causes a inG1] ≤ ε1 (1)

For every a ∈ A1,

Pr[Queries in a yields answers in a inG2] ≥ (1− ε)Pr[Queries in a yields answers in a inG1] (2)

Then, we have that
|p2 − p1| ≤ ε+ ε1 (3)

Proof. Given Equations 1 and 2, we have to prove Equation 3. We do this as follows.

Let ACC be the set of query-answer sequences of length 2q (corresponding to q queries to L and q queries
to R) such that for each query-answer sequence a ∈ ACC, the queries in a are what D would make in
response to the answers in a and D outputs 1 (we have that ACC ⊆ A). Let ACC = ACC1 ∪ACC2 where
ACC1 = A1 ∩ ACC, is the set of query-answer sequences from ACC that have not been ruled out, and
ACC2 = A2 ∩ACC, is the set of query-answer sequences from ACC that have been ruled out.

We have that

Pr[DG1 = 1] =
∑

a∈ACC1

Pr[D causes a inG1] +
∑

a∈ACC2

Pr[D causes a inG1] (4)

Similarly, we have that

Pr[DG2 = 1] =
∑

a∈ACC1

Pr[D causes a inG2] +
∑

a∈ACC2

Pr[D causes a inG2] (5)
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Since ACC2 ⊆ A2, Equation 1 implies that∑
a∈ACC2

Pr[D causes a inG1] ≤ ε1 (6)

And since ACC1 ⊆ A1, Equation 2 implies that
For every a ∈ ACC1,

Pr[Queries in a yields answers in a inG2] ≥ (1− ε)Pr[Queries in a yields answers in a inG1] (7)

Applying Equation 6 to Equation 4, we get

Pr[DG1 = 1] ≤
∑

a∈ACC1

Pr[D causes a inG1] + ε1 (8)

From Equation 5, we have that

Pr[DG2 = 1] ≥
∑

a∈ACC1

Pr[D causes a inG2] (9)

Since for every a ∈ ACC1 ⊆ A1 ⊆ A, the answers in a determine the queries in a that D makes, we can
remove D from the right hand side of the equations, and hence rewrite Equations 8 and 9 as,

Pr[DG1 = 1] ≤
∑

a∈ACC1

Pr[Queries in a yields answers in a inG1] + ε1 (10)

Pr[DG2 = 1] ≥
∑

a∈ACC1

Pr[Queries in a yields answers in a inG2] (11)

Using Equation 7 and summing over all query-answer sequences in ACC1, we get∑
a∈ACC1

Pr[Queries in a yields answers in a inG2] ≥ (1− ε)
∑

a∈ACC1

Pr[Queries in a yields answers in a inG1]

(12)
Applying Equation 12 in Equation 11, we get that

Pr[DG2 = 1] ≥ (1− ε)
∑

a∈ACC1

Pr[Queries in a yields answers in a inG1] (13)

We can rewrite Equation 10 as∑
a∈ACC1

Pr[Queries in a yields answers in a inG1] ≥ Pr[DG1 = 1]− ε1 (14)

From Equation 13 and Equation 14 we get,

Pr[DG2 = 1] ≥ (1− ε)(Pr[DG1 = 1]− ε1) (15)

Simplifying Equation 15 we get,

Pr[DG2 = 1]− Pr[DG1 = 1] ≥ −ε− ε1 + εε1 (16)

So we get,
p2 − p1 ≥ −ε− ε1 + εε1 (17)

And hence,
p1 − p2 ≤ ε+ ε1 (18)
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We can now use a similar argument to get

Pr[DG2 = 0]− Pr[DG1 = 0] ≥ −ε− ε1 + εε1

And hence,
p2 − p1 ≤ ε+ ε1 (19)

From Equation 18 and Equation 19, we get

|p2 − p1| ≤ ε+ ε1 (20)

Step 1

We want to rule out query-answer sequences that happen with positive probability in Game G1, but with zero
probability in Game G2. As stated earlier, for convenience, we will also rule out sequences that happen with
zero probability in both games and some extra query-answer sequences that occur with positive probability in
both games. Let us call the query-answer sequences that we wish to rule out as Bad query-answer sequences.
It will turn out the these Bad query answer-sequences collectively happen with small probability in Game
G1. By this we mean that, it will be unlikely that D will cause a Bad query-answer sequence in Game G1.
Formally, we define a Bad query-answer sequence as follows.

Definition 7.4 (Bad query-answer sequence). A query-answer sequence of length 2q (corresponding to q
queries to L and q queries to R) is called a Bad query-answer sequence, if it contains atleast one of the
following query-answer sequences.

1. We have queries Ri(uv), Rj(st) for some u, v, s, t ∈ {0, 1}n/2 and for some i, j, 1 ≤ i, j ≤ 2q s.t.
R2
j (st) = 0n/2 or

i 6= j and R2
j (st) = R2

i (uv).

In other words, the right half of the result of the query Rj(st) (for some s, t ∈ {0, 1}n/2) is equal to
0n/2 or the right half of the result of a different R query.

2. We have queries Li(uv), Rj(u0n/2), Rk((αβ) ⊕ (v0n/2)) for some u, v, α, β ∈ {0, 1}n/2 and for some
distinct i, j, k, 1 ≤ i, j, k ≤ 2q s.t.
Rj(u0n/2) = αβ and
Li(uv) 6= Rk((αβ)⊕ (v0n/2))

In other words, this query-answer sequence is essentially an inconsistency between the results of an L
query and two corresponding R queries.

We say that event Bp has happened in Game Gq to denote that above query-answer sequence property p
(where p ∈ {1, 2}) has happened in Game Gq (where q ∈ {1, 2}).

Now, we proceed to prove that it is unlikely that D would cause B1 or B2 in G1.

Step 2

In this step, we prove that it is unlikely that D would cause a Bad query-answer sequence in G1.

Note that in Game G1, L never queries f and a query to SF,f is only made on a query to R by D by
definition of G1. So, the queries to SF,f are all distinct since D does not repeat a query to R. Also note
that in G1, SF,f on a new query, queries either F (line 9 of Algorithm 1) or f (line 13 of Algorithm 1). We
first prove the following lemma about Game G1.
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Lemma 7.5. In Game G1, every time SF,f makes a query to f , it is a new query to f , and every time it
makes a query to F , it is a new query to F .

Proof. Suppose on a new query uv (where u, v ∈ {0, 1}n/2) to SF,f , it makes a query to f . The query it
makes to f is uv, by line 13 of Algorithm 1. This is a new query to f because uv is a new query to SF,f . We
now prove that if on a new query to SF,f , it makes a query to F , then it is a new query to F . Suppose that
there exists two queries uv and u′v′ made to SF,f such that, uv 6= u′v′ and both make the simulator query
F , however the corresponding F queries made by the simulator are identical. By lines 8-9 of Algorithm 1,
the queries to F must be (a(b ⊕ u)) and (a(b′ ⊕ u′)) respectively, such that (b ⊕ u) = (b′ ⊕ u′) for some
a, b, b′ ∈ {0, 1}n/2. By line 7 of Algorithm 1, this must mean that (a0n/2, bv), (a0n/2, b′v′) ∈ HS and bv 6= b′v′

for some a, b, b′ ∈ {0, 1}n/2. However, this is not possible since HS is a partial function. Hence, uv must be
equal to u′v′.

In the following lemma, we show that the probability that D causes the event B1 to occur in G1 is small.

Lemma 7.6. We have that, Pr[D causesB1 to occur inG1] ≤ q(q+1)
2.2n/2 (where the probability is over the choice

of f, F ). Here D makes exactly q queries to the L and exactly q queries to R.

Proof. In G1, we know by Lemma 7.5 that every time SF,f makes a query to f , it is a new query to f (and
hence returns a new random answer) and every time it makes a query to F , it is a new query to F (and
hence returns a new random answer). Note that D makes exactly q queries to the R and hence, exactly q
queries are made to SF,f . Hence, it is easy to see that the probability that D causes B1 to occur in Game

G1 is at most
q+(q

2)
2n/2 . Hence, we have that Pr[D causesB1 to occur inG1] ≤ 1

2
q(q+1)
2n/2 .

To show that it is unlikely that D causes the event B2 to occur in G1, we first prove the following lemma.

Lemma 7.7. Assume that B1 does not occur in G1. Then in Game G1, for all u, v ∈ {0, 1}n/2 and distinct
i, j, k, 1 ≤ i, j, k ≤ 2q s.t. k > j, the queries Li(uv), Rj(u0n/2) and Rk(Rj(u0n/2)⊕ (v0n/2)) have been made
by the D, we have that,

Li(uv) = Rk(Rj(u0n/2)⊕ (v0n/2))

Proof. Suppose that there exists u, v ∈ {0, 1}n/2 and distinct i, j, k, 1 ≤ i, j, k ≤ 2q where k > j, such
that the queries Li(uv), Rj(u0n/2) and Rk(Rj(u0n/2) ⊕ (v0n/2)) have been made by D and Li(uv) 6=
Rk(Rj(u0n/2)⊕ (v0n/2)).

Let t1t2 = Rj(u0n/2) (this will be f(u0n/2) due to the absence of B1), where t1, t2 ∈ {0, 1}n/2. Now, when
the query Rk((t1t2) ⊕ (v0n/2)) is made (that is, the query Rk(Rj(u0n/2) ⊕ (v0n/2)) is made) by D, then
according to lines 7-10 of the simulator, the simulator will reply with F (u(t1 ⊕ t1 ⊕ v)) (which is or will be
equal to Li(uv)), since (u0n/2, t1t2) ∈ HS and the absence of event B1 ensures that the pair (u, t1) is unique.
So Li(uv) will be equal to Rk(Rj(u0n/2)⊕ (v0n/2)). Note that when j = 1, the equality in this lemma holds
irrespective of whether B1 occurs or not (because of the definition of the simulator).

Now we use Lemma 7.7 to prove that it is unlikely that D would cause B2 to occur in G1.

Lemma 7.8. We have that,

1. Pr[D causesB2 with k > j to occur inG1] ≤ Pr[D causesB1 to occur inG1]

2. Pr[D causesB2 with k < j to occur inG1] ≤ q
2n

where the probability is over the choice of f, F . Here D makes exactly q queries to the L and exactly q queries
to R.

Proof. We prove the cases separately.
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1. k > j. In this case, by Lemma 7.7, we know that
Pr[D causesB2 with k > j to occur inG1 | B1 does not occurs inG1] = 0.
Hence, we have that Pr[D causesB2 with k > j to occur inG1] ≤ Pr[D causesB1 to occur inG1].

2. k < j. In G1, we know by Lemma 7.5 that every time SF,f makes a query to f , it is a new query to f
(and hence returns a new random answer) and every time it makes a query to F , it is a new query to
F (and hence returns a new random answer). Note that D makes exactly q queries to the R and hence
exactly q queries are made to SF,f . For B2 (with k < j) to occur, D must correctly guess the result of
a query R(u0n/2) (the value αβ) before it has even made the query (note that this means the partial
function HS has not yet been defined on (u0n/2) because only R makes the queries to SF,f in G1) and
this can be done with probability 1

2n . Hence, we have that Pr[D causesB2 with k < j to occur inG1] ≤
q
2n .

Now we use Lemmas 7.6 and 7.8 to conclude that it is unlikely that D would cause a Bad query-answer
sequence in G1.

Lemma 7.9. Let B be the event that D causes B1 or B2 to occur in G1 (that is, B is the event that D

causes a Bad query-answer sequence to occur in G1). Then we have that, Pr[B] ≤ 1
2
q(q+1)
2n/2 + q

2n (where the
probability is over the choice of f, F ). Here D makes exactly q queries to the L and exactly q queries to R.

Proof. By Lemma 7.8, Pr[D causesB2 with k > j to occur inG1] ≤ Pr[D causesB1 to occur inG1]. Hence,
we have that Pr[B] ≤ Pr[D causesB1 to occur inG1]+Pr[D causesB2 with k < j to occur inG1]. By Lemma

7.6, we have that Pr[D causesB1 to occur inG1] ≤ 1
2
q(q+1)
2n/2 . By Lemma 7.8, we have that

Pr[D causesB2 with k < j to occur inG1] ≤ q
2n . Hence, we have that Pr[B] ≤ 1

2
q(q+1)
2n/2 + q

2n .

This completes Step 2.

Step 3

In this step, we prove that for all fixed query-answer sequences (of length 2q) that are not Bad, the probability
(over the choice of f) that we get that answer sequence for the given query sequence in Game 2 is greater
than or equal to (1− ε) times the probability (over the choice of f, F ) that we get that answer sequence for
the given query sequence in Game 1.

Definition 7.10 (Valid query-answer sequence). We call a fixed query-answer sequence of length 2q (corre-
sponding to q queries to L and q queries to R) to be a Valid query-answer sequence if it is not Bad.

Let the following be a fixed Valid query-answer sequence of length 2q.

Fixed Valid Query-Answer sequence

L(x1y1) = m1n1, R(x2y2) = m2n2, ......, L(x2q−1y2q−1) = m2q−1n2q−1, R(x2qy2q) = m2qn2q

So, for 1 ≤ i ≤ 2q, when i is odd, xiyi represents a query to the Left oracle and mini represents the corre-
sponding response, and when i is even, xiyi represents a query to the Right oracle and mini represents the
corresponding response. We know that for all odd i, j, 1 ≤ i 6= j ≤ 2q, we have that xiyi 6= xjyj and for all
even i, j, 1 ≤ i 6= j ≤ 2q, we have that xiyi 6= xjyj .

Now, we prove the following lemma which would allow us to only consider Valid query-answer sequences of
a certain form.
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Lemma 7.11. Let a be a fixed query-answer sequence of length 2q. Let a′ be the query-answer sequence
obtained by rearranging a in the following way: all the Left oracle queries and the corresponding answers
are moved after the final query to the Right oracle query and the corresponding answer, and the order of
Right oracle queries and the corresponding answers are unchanged (that is, all the Left oracle queries are
made after the final Right oracle query is made, and the order of Right oracle queries is unchanged). We
have that the probability (over the choice of f, F ) that the query-answer sequence a occurs in Game G1 is
same as the probability (over the choice of f, F ) that the query-answer sequence a′ occurs in Game G1, and
the probability (over the choice of f) that the query-answer sequence a occurs in Game G2 is same as the
probability (over the choice of f) that the query-answer sequence a′ occurs in Game G2.
Formally, let the following be a fixed query-answer sequence of length 2q

L(x1y1) = m1n1, R(x2y2) = m2n2, ......, L(x2q−1y2q−1) = m2q−1n2q−1, R(x2qy2q) = m2qn2q

Then we have that,
(1)Pr[L(x1y1) = m1n1, R(x2y2) = m2n2, ......, L(x2q−1y2q−1) = m2q−1n2q−1, R(x2qy2q) = m2qn2q inG1]
= Pr[R(x2y2) = m2n2, ..., R(x2qy2q) = m2qn2q, L(x1y1) = m1n1, ..., L(x2q−1y2q−1) = m2q−1n2q−1 inG1]
(2)Pr[L(x1y1) = m1n1, R(x2y2) = m2n2, ......, L(x2q−1y2q−1) = m2q−1n2q−1, R(x2qy2q) = m2qn2q inG2]
= Pr[R(x2y2) = m2n2, ..., R(x2qy2q) = m2qn2q, L(x1y1) = m1n1, ..., L(x2q−1y2q−1) = m2q−1n2q−1 inG2]

Proof. We prove each case separately.

1. In Game G1, on a query uv to L, L returns F (uv). So, it does not matter in which order the L queries
are made. However, on a query uv to R, R returns SF,f (uv). The simulator queries either F or f
based on its history HS . In other words, the decision made by the deterministic simulator is entirely
dependant on the queries it has seen and the responses it has made (also note that the simulator does
not see the queries made to L). So, the order in which the R queries are made do matter. Hence, as
long as the order in which the R queries are made is maintained, it does not matter in which order the
rest of the queries (that is, the L queries) are made. Hence, we get identical answers if we move all the
L queries after the final R query.

2. In Game G2, on a query uv to L, L computes If (uv) by making two calls to f and returns the result.
On a query uv to R, R returns f(uv). So it does not matter in which order the queries to L and R
made. Hence, we get identical answers if we move all the L queries after the final R query.

It is important to note that if we take a Valid query-answer sequence and rearrange them such that it is of
the above form (all the L queries are moved after the last R query), the resultant query-answer sequence
is still Valid. This is because of the following reason. If we examine the definition of Bad query-answer
sequence (Definition 7.4), neither of the bad query-answer sequence properties depend on the order in which
the queries are made. Hence the above rearrangement of a Valid query-answer sequence cannot lead to a
Bad query-answer sequence.

Let the following be a fixed Valid query-answer sequence of length 2q (due to Lemma 7.11, it is sufficient to
consider the query-answer sequences of such form),

Fixed Valid Query-Answer sequence

R(x1y1) = m1n1, ..., R(xqyq) = mqnq, L(xq+1yq+1) = mq+1nq+1, ..., L(x2qy2q) = m2qn2q

Note the minor change in notation here. When 1 ≤ i ≤ q, xiyi represents a query to the Right oracle and
mini represents the corresponding response and when q + 1 ≤ i ≤ 2q, xiyi represents a query to the Left
oracle and mini represents the corresponding response. This is purely for the sake of convenience.
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In each game, we want to calculate the probability that R(x1y1) = m1n1, ..., R(xqyq) = mqnq, L(xq+1yq+1) =
mq+1nq+1, ..., L(x2qy2q) = m2qn2q. That is, we want to calculate the probability that 2q events (for each of
the 2q query-answer pairs, the event that the query results in the answer) happen in the given order. This
probability is the product of the probabilities that an event occurs given that previous events have occurred.
Since we are considering only Valid query-answer sequences, in each game, it will turn out that none of these
2q events (given that previous events have occurred) happen with zero probability. However, it is possible
that there are some query-answer pairs that are completely determined by previous query-answer pairs in
both the games and hence these query-answer pairs (that are determined) would occur with probability 1
in both the games. We will see that the rest of the events (given that previous events have occurred) occur
with probability 1/2n in Game G1 and close to 1/2n in Game G2. Now, we define type E query-answer
pairs, which intuitively are query-answer pairs that are determined by previous query-answer pairs. The
idea is that, a type E query-answer pair is an L query-answer pair which is determined from two previous
R query-answer pairs in the obvious way. To be more precise,

Definition 7.12 (A Type E query-answer pair). A query-answer pair L(xiyi) = mini (for some i, q + 1 ≤
i ≤ 2q) is of Type E if for some j, k s.t. 1 ≤ j 6= k ≤ q, there exists query-answer pairs of the form

• R(xjyj) = mjnj where xjyj = xi0
n/2 and

• R(xkyk) = mknk where xkyk = (mjnj)⊕ yi0n/2

For a query-answer pair L(xiyi) = mini of type E, it would follow that mknk = mini in both the games
(because the query-answer sequences are Valid). Hence, the probability that the outcome of L(xiyi) = mini
given that the outcome of R(xjyj) = mjnj and the outcome of R(xkyk) = mknk, is 1. Let p denote the
number of query-answer pairs of type E in the fixed Valid query-answer sequence. From the definition of
Type E query-answer pairs, it follows that 1 ≤ p ≤ q.

Now, we proceed to prove the following two lemmas which calculate the probability that R(x1y1) =
m1n1, ..., R(xqyq) = mqnq, L(xq+1yq+1) = mq+1nq+1, ..., L(x2qy2q) = m2qn2q in each game.

For convenience, in each game, let us use that notation Ti to denote the event that the outcome of the ith

query xiyi is mini (for every i, 1 ≤ i ≤ 2q). So, when 1 ≤ i ≤ q, Ti denotes the event that the outcome of
R(xiyi) = mini and when q + 1 ≤ i ≤ 2q, Ti denotes the event that the outcome of L(xiyi) = mini

Lemma 7.13. Let R(x1y1) = m1n1, ..., R(xqyq) = mqnq, L(xq+1yq+1) = mq+1nq+1, ..., L(x2qy2q) = m2qn2q
be a fixed Valid query-answer sequence. The probability (over the choice of f, F ) that the outcome R(x1y1) =
m1n1, ..., R(xqyq) = mqnq, L(xq+1yq+1) = mq+1nq+1, ..., L(x2qy2q) = m2qn2q occurs in Game G1 is 1

(2n)2q−p .

Proof. In Game G1, we want the probability that 2q events (for each of the 2q query-answer pairs, the event
that the query results in the answer) happen in the given order. This probability is the product of the
probabilities that an event occurs given that previous events have occurred.

Formally we have,

Pr[T1 ∧ T2 ∧ ... ∧ T2q inG1]

= Pr[T1] Pr[T2 | T1] Pr[T3 | T1 ∧ T2]...

P r[T2q | T1 ∧ T2 ∧ ... ∧ T2q−1]
(21)

Right oracle query-answer pairs For each Right oracle query-answer pair R(xiyi) = mini (1 ≤ i ≤ q),
we calculate the probability that the stipulated answer to the query occurs, given that stipulated answers to
previous queries have occurred. In Game G1, on a query xkyk to the Right oracle R (1 ≤ i ≤ q), R returns
Sf,F (xiyi). The simulator Sf,F on xiyi calls either f or F . Now, by Lemma 7.5, we know that every time
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SF,f makes a query to f , it is a new query to f (and hence results in a new random answer mini) and every
time it makes a query to F , it is a new query to F (and hence results in a new random answer mini). Since,
the R queries are made before any L query is made, we have that for each i, 1 ≤ i ≤ q

Pr[Ti | T1 ∧ ... ∧ Ti−1] = 1/2n (22)

Left oracle query-answer pairs For each Left oracle query-answer pair L(xiyi) = mini (q+1 ≤ i ≤ 2q),
we calculate the probability that the stipulated answer to the query occurs, given that stipulated answers
to previous queries have occurred.

We know that for each query-answer pair L(xiyi) = mini that is of the type E (note that there can be at
most p query-answer pairs of type E),

Pr[Ti | T1 ∧ ... ∧ Ti−1] = 1 (23)

Now we consider the query-answer pairs that are not of type E. In Game G1, on a query xiyi to the Left
oracle L (q + 1 ≤ i ≤ 2q), L returns F (xiyi). It is not difficult to see that this is the first time F sees
the query (xiyi) and hence the result mini will be a new random answer. Suppose the query (xiyi) to F
at time i is not a new query to F . That is, xiyi had been made to F at some time k < i. We rule out
the case q + 1 ≤ k < i (that is, it was made as a previous L query at time k) because the queries to L
are distinct. We now consider the case that 1 ≤ k ≤ q (that is, it was made as a result of a previous R
query at time k). That is, R on a query xkyk, had made a query xiyi to F . Then, it must mean that there
exists a query-answer pair (xjyj ,mjnj) (1 ≤ j ≤ q) such that xjyj = xi0

n/2 and nj = yk and mj = xk ⊕ yi
(equivalently, xkyk = (mjnj) ⊕ yi0n/2). Hence, the query-answer pair L(xiyi) = mini at time i, will be of
type E. Hence, we have that for each query-answer pair L(xiyi) = mini that is not of the type E,

Pr[Ti | T1 ∧ ... ∧ Ti−1] = 1/2n (24)

Applying Equations 22, 23 and 24 in Equation 21, we get that,

Pr[T1 ∧ T2 ∧ ... ∧ T2q inG1] =
1

(2n)2q−p

Lemma 7.14. Let R(x1y1) = m1n1, ..., R(xqyq) = mqnq, L(xq+1yq+1) = mq+1nq+1, ..., L(x2qy2q) = m2qn2q
be a fixed Valid query-answer sequence. The probability (over the choice of f) that the outcome R(x1y1) =
m1n1, ..., R(xqyq) = mqnq, L(xq+1yq+1) = mq+1nq+1, ..., L(x2qy2q) = m2qn2q occurs in Game G2 is at least

1−ε
(2n)2q−p where ε = 3q2

2n/2 .

Proof. In Game G2, we want the probability that 2q events (for each of the 2q query-answer pairs, the event
that the query results in the answer) happen in the given order. This probability is the product of the
probabilities that an event occurs given that previous events have occurred.

Formally we have,

Pr[T1 ∧ T2 ∧ ... ∧ T2q inG2]

= Pr[T1] Pr[T2 | T1] Pr[T3 | T1 ∧ T2]...

P r[T2q | T1 ∧ T2 ∧ ... ∧ T2q−1]
(25)

We now introduce certain events that are specific to Game G2, which we call the f−events. Intuitively,
f− events are unlikely coincidences that can occur as a result of a value being assigned to a first call
to f (due to an L query) that has not been made before, which can potentially cause the answer to the
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L query to not look random (Shortly, we will see that the answers to Right oracle queries are always random).

Here, we abuse the notation f(uv) to refer to two things. When we say query f(uv), we refer to a query uv
made by to f (by either R or L) and when f(uv) is preceded or followed by an assignment or ⊕ operation,
we refer to the the result of a query uv made to f (by L or R). When f(uv) is used in the latter sense, we
let f(uv) = f1(uv)f2(uv) where |f1(uv)| = |f2(uv)| = n/2 (u, v ∈ {0, 1}n/2).

Formally,

Definition 7.15 (f−event). We define an f− event happening at time i, where 1 ≤ i ≤ 2q as follows

Case (a) 1 ≤ i ≤ q (That is, i represents an R query made by the adversary)
Let α = f2(xiyi). We say an f− event happens at time i if at least one of the following holds

1. α = 0n/2

2. α = f2(xjyj) for some j, 1 ≤ j < i

Note that since the query-answer sequence is Valid, for every i, 1 ≤ i ≤ q, it will not be the case that
α = 0n/2 or α = f2(xjyj) for some j, 1 ≤ j < i. However, we are including this as part of f− events for
the sake of better exposition.

Case (b) q + 1 ≤ i ≤ 2q (That is, i represents an L query made by the adversary)
Let α = f2(xi0

n/2). We say an f− event happens at time i if

• xj 6= xi for all j, q + 1 ≤ j < i and xjyj 6= xi0
n/2 for all j, 1 ≤ j ≤ q (that is, for an f− event to

happen at time i, the query f(xi0
n/2) must not have been made before due to an R query or as a first

call due to an L query at some time j < i) and
At least one of the following holds

1. α = 0n/2 or

2. α = yj for some j, 1 ≤ j ≤ q or

3. α = f2(xj0
n/2) for some j, q + 1 ≤ j < i or

4. α = f2(xjyj) for some j, 1 ≤ j ≤ q

Remark 7.16. Note that, for every L query-answer pair, L(xiyi) = mini, the following holds. If f2(xi0
n/2)

at time i satisfies at least one of the following of Definition 7.15,

• The equality mentioned in case (b) : 1 or

• The equality mentioned in case (b) : 3, with the constraint that xi 6= xj or

• The equality mentioned in case (b) : 4, with the constraint that xi0
n/2 6= xjyj,

Then it means that an f− event occurs at some time t, 1 ≤ t ≤ i.

For convenience, let us use the notation Si (where 1 ≤ i ≤ 2q) to denote the event that no f− event has
happened before time i.

The outline for the key part of the proof of this lemma that deals with the L query-answer pairs that are
not of the type E is as follows-

For each query-answer pair L(xiyi) = mini that is not of the type E, given that
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• No f− events have occurred before time i (that is, Si holds) and

• Stipulated answers to previous queries have occurred (that is, T1 ∧ T2 ∧ ... ∧ Ti−1 holds).

Then we will see that,

1. With very high probability, no f− event occurs at time i.

2. Given 1, the second call made by L to f at time i is a new call to f .

3. Given 2, the probability that the outcome of L(xiyi) = mini is 1/2n.

We will see that 3 is a straightforward argument. Also, proving 1 will be quite easy. However, proving 2 is
the non-trivial part and will contribute to bulk of this proof.

Now, we can rewrite Equation 25 as,

Pr[T1 ∧ T2 ∧ ... ∧ T2q inG2]

≥ Pr[T1 ∧ T2 ∧ ... ∧ T2q and no f − event occurs inG2]

= Pr[T1 and no f − event occurs at time 1]

Pr[T2 and no f − event occurs at time 2 | T1 ∧ S2]...

P r[T2q and no f − event occurs at time 2q | T1 ∧ T2 ∧ ... ∧ T2q−1 ∧ S2q]

(26)

Right oracle query-answer pairs For each Right oracle query-answer pair R(xiyi) = mini (1 ≤ i ≤ q),
we calculate the probability that the stipulated answer to the query occurs and no f event occurs at time
i, given that stipulated answers to previous queries have occurred and no f event has happened before
time i. In Game G2, on a query xiyi to the Right oracle R (1 ≤ i ≤ q), R returns f(xiyi). Since R
queries are made before any L query is made and the queries to R are distinct, the query xiyi is a new
query to f and will result in a new random answer mini. So, irrespective of whether f− event has occurred
or not, the probability that the outcome of R(xiyi) = mini (for 1 ≤ i ≤ q) is 1/2n. So, we have the following,

Since the query-answer sequence is Valid, it is easy to see that
For each i, 1 ≤ i ≤ q,

Pr[no f − event occurs at time i | T1 ∧ ...Ti−1 ∧ Si] = 1

Pr[Ti | no f − event occurs at time i ∧ T1 ∧ ...Ti−1 ∧ Si] = 1/2n

We have that,
Pr[Ti and no f − event occurs at time i | T1 ∧ ...Ti−1 ∧ Si]

= Pr[no f − event occurs at time i | T1 ∧ ...Ti−1 ∧ Si]
Pr[Ti | no f − event occurs at time i ∧ T1 ∧ ...Ti−1 ∧ Si]

And hence, for each i, 1 ≤ i ≤ q

Pr[Ti and no f − event occurs at time i | T1 ∧ ...Ti−1 ∧ Si] = 1/2n (27)

Left oracle query-answer pairs For each Left oracle query-answer pair L(xiyi) = mini (q+1 ≤ i ≤ 2q),
we calculate the probability that the stipulated answer to the query occurs and no f event occurs at time i,
given that stipulated answers to previous queries have occurred and no f event has happened before time i.
In Game G2, on a Left oracle query xiyi, L returns f(f(xi0

n/2)⊕ yi0n/2) by making two calls to f .
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For a query-answer pair L(xiyi) = mini that is of the type E, no f− event occurs at time i. This is be-
cause, a type E query-answer pair is completely determined by previous R queries. More formally, for the
query-answer pair L(xiyi) = mini that is of type E, we have that xi0

n/2 = xjyj for some j, 1 ≤ j ≤ q and
hence by the definition of f− events, an f− event cannot occur at time i.

Hence, for each query-answer pair L(xiyi) = mini that is of type E, we have that

Pr[no f − event occurs during time i | T1 ∧ T2 ∧ ... ∧ Ti−1 ∧ Si] = 1

Also, since they are determined by previous R queries, we know that

Pr[Ti | no f − event occurs during time i andT1 ∧ T2 ∧ ... ∧ Ti−1 ∧ Si] = 1

Hence, for each query-answer pair L(xiyi) = mini that is of type E, we have that

Pr[Ti and no f − event occurs during time i | T1 ∧ T2 ∧ ... ∧ Ti−1 ∧ Si] = 1 (28)

Note that there are can be at most p query-answer pairs that are of type E.

We now consider the query-answer pairs that are not of the type E. Following the outline described before,
we prove the following claims for a query-answer pair L(xiyi) = mini (where q + 1 ≤ i ≤ 2q) that is not of
type E, assuming that Si ∧ T1 ∧ T2 ∧ ... ∧ Ti−1 holds.

Claim 7.17. We have that with very high probability, no f− event occurs at time i.

Claim 7.18. Given Claim 7.17, the second call made by L to f at time i is a new call to f .

Claim 7.19. Given Claim 7.18, the probability that the outcome of L(xiyi) = mini is 1/2n.

Proof of Claim 7.17 We show that given that Si ∧T1 ∧T2 ∧ ...∧Ti−1 holds, then we have that with very
high probability, no f− event occurs at time i. We first show that for an f− event to happen at time i, the
first call made by L to f at time i (that is, f(xi0

n/2)) must be a new call to f .

• By definition of f− events, for an f− event to happen at time i, the query f(xi0
n/2) must not have

been made before due to an R query or as a first call due to an L query at some time j where j < i.

• Also, the assumption that Si holds implies that the query f(xi0
n/2) could not have been made as a

second call due to an L query at some time j where j < i. Here is the reason.
Suppose that the first time the query f(xi0

n/2) was made was as a second call to f due to an L query
L(xjyj) at some time j < i. So, we have that f(xj0

n/2)⊕yj0n/2 = xi0
n/2 and hence f2(xj0

n/2) = 0n/2.
This means that an f− event had happened at some time t ≤ j (as a consequence of Remark 7.16).

So, the above two conditions imply that if an f− event occurs at time i, then it is due to the first time
the query f(xi0

n/2) is made and that is as a first call by L to f at time i, and hence the result of the
query is chosen uniformly at random. Examining Definition 7.15 (specifically cases case (b) : 2, 3, 4, 5), we
can see that 3q + 1 values must be ruled out and hence it is easy to see that, for each query-answer pair
L(xiyi) = mini that is not of type E,

Pr[no f − event occurs during time i | T1 ∧ T2 ∧ ... ∧ Ti−1 ∧ Si] ≥ 1− 3q + 1

2n/2
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Proof of Claim 7.18 We show that given Claim 7.17, the second call made to f (that is, f(f(xi0
n/2)⊕

yi0
n/2)) at time i is a new call to f . We will also be using the assumption that the query-answer pair L(xiyi) =

mini is not of type E to show this. Suppose that the second call made to f (that is, f(f(xi0
n/2)⊕ yi0n/2))

at time i is not a new call to f . Then, we prove that an f− event had occurred at some time t ≤ i or
the query-answer pair L(xiyi) = mini is of type E. We split it into three cases based on when the query
f(f(xi0

n/2)⊕ yi0n/2) was first made.

• Suppose that the first time the query f(f(xi0
n/2)⊕ yi0n/2) was made was as a first call to f due to an

due an L query L(xkyk) at some time k ≤ i. This means that f(xi0
n/2)⊕ yi0n/2 = xk0n/2 and hence

f2(xi0
n/2) = 0n/2. Hence, an f− event had occurred at some time t ≤ i (as a consequence of Remark

7.16).

• Suppose that the first time the query f(f(xi0
n/2) ⊕ yi0n/2) was made was as a second call to f due

to an L query L(xkyk) at some time k < i. This means that f(xi0
n/2)⊕ yi0n/2 = f(xk0n/2)⊕ yk0n/2

where xk 6= xi (if xk = xi, then we would have that yi = yk and hence the L queries at times i and k
where k < i, wouldn’t be distinct.) and hence f2(xi0

n/2) = f2(xk0n/2) where xi 6= xk. Hence, an f−
event had occurred at some time t ≤ i (as a consequence of Remark 7.16).

• Suppose that the first time the query f(f(xi0
n/2)⊕ yi0n/2) was made was due to an R query R(xkyk)

at some time 1 ≤ k ≤ q. That is, f(xi0
n/2) ⊕ yi0n/2 = xkyk. We split this into three cases based on

when the query f(xi0
n/2) was first made.

– Suppose that the first time the query f(xi0
n/2) was made was as a first call to f due to an L query

L(xjyj) at some time j ≤ i. Then, we have that f2(xj0
n/2) = f2(xi0

n/2) since xj = xi. Since we
have that f(xi0

n/2) ⊕ yi0n/2 = xkyk, we have that f2(xi0
n/2) = yk and hence f2(xj0

n/2) = yk.
So, we have that an f− event occurred at time j ≤ i.

– Suppose that the first time the query f(xi0
n/2) was made was as a second call to f due to an L

query L(xjyj) at some time j < i. Then, we have that f(xj0
n/2) ⊕ yj0n/2 = xi0

n/2 and hence
f2(xj0

n/2) = 0n/2. Hence, we have that an f− event had occurred at some time t ≤ j (as a
consequence of Remark 7.16).

– Suppose that the first time the query f(xi0
n/2) was made was due to an R query R(xjyj) at some

time 1 ≤ j ≤ q. That is, we have that xjyj = xi0
n/2. So, it means that we have made previous

R queries R(xjyj) where xjyj = xi0
n/2 and R(xkyk) where xkyk = f(xi0

n/2) ⊕ yi0n/2 (that is,
xkyk = mjnj ⊕ yi0n/2). Hence the query-answer pair L(xiyi) = mini will be of type E.

Proof of Claim 7.19 We show that given Claim 7.18, the probability that the outcome of L(xiyi) = mini
is 1/2n. This is a trivial argument because the result of the second call to f (in this case, mini) is chosen
uniformly at random since the second call is a new call to f . So, we have that, for each query-answer pair
L(xiyi) = mini that is not of the type E,

Pr[Ti | no f − event occurs during time i andT1 ∧ T2 ∧ ... ∧ Ti−1 ∧ Si] = 1/2n

Summarizing Claims 7.17, 7.18 and 7.19,

We have that,
Pr[Ti and no f − event occurs at time i | T1 ∧ ...Ti−1 ∧ Si]

= Pr[no f − event occurs at time i | T1 ∧ ...Ti−1 ∧ Si]
Pr[Ti | no f − event occurs at time i ∧ T1 ∧ ...Ti−1 ∧ Si]
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Hence, for each query-answer pair L(xiyi) = mini that is not of the type E,

Pr[Ti and no f − event occurs at time i | T1 ∧ ...Ti−1 ∧ Si] ≥
1

2n
(1− 3q + 1

2n/2
) (29)

We now proceed to conclude Lemma 7.14.

Applying Equations 27, 28 and 29 in Equation 26, we get that

Pr[T1 ∧ T2 ∧ ... ∧ T2q inG2]

≥ (
1

(2n)2q−p
)(1−

q∑
i=1

3q + 1

2n/2
)

= (
1

(2n)2q−p
)(1− 3q2 + q

2n/2
)

Hence, we have that

Pr[T1 ∧ T2 ∧ ... ∧ T2q inG2] ≥ 1− ε
(2n)2q−p

where ε = 3q2+q
2n/2 .

Lemma 7.20. Let L(x1y1) = m1n1, R(x2y2) = m2n2, ......, L(x2q−1y2q−1) = m2q−1n2q−1, R(x2qy2q) =
m2qn2q be a fixed Valid query-answer sequence. Then we have that,
Pr[L(x1y1) = m1n1, R(x2y2) = m2n2, ......, L(x2q−1y2q−1) = m2q−1n2q−1, R(x2qy2q) = m2qn2q inG2]
≥ (1−ε)Pr[L(x1y1) = m1n1, R(x2y2) = m2n2, ......, L(x2q−1y2q−1) = m2q−1n2q−1, R(x2qy2q) = m2qn2q inG1]

where ε = 3q2+q
2n/2 .

Proof. First apply Lemma 7.11. Then apply Lemma 7.13 and Lemma 7.14.

Step 4

In this step, we will combine Steps 2 and 3 to show that |p1 − p2| is close to 0. Recall that,

p1 = Pr[DG1 = 1]

p2 = Pr[DG2 = 1]

We use Lemmas 7.9 and 7.20 to invoke Lemma 7.3.

Let A be the set of query-answer sequences of length 2q (corresponding to q queries to L and q queries to
R) such that for each query-answer sequence a ∈ A, the queries in a are what D would make in response to
the answers in a. Let A = A1 ∪A2 where A1 is the set of Valid query-answer sequences and A2 is the set of
Bad query-answer sequences.

By Lemma 7.9, we have ∑
a∈A2

Pr[D causes a inG1] ≤ 1

2

q(q + 1)

2n/2
+

q

2n
(30)

Lemma 7.20 implies that
∀a ∈ A1,

Pr[Queries in a yields answers in a inG2] ≥ (1− ε)Pr[Queries in a yields answers in a inG1] (31)

where ε =
3q2 + q

2n/2
.
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Hence, by Lemma 7.3 we have that

|p2 − p1| ≤ ε+
1

2

q(q + 1)

2n/2
+

q

2n
(32)

where ε =
3q2 + q

2n/2
.

Hence, we conclude that

|p2 − p1| ≤
1

2

7q2 + 3q

2n/2
+

q

2n
(33)

This completes the proof of the theorem.

We now state the indifferentiability theorem about the construction If , for a uniform random f . The
proof of the theorem directly follows from Theorem 7.2.

Theorem 7.21. Let Xn be the uniform distributions on Fnn, for every positive even integer n. Let X = {Xn}.
Then, construction I having oracle access to the distribution family X is indifferentiable from the distribution
family X .

Proof. Directly follows from Theorem 7.2.

8 Indifferentiability Results for the Construction Ip, for a Uni-
form Random Permutation p

Since If , for a uniform random function f : {0, 1}n → {0, 1}n, is indistinguishable from a uniform random
function F : {0, 1}n → {0, 1}n, it follows that Ip, for a uniform random permutation p : {0, 1}n → {0, 1}n,
is indistinguishable from a uniform random function F : {0, 1}n → {0, 1}n. This is because, no distinguisher
that makes a bounded number of queries to an oracle A : {0, 1}n → {0, 1}n which is either a uniform random
function f : {0, 1}n → {0, 1}n or a uniform random permutation p : {0, 1}n → {0, 1}n, can distinguish
between them except with some small probability. This is sometimes called as the “PRF/PRP switching
lemma” [CN08b][BR06].

So, since the construction If , for a uniform random f : {0, 1}n → {0, 1}n, is indifferentiable from a uni-
form random function F : {0, 1}n → {0, 1}n, it is natural to ask if Ip, for a uniform random permutation
p : {0, 1}n → {0, 1}n (together with its inverse denoted by p−1), is indifferentiable from a uniform random
function F : {0, 1}n → {0, 1}n.

In other words, can we come up with an efficient simulator S, that has oracle access to F and tries to simulate
p, p−1 (in response to a polynomial number of queries made to it) such that no distinguisher can distinguish
between (Ip, {p, p−1}) and (F, SF ) except with some small probability? Unfortunately, the answer is a
negative one, because we can come up with a distinguisher which distinguishes (Ip, {p, p−1}) and (F, SF )
with overwhelming probability for any efficient simulator S.

Theorem 8.1. Let Xn be the uniform distribution on Fnn and Yn be a uniform distribution on Pn, for every
positive even integer n. Let X = {Xn} and Y = {Yn}. Then, the construction I having oracle access to the
distribution family Y is not indifferentiable from the distribution family X .

Proof. Fix n. Here we define a distinguisher D which distinguishes (Ip, {p, p−1}) and (F, SF ) with over-
whelming probability for any efficient simulator S, where p is a uniform random permutation mapping {0, 1}n
to {0, 1}n and p−1 denotes its inverse and F is a uniform random function mapping {0, 1}n to {0, 1}n. D
has access to oracles X : {0, 1}n → {0, 1}n and Y0, Y1 : {0, 1}n → {0, 1}n, which are either (Ip, {p, p−1}) or
(F, SF ). D works as follows,
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1. Choose arbitrary a ∈ {0, 1}n/2 and b uniformly at random from {0, 1}n/2.

2. Let α← X(ab).

3. Let β ← Y1(α).

4. Let γ ← Y0(a0n/2).

5. If γ ⊕ b0n/2 = β accept, else reject.

It is easy to see that D accepts (Ip, {p, p−1}) with probability 1. This is because, for any {p, p−1}, the
following holds. α = Ip(ab); β = p−1(α), so α = p(β). γ = p(a0n/2); p(γ ⊕ b0n/2) = p(p(a0n/2) ⊕ b0n/2) =
Ip(ab) = α = p(β); So γ ⊕ b0n/2 = β. However, D accepts (F, SF ) with probability at most q

2n for any

simulator S making at most q queries to F because, for a random F and random b, the equality γ⊕b0n/2 = β
holds only with probability at most q

2n for any simulator S that makes at most q oracle queries to F . This
is due to the following reasons. Since F is random and ab is the first query made to F , α is random. The
simulator sees only α and a and has no idea about b. Yet, it has to output β, γ such that γ ⊕ β = b0n/2.
So, effectively it has to guess b, of which it has no idea about. This can be done with probability at most
q
2n , for any simulator S that makes at most q oracle queries to F . Hence, we have that, for any simulator S
that makes at most q oracle queries to F ,

|Pr [DIp,{p,p−1}(1n) = 1]− Pr [DF,SF

(1n) = 1]| ≥ 1− q

2n

Hence, we conclude that D distinguishes (Ip, {p, p−1}) and (F, SF ) with overwhelming probability for any
efficient simulator S.

8.1 Some Ideas on How to Make the Construction Work

8.1.1 A Modified Construction

We would like to modify the construction Ip a little bit, so that we can get an indifferentiability theorem
out of it. A trick would be to drop a certain amount of bits (say n/2 bits) from the output of Ip. A
reason to believe why this would work is that, this construction is a special case of the sponge construction
[BDPVA11a]. Consider the following construction which processes two blocks of input.

Definition 8.2. Let f be a function such that f : {0, 1}n → {0, 1}n for every positive even integer n. For
every positive even integer n, define trIf : {0, 1}n → {0, 1}n/2 as follows

trIf (xy) = first n/2 bits of If (xy)

where x, y ∈ {0, 1}n/2.

Bertoni et al. in [BDPVA08] have given an indifferentiablity proof of the sponge construction and since
the function trIp is a special case of the sponge construction, the following theorem is true.

Theorem 8.3. Let Xn be the uniform distribution on Fn/2n and Yn be a uniform distribution on Pn, for
every positive even integer n. Let X = {Xn} and Y = {Yn}. Then, the construction trI having oracle access
to the distribution family Y is indifferentiable from the distribution family X .

Again, we can generalize this construction so that it processes inputs of arbitrary length and state an
indifferentiability theorem about it, similar to the one above. A part of our future work is to give a rigorous
proof for this theorem using the technique we used in the previous section.
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8.1.2 Sequential Indifferentiability

If you consider the distinguisher we gave in previous subsection, it was quite important that the distinguisher
is non-sequential, else the attack wouldn’t have gone through. So, we think that the following sequential
indifferentiability theorem is true about the construction Ip for a random permutation p.

Theorem 8.4. Let Xn be the uniform distribution on Fnn and Yn be a uniform distribution on Pn, for every
positive even integer n. Let X = {Xn} and Y = {Yn}. Then, the construction I having oracle access to the
distribution family Y is sequentially indifferentiable from the distribution family X .

In our future work, we would like to prove this theorem and also a similar sequential indifferentiability
theorem about the more general construction construction processing inputs of arbitrary length, using the
technique we used in the previous section.

9 Conclusion

In this paper, we used a simple yet rigorous proof technique for proving indifferentiability theorems, by
generalizing the indistinguishability proof technique used by Bernstein in [Ber05] to the indifferentiability
setting. We used this technique to prove the indifferentiability of the construction If (for a uniform random
f : {0, 1}n → {0, 1}n) from a uniform random F : {0, 1}n → {0, 1}n. Of course, this construction is not very
useful in practice since it processes only two blocks of input. We merely used it to test and in the process,
elucidate, the proof technique.

As a part of our future work, we would like to extend this proof technique to prove the indifferentiability
theorem of a more general version of If , the one which processes inputs of arbitrary length. We would also
like to use our technique to prove the two theorems we stated in the previous section: the one regarding the
sequential indifferentiability of Ip, for a uniform random permutation p (together with its inverse) and the
one regarding the indifferentiability of trIp, for a uniform random permutation p (together with its inverse).
Again, these last two constructions are not very useful in practice since they process only two blocks of
input. However, proving the indifferentiability of these simple constructions will give us confidence to prove
the indifferentiability of the more general versions of these constructions, the ones which process inputs of
arbitrary length. Finally, we aim to further simplify the proof of indifferentiability of If (for a uniform
random f) that we presented, and also apply this proof technique to prove the indifferentiability results of
various other cryptographic constructions.
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A A Flaw in the Distinguishing Attack of [CPS08] for the 5-Round
Feistel Network

We show an efficient simulator that passes the distinguishing attack of [CPS08] for the 5-round Feistel
network. We first give a sketch of their attack and then we give an efficient simulator that passes the test.
We also give a simple fix to the attack so that their claim becomes true.

Distinguishing attack of [CPS08] Fix n. The distinguisher is provided 7 oracles p0,p1 : {0, 1}2n →
{0, 1}2n and h1,h2,h3,h4,h5 : {0, 1}n → {0, 1}n (where the oracles are either (Φ5,F5

,Φ−15,F5
), (F5) or (P, P−1), (SP,P

−1

)).
The attack proceeds as follows.

1. Choose y, y′, z ∈ {0, 1}n arbitrarily.

2. Query h3(y), h3(y′).

3. Let x = h3(y)⊕ z, x′ = h3(y′)⊕ z.

4. Query h2(x), h2(x′).
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5. Let R0 = y ⊕ h2(x), R1 = y ⊕ h2(x′), R2 = y′ ⊕ h2(x′), R3 = y′ ⊕ h2(x).

6. Query h1(R0), h1(R1),h1(R2), h1(R3).

7. Let L0 = h1(R0)⊕ x, L1 = h1(R1)⊕ x′, L2 = h1(R2)⊕ x′, L3 = h1(R3)⊕ x.

8. Let S0T0 ← p0(L0R0), S1T1 ← p0(L1R1), S2T2 ← p0(L2R2), S3T3 ← p0(L3R3)

9. If R0 ⊕R1 ⊕R2 ⊕R3 = 0 and S0 ⊕ S1 ⊕ S2 ⊕ S3 = 0 accept, else reject.

Coron et al. argued that D accepts ((Φ5,F5
,Φ−15,F5

), F5) with probability 1 for any 5-tuple of functions F5.

However, for a random P, P−1, D accepts (P, P−1), (SP,P
−1

) with negligible probability for any efficient
simulator S. However, we can come up with an efficient simulator S such that for a random P, P−1, D
accepts (P, P−1), (SP,P

−1

) with probability 1. The simulator S outputs a 5-tuple of constant functions
(each of which say, always output 0 on any input). So when the 7 oracles (p0,p1),(h1,h2,h3,h4,h5) are

(P, P−1), (SP,P
−1

), for every i, 1 ≤ i ≤ 5, the oracle hi always outputs 0 on any input. It is clear that S is

efficient. We prove that for a random P, P−1, D accepts (P, P−1), (SP,P
−1

) with probability 1. Analysing
the above attack for this case,

1. We have that x = h3(y)⊕ z = z, x′ = h3(y′)⊕ z = z and hence x = x′ = z.

2. We have that R0 = y ⊕ h2(x) = y, R1 = y ⊕ h2(x′) = y, R2 = y′ ⊕ h2(x′) = y′, R3 = y′ ⊕ h2(x) = y′

and hence R0 = R1 = y and R2 = R3 = y′.

3. We have that L0 = h1(R0)⊕x = x, L1 = h1(R1)⊕x′ = x′, L2 = h1(R2)⊕x′ = x′, L3 = h1(R3)⊕x = x.
Hence we have that L0 = L1 = L2 = L3 = z (since x = x′ = z).

4. We have that S0T0 = p0(L0R0) = p0(zy), S1T1 = p0(L1R1) = p0(zy), S2T2 = p0(L2R2) = p0(zy′),
S3T3 = p0(L3R3) = p0(zy′).

5. Hence we have that S0T0 = S1T1 and S2T2 = S3T3

6. Hence it is clear that R0 ⊕R1 ⊕R2 ⊕R3 = 0 and S0 ⊕ S1 ⊕ S2 ⊕ S3 = 0 (from points 2 and 5).

So it is clear that for any P, P−1, D accepts (P, P−1), (SP,P
−1

) with probability 1 and hence the attack
doesn’t go through. The simplest way to fix the attack is to make sure that the Ris are distinct. That is, in
step 5 of the attack, we should include the check that if for some i, j, 1 ≤ i 6= j ≤ 4, Ri = Rj , then reject.
It is easy to argue that this modified distinguishing attack goes through and we skip the details.
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