
On Key Recovery Attacks against Existing Somewhat
Homomorphic Encryption Schemes

Massimo Chenal and Qiang Tang

APSIA group, SnT, University of Luxembourg
6, rue Richard Coudenhove-Kalergi, L-1359 Luxembourg

{massimo.chenal; qiang.tang}@uni.lu

Abstract. In his seminal paper at STOC 2009, Gentry left it as a future work to
investigate (somewhat) homomorphic encryption schemes with IND-CCA1 security.
At SAC 2011, Loftus et al. showed an IND-CCA1 attack against the somewhat ho-
momorphic encryption scheme presented by Gentry and Halevi at Eurocrypt 2011.
At ISPEC 2012, Zhang, Plantard and Susilo showed an IND-CCA1 attack against the
somewhat homomorphic encryption scheme developed by van Dijk et al. at Eurocrypt
2010. Both attacks recover the secret key of the encryption schemes.

In this paper, we continue this line of research and show that most existing somewhat
homomorphic encryption schemes are not IND-CCA1 secure. In fact, we show that
these schemes suffer from key recovery attacks (stronger than a typical IND-CCA1
attack), which allow an adversary to recover the private keys through a number of
decryption oracle queries. The schemes, that we study in detail, include those by
Brakerski and Vaikuntanathan at Crypto 2011 and FOCS 2011, and that by Gentry,
Sahai and Waters at Crypto 2013. We also develop a key recovery attack that applies
to the somewhat homomorphic encryption scheme by van Dijk et al., and our attack
is more efficient and conceptually simpler than the one developed by Zhang et al..
Our key recovery attacks also apply to the scheme by Brakerski, Gentry and Vaikun-
tanathan at ITCS 2012, and we also describe a key recovery attack for the scheme
developed by Brakerski at Crypto 2012.

Keywords: Somewhat Homomorphic Encryption, Key Recovery Attack, IND-CCA1 Secu-
rity.

1 Introduction

In 1978, Rivest, Adleman and Dertouzos [RAD78] introduced the concept of privacy ho-
momorphism and asked whether it is possible to perform arbitrary operations on encrypted
ciphertexts. 30 years later, Gentry [Gen09b] gave a positive answer by proposing an ingenious
approach to construct fully homomorphic encryption (FHE) schemes. With this approach,
we can start with a somewhat homomorphic encryption (SHE) scheme that can perform
only limited number of operations on ciphertexts (i.e. it can evaluate only low-degree poly-
nomials). Then, through the so-called bootstrapping step, we can turn this SHE scheme into
an FHE scheme. Even though SHE schemes are less powerful than FHE schemes, they can
already be used in many useful real-world applications, such as medical and financial appli-
cations [NLV11]. Note that researchers have proposed the concept of leveled FHE schemes
(e.g. [BGV12,GSW13]), which allow third parties to evaluate any circuits up to a certain
depth. In the following discussion, we treat these schemes as SHE.

1.1 Related Work

After Gentry’s work, many SHE and FHE schemes have been proposed. Based on the un-
derlying hardness assumptions, these schemes can be categorized as follows.

(1) The first category starts with Gentry [Gen09a,Gen09b]. A number of variations, opti-
mizations and implementations appear in [SV10,GH11b]. The security of these schemes
are based on hard problems on lattices.

(2) The second category starts with van Dijk et al. [vDGHV10]. More variants, implemen-
tation and optimizations appear in [CMNT11,CNT12,CCK+13]. The security of these
schemes rely on the approximate greatest common divisor (AGCD) problem and some
variants. It is worth mentioning that Ding and Tao [DT14] claim to have found an al-
gorithm to solve the AGCD problem with some special parameters in polynomial time.
However, the AGCD problem and its variants are still believed to be hard.

(3) The third category starts with Brakerski and Vaikuntanathan [BV11b,BV11a]. More
variants appear in [NLV11,BGV12,GHS12b,Bra12,GSW13]. The security of these schemes
are based on the learning with errors (LWE) and on the ring-learning with errors (RLWE)
problems.

See Fig. 1 for a graphical visualization of the main families.

Hardness
Assumptions

ss yy %%
(1) Lattice
Problems

��

(2) AGCD

��

(3) LWE

yy

��

$$
Standard

LWE

��

RLWE

��[Gen09b,SV10]
[GH11b,Gen10]
[SS10,GH11a]

[LMSV12,GHS12a]
[GHS12b]

[vDGHV10]
[CMNT11]
[CNT12]

[BV11b]
[BGV12]
[Bra12]
[GSW13]

[BV11a]
[NLV11]

Fig. 1: Hardness assumptions and relevant papers

Recently, Nuida [Nui14] proposed a new framework for noise-free FHE, based on finite
non-commutative groups. This is completely different from everything appeared in literature
so far, since the ciphertext in all known schemes carry some noise. Nevertheless, a secure
instantiation has yet to be found.

All known SHE and FHE schemes have been developed with the aim of being IND-CPA
secure (resistant against a chosen-plaintext attack). In [Gen09b], Gentry left it as a future
work to investigate SHE schemes with IND-CCA1 security (i.e. secure against a non-adaptive
chosen-ciphertext attack). At this moment, we have the following results.

2

– No SHE and FHE scheme can be IND-CCA2 (secure against adaptive chosen-ciphertext
attack). The reason is straightforward, based on the fact that the adversary is allowed
to manipulate the challenged ciphertext and submit it to the decryption oracle in an
IND-CCA2 attack.

– With Gentry’s approach, the resulted FHE scheme cannot be IND-CCA1 secure. The
reason is also straightforward, based on the fact that the private key is encrypted and
the adversary is able to submit the ciphertext to the decryption oracle.

– Loftus et al. [LMSV12] showed that Gentry’s SHE scheme [Gen09b] is not IND-CCA1
secure and presented an IND-CCA1 attack against the variation proposed in [GH11b].
They also showed that the same attack applies to the other variant by Smart and Ver-
cauteren [SV10]. In fact, the attacks are both key recovery attacks. Moreover, they
modified the SHE in [SV10] and proved its IND-CCA1 security based on a new assump-
tion. Zhang et al. [ZPS12] presented an IND-CCA1 attack against the SHE scheme in
[vDGHV10], which can recover the secret key with O(λ2) queries where λ is the security
parameter.

In theory, IND-CPA security may be enough for us to construct cryptographic protocols,
in particular if we assume semi-honest attackers. However, key recovery attacks will pose
serious threat for practical usage of SHE and FHE. If a malicious attacker submits manipu-
lated ciphertexts and observes the behavior (side channel leakage) of the decryptor, then it
may be able to recover all plaintexts in the system. Therefore, it is very desirable to design
SHE and FHE with IND-CCA1 security, or at least to avoid key recovery attacks.

1.2 Our Contributions

In this paper, we continue the line of work of [LMSV12,ZPS12] to present key recovery at-
tacks for the schemes [BV11b,BV11a,GSW13,Bra12]. Our attacks can also be applied to the
SHE scheme in [BGV12]. We also develop a new key recovery attack against the SHE scheme
in [vDGHV10], and our attack is more efficient and conceptually simpler than that from
[ZPS12]. Our results essentially show that the SHE schemes underlying the FHE schemes in
category (3) above are not IND-CCA1 secure. Combining the results from [LMSV12,ZPS12],
we can conclude that all the SHE schemes, except that from [LMSV12], suffer from key re-
covery attacks so that they are not IND-CCA1 secure.

1.3 Structure of the Paper

In Section 2, we recall some background on SHE and FHE schemes. Starting from Section
4, we are going to develop key recovery attacks against the aforementioned SHE schemes.
In Section 8, we conclude the paper.

2 Preliminaries

Let N be the set of natural numbers, Z the ring of integers, Q the field of rational numbers,
and Fq a finite field with q elements, where q is a power of a prime p. In particular, we will
consider often Fp = Z/pZ = Zp. If r ∈ Zq, we indicate as r−1 its inverse in Zq, i.e. that
value such that r−1 · r = 1 mod q. For a ring R and a (two-sided) ideal I of R, we consider

3

the quotient ring R/I. For given vectors v = (v1, . . . , vn),w = (w1, . . . , wn) ∈ Znq , we let
< v,w >=

∑
i viwi the dot product of v,w. For a given rational number x ∈ Q, we let

bxe, bxc and dxe be respectively the rounding function, the floor function and the ceiling
function. For a given integer n ∈ N, bn + 1/2e = n + 1. To indicate that an element a is

chosen uniformly at random from a set A we use notation a
$← A. For a set A, we let its

cardinality be |A|. We consider also the standard basis {ei}ni=1 of Rn, where the coefficients
of ei are all 0 except for the i-th coefficient, which is 1.

Unless otherwise specified, λ will always denote the security parameter of the encryption
schemes. In the asymmetric schemes we are going to discuss, the secret key will be denoted
as sk, and the public key will be pk.

2.1 Homomorphic Encryption

The following definitions are adapted from [Gen09b]. We only assume bit-by-bit public-key
encryption, i.e. we only consider encryption schemes that are homomorphic with respect to
boolean circuits consisting of gates for addition and multiplication mod 2. Extensions to
bigger plaintext spaces and symmetric-key setting are straightforward; we skip the details.

Definition 1 (Homomorphic Encryption). A public key homomorphic encryption (HE)
scheme is a set of four algorithms E = (KeyGenE ,EncryptE ,DecryptE ,EvaluateE) all of which
must run in polynomial time. When the context is clear, we will often omit the index E.

KeyGen(λ) = (sk, pk)

– input: λ

– output: sk; pk

Encrypt(pk,m) = c

– input: pk and plaintext m ∈ F2

– output: ciphertext c

Decrypt(sk, c) = m′

– input: sk and ciphertext c
– output: m′ ∈ F2

Evaluate(pk, C, (c1, . . . , cr)) = ce
– input: pk, a circuit C, ciphertexts
c1, . . . , cr, with ci = Encrypt(pk,mi)

– output: ciphertext ce

Definition 2 (Correct Homomorphic Decryption). The public key homomorphic en-
cryption scheme E = (KeyGen,Encrypt,Decrypt,Evaluate) is correct for a given t-input cir-
cuit C if, for any key-pair (sk, pk) output by KeyGen(λ), any t plaintext bits m1, . . . ,mt, and
any ciphertexts c = (c1, . . . , ct) with ci ← EncryptE(pk,mi), Decrypt(sk,Evaluate(pk, C, c)) =
C(m1, . . . ,mt) holds.

Definition 3 (Homomorphic Encryption). E = (KeyGen,Encrypt,Decrypt,Evaluate) is
homomorphic for a class C of circuits if it is correct for all circuits C ∈ C. We say that E is
a fully homomorphic encryption (FHE) scheme if it is correct for all boolean circuits.

Informally, a homomorphic encryption scheme that can perform only a limited number of
operations is called a somewhat homomorphic encryption (SHE) scheme.

2.2 Security Definitions

The security of a public-key encryption scheme in terms of indistinguishability is normally
presented as a game between a challenger and an adversary A = (A1,A2). The scheme is

4

considered secure if no adversary can win the game with significantly greater probability
than an adversary who must guess randomly. The game runs in two stages:

– (pk, sk)← KeyGen(1λ)

– (m0,m1)← A(·)
1 (pk) /* Stage 1 */

– b← {0, 1}
– c∗ ← Encrypt(mb, pk)

– b′ ← A(·)
2 (c∗) /* Stage 2 */

The adversary is said to win the game if b = b′, with the advantage of the adversary winning
the game being defined by

AdvIND-atk
A,E,λ = |Pr(b = b′)− 1/2|

A scheme is said to be IND-atk secure if no polynomial time adversary A can win the above
game with non-negligible advantage in the security parameter λ. The precise security notion
one obtains depends on the oracle access one gives the adversary in its different stages:

– If A has access to no oracles in either stage then atk=CPA (indistinguishability under
chosen plaintext attack)

– If A has access to a decryption oracle in stage one then atk=CCA1 (indistinguishability
under non-adaptive chosen ciphertext attack)

– If A has access to a decryption oracle in both stages then atk=CCA2, often now denoted
simply CCA (indistinguishability under adaptive chosen ciphertext attack)

– If A has access to a ciphertext validity oracle in both stages, which on input of a
ciphertext determines whether it would output ⊥ or not on decryption, then atk=CVA.

According to the definition, in order to show that a scheme is not IND-CCA1 secure, we
only need to show that an adversary can guess the bit b with a non-negligible advantage given
access to the decryption oracle in Stage 1. Formally, in a key recovery attack, an adversary
can output the private key given access to the decryption oracle in Stage 1. In comparison,
a key recovery attack is stronger than a typical IND-CCA1 attack.

3 Key Recovery Attack against the vDGHV10 Scheme

In [ZPS12], Zhang, Plantard and Susilo presented a key recovery attack against the the
vDGHV10 scheme from [vDGHV10]. Given O(λ2) decryption oracle queries, an attacker
can recover the private key. Let η be the bit-length of the secret key p, O(λ2) = 3(η + 3) in
the best case.

In this section, we describe a more efficient and conceptually simpler key recovery attack.
Our attack is optimal in the sense that it recovers directly the secret key with at most η
oracle queries. Note that the decryption oracle outputs one bit at a time.

3.1 The vDGHV SHE Scheme

We start by presenting the (asymmetric) SHE scheme as presented in [vDGHV10]. The
message space is M = Z2. The scheme is parametrized by γ (bit-length of the integers in

5

the public key), η (bit-length of the secret key), ρ (bit-length of the noise), and τ (the number
of integers in the public key). We also consider a secondary noise parameter ρ′ = ρ+ω(logλ).
For a specific (η-bit) odd positive integer p, consider the following distribution over γ-bit
integers:

Dγ,ρ(p) = {choose q
$← Z ∩ [0, 2γ/p), r

$← Z ∩ (−2ρ, 2ρ) : output x = pq + r}

The algorithms of the vDGHV SHE scheme are defined as follows:

KeyGen(λ)
– sk: odd η-bit integer

p
$← (2Z + 1) ∩ [2η−1, 2η).

– sample xi
$← Dγ,ρ(p) for i = 0, . . . , τ

– relabel so that x0 is the largest
– restart unless x0 odd, rp(x0) even

(rp(x) = x− bx/pe · p ∈ (−p/2, p/2])
– pk = (x0, x1, . . . , xτ).

Encrypt(pk,m ∈M)

– choose a random subset S ⊆
{1, 2, . . . , τ}

– choose a random integer r in (−2ρ
′
, 2ρ
′
)

– output c = [m+ 2r + 2
∑
i∈S xi]x0

Decrypt(sk, c)

– output m′ = (c mod p) mod 2

3.2 The New Key Recovery Attack

Since η = #bits(p), we immediately obtain odd lower and upper bounds lp and up, respec-
tively, for p:

lp = 2η−1 + 1 ≤ p ≤ up = 2η − 1

Notice explicitly that p can only assume the odd values 2η−1 + 1, 2η−1 + 3, . . . , 2η−3, 2η−1.
In particular, between 2η−1 and 2η there are 2η−2 candidate values for p. We can also argue
that between lp and up there are (up − lp)/2 = 2η−2 − 1 even integers. Let H(lp,up) =
{0, 1, . . . , 2η−2 − 2}, these integers can be denoted as lp + 2h+ 1 for h ∈ H(lp,up).

Now, the idea of the key-recovery attack is as follows: consider the ‘ciphertext’ c =
lp + 2h+ 1 for a given h ∈ H(lp,up). Submit c to the decryption oracle OD; we will obtain a
bit b← OD(c) = (c mod p) mod 2. There are two cases to distinguish:

b = 0 ‘Decryption is correct’ (since c is even); hence p > c, i.e. p ≥ lp + 2h+ 2.
Update lp ← lp + 2h+ 2.

b = 1 ‘Decryption is not correct’; hence p < c, i.e. p ≤ lp + 2h.
Update up ← lp + 2h.

Next, we repeat the decryption query with the updated values for lp, up and with another
even ‘ciphertext’ c ∈ [lp+1, up−1], and we stop when up = lp. In particular, for efficiency we
always choose c as the even integer in the middle of the interval [lp + 1, up− 1]. It is easy to
see that this attack leads to a full recovery of the secret key p with at most log(2η−2−2) ≈ η
oracle queries.

3.3 Algorithmic Description

Formally, the attack can be described by Algorithm 1. It takes as input an integer η ∈ N
and outputs the secret integer p. Let

OD(c) = Decrypt(c, sk) = (c mod p) mod 2 (decryption oracle)

bxco = max{n ∈ N s.t. n is odd and n ≤ x}
6

Algorithm 1 Key Recovery Attack

input: η
lp ← 2η−1 + 1
up ← 2η − 1
while up 6= lp do
h← (up − lp)/2 {h ∈ N is the number of even values in [lp, up]}
c← lp + bhco
if OD(c) = 0 then
lp ← lp + bhco + 1

end if
if OD(c) = 1 then
up ← lp + bhco − 1

end if
end while
return up

4 Key Recovery Attack against the BV11b Scheme

In this section, we describe a key recovery attack against the SHE scheme from [BV11b].

4.1 The BV11b SHE Scheme

The message space is M = Z2. Let f be a polynomial in λ, i.e. f(λ) = poly(λ). Consider
n = f(λ) ∈ N and let ε ∈ (0, 1)∩R. Assume an odd integer q ∈ N such that q ∈ [2n

ε

, 2 ·2nε),
and an integer m ≥ nlog q + 2λ. Let χ be a noise distribution over Zq (it produces small
samples, all of magnitude not greater than n). Finally, let L ∈ N be an upper bound
on the maximal multiplicative depth that the scheme can homomorphically evaluate, say
L ≈ εlog n.

KeyGen(λ)

– pick s0, . . . , sL
$← Znq

– pick a matrix A
$← Zm×nq

– pick a vector e← χm

– compute b = As0 + 2e

– sk = sL
– pk = (A,b)

Encrypt(pk, µ ∈M)

– pick r
$← {0, 1}m

– set v = ATr ∈ Znq
– set w = bTr + µ ∈ Zq
– ciphertext c = ((v, w), l).

Decrypt(sk, c = ((v, w), L))

µ = (w− < v, sL > mod q) mod 2

Notice that the vectors s1, . . . , sL−1 are used in order to compute the evaluation key,
which we omit here. We remark that during the homomorphic evaluation, the scheme gen-
erates ciphertexts of the form c = ((v, w), l), where the tag l indicates the multiplicative
level at which the ciphertext has been generated (fresh ciphertexts are tagged with l = 0).
Note that it always holds that l ≤ L due to the bound on the multiplicative depth, and that
the output of the homomorphic evaluation of the entire circuit is expected to have l = L.
As described in [BV11b], the SHE scheme is only required to decrypt ciphertexts that are

7

output by the evaluation step (which we omit here), and those will always have level tag
L. Therefore, we always expect a ciphertext of the form c = ((v, w), L) and decryption is
correct.

Apparently, we cannot decrypt level l ciphertexts c = ((v, w), l), for 1 ≤ l < L, since we
are only allowed to decrypt level L ciphertexts. However, we can compute L− l fresh encryp-
tions of 1, namely c1, . . . , cL−l. Then, we compute c∗ = Evaluate(pk,MUL, c, c1, . . . , cL−l)
based on the homomorphic property, where MUL is the multiplication circuit. The resulting
ciphertext c∗ will encrypt the same message as c does, and with a tag level L. In particular,
we can decrypt fresh ciphertexts.

4.2 Our Key Recovery Attack

We are going to recover the secret key sL ∈ Znq component-wise, and bit by bit. For ease of
notation, we will write s instead of sL. More precisely, we write s = (s1, . . . , sn) ∈ Znq . For
every 1 ≤ j ≤ n, we have sj ∈ Zq and therefore sj can be written with a maximum number
N of bits, where N = blog2(q − 1)c + 1. We are going to recover the i-th bit of sj , for all
1 ≤ i ≤ N and for all 1 ≤ j ≤ n.

Intuitively, our attack works as follows. We start by finding the first bit of sj for every
1 ≤ j ≤ n; then we will recover the second bit of sj for every 1 ≤ j ≤ n; and we stop until
we reach the N -th bit. In order to do so, we have to choose a ‘ciphertext’ c to be submitted
to the decryption oracle. Instead of submitting c = (v, w) for honestly-generated v ∈ Znq
and w ∈ Zq, we submit c∗ = (x, y) for some specifically-picked x ∈ Znq and y ∈ Zq. We omit
to write the level tag since we can always obtain a level tag L from any l ≤ L.

For any 1 ≤ j ≤ n, let (sj)2 := aj,Naj,N−1 · · · aj,1 be the binary representation of sj (bits
ordered from most significant to least significant). We have aj,i ∈ {0, 1}, for all 1 ≤ i ≤ N .

Recovering aj,1

We have to choose x ∈ Znq and y ∈ Zq in such a way that y− < x, s > mod q = sj . To
do so, pick y = 0 and x = (0, . . . , 0,−1, 0, . . . , 0) (where -1 is in position j). Then, we
have 0− (−1)sj mod q = sj mod q = sj . As a result, by modding out with 2, this will
return the last bit aj,1 of sj .

Recovering aj,2

Now that we know the last bit aj,1 of sj , we want to obtain s
(1)
j := (sj − aj,1)/2 ∈ Zq

whose bit decomposition is the same as the bit decomposition of sj , but with the last
bit removed from it. Then, modding out by 2, we will get the desired bit. This translates
to the following condition: find x ∈ Znq and y ∈ Zq such that y− < x, s > mod q =
(sj − aj,1)/2. Let x = (0, . . . , 0, xj , 0, . . . , 0) (with xj in j-th position). We have to find
y and xj such that 2y − sj(2xj + 1) = −aj,1 mod q. Clearly, the solution is given by
xj = −2−1 mod q and y = −2−1aj,1 mod q. By querying the decryption oracle with
the ‘ciphertext’ c∗ := (x, y), we obtain the second-to-last bit aj,2 of sj .

Recovering aj,m, for 1 ≤m ≤ N

Based on the above two cases, we generalize the procedure. Suppose we have found
all bits aj,i, for 1 ≤ i ≤ m − 1. In order to recover the bit aj,m, we choose x :=
(0, . . . , 0, xj , 0, . . . , 0) ∈ Znq and y ∈ Zq as follows: xj = −(2m−1)−1 mod q and y =

−(2m−1)−1(
∑m−1
i=1 2i−1aj,i).

8

4.3 Algorithmic Description and Efficiency Analysis

We denote the decryption oracle OD(c) := Decrypt(sk, c). The ciphertext c is of the form c =
(x, y) (the level tag is omitted), with x ∈ Znq , y ∈ Zq. For ease of notation, we have also con-
sidered the standard vectors e1, . . . , en ∈ Znq : for every i = 1, . . . , n, ei is the 0-vector except
in position i, where it has value 1, i.e. ei = (ei,1, . . . , ei,n) = (0, . . . , 0, 1, 0, . . . , 0), ei,i =
1, ei,j = 0 for j 6= i. Formally, the attack from Section 4.2 can be described by Algorithm 2.
It takes as input the integers n, q and returns the secret key vector s = (s1, . . . , sn) ∈ Znq .

Algorithm 2 Key Recovery Attack

input: n, q ∈ N
N ← blog2(q − 1)c+1
for j = 1 to n do

for m = 1 to N do
xj ← −(2m−1)−1 mod q
x← xj · ej
y ← xj ·

∑m−1
i=1 2i−1aj,i mod q {if m = 1, y ← 0}

aj,m ← OD(x, y)
end for
sj ←

∑N
m=1 2m−1aj,m

end for
s← (s1, . . . , sn)
return s

The secret key vector s = sL ∈ Znq has n coefficients sj , and each one of them has
length of at most N bits. Now, n = f(λ) for a polynomial function f(λ) = poly(λ), and
N = blog2(q − 1)c+ 1. We have that q ∈ [2n

ε

, 2n
ε+1), with ε ∈ (0, 1) ∩ R a constant, and

blog2(q − 1)c+ 1 < blog22n
ε+1c+ 1 = bnε + 1c+ 1 = bf(λ)ε + 1c+ 1 = g(λ)

where g(λ) = poly(λ)ε. Therefore, the total number of queries we must perform to recover
s is n×N < f(λ) · g(λ) = poly(λ)ε+1. Since each query to the decryption oracle reveals one
bit of s, our attack is optimal and ends in polynomial time.

5 Key Recovery Attack against the BV11a Scheme

In this section, we describe a key recovery attack against the symmetric-key SHE scheme
from [BV11a]. The attack also applies to the asymmetric-key SHE scheme.

5.1 The BV11a SHE Scheme

Consider primes q = poly(λ) ∈ N, t = poly(λ) ∈ Z∗q . Let n = poly(λ) ∈ N and consider a
polynomial f(x) ∈ Z[x] with deg(f) = n+ 1. The message space is M = Rt = Z[x]/(f(x)).
Namely, a message is encoded as a degree n polynomial with coefficients in Zt. Let χ be
an error distribution over the ring Rq := Zq[x]/(f(x)) and let D ∈ N, which is related
to the maximal degree of homomorphism allowed (and to the maximal ciphertext length).
Parameters n, f, q, χ are public.

9

Keygen(λ)
– sample s← χ
– s = (1, s, s2, . . . , sD) ∈ RD+1

q
– sk = s

Encrypt(sk, µ ∈M)

– sample a
$← Rq and e← χ

– compute (a, b := as+ te) ∈ R2
q

– compute c0 := b+ µ ∈ Rq, c1 := −a
– output c = (c0, c1) ∈ R2

q

Decrypt(sk, c = (c0, . . . , cD) ∈ RD+1
q)

µ = (< c, s > modq) mod t

We remark that while the encryption algorithm only generates ciphertexts c ∈ R2
q ,

homomorphic operations (as described in the evaluation algorithm which we omit here)
might add more elements to the ciphertext. Thus, the most generic form of a decryptable
ciphertext in this scheme is c = (c0, . . . , cd) ∈ Rd+1

q , for d ≤ D. Notice that ‘padding with

zeros’ does not affect the ciphertext. Namely, (c0, . . . , cd) ∈ Rd+1
q and (c0, . . . , cd, 0, . . . , 0) ∈

RD+1
q encrypt the same message µ ∈ Rt.

5.2 Our Key Recovery Attack

We can write s = s0 + s1x+ · · ·+ snx
n ∈ Zq[x]/(f(x)) with coefficients sj ∈ Zq, ∀0 ≤ j ≤ n.

We will recover each coefficient sj separately. Now, each sj has at most N := blog2(q−1)c+1
bits; therefore #bits(s) ≤ (n + 1) × N = (n + 1) × (blog2(q − 1)c + 1) and each query to
the oracle decryption will reveal a polynomial µ(x) = µ0 +µ1x+ · · ·+µnx

n ∈ Zt[x]/(f(x));
we have #bits(µ) ≤ (n+ 1)× (blog2(t− 1)c+ 1). Therefore, the minimum number of oracle
queries needed is given by⌈

#(bits(s))

#(bits revealed by an oracle query)

⌉
=

⌈
(n+ 1)× (blog2(q − 1)c+ 1)

(n+ 1)× (blog2(t− 1)c+ 1)

⌉
=

⌈
blog2(q − 1)c+ 1

blog2(t− 1)c+ 1

⌉
We are going to query the decryption oracle with ‘ciphertexts’ of the form c∗i := (hi, yi, 0, . . . , 0) ∈
RD+1
q for some hi, yi ∈ Rq. We will describe in detail our attack in the case t = 2. An easy

generalization for t ≥ 2 is discussed later.

An easy case: t = 2.

We expect to query the decryption oracle at least blog2(q − 1)c + 1 times and recover sj ,
for all 0 ≤ j ≤ n, bit by bit. Let N = #bits(sj) = blog2(q − 1)c + 1, ∀0 ≤ j ≤ n;
and let (sj)2 = aj,Naj,N−1 · · · aj,1 be the binary representation of sj , ∀0 ≤ j ≤ n (i.e.,
aj,i ∈ {0, 1},∀1 ≤ i ≤ N and bits ordered most significant to least significant). For ease of
notation, we write c∗ = (h, y) instead of c∗ = (h, y, 0, . . . , 0).

Recovering aj,1, for all 0 ≤ j ≤ n
For a submitted ’ciphertext’ c∗ = (h, y), decryption works as follows: < c∗, s > mod 2 =
h+ ys mod 2. We choose h =

∑n
j=0 0xj = 0 ∈ Rq and y = 1 +

∑n
j=1 0xj = 1 ∈ Rq. The

decryption oracle outputs

s mod 2 = (s0 mod 2) + (s1 mod 2)x+ · · ·+ (sn mod 2)xn

= a0,1 + a1,1x+ · · ·+ an,1x
n

10

Therefore, we obtain the last bits aj,1 for all 1 ≤ j ≤ n, which are n bits of s.
Recovering aj,2, ∀0 ≤ j ≤ n

With aj,1 for all 0 ≤ j ≤ n, we are going to recover aj,2, ∀0 ≤ j ≤ n, as follows. We
want to obtain

s(1) :=
s− (a0,1 + a1,1x+ · · ·+ an,1x

n)

2

= s
(1)
0 + s

(1)
1 x+ · · ·+ s(1)n xn ∈ Zq[x]

(f(x))

for which the bit decomposition of the coefficients s
(1)
j is the same as the bit decomposi-

tion of sj , but with the last bit removed from it, for all 0 ≤ j ≤ n. Then, by modding out
with 2, we will get the desired bits. This translates to the following condition: find c∗ =

(h, y) = (h, y, 0, . . . , 0) ∈ RD+1
q such that < c∗, s >= s(1) :=

s−(a0,1+a1,1x+···+an,1xn)
2 ,

from which we obtain 2h+ s(2y−1) = −(a0,1 +a1,1x+ · · ·+an,1x
n). A solution is given

by y = 2−1 ∈ Rq and h = −2−1(a0,1 + a1,1x + · · · + an,1x
n) ∈ Rq. Then, by modding

out with 2 the ‘decrypted ciphertext’ µ =< c∗, s >, we recover the second-to-last bits
aj,2, for all 0 ≤ j ≤ n.

Recovering aj,m, for 1 ≤ m ≤ N , 0 ≤ j ≤ n
Suppose we have found all bits aj,i, ∀1 ≤ i ≤ m − 1 and ∀0 ≤ j ≤ n. We want to
recover aj,m, ∀0 ≤ j ≤ n. By a recursive argument, we find that we have to submit a

’ciphertext’ c∗ = (h, y) such that y = (2m−1)−1 ∈ Rq and h = −(2m−1)−1
(∑n

j=0 djx
j
)

with dj =
∑m−1
i=1 2i−1aj,i.

This concludes the attack for the case t = 2. Efficiency-wise, the total number of oracle
queries is N = blog2(q − 1)c+ 1, which is optimal.

The general case: t ≥ 2.

We consider now the general case in which t ≥ 2 is a prime number in Z∗q . We want to
find s = s0 + s1x + · · · + snx

n ∈ Zq[x]/(f(x)) and expect to query the decryption oracle⌈
blog2(q−1)c+1
blog2(t−1)c+1

⌉
times. With each query to the decryption oracle, we are going to recover

M = blog2(t − 1)c + 1 bits of sj , ∀0 ≤ j ≤ n. The idea is that we are going to recover
sj , for all 0 ≤ j ≤ n. In its representation in base t, sj can be represented with N figures
aj,i ∈ {0, 1, . . . , t − 1}: (sj)t = aj,Naj,N−1 · · · aj,1 where N = blogt(q − 1)c + 1; each aj,i is
bounded by t− 1, which explains the value M = blog2(t− 1)c+ 1.

Recovering aj,1, ∀0 ≤ j ≤ n

For a submitted ‘ciphertext’ c∗ = (h, y) = (h, y, 0, . . . , 0) ∈ RD+1
q , decryption works as

follows: < c∗, s > modt = x+ ys mod t. We choose h = 0 ∈ Rq and y = 1 ∈ Rq. Then,
the decryption oracle outputs

s mod t = (s0 mod t) + (s1 mod t)x+ · · ·+ (sn mod t)xn

= a0,1 + a1,1x+ · · ·+ an,1x
n

as we wanted.

11

Recovering aj,m, ∀1 ≤ m ≤ N , ∀0 ≤ j ≤ n
Suppose we know aj,i, ∀1 ≤ i ≤ m − 1, ∀0 ≤ j ≤ n. We want to recover aj,m, for
all 0 ≤ j ≤ n. To do so, we submit to the decryption oracle a ‘ciphertext’ c∗ = (h, y)

such that y = (tm−1)−1 ∈ Rq, h = −(tm−1)−1
(∑n

j=0 djx
j
)
, dj =

∑m−1
i=1 ti−1aj,i. It is

straightforward to verify that it works and we skip the details here.

5.3 Algorithmic Description

Formally, the attack from Section 5.2 can be described by Algorithm 3. It takes as input inte-
gers q, t, n,D ∈ N and a polynomial f(x) ∈ Z[x] of degree n. It outputs the secret key vector
s = (1, s, s2, . . . , sD) ∈ RD+1

q , where Rq := Zq[x]/(f(x)). Let OD(c) := Decrypt(sk, c) be the

decryption oracle, where c ∈ RD+1
q . For given h, y ∈ Rq, let OD(h, y) := OD((h, y, 0, . . . , 0)).

Algorithm 3 Key Recovery Attack

input: q, t, n,D ∈ N; f(x) ∈ Z[x]
N ← blogt(q − 1)c+ 1
for m = 1 to N do
y ← (tm−1)−1 in Rq
h← −y ·

∑m−1
i=1 ti−1ri in Rq {if m = 1, h← 0}

rm ← OD(h, y)
end for
s←

∑N
i=1 t

i−1ri
s← (1, s, s2, . . . , sD) ∈ RD+1

q

return s

5.4 Key Recovery Attack against the BGV12 Scheme

The SHE scheme from [BGV12] is closely related to the SHE schemes from [BV11a,BV11b].
This implies that the attacks from Section 5.2 and 4.2 can be directly applied against the
SHE scheme from [BGV12].

We first remark that the LWE and RLWE problems are syntactically equivalent. They
only use different rings (Z for LWE, and a polynomial ring Z[x]/(xd+1) for RLWE), as well
as different vector dimensions over these rings (n = poly(λ) for LWE, n = 1 for RLWE). For
this reason and to simplify the presentation, the authors of [BGV12] introduced the general
learning with errors (GLWE) problem, which is a generalized version of LWE and RLWE.

Definition 4 (GLWE problem). For security parameter λ, let n = n(λ) be an integer
dimension, let f(x) = xd + 1 where d = d(λ) is a power of 2, let q = q(λ) ≥ 2 be a prime
integer, let R = Z[x] = (f(x)) and Rq = R/qR, and let χ = χ(λ) be a distribution over R.
The GLWEn,f,q,χ problem is to distinguish the following two distributions:

• one samples (ai, bi) uniformly from Rn+1
q .

12

• one first draws s← Rnq uniformly and then samples (ai, bi) ∈ Rn+1
q by sampling ai ← Rnq

uniformly, ei ← χ, and setting bi =< ai, s > +ei.

The GLWEn,f,q,χ assumption is that the GLWEn,f,q,χ problem is infeasible.

LWE is GLWE when d = 1, and RLWE is GLWE when n = 1. Let’s review the GLWE-based
encryption scheme.

Setup(λ):

– use bit b ∈ {0, 1} to determine
whether we are setting parameters
for a LWE-based scheme (d = 1) or
a RLWE-based scheme (n = 1).

– choose µ-bit modulus q and d, n,N, χ
(all polynomials in λ, µ, b) in order to
have a GLWE-based scheme with 2λ

security against known attacks.

– Let R = Z[x]/(xd + 1)

– Let params = (q, d, n,N, χ).

SecretKeyGen(params):

– choose s′ ← χn.

– set sk = s ← (1, s′[1], . . . , s′[n]) ∈
Rn+1
q .

PublicKeyGen(params, sk) :
– input: params and sk = s = (1, s)

with s[0] = 1 and s′ ∈ Rnq .

– generate matrix A′
$← RN×nq

– generate a vector e← χN

– set b← A′s′ + 2e.
– set A to be the (n + 1)-column ma-

trix consisting of b followed by the
n columns of −A′. (Remark: A · s =
2e.)

– set pk = A.
Enc(params, pk,m): – input: message m ∈

R2

– set m← (m, 0, . . . , 0) ∈ Rn+1
q

– sample r← RN2
– output ciphertext c ← m + AT r ∈
Rn+1
q .

Dec(params, sk, c): Output m ← (< c, s >
modq) mod 2.

The SHE scheme from [BGV12] uses the above GLWE-based encryption scheme as the
main building block, and we only need to show attacks against the latter. Depending on
which instantiation is chosen (either LWE or RLWE), we can apply one of the key recovery
attacks against [BV11b,BV11a] to the basic GLWE-based encryption scheme.

– If b = 0, then d = 1, R = Z[x]/(x+ 1) ∼= Z, and

c := m +ATr = m + (b | −A′T)r =

(
m+ bTr
−A′Tr

)
which can be written as c =

(
w
−v
)
∈ Zn+1

q . For decryption we have

m := (< c, s > modq) mod 2 = (m+ bTr+ < −A′Tr, s > modq) mod 2

which is (w− < v, sL > modq) mod 2. The secret key can be recovered by directly
applying the key recovery attack from Section 4.2.

– If b = 1, then n = 1, R = Z[x]/(xd + 1). The scheme is slightly different from the
BV11a SHE scheme just for the encryption part, but the setup, the key generation and
the decryption steps are the same. Therefore, our key recovery attack can be applied.
Precisely, to recover the secret polynomial s := s(x) = s0 + s1x + · · · + sd−1x

d−1 ∈
Z[x]/(xd + 1), one could directly use our key recovery attack from Section 5.2 with the
following settings: D ← 1, n← d− 1, t← 2.

13

6 Key Recovery Attack against the Bra12 SHE Scheme

In this section, we describe a key recovery attack against the SHE scheme from [Bra12].
The scheme uses, as a building block, Regev’s [Reg05] public-key encryption scheme. It is
then enough to show a key recovery attack on Regev’s scheme since the full [Bra12] can be
attacked exactly as the basic Regev’s encryption scheme (the only differences between the
two schemes are in the evaluation step which is missing in Regev’s scheme).

Let’s first recall Regev’s encryption scheme. In this scheme, let n := λ be the security
parameter.

6.1 The Bra12 SHE Scheme (Regev’s Encryption Scheme)

Let q be a prime number and let χ = χ(n) be a distribution ensemble over Z. The message
space is M = {0, 1}. As claimed in [Reg05], choosing q such that n2 ≤ q ≤ 2n2 is enough
for security (in particular, q = poly(n); for other parameters settings, see [Reg05]).

SecretKeyGen(n) :

– Sample s := (s1, . . . , sn)
$← Znq

– Output sk = s
PublicKeyGen(s):

– Let N := (n+ 1) · (log q +O(1))

– Sample A
$← ZN×nq

– Sample e← χN

– Compute b := A · s + e mod q
– Define P := [b| −A] ∈ ZN×(n+1)

q

– Output pk = P

Encrypt(pk,m ∈ {0, 1}):

– Sample r ∈ {0, 1}N
– Let m := (m, 0, . . . , 0) ∈ {0, 1}n+1

c := PT · r + bq/2c ·m ∈ Zn+1
q

Decrypt(sk, c):

m :=

⌊
2

q
· (< c, (1, s) > modq)

⌉
mod 2

6.2 Our Key Recovery Attack

Recall that we defined the rounding function b·e such that bm+1/2e := m+1 for every m ∈
N. The following attack works also, with trivial modifications, in case we define bm+1/2e :=
m. In this section, for a given ciphertext c we use notation D(c) instead of Decrypt(sk, c).

We will start by describing how to recover s1. An easy generalization will allow to recover
sj , ∀j = 1, 2, . . . , n. We are going to submit to the decryption oracle ’ciphertexts’ of the form
c = (c1, c2, . . . , cn+1) ∈ Zn+1

q . It holds

< c, (1, s) > modq = c1 + c2s1 + c3s2 + · · ·+ cn+1sn mod q

Choose c = (0, 1, 0, . . . , 0), i.e. c2 = 1 and ci = 0, for i = 1, . . . , n + 1 and i 6= 2. Then
< c, (1, s) > modq = s1 mod q = s1. (Recall that sj ≤ q − 1, ∀j = 1, 2, . . . , n.) Then

D(c) =

⌊
2

q
s1

⌉
mod 2

Now, since 0 ≤ s1 < q, we have 0 ≤ 2
q s1 <

2
q q = 2. Let u =

⌊
2
q s1

⌉
; then we have u ∈ {0, 1, 2}.

In particular, it is easy to see that

14

– u = 0⇔ 0 ≤ s1 < q
4

– u = 1⇔ q
4 ≤ s1 <

3q
4

– u = 2⇔ 3q
4 ≤ s1 ≤ q − 1

Remember that q is prime, so in particular q
4 ,

3q
4 /∈ N. Since D(c) = u mod 2, we have

– D(c) = 1⇔ q
4 < s1 <

3q
4

– D(c) = 0⇔ 0 ≤ s1 < q
4 or 3q

4 < s1 ≤ q − 1

Having these considerations in mind, we recover s1 like follows.
Recovering s1.

Select c = (0, 1, 0, . . . , 0) ∈ Zn+1
q , i.e. c2 = 1 and ci = 0, ∀i = 1, . . . , n + 1, i 6= 2. Submit c

to the decryption oracle. We have two case to consider.

Case 1: D(c) = 1. Then we know that

q

4
< s1 <

3q

4
(1)

Now select c = (1, 1, 0, . . . , 0) ∈ Zn+1
q . Then < c, (1, s) >= 1 + s1 mod q. There are two

cases to consider:

1.1 if D(c) = 0, then it must be
3q

4
< 1 + s1 (2)

Conditions 1 and 2 together imply that s1 is the biggest integer smaller than 3q
4 , i.e.

s1 = b 3q4 c.
1.2 if D(c) = 1, then we still have

q

4
< 1 + s1 <

3q

4
(3)

We then select c = (2, 1, 0, . . . , 0) ∈ Zn+1
q and submit it to the decryption oracle.

Similarly as above, we have < c, (1, s) >= 2 + s1 mod q. Again, there are two cases
to consider:

1.2.1 if D(c) = 0, then it must be
3q

4
< 2 + s1 (4)

Conditions 3 and 4 together imply that 1 + s1 = b 3q4 c, i.e. s1 = b 3q4 c − 1.
1.2.2 if D(c) = 1, then we still have

q

4
< 2 + s1 <

3q

4

We keep reasoning this way, submitting to the decryption oracle ’ciphertexts’ ci =
(c1,i, 1, 0, . . . , 0) ∈ Zn+1

q , for increasing values c1,i = 1, 2, 3, . . . until we obtain D(ci) = 0.
Then we will have

s1 = b3q
4
c − c1,i + 1

15

We notice that, in the worst case, i.e. when s1 = d q4e, we have to query the decryption

oracle at most M1 := d 3q4 e − d
q
4e times. Therefore, in the worst case the total number

of oracle queries is

T1 := 1 +M1 = 1 + d3q
4
e − dq

4
e ≈ q

2

Case 2: D(c) = 0. Then we know that s1 is such that
(2.1) 0 ≤ s1 < q

4 or

(2.2) 3q
4 < s1 ≤ q − 1

We use techniques as before, but we have to be more careful since now we have to under-
stand in which case we are among (2.1) or (2.2). As before, we select c = (1, 1, 0, . . . , 0) ∈
Zn+1
q . Then < c, (1, s) >= 1 + s1 mod q.

The idea is similar to case 1: we keep submitting to the decryption oracle ’ciphertexts’
ci = (c1,i, 1, 0, . . . , 0) ∈ Zn+1

q , for increasing values c1,i = 1, 2, 3, . . ., until D(ci) = 1.
When we will receive D(ci) = 1, we will know that s1 + c1,i >

q
4 . The exact value c1,i

will tell us in which of the cases (2.1) or (2.2) we were at the beginning. In fact,
– in case (2.1) we will get D(ci) = 1 after a number of oracle queries M ′2 such that

1 ≤M ′2 ≤
⌈q

4

⌉
where M ′2 = 1 when s1 =

⌊
q
4

⌋
and M ′2 =

⌈
q
4

⌉
when s1 = 0.

– in case (2.2) the number M ′′2 of oracle queries needed in order to obtain D(ci) = 1
is such that

1 +
⌈q

4

⌉
≤M ′′2 ≤ q −

⌈
3q

4

⌉
+
⌈q

4

⌉
where M ′′2 = 1 +

⌈
q
4

⌉
when s1 = q − 1 and M ′′2 = q −

⌈
3q
4

⌉
+
⌈
q
4

⌉
when s1 =

⌈
3q
4

⌉
.

Therefore, consider the first value c1,i such that D(ci) = 1.
– if 1 ≤ c1,i ≤

⌈
q
4

⌉
, we are in case (2.1) and

s1 =
⌊q

4

⌋
− c1,i + 1

– if 1 +
⌈
q
4

⌉
≤ c1,i ≤ q −

⌈
3q
4

⌉
+
⌈
q
4

⌉
we are in case (2.2) and

s1 = q − c1,i +
⌈q

4

⌉
We notice that, in the worst case (i.e., when s1 =

⌈
3q
4

⌉
) we need to query the decryption

oracle M0 := q −
⌈
3q
4

⌉
+
⌈
q
4

⌉
times. (Notice that M0 = q −M1.) Therefore, in case 2, in

the worst case the total number of oracle queries is

T2 := 1 +M0 = 1 + q −
⌈

3q

4

⌉
+
⌈q

4

⌉
≈ q

2

So in both cases 1 and 2, the total number of oracle queries needed to recover s1 is ≈ q
2 .

Remark 1. We can provide an exact simpler formula for T1 and T2. Recall that q ≥ 2 is
prime; we can reasonably assume q odd. Then one can check that

16

– if q ≡ 1 mod 4

M1 =
q − 1

2
,M0 =

q + 1

2
, T1 =

q + 1

2
, T2 =

q + 3

2

– if q ≡ 3 mod 4

M1 =
q + 1

2
,M0 =

q − 1

2
, T1 =

q + 3

2
, T2 =

q + 1

2

In particular, the total number Ttot of oracle queries needed to recover s1 is Ttot ≤ q+3
2 .

An optimization. We could optimize the previous algorithm like follows. Let b :=
D(c) ∈ {0, 1}, where c = (0, 1, 0, . . . , 0) ∈ Zn+1

q . Our previous strategy was to submit
’ciphertexts’ ci := (c1,i, 1, 0, . . . , 0) ∈ Zn+1

q for increasing values c1,i = i, for i = 1, 2, . . . ,Mb.
We modify our strategy and choose the first value c1,1 in the middle of the interval

[1,Mb]. Then, if D(c1) = 1 + b mod 2 we choose c1,2 in the middle of the interval [1, c1,1];
otherwise, if D(c1) = b mod 2, we choose c1,2 in the middle of the interval [c1,1 + 1,Mb].
Keep reasoning this way, we will obtain s1 in blog2(Mb) + 1c ≈ log2(q/2) oracle queries.

Recovering sj, for j = 1, . . . , n.
Similarly, and more in general, we can recover sj , for j = 1, 2, . . . , n. In this case, the
’ciphertext’ to submit is c = (c1, c2, . . . , cn+1) ∈ Zn+1

q with

ck =


0 if k = 1 and it is the first query to the decryption oracle

c1,i if k = 1 and it is not the first query, 1 ≤ c1,i ≤Mb

1 if k = j + 1

0 if k /∈ {1, j + 1}

6.3 Algorithmic Description and Efficiency

For a given vector c = (c1, . . . , cn+1) ∈ Zn+1
q , we denote the decryption oracle as OD(c) :=

Decrypt(sk, c). For ease of notation, we define the following function. Let j ∈ {1, 2, . . . , n},
and a, b ∈ Zq; define the function fj : Z2

q → Zn+1
q such that fj(b1, b2) = (a1, . . . , an+1) with

a1 = b1, aj+1 = b2 and ak = 0 for k 6= 1, j + 1. Algorithm 4 takes as input the integers n, q
and returns the secret key s = (s1, . . . , sn) ∈ Znq . Algorithm 5 is the optimized version of it.

Notice that max(M0,M1) = (q + 1)/2 =: M . Therefore, in the worst case the total
number Ttot of oracle queries needed to recover s = (s1, . . . , sn) ∈ Znq is

Ttot ≤ n · (1 +M) = n · q + 3

2
≈ n · q

2

In the optimized version, the total number T opt
tot of oracle queries is

T opt
tot ≤ n · (1 + blog2(M) + 1c) ≈ n · (1 + log2(q/2))

Therefore, our optimized key recovery algorithm is indeed optimal since the number of oracle
queries needed to recover the secret key is not greater than the bits of the secret key (and
one oracle query reveals on bit at a time). In fact:

#bits in sk = n · (1 + blog2(q − 1)c)
17

Algorithm 4 Key-Recovery Attack

input: q, n ∈ N
for j = 1 to n do

c← fj(0, 1), b← OD(c), b′ ← b, i← 0
while b′ = b do
i = i+ 1
c← fj(i, 1)
b′ ← OD(c)

end while
if b = 1 then
sj ←

⌊
3q
4

⌋
− i+ 1

else if b = 0 then
if 1 ≤ i ≤

⌈
q
4

⌉
then

sj ←
⌊
q
4

⌋
− i+ 1

else if 1 +
⌈
q
4

⌉
≤ i ≤ q −

⌈
3q
4

⌉
+
⌈
q
4

⌉
then

sj ← q − i+
⌈
q
4

⌉
end if

end if
end for
return s := (s1, . . . , sn)

Algorithm 5 Optimized Key-Recovery Attack
input: q, n ∈ N
if q ≡ 1 mod 4 then
M1 ← q−1

2 , M0 ← q+1
2

else if q ≡ 3 mod 4 then
M1 ← q+1

2 , M0 ← q−1
2

end if
for j = 1 to n do

c← fj(0, 1), b← OD(c), L← 1, U ←Mb

while L 6= U do

i←
⌊
L+U

2

⌋
c← fj(i, 1)
b′ ← OD(c)
if b′ 6= b then
U ← i

else if b′ = b then
L← i+ 1

end if
end while
if b = 1 then

sj ←
⌊

3q
4

⌋
− L+ 1

else if b = 0 then
if 1 ≤ L ≤

⌈ q
4

⌉
then

sj ←
⌊ q

4

⌋
− L+ 1

else if 1 +
⌈ q

4

⌉
≤ L ≤ q −

⌈
3q
4

⌉
+
⌈ q

4

⌉
then

sj ← q − L+
⌈ q

4

⌉
end if

end if
end for

return s := (s1, . . . , sn)

18

T opt
tot ≤ n ·

(
1 +

⌊
log2

(
q + 1

2

)
+ 1

⌋)
=

(
1 +

⌊
log2

(
q + 1

2
· 2
)⌋)

= n · (1 + blog2(q + 1)c)

In particular the above algorithm is polynomial in the security parameter n: recall that the
suggested parameters in Regev’s encryption scheme [Reg05] for q are n2 ≤ q ≤ 2n2; therefore
we have T opt

tot = O(nlog n).

7 Key Recovery Attack against the GSW13 SHE Scheme

In this section, we describe a key recovery attack against the SHE scheme from [GSW13].
We first give some useful preliminary definitions. Let q, k ∈ N. Let l be the bit-length of
q, i.e. l = blog2qc + 1, and let N = k · l. Consider a vector a := (a1, . . . , ak) ∈ Zkq , and
let (ai)2 := ai,0ai,1 . . . ai,l−1 be the binary decomposition of ai (bit ordered least to most
significant), for every i = 1, . . . , k. We define

BitDecomp(a) := (a1,0, . . . , a1,l−1, . . . , ak,0, . . . , ak,l−1) ∈ ZNq

For a given a′ := (a1,0, . . . , a1,l−1, . . . , ak,0, . . . , ak,l−1) ∈ ZNq , let

BitDecomp−1(a′) := (

l−1∑
j=0

2j · a1,j , . . . ,
l−1∑
j=0

2j · ak,j) ∈ Zkq

We notice explicitly that a′ does not necessarily lie in {0, 1}N , but when it does then
BitDecomp−1 is the inverse of BitDecomp. For a′ ∈ ZNq , we define

Flatten(a′) := BitDecomp(BitDecomp−1(a′)) ∈ ZNq

When A is a matrix, let BitDecomp(A),BitDecomp−1(A),Flatten(A) be the matrix formed
by applying the operation to each row of A separately. Finally, for b := (b1, . . . , bk) ∈ Zq let

PowersOf2(b) := (b1, 2b1, . . . , 2
l−1b1, . . . , bk, 2bk, . . . , 2

l−1bk) ∈ ZNq

It is easy to see that, for a,b ∈ Zkq and for a′ ∈ ZNq ,

– < BitDecomp(a),Powersof2(b) >=< a,b >
– < a′,Powersof2(b) >=< BitDecomp−1(a′),b >=< Flatten(a′),Powersof2(b) >

7.1 The GSW13 SHE Scheme

The message space is M = Zq for a given modulus q with # bits(q) = κ = κ(λ, L). Let
n = n(λ) be the lattice dimension and let χ = χ(λ) be the error distribution over Zq (chosen
appropriately for LWE: it must achieve at least 2λ security against known attacks). Choose
m = m(λ) = O(nlogq). So the parameters used in all algorithms are n, q, χ,m. We have that
l = blog qc+ 1 is the number of bits of q, and we let N = (n+ 1) · l.

19

Keygen(λ):
– sample t := (t1, . . . , tn)← Znq
– sk := s← (1,−t1, . . . ,−tn) ∈ Zn+1

q

– let v = Powersof2(s) ∈ ZNq ; see 1

– sample a matrix B
$← Zm×nq

– sample a vector e← χ, e ∈ Zmq
– set b := B · t + e =: (b1, . . . , bm) ∈

Zmq .
– set A to be the (n + 1)-column ma-

trix consisting of b followed by the n
columns of B

A = (b | B) ∈ Zm×(n+1)
q

– pk := A.
We remark that A · s = e.

Encrypt(pk, µ ∈M):

– sample a matrix R
$← {0, 1}N×m

– output the ciphertext

C = Flatten(µ·IN+BitDecomp(R·A)) ∈ ZN×Nq

Decrypt(sk, C):
– observe that the first l coefficients of

v are 1, 2, . . . , 2l−2

– among these coefficients, let vi = 2i

be in (q/4, q/2]
– let Ci be the i-th row of C
– compute xi :=< Ci,v >
– output µ′ := bxi/vie

The Decrypt algorithm can recover the message µ when it is in a ‘small space’ (q = 2, i.e.
M = Z2). For an algorithm that can recover any µ ∈ Zq, we refer to the MPDec algorithm
as described (as a special case) in [GSW13] and in [MP11]. If the ciphertext is generated
correctly, it is not difficult to show that C · v = µ · v +R ·A · s = µ · v +R · e ∈ ZNq .

Now, the Decrypt algorithm uses only the i-th coefficient of the vector C · v ∈ ZNq , i.e.
< Ci,v >= µ · vi+ < Ri, e >∈ Zq. Moreover, in the Decrypt step, i has to be such that
vi := 2i ∈ (q/4, q/2], with i ∈ [1, 2, . . . , 2l−1]. Now remember that l = blog qc+ 1 equals the
number of bits of q. Hence we have

2l−3 ≤ q

4
< 2l−2 ≤ q

2
< 2l−1 ≤ q < 2l

Therefore the only possible value for 2i ∈ (q/4, q/2] is 2l−2. For this reason, Decrypt can be
simply rewritten as

Decrypt(sk, C):
– let Cl−2 be the (l − 2)-th row of C
– compute xl−2 :=< Cl−2,v >
– output µ′ := bxl−2/2l−2e

One could think of outputting as ciphertext only the (l − 2)-th row Cl−2 of the matrix C;
this is actually not possible since the full matrix is still needed in order to perform the
homomorphic operations (in particular, the multiplication of two ciphertexts). We will not
discuss them here; see [GSW13].

7.2 Our Key Recovery Attack

We are going to recover bit by bit each coefficient ti of the secret vector t := (t1, . . . , tn) ∈ Znq .

For every 1 ≤ i ≤ n, let BitDecomp(ti) := (ti,0, ti,1, . . . , ti,l−1) ∈ Zlq bits ordered from least

1 v = Powersof2(s) = (s1, 2s1, . . . , 2
l−1s1, s2, . . . , 2

l−1s2, . . . , sn+1, 2sn+1, . . . , 2
l−1sn+1)

= (1, 2, . . . , 2l−1,−t1,−2t1, . . . ,−2l−1t1, . . . ,−tn,−2tn, . . . ,−2l−1tn) ∈ Z(n+1)l
q = ZNq

20

to most significant. We explicitly remark that ti =
∑l−1
j=0 2jti,j . We will proceed as follows:

start with i = 1 and recover, in this order, the bits from most to least significant. Then
continue with i = 2, and so on until i = n. Let x ∈ Zq. Since #bits(q) = l, we have
x ≤ q − 1 ≤ 2l − 2. Moreover, we have #bits(x) ≤ blog2(q − 1)c+ 1 := l∗. We have l∗ = l if
q is not a power of 2, i.e. if q 6= 2h, for any h ∈ {1, 2, . . . , l − 1}. Otherwise, l∗ = l − 1. We
will not distinguish between these two cases: just remark that if l∗ = l − 1, then ti,l−1 = 0
for all i ∈ {1, 2, . . . , n}.

Recovering BitDecomp(t1)

We start by recovering BitDecomp(t1). The trickiest part is to recover the most significant bit.
We start by recovering t1,l−1, t1,l−2, t1,l−3. We have to choose, and submit to the decryption
oracle, a matrix C ∈ ZN×Nq . Then the oracle will compute x =< Cl−2,v > and will output

the rounded value µ = bx/2l−2e. Our attack works also, with a trivial modification, in the
case we define the rounding function such that bn+1/2e := n, for every n ∈ N. Our strategy
is to submit a matrix C whose entries are all 0 except for the (l − 2)-th row Cl−2. Let
y = (y1, . . . , yN) ∈ ZNq be the vector representing Cl−2.

We select y = (0, . . . , 0,−1, 0, . . . , 0) ∈ ZNq where −1 is in l + 1-th position, i.e.

yi =

{
−1 if i = l + 1

0 otherwise

Through the decryption oracle, we have x =< y,v >= −vl+1 = t1 ∈ Zq and µ = bt1/2l−2e.
There are two cases.

1. µ = 0. In this case, we have 0 ≤ t1
2l−2 <

1
2 i.e. t1 < 2l−3 =

∑l−4
j=0 2j + 1. Then it must

be t1,l−1 = t1,l−2 = t1,l−3 = 0 .

2. 1 ≤ µ ≤ 4. In particular, 2l−3 ≤ t1 ≤ 2l − 2. Then we have

(t1,l−1, t1,l−2, t1,l−3) ∈ {0, 1}3\{(0, 0, 0)} (5)

Next, query the decryption oracle with y = (0, . . . , 0,−1, 0, 0,−1, 0, . . . , 0) ∈ ZNq with
−1 in (l − 2)-th and (l + 1)-th positions:

yi =

{
−1 if i = l − 2 or i = l + 1

0 otherwise

Through the decryption oracle, we have x =< y,v >= t1−2l−3 ≥ 0 and µ =
⌊
t1−2l−3

2l−2

⌉
.

There are two cases:

2.1. µ = 0. In this case, we have 0 ≤ t1−2l−3

2l−2 < 1
2 i.e. 2l−3 ≤ t1 < 2l−2 =

∑l−3
j=0 2j + 1.

Then it must be t1,l−1 = t1,l−2 = 0 . Condition (5) implies that t1,l−3 = 1 .

2.2. 1 ≤ µ ≤ 3. In particular, 2l−2 ≤ t1 ≤ 2l − 2. Then we have

(t1,l−1, t1,l−2) ∈ {0, 1}2\{(0, 0)} (6)

21

Next, query the decryption oracle with y = (0, . . . , 0,−1, 0,−1, 0, . . . , 0) ∈ ZNq , with
−1 in (l − 1)-th and (l + 1)-th positions:

yi =

{
−1 if i = l − 1 or i = l + 1

0 otherwise

Through the decryption oracle, we have x =< y,v >= t1 − 2l−2 ≥ 0 and µ =⌊
t1−2l−2

2l−2

⌉
. There are two cases:

2.2.1. µ = 0. In this case, we have 0 ≤ t1−2l−2

2l−2 < 1
2 and 2l−2 ≤ t1 < 2l−2 +2l−3 < 2l−1.

This means that t1,l−1 = 0 . Therefore, condition (6) implies that t1,l−2 = 1 .

Moreover, since we have 0 ≤ t1 − 2l−2 < 2l−3, we have that t1,l−3 = 0 .

2.2.2. 1 ≤ µ ≤ 2. In particular, 2l−3 + 2l−2 ≤ t1.
Next, query the decryption oracle with y = (0, . . . , 0,−1,−1, 0,−1, 0, . . . , 0) ∈
ZNq , with −1 in (l − 2)-th, (l − 1)-th and (l + 1)-th positions:

yi =

{
−1 if i = l − 2, i = l − 1 or i = l + 1

0 otherwise

Through the decryption oracle, we have x =< y,v >= t1 − (2l−3 + 2l−2) ≥ 0

and µ =
⌊
t1−(2l−3+2l−2)

2l−2

⌉
. There are two cases:

2.2.2.1. µ = 0. In this case, we have 0 ≤ t1−2l−3−2l−2

2l−2 < 1
2 , i.e. 2l−3 + 2l−2 ≤ t1 <

2l−1. This implies t1,l−1 = 0 . Therefore, condition (6) gives t1,l−2 = 1 .

Moreover, we have 2l−3 ≤ t1 − 2l−2 < 2l−2; hence t1,l−3 = 1 .

2.2.2.2. µ = 1. We have 2l−1 ≤ t1 ≤ 2l − 2. This implies t1,l−1 = 1 . We now have

to recover t1,l−2, t1,l−3.
Next, query the decryption oracle with y = (0, . . . , 0,−1,−1, 0, . . . , 0) ∈ ZNq ,
with −1 in l-th and (l + 1)-th positions:

yi =

{
−1 if i = l or i = l + 1

0 otherwise

Through the decryption oracle, we have x =< y,v >= t1 − 2l−1 ≥ 0 and

µ =
⌊
t1−2l−1

2l−2

⌉
. There are two cases:

2.2.2.2.1. µ = 0. In this case, we have 0 ≤ t1−2l−1

2l−2 < 1
2 , i.e. 0 ≤ t1 − 2l−1 <

2l−3 =
∑l−4
j=0 2j + 1. This implies t1,l−2 = t1,l−3 = 0 .

2.2.2.2.2. 1 ≤ µ ≤ 3. In particular, 2l−3 ≤ t1 − 2l−1. Then we have

(t1,l−2, t1,l−3) ∈ {0, 1}2\{(0, 0)} (7)

Next, query the decryption oracle with y = (0, . . . , 0,−1, 0,−1,−1, 0, . . . , 0) ∈
ZNq , with −1 in (l − 2)-th, l-th and (l + 1)-th positions:

yi =

{
−1 if i = l − 2, i = l or i = l + 1

0 otherwise

22

Through the decryption oracle, we have x =< y,v >= t1−(2l−1+2l−3) ≥
0 and µ =

⌊
t1−2l−1−2l−3

2l−2

⌉
. There are two cases:

2.2.2.2.2.1. µ = 0. In this case, we have 0 ≤ t1−2l−1−2l−3

2l−2 < 1
2 , i.e. 2l−3 ≤

t1−2l−1 < 2l−2. This means that t1,l−2 = 0 . Condition (7) then implies

t1,l−3 = 1 .

2.2.2.2.2.2. 1 ≤ µ ≤ 2. In particular, 2l−2 ≤ t1 − 2l−1 ≤ 2l − 2 − 2l−1 = 2l−1 − 2.
Then, we have t1,l−2 = 1 . We still have to find t1,l−3. Next, query the

decryption oracle with y = (0, . . . , 0,−1,−1,−1, 0, . . . , 0) ∈ ZNq , where
−1 is in (l − 1)-th, l-th and (l + 1)-th positions:

yi =

{
−1 if i = l − 1, i = l or i = l + 1

0 otherwise

Through the decryption oracle, we have x =< y,v >= t1 − (2l−1 +

2l−2) ≥ 0 and µ =
⌊
t1−2l−1−2l−2

2l−2

⌉
. There are two cases:

2.2.2.2.2.2.1. µ = 0. In this case,

0 ≤ t1 − 2l−1 − 2l−2

2l−2
<

1

2
, i.e. 0 ≤ t1 − 2l−1 − 2l−2 < 2l−3

This implies that t1,l−3 = 0 .

2.2.2.2.2.2.2. µ = 1. Then 2l−3 ≤ t1 − 2l−1 − 2l−2. This implies that t1,l−3 = 1 .

At this point, we know the first three significant bits t1,l−1, t1,l−2, t1,l−3 of t1. Notice that
we have recovered the first three most significant bits with at most 7 oracle queries. Next,
we are going to recover t1,l−4. Query the decryption oracle with

y = (0, . . . , 0,−t1,l−3,−t1,l−2,−t1,l−1,−1, 0, . . . , 0) ∈ ZNq

where −t1,i is in (i+ 1)-th position. Then

x =< y,v >= t1 − (t1,l−12l−1 + t1,l−22l−2 + t1,l−32l−3)

Now, we have 0 ≤ x < 2l−3. Therefore, µ = bx/2l−2e = 0, and so not useful at all to learn
t1,l−4. The idea is to ‘shift’ the bits ‘to the left’, i.e. towards the most significant. So, let us
instead choose

y = 2 · (0, . . . , 0,−t1,l−3,−t1,l−2,−t1,l−1,−1, 0, . . . , 0) ∈ ZNq

So now x =< y,v > is such that 0 ≤ x < 2l−2. After submitting y to the decryption oracle,
it will compute and output µ = bx/2l−2e. Then t1,l−4 = µ .

Now we can generalize and recover t1,k, for all k = l−4, l−5, . . . , 1, 0. This will complete
the recovery of t1. Suppose that, for a given k, we recovered already t1,m, ∀m ∈ [k+1, . . . , l−
1]. We then recover t1,k by recurrence. Choose

y = 2l−k−3(0, . . . , 0,−t1,k+1,−t1,k+2, . . . ,−t1,l−1,−1, 0, . . . , 0) ∈ ZNq
23

with −t1,i in (i+ 1)-th position; i.e.

yi =


−2l−k−3t1,i−1 for i ∈ [k + 2, . . . , l]

−2l−k−3 for i = l + 1

0 otherwise

Then we have x =< y,v >= 2l−k−3
(
t1 −

∑l−1
j=k+1 t1,j2

j
)

with 0 ≤ x < 2l−2. Then,

t1,k = µ .

We recover completely t1 after at most 7 + (l − 3) = l + 4 oracle queries.

Recovering BitDecomp(tr), for every r ∈ [1, 2, . . . , n]

We can now generalize and recover BitDecomp(tr), for every r ∈ [1, 2, . . . , n], in a way
analogous to what has been done for the case r = 1. The only difference is that, when
choosing y ∈ ZNq , we set −1 in position rl + 1. So, for a given r ∈ [1, 2, . . . , n], we have the
following.

– Recovering the first three most significant bits tr,l−1, tr,l−2, tr,l−3. This is done exactly
as in the case of t1, with the only modification yl+1 = 0 and yrl+1 = −1 always.

– Recovering tr,k, for all k = l− 4, l− 5, . . . , 1, 0. Suppose that, for a given k, we recovered
already tr,m, ∀m ∈ [k + 1, . . . , l − 1]. We then recover tr,k by recurrence. Choose

y = 2l−k−3(0, . . . , 0,−tr,k+1,−tr,k+2, . . . ,−tr,l−1, 0, . . . , 0,−1, 0, . . . , 0) ∈ ZNq

with −tr,i in (i+ 1)-th position and −1 in (rl + 1)-th position; i.e.

yi =


−2l−k−3tr,i−1 for i ∈ [k + 2, . . . , l]

−2l−k−3 for i = rl + 1

0 otherwise

Then we have x =< y,v >= 2l−k−3
(
tr −

∑l−1
j=k+1 tr,j2

j
)

with 0 ≤ x < 2l−2. Then,

tr,k = µ .

In summary, we can recover the secret key t ∈ Znq with at most (l+ 4) · n oracle queries.

7.3 Algorithmic Description

Formally, the attack from Section 7.2 can be described by Algorithm 6. For a given vector
y = (y1, . . . , yN) ∈ ZNq , we let Cy ∈MN×N (Zq) be the square N ×N matrix whose entries
are all 0 except for the (l − 2)-th row Cl−2, which is y. We have denoted the decryption
oracle OD(Cy) := Decrypt(sk, Cy) =

⌊
<y,v>
2l−2

⌉
. For ease of notation, we have also considered

the standard vectors e1, . . . , eN ∈ ZNq : for every i = 1, . . . , N , ei is the 0-vector except in
position i, where it has value 1:

ei = (ei,1, . . . , ei,N) = (0, . . . , 0, 1, 0, . . . , 0), ei,i = 1, ei,j = 0 for j 6= i

We put di := −ei, for all i.

24

Algorithm 6 Key Recovery Attack against GSW13 SHE

input: q, n
l← blog2qc+ 1
N ← (n+ 1) · l
for r = 1 to n do

y← drl+1

if OD(Cy) = 0 then
tr,l−1, tr,l−2, tr,l−3 ← 0

else
y← dl−2 + drl+1

if OD(Cy) = 0 then
tr,l−1, tr,l−2 ← 0
tr,l−3 ← 1

else
y← dl−1 + drl+1

if OD(Cy) = 0 then
tr,l−1, tr,l−3 ← 0
tr,l−2 ← 1

else
y← dl−2 + dl−1 + drl+1

if OD(Cy) = 0 then
tr,l−1 ← 0
tr,l−2, tr,l−3 ← 1

else
tr,l−1 ← 1
y← dl + drl+1

if OD(Cy) = 0 then
tr,l−2, tr,l−3 ← 0

else
y← dl−2 + dl + drl+1

if OD(Cy) = 0 then
tr,l−2 ← 0
tr,l−3 ← 1

else
tr,l−2 ← 1
y← dl−1 + dl + drl+1

if OD(Cy) = 0 then
tr,l−3 ← 0

else
tr,l−3 ← 1

end if
end if

end if
end if

end if
end if

end if
for k = l − 4 to 0 do

y← 2l−k−3 · (drl+1 +
∑l
i=k+2 tr,i−1di)

tr,k ← OD(Cy)
end for

end for
for i = 1 to n do
ti ← BitDecomp−1(ti,0, ti,1, . . . , ti,l−1)

end for
t← (t1, . . . , tn)
return t

25

8 Conclusion

In this paper, we showed that the SHE schemes from [BV11b,BV11a,BGV12,Bra12,GSW13]
suffer from key recovery attacks when the attacker is given access to the decryption oracle.
Combining the results from [LMSV12,ZPS12], we now know that most existing SHE schemes
suffer from key recovery attacks, and so they are not IND-CCA1 secure. As such, a natural
next step is to investigate whether it is possible to enhance these SHE schemes to avoid key
recovery attacks and make them IND-CCA1 secure. One thing we should keep in mind is to
preserve their homomorphic properties. Following the work of [LMSV12], one could think of
tweaking the decryption step of a SHE scheme by including a ciphertext validity check in
order to make sure that, with some high probability, the ciphertext is honestly generated by
the attacker and not specifically chosen for the purpose of recovering a given bit (or bits) of
the secret key. Unfortunately, we cannot directly apply the techniques from [LMSV12] due
to the fact that the SHE scheme from [LMSV12] enjoys some particular algebraic properties
which do not exist in other schemes. So, we need to treat each SHE scheme individually.

Acknowledgements

Massimo Chenal is supported by an AFR PhD grant from the National Research Fund,
Luxembourg. Qiang Tang is partially supported by a CORE (junior track) grant from the
National Research Fund, Luxembourg.

References

[BGV12] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled) fully homomorphic
encryption without bootstrapping. In Proceedings of the 3rd Innovations in Theoretical
Computer Science Conference, ITCS ’12, pages 309–325. ACM, 2012.

[Bra12] Zvika Brakerski. Fully homomorphic encryption without modulus switching from classi-
cal gapsvp. In Reihaneh Safavi-Naini and Ran Canetti, editors, Advances in Cryptology
- CRYPTO 2012, volume 7417 of LNCS, pages 868–886. 2012.

[BV11a] Zvika Brakerski and Vinod Vaikuntanathan. Fully homomorphic encryption from ring-
lwe and security for key dependent messages. In Advances in Cryptology - CRYPTO
2011, pages 505–524, 2011.

[BV11b] Zvika Brakerski and Vinod Vaikuntanathan. efficient fully homomorphic encryption
from (standard) lwe. In Proceedings of the 2011 IEEE 52nd Annual Symposium on
Foundations of Computer Science, FOCS ’11, pages 97–106, 2011.

[CCK+13] JungHee Cheon, Jean-Sbastien Coron, Jinsu Kim, MoonSung Lee, Tancrde Lepoint,
Mehdi Tibouchi, and Aaram Yun. Batch fully homomorphic encryption over the inte-
gers. In Thomas Johansson and Phong Q. Nguyen, editors, Advances in Cryptology -
EUROCRYPT 2013, volume 7881 of LNCS, pages 315–335. 2013.

[CMNT11] Jean-Sébastien Coron, Avradip Mandal, David Naccache, and Mehdi Tibouchi. Fully
homomorphic encryption over the integers with shorter public keys. In Advances in
Cryptology - CRYPTO 2011, pages 487–504, 2011.

[CNT12] Jean-Sébastien Coron, David Naccache, and Mehdi Tibouchi. Public key compression
and modulus switching for fully homomorphic encryption over the integers. In Advances
in Cryptology - EUROCRYPT 2012, pages 446–464, 2012.

26

[DT14] Jintai Ding and Chengdong Tao. A new algorithm for solving the approximate common
divisor problem and cryptanalysis of the fhe based on gacd. IACR Cryptology ePrint
Archive, Report 2014/042, 2014.

[Gen09a] Craig Gentry. A Fully Homomorphic Encryption Scheme. PhD thesis, Stanford, CA,
USA, 2009.

[Gen09b] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Proceedings of
the Forty-first Annual ACM Symposium on Theory of Computing, STOC ’09, pages
169–178. ACM, 2009.

[Gen10] Craig Gentry. Computing arbitrary functions of encrypted data. Commun. ACM,
53(3):97–105, March 2010.

[GH11a] Craig Gentry and Shai Halevi. Fully homomorphic encryption without squashing using
depth-3 arithmetic circuits. In Proceedings of the 2011 IEEE 52Nd Annual Symposium
on Foundations of Computer Science, FOCS ’11, pages 107–109, 2011.

[GH11b] Craig Gentry and Shai Halevi. Implementing gentry’s fully-homomorphic encryption
scheme. In Advances in Cryptology - EUROCRYPT 2011, pages 129–148, 2011.

[GHS12a] Craig Gentry, Shai Halevi, and Nigel P. Smart. Better bootstrapping in fully homo-
morphic encryption. In Proceedings of the 15th International Conference on Practice
and Theory in Public Key Cryptography, PKC’12, pages 1–16, 2012.

[GHS12b] Craig Gentry, Shai Halevi, and Nigel P. Smart. Fully homomorphic encryption with
polylog overhead. In Advances in Cryptology - EUROCRYPT 2012, pages 465–482,
2012.

[GSW13] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from learn-
ing with errors: Conceptually-simpler, asymptotically-faster, attribute-based. In Ran
Canetti and JuanA. Garay, editors, Advances in Cryptology - CRYPTO 2013, volume
8042 of LNCS, pages 75–92. 2013.

[LMSV12] Jake Loftus, Alexander May, Nigel P. Smart, and Frederik Vercauteren. On cca-secure
somewhat homomorphic encryption. In Proceedings of the 18th International Confer-
ence on Selected Areas in Cryptography, SAC’11, pages 55–72, 2012.

[MP11] Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler, tighter, faster,
smaller. IACR Cryptology ePrint Archive, Report 2011/501, 2011.

[NLV11] Michael Naehrig, Kristin Lauter, and Vinod Vaikuntanathan. Can homomorphic en-
cryption be practical? In Proceedings of the 3rd ACM Workshop on Cloud Computing
Security Workshop, CCSW ’11, pages 113–124, 2011.

[Nui14] Koji Nuida. A simple framework for noise-free construction of fully homomorphic
encryption from a special class of non-commutative groups. IACR Cryptology ePrint
Archive, Report 2014/097, 2014.

[RAD78] Ronald L. Rivest, Len Adleman, and Michael L. Dertouzos. On data banks and privacy
homomorphisms. Foundations of Secure Computation, Academia Press, pages 169–179,
1978.

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography.
In Proceedings of the Thirty-seventh Annual ACM Symposium on Theory of Computing,
STOC ’05, pages 84–93, 2005.

[SS10] Damien Stehle and Ron Steinfeld. Faster fully homomorphic encryption. In Masayuki
Abe, editor, Advances in Cryptology - ASIACRYPT 2010, volume 6477 of LNCS, pages
377–394. 2010.

[SV10] N. P. Smart and F. Vercauteren. Fully homomorphic encryption with relatively small
key and ciphertext sizes. In Proceedings of the 13th International Conference on Practice
and Theory in Public Key Cryptography, PKC’10, pages 420–443, 2010.

[vDGHV10] Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. Fully ho-
momorphic encryption over the integers. In Advances in Cryptology - EUROCRYPT
2010, pages 24–43, 2010.

27

[ZPS12] Zhenfei Zhang, Thomas Plantard, and Willy Susilo. On the cca-1 security of somewhat
homomorphic encryption over the integers. In Proceedings of the 8th International
Conference on Information Security Practice and Experience, ISPEC’12, pages 353–
368, 2012.

28

