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Abstract

We extend the notion of verifiable random functions (VRF) to constrained VRFs, which gen-
eralize the concept of constrained pseudorandom functions, put forward by Boneh and Waters
(Asiacrypt’13), and independently by Kiayias et al. (CCS’13) and Boyle et al. (PKC’14), who call
them delegatable PRFs and functional PRFs, respectively. In a standard VRF the secret key sk
allows one to evaluate a pseudorandom function at any point of its domain; in addition, it enables
computation of a non-interactive proof that the function value was computed correctly. In a con-
strained VRF from the key sk one can derive constrained keys skS for subsets S of the domain,
which allow computation of function values and proofs only at points in S.

After formally defining constrained VRFs, we derive instantiations from the multilinear-maps-
based constrained PRFs by Boneh and Waters, yielding a VRF with constrained keys for any set
that can be decided by a polynomial-size circuit. Our VRFs have the same function values as the
Boneh-Waters PRFs and are proved secure under the same hardness assumption, showing that
verifiability comes at no cost. Constrained (functional) VRFs were stated as an open problem by
Boyle et al.

An extended abstract of this work appears in the 9th Conference on Security and Cryptography for Networks (SCN’14),

Michel Abdalla, Roberto De Prisco (Eds.), Springer Verlag, LNCS 8642. This is the full version.

1 Introduction

Verifiable random functions. A pseudorandom function (PRF) [GGM86] is an efficiently com-
putable keyed function F : K × X → Y for which, when the seed k is chosen at random, no efficient
attacker should be able to distinguish F (k, x) from a random value, even when given oracle access
to F (k, ·) at any other point. This fundamental primitive in cryptography was extended to verifiable
random functions (VRF) by Micali, Rabin and Vadhan [MRV99]. In a VRF a secret key sk, which
is set up together with a public key pk, allows evaluation of F and furthermore computation of a
non-interactive proof that the computed value y matches F (sk, x). Verification of the proof must be
done with respect to the public key pk only; in particular, we cannot make use of a common reference
string (CRS). The proofs should remain sound even when pk was computed maliciously and F (sk, x)
should remain pseudorandom even when an adversary can query values of F and proofs for them at
any other point.

The first VRF schemes were based on bilinear maps, such as [Lys02, Dod03, DY05]. Efficient
schemes have proved difficult to construct, in particular ones with large domains based on non-
interactive assumptions, and were only proposed from 2010 on [HW10, BMR10, ACF13]. VRFs
have turned out to be a useful building block, e.g. in the construction of zero-knowledge proofs and
databases [MR01, Lis05] and electronic payment schemes [MR02, BCKL09], to name a few.

∗Supported by the European Research Council, ERC Starting Grant (259668-PSPC).
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Constrained VRFs. Boneh and Waters [BW13] define a new notion of PRFs, which they call con-
strained PRFs and which was concurrently introduced as delegatable PRFs by Kiayias, Papadopou-
los, Triandopoulos and Zacharias [KPTZ13], and as functional PRFs by Boyle, Goldwasser and Ivan
[BGI14]. While a key k for a PRF enables evaluation of the function F at all points of its domain X ,
a constrained PRF allows one to derive constrained keys from k. A constrained key kS corresponds
to a set S ⊆ X and allows computation of F (k, x) only for x ∈ S.

Pseudorandomness requires that given an oracle for function values at points of the adversary’s
choice and an oracle for constrained keys for sets of its choice, values of F (k, ·) at points outside the
queried sets and different from the queried points should still be indistinguishable from random. That
is, after querying keys for S1, . . . , Sq and functions values at x1, . . . , xp, the value F (k, x) should be
indistinguishable from random for all x /∈

⋃q
i=1 Si∪{x1, . . . , xp}. Constrained PRFs were used to con-

struct broadcast encryption and identity-based non-interactive key exchange in [BW13]. In particular
punctured PRFs have proved to be a powerful tool in combination with indistinguishability obfus-
cation [GGH+13b], leading to solutions of longstanding open problems, such as deniable encryption
[CDNO97] in [SW13] and instantiating full-domain hash [BR93] in [HSW13b].

We unify VRFs and constrained PRFs by adding the possibility to derive constrained keys to the
notion of VRFs. We then construct constrained VRF schemes based on the Boneh-Waters constrained
PRFs which are defined using multilinear maps [BS02, GGH13a, CLT13]. Our second scheme allows
derivation of constrained keys for any subset of the domain that can be decided by a boolean circuit
of polynomial size.

Verifiable random functions turned out a lot harder to construct than PRFs. While the Dodis-
Yampolskiy VRF [DY05] only supports domains of polynomial size, it requires a q-type assumption
(where the parameter q of the assumption upper-bounds how many queries an adversary can make).
Hohenberger and Waters [HW10] proposed the first VRF for large domains, whose function values
are defined analogously to those of the PRF by Naor and Reingold [NR97], but lifted to the target
group of a bilinear map. These maps are then used to verify the proofs of correct function evaluation.
Hohenberger and Waters prove their construction secure under a non-standard q-type assumption,
while the Naor-Reingold PRF is proved secure under the decisional Diffie-Hellman (DDH) assumption.

Using multilinear maps, the situation is different: Our VRF constructions support large input
spaces when using complexity leveraging (see below), and we prove their security under the same
assumption on which pseudorandomness of the Boneh-Waters constrained PRFs rely: the DDH as-
sumption adapted to the multilinear-map environment. We moreover show that we do not need to
lift the function values “up one level”: our VRF values are defined exactly as the Boneh-Waters PRF
values. We thus show how to add verifiability to the constrained PRFs from [BW13] without changing
the PRF itself, nor using a different assumption to prove pseudorandomness.

Our contribution. We first formalize the notion of constrained VRFs by extending the model for
standard VRFs. In addition to Setup, Prove and Verify, we define an algorithm Constrain, which
allows to derive constrained keys. We adapt the security notions of provability, uniqueness and pseu-
dorandomness to the constrained setting and define a new security notion. It requires that a proof
produced by a constrained key should be distributed like proofs computed using the actual secret key.
A constrained key skS behaves thus exactly like the key sk on the subset S of the domain.

We present two multilinear-maps-based instantiations of constrained VRFs with input space X :=
{0, 1}n for different systems of sets for which constrained keys can be derived:

• Bit-fixing VRF: Constrained keys can be derived for any set Sv ⊆ {0, 1}n, described by a vector
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v ∈ {0, 1, ?} as the set of all strings which match v at all coordinates that are not ‘?’.

• Circuit-constrained VRF: In our second construction keys can be derived for any set that is
decidable by a polynomial-size circuit C. More precisely, a key skC , derived from sk for a circuit
C, enables computation of F (sk, x) and a proof for all x for which C(x) = 1.

Both our schemes are directly derived from the constructions of constrained PRFs given by Boneh
and Waters [BW13]. These are defined over a leveled multilinear group, which is a sequence of groups
G1, . . . ,Gκ, each Gi of prime order p > 2λ and generated by gi, equipped with bilinear maps (“pair-
ings”) ei,j : Gi×Gj → Gi+j , for i+ j ≤ κ. The bit-fixing PRF from [BW13] maps inputs from {0, 1}n
to an element of Gκ where κ = n + 1. A key is a tuple k = (α, d1,0, d1,1, . . . , dn,0, dn,1) ∈ Z 2n+1

p and
the PRF is defined as

P (sk, x) := (gn+1)
α
∏n
i=1 di,xi . (1)

As noted in [BW13], the values Di,j := g
di,j
1 could be made public, and inspection of the proof

reveals that A := g α2 could also be made public without affecting pseudorandomness. These values
could be used to make the PRF output P publicly verifiable if we added one level in the group sequence,
that is, set κ := n+ 2. Then in order to verify that some P ∈ Gn+1 equals P (sk, x) as defined in (1),
one could repeatedly apply the pairings to A and D1,x1 , . . . , Dn,xn to compute (gn+2)

α
∏n
i=1 di,xi ∈ Gκ

and check whether this equals the pairing of P with g1, which would lift P to Gn+2.
Of course this shows that P (sk, x) is not pseudorandom anymore after adding a level in the group

hierarchy; however, it can serve as the proof for a related value in Gκ. After adding an element γ ∈ Zp
to the secret key, we define the VRF value as F (sk, x) := (gκ)γ·α

∏n
i=1 di,xi . The value P (sk, x) =

(gκ−1)
α
∏n
i=1 di,xi can now be used to check whether some y ∈ Gκ equals F (sk, x): we add C := g γ1

to the public key and then have e1,κ−1(C,P (sk, x)) = (gκ)γ·α
∏n
i=1 di,xi = F (sk, x). A nice side effect

of this approach is that since our proof corresponds to the PRF value in [BW13], we can reuse their
constrained keys to construct proofs. In particular for the circuit-constrained VRF this involves
sophisticated techniques derived from [GGH+13c].

While this approach works for both the bit-fixing VRF and the circuit-constrained VRF, a draw-
back is that it requires an extra level in the group hierarchy. Somewhat surprisingly, we show that
this is not necessary: we instantiate circuit-constrained VRFs using the same number of group levels
as the Boneh-Waters circuit-constrained PRF and for the bit-fixing construction we even require one
level less than [BW13].

The reason for this is that, as we show, the bit-fixing PRF can be constructed over a multilinear
group with κ = n − 1 (rather than κ = n + 1 in [BW13]) and the circuit-constrained PRF can be
constructed for κ = n + ` − 1 (rather than κ = n + ` in [BW13]), where ` is the maximum depth of
the circuits. This allows us to use the freed level for verification and preserve the function value of the
PRF. We present these modified constrained PRFs and prove their security in Appendix A.

In Appendix B we show that, as for the constrained PRFs in [BW13], our constructions can be
transferred from leveled multilinear groups to graded encodings, constructed by Garg, Gentry and
Halevi [GGH13a], which can be viewed as “approximate” multilinear groups.

Complexity leveraging. Pseudorandomness of our VRFs can be reduced to the multilinear DDH
assumption without any security loss when considering selective security. For this notion the adversary
must decide on which value it wants to be challenged before receiving the public key. Adaptive security
(where the adversary can make its challenge query at any point) can then be obtained generically via
complexity leveraging [BB04a]: the reduction simply guesses beforehand which challenge value the
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adversary will query. This leads to a security loss that is exponential in the input length, which must
be compensated by increasing the parameters of the scheme.

Together with Konstantinov, Pietrzak and Rao [FKPR14], we recently showed that any simple
reduction (that is, one which runs an adversary once without rewinding) from pseudorandomness of
the Boneh-Waters constrained PRF to a non-interactive hardness assumption must incur a security
loss that is exponential in the input length. Since constrained VRFs imply constrained PRFs, this
also holds for our construction, meaning that our proofs using complexity leveraging are in some sense
optimal.

Related work. VRFs have been constructed in bilinear groups by Lysyanskaya [Lys02] and Dodis
[Dod03]. Based on Boneh-Boyen signatures [BB04b], Dodis and Yampolskiy [DY05] gave the first
efficient scheme that is secure under a non-interactive assumption, but for small input spaces only.
Hohenberger and Waters [HW10] proposed the first VRF for exponential-size domains without re-
sorting to complexity leveraging or interactive assumptions. Boneh, Montgomery and Raghunathan
[BMR10] achieve a similar result basing their construction on the Dodis-Yampolskiy VRF. Abdalla,
Catalano and Fiore [ACF13] show connections of VRFs to identity-based key encapsulation, and also
present a VRF with large input spaces. Evidence why VRFs are hard to construct is given by Brak-
erski, Goldwasser, Rothblum and Vaikuntanathan [BGRV09], who show that there is no black-box
construction from one-way permutations, and Fiore and Schröder [FS12], showing that there is also
none from trapdoor permutations. Variants of VRFs include simulatable VRFs [CL07] (where CRSs
are allowed) and weak VRFs [BGRV09].

The concept of restricting keys for PRFs to subsets of their domains was concurrently introduced
as constrained PRFs by Boneh and Waters [BW13], as delegatable PRFs by Kiayias et al. [KPTZ13],
and as functional PRFs by Boyle et al. [BGI14]. The latter mention functional VRFs as an open
problem.

An analogous notion for digital signatures, namely deriving signing keys that can only sign subsets
of the message space was concurrently introduced by Boyle et al. [BGI14] as functional signatures
and by Bellare and the author as policy-based signatures [BF14]. Since VRFs satisfy the definition
of digital signatures, constrained VRFs immediately yield policy-based signatures (PBS) for the same
classes of policies describing the constrained input (message) space. We note however that constraint-
hiding constrained VRFs, which we construct in this paper, cannot satisfy the stronger of the two
security definitions for PBS proposed in [BF14], which requires that the policy (constraint) can be
extracted from a signature.

2 Preliminaries

Notation. If S is a finite set then |S| denotes its size and s←$ S denotes picking an element uniformly
from S and assigning it to s. For n ∈ N we let [n] = {1, . . . , n}. We denote the security parameter by
λ ∈ N and its unary representation by 1λ. Algorithms are randomized unless otherwise indicated and
“PT” stands for “polynomial-time” for both randomized and deterministic algorithms. We denote by
y := A(x1, . . . ; ρ) the operation of running algorithm A on inputs x1, . . . and coins ρ and assigning the
output to y. By y←$A(x1, . . .), we denote letting y := A(x1, . . . ; ρ) with ρ chosen at random. We
denote by [A(x1, . . .)] the set of points that have positive probability of being output by A on inputs
x1, . . . .

4



Multilinear groups. The usefulness of groups with multilinear maps in which computing discrete
logarithms is hard was first observed by Boneh and Silverberg [BS02]. It was only recently that
candidates for leveled multilinear forms were proposed by Garg, Gentry and Halevi [GGH13a] and then
by Coron, Lepoint and Tibouchi [CLT13]. Although these constructions implement graded encodings,
which differ from multilinear groups, we present our results in the language of multilinear groups. These
can then be transferred in a straightforward manner to graded encodings, as we show in Appendix B.

Leveled multilinear groups are generated by a group generator G, which takes as input the security
parameter 1λ and κ ∈ N, which determines the number of levels. G(1λ, κ) outputs a sequence of groups
~G = (G1, . . . ,Gκ) of prime order p > 2λ. We assume that the description of each group contains a
canonical generator gi. For all i, j ≥ 1 with i+j ≤ κ, there exists a bilinear map ei,j : Gi×Gj → Gi+j ,
which satisfies:

∀a, b ∈ Zp : ei,j
(
g ai , g

b
j

)
= (gi+j)

a·b .

(We omit the indices i, j of the maps if they can be deduced from the context.)
The only hardness assumption we will make is the following:

Assumption 1. The κ-Multilinear Decisional Diffie-Hellman (κ-MDDH) assumption states that,
given (G1 . . . ,Gκ) obtained by running G(1λ, κ) and g = g1, g

c1 , . . . , gcκ+1 for c1, . . . , cκ+1←$ Zp, it

is hard to distinguish g

∏
j∈[κ+1] cj

κ ∈ Gκ from a random group element in Gκ.

Circuits. Our treatment of circuits follows that by Boneh and Waters [BW13], who adapt the model
of Bellare et al. [BHR12]. They consider boolean circuits with a single output gate and require that
circuits are layered (where a gate at level j receives its inputs from wires at level j−1) and monotonic
in that they only contain AND and OR gates. This is without loss of generality, since an arbitrary
circuit can be transformed into a layered monotonic circuit of polynomially related size.

Definition 1. A circuit is a 5-tuple f = (n, q,A,B, GateType), where n is the number of inputs and
q is the number of gates. Wires are associated with the set [n+ q] = {1, . . . , n+ q}, where {1, . . . , n}
are the input wires and n+ q is the output wire. Gates are labeled by the same index as their outgoing
wire, we thus define Gates := {n+ 1, . . . , n+ q}.

The function A : Gates → [n + q] maps a gate w to its first incoming wire A(w) and B : Gates →
[n+ q] maps a gate w to its second incoming wire B(w). We require w > B(w) > A(w). The function
GateType : Gates→ {AND,OR} specifies whether a gate is an AND or an OR gate.

The function depth(w) maps a wire to the length of the shortest path to an input wire plus 1; in
particular for w ∈ [n] we have depth(w) = 1. Moreover, a circuit is layered if for all w ∈ Gates :
depth(A(w)) = depth(B(w)) = depth(w)− 1. We let f(x) denote the evaluation of the circuit f on
input x ∈ {0, 1}n and let fw(x) denote the value of wire w of the circuit on input x.

3 Constrained Verifiable Random Functions

We extend the definition of constrained pseudorandom functions (PRF), defined by Boneh and Waters
[BW13] to constrained verifiable random functions (VRF). A constrained PRF allows one to evaluate
a keyed function F : K × X → Y and defines an algorithm that given a key k ∈ K and a set S ⊆ X
derives a key kS with which one can only evaluate F on points x ∈ S. It is set up w.r.t. a set system
S ⊆ 2X , defining the sets for which constrained keys can be derived.
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For VRFs, in addition to a (secret) key, the setup algorithm outputs a public key pk. Given a
constrained secret key skS derived from sk for a set S ∈ S and an input x ∈ S, the algorithm Prove
computes the value y = F (sk, x) (like the algorithm eval in [BW13]). It moreover outputs a proof π
for the fact that F (sk, x) = y, which can be verified w.r.t. pk via an algorithm Verify.

We require that a constrained VRF satisfies the following properties: Provability ensures complete-
ness of the scheme: running Prove on a constrained key outputs the correct function value and a proof
that passes verification. Uniqueness guarantees soundness of the proofs: for any (possibly maliciously
computed) value pk and every x ∈ X there exists at most one y ∈ Y for which Verify(pk, x, y, π) = 1
for some π. Compared to PRFs, pseudorandomness should also hold against adversaries that obtain
the public key and proofs for input points in addition to function values and constrained keys of their
choice.

Finally, we consider an additional privacy or anonymity notion, which ensures that proofs do not
reveal anything about the constrained key used to compute them: proofs computed with a constrained
key should be distributed like proofs computed with the actual secret key. Note that this notion would
not be meaningful for constrained PRFs or (standard) VRFs: a constrained key for a PRF is only
used to evaluate F , so by definition, different constrained keys yield the same output; and for standard
VRFs all proofs are computed with the same key.

Definition. Let F : K × X → Y be a function computable in polynomial time, where K is the key
space, X is the domain and Y the range (which may all be parametrized by the security parameter λ).
F is said to be a constrained verifiable random function w.r.t. a set system S ⊆ 2X if there exists a
constrained-key space K′, a proof space P and PT algorithms Setup, Constrain, Prove and Verify:

• Setup(1λ) outputs a pair of keys (pk, sk).

• Constrain(sk, S), on input a secret key and a set S ∈ S, outputs a constrained key skS ∈ K′.

• Prove(skS , x) outputs a pair (y, π) ∈ Y×P ∪ {(⊥,⊥)} of a function value and a proof.

• Verify(pk, x, y, π) verifies that y = F (sk, x) using proof π, outputting a value in {0, 1}.

We require the following properties:

Provability. For all λ ∈ N, all (pk, sk) ∈ [Setup(1λ)], all S ∈ S, all skS ∈ [Constrain(sk, S)], all x ∈ X
and (y, π) ∈ [Prove(skS , x)] it holds that:

• If x ∈ S then y = F (sk, x) and Verify(pk, x, y, π) = 1

• If x /∈ S then (y, π) = (⊥,⊥)

Uniqueness. For all λ ∈ N, all pk, all x ∈ X , y0, y1 ∈ Y and π0, π1 ∈ P one of the following holds:

• y0 = y1,

• Verify(pk, x, y0, π0) = 0, or

• Verify(pk, x, y1, π1) = 0,

that is, for every x there is at most one value y for which there exists a proof that F (sk, x) = y.

Constraint-hiding. This notion ensures that the proof does not reveal which key was used to
create it. We require that there exist a PT algorithm P : K × X → P, such that for all λ ∈ N, all
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(pk, sk) ∈ [Setup(1λ)], all S ∈ S, all skS ∈ [Constrain(sk, S)] and all x ∈ S the following holds: the
second output, π, of Prove(skS , x) and the output of P (sk, x) are distributed identically.

Pseudorandomness. Consider the following experiment Exppr
b (λ) for λ ∈ N and b ∈ {0, 1}:

• Generate (pk, sk)←$ Setup(1λ).

• Initialize sets C and V to ∅, where V will contain the points the adversary can evaluate and C
records the points at which the adversary queried a challenge. Moreover, initialize an empty list
R indexed by the set X , used to store random values.

• Run the adversary on pk and provide the following oracles:

Constrain: On input S ∈ S, if S ∩ C = ∅, return skS ←$ Constrain(sk, S) and set V := V ∪ S;
else return ⊥.

Prove: Given x ∈ X , if x /∈ C, return F ((sk, x), P (sk, x)) and set V := V ∪ {x}; else return ⊥.

Challenge: On input x ∈ X , if x ∈ V then return ⊥. Else set C := C ∪ {x} and do the
following. If b = 0 then return F (sk, x); if b = 1 then return a consistent random value from Y,
that is, return R[x] if x ∈ C and otherwise choose y←$ Y, set R[x] := y and return y.

• Let b′ ∈ {0, 1} be the adversary’s final output, which we define as the output of the experiment.

A constrained VRF is pseudorandom if the function
∣∣Pr[Exppr

1 (λ) = 1]− Pr[Exppr
0 (λ) = 1]

∣∣ is negli-
gible in λ for all PT adversaries A.

Note that by the constraint-hiding property an oracle to obtain Prove evaluations under constrained
keys unknown to the adversary would be redundant. In our security proofs we will only allow the
adversary to query its challenge oracle once. This restricted notion however implies the notion defined
above via a standard hybrid argument.

4 Bit-Fixing VRF

In our first construction constrained keys can be derived for any “bit-fixing” set. Such a set is defined
by a value v ∈ {0, 1, ?}n as the set of all x ∈ {0, 1}n that match v at all positions where v is different
from ‘?’:

Sv :=
{
x ∈ {0, 1}n

∣∣ ∀i ∈ [n] : xi = vi ∨ vi = ?
}

The set system for our constrained VRF is then defined as S :=
{
Sv ⊆ {0, 1}n |v ∈ {0, 1, ?}n

}
.

We show how to add verifiability to the bit-fixing PRF by Boneh and Waters [BW13], which has
domain X = {0, 1}n and where keys can be derived for Sv for every v ∈ {0, 1, ?}n. As discussed in the
introduction, the idea is to use one extra level of the group hierarchy for verification: the element that
was the PRF value now serves as proof and the VRF value will live one group level above. Verification
is done using the pairings to check consistency. For their bit-fixing PRF, Boneh and Waters define

FPRF : K × {0, 1}n → Gn+1,
(
(α, {di,β}i∈[n], β∈{0,1}), x

)
7→ (gn+1)

α
∏
i∈[n] di,xi .

In Appendix A.1 we show that n−1 group levels suffice when one defines the PRF value as F ′PRF(sk, x) =

(gn−1)
∏
i∈[n] di,xi . We use this value as the proof in our VRF construction and the same constrained

keys for both the modified PRF and the VRF. In order to provide verifiability, we add back one level;
the last group in our hierarchy is thus Gn, which is one level below the one of the Boneh-Waters PRF.1

1If we wanted a VRF with the same function values as the Boneh-Waters PRF, it would suffice to set up κ = n + 1
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4.1 Construction

Setup(1λ, 1n): On input the security parameter λ and the input length n, the setup runs G(1λ, n) to

compute a sequence of groups ~G = (G1, . . . ,Gn) of prime order p, with generators g1, . . . , gn, of which
we let g := g1. It chooses γ←$ Zp and (d1,0, d1,1), . . . , (dn,0, dn,1)←$ Z 2

p uniformly at random and sets

C := gγ and Di,β := gdi,β for i ∈ [n] and β ∈ {0, 1}. The VRF public and secret key are defined as

pk :=
(
~G = (G1, . . . ,Gn), C, {Di,β}i∈[n], β∈{0,1}

)
sk :=

(
pk, γ, {di,β}i∈[n], β∈{0,1}

)
The domain is X = {0, 1}n, the range of the function is Y = Gn and proofs are in Gn−1. The function
value and the proof for input x = (x1, . . . , xn) ∈ {0, 1}n are defined as

F (sk, x) := gn
γ
∏
i∈[n] di,xi P (sk, x) := (gn−1)

∏
i∈[n] di,xi

Verify(pk, x, y, π): To verify a tuple (x, y, π) ∈ {0, 1}n×Gn×Gn−1 w.r.t. public key pk = (~G, C, {Di,β}),
compute D(x) := gn

∏
i∈[n] di,xi by applying the bilinear maps to (D1,x1 , . . . , Dn,xn) and output 1 if the

following equations are satisfied:

e(g, π) = D(x) e(C, π) = y

Constrain(sk,v): Note that from a proof P (sk, x), by pairing it with the public-key element C, one can

compute F (sk, x) = e(C,P (sk, x)). It suffices thus that a constrained key lets us construct P (sk, x).
The algorithm takes as input sk and a vector v ∈ {0, 1, ?}n describing the constrained domain

Sv := {x ∈ {0, 1}n | ∀i ∈ [n] : xi = vi ∨ vi = ?}. Let V := {i ∈ [n] |vi 6= ?} be the set of indices for
which the input bit is fixed to 0 or 1. Return skv := (pk, kv), with kv defined as follows:

• If |V | > 1 then compute kv := (g|V |−1)
∏
i∈V di,vi .

• If V = {j} then set kv := dj,vj .

(If V = ∅ then return sk, from which Prove(sk, x) simply computes F (sk, x) and P (sk, x).)

Prove(skv, x): Again let V := {i ∈ [n] |vi 6= ?} and let V := {i ∈ [n] |vi = ?} be its complement. If

xi 6= vi for some i ∈ V then return (⊥,⊥); else apply the bilinear maps to {Di,xi}i∈V to compute

DV (x) := (g|V |)
∏
i∈V di,xi .

• If |V | > 1, set P (sk, x) := e(DV (x), kv) = e
(
(g|V |)

∏
i∈V di,xi , (g|V |−1)

∏
i∈V di,vi

)
= (gn−1)

∏
i∈[n] di,xi .

• If V = {j}, set P (sk, x) := DV (x)kv =
(
(g|V |)

∏
i∈V di,xi

)dj,vj = (gn−1)
∏
i∈[n] di,xi .

Finally, compute e
(
C,P (sk, x)

)
= e
(
gγ , (gn−1)

∏
i∈[n] di,xi

)
= F (sk, x).

group levels, lift the domain of F from Gn to Gn+1, that of P from Gn−1 to Gn, and define the public-key element
C := g γ2 (instead of gγ). The secret key element γ would then correspond to α in [BW13].
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4.2 Properties

Provability. When (pk = (~G, C, {Di,β}), sk)←$ Setup(1λ) then from the definition of F and P it

follows immediately that for all x ∈ {0, 1}n: e(g, P (sk, x)) = gn
∏
i∈[n] di,xi = D(x) and e(C,P (sk, x)) =

gn
γ
∏
i∈[n] di,xi = F (sk, x). We have thus Verify(pk, x, F (sk, x), P (sk, x)) = 1.

Moreover, given a constrained key skv derived for a vector v ∈ {0, 1, ?}n and x ∈ {0, 1}n with
xi = vi or vi = ? for all i, it follows by inspection that Prove(skv, x) computes (F (sk, x), P (sk, x)),
which we showed satisfy the verification equations.

Uniqueness. Consider a public key pk = (~G, C, {Di,β}i∈[n], β∈{0,1}), with C ∈ G1 and Di,β ∈ G1, a
value x ∈ {0, 1}n and values (y0, π0), (y1, π1) ∈ Gn × Gn−1 that satisfy Verify(pk, x, yβ, πβ) = 1, for
β ∈ {0, 1}. It suffices to show that y0 = y1.

Let γ, di,β ∈ Zp be such that C = gγ and Di,β = gdi,β for all i, β. The fist verification equation yields

e(g, πβ) = gn
∏
i∈[n] di,xi , which by the properties of the bilinear map e implies that πβ = (gn−1)

∏
i∈[n] di,xi

for β ∈ {0, 1}. The second equation yields yβ = e(C, πβ) = e
(
gγ , (gn−1)

∏
i∈[n] di,xi

)
for both β ∈ {0, 1},

which implies y0 = gn
γ
∏
i∈[n] di,xi = y1.

Constraint-hiding. The proof algorithm P maps sk = (γ, {di,β}i∈[n], β∈{0,1}) and x ∈ {0, 1}n to

P (sk, x) := (gn−1)
∏
i∈[n] di,xi . Since by provability, this is precisely the value that Prove(skv, x) outputs

for any constraint v and any x satisfying v, the constraint-hiding property follows immediately.

4.3 Proof of Pseudorandomness

Theorem 1. If there exists a PT adversary A that makes one challenge query and breaks pseudoran-
domness of the above n-bit-input bit-fixing VRF with advantage ε(λ) then there exists a PT algorithm
B that breaks the n-Multilinear Decisional Diffie-Hellman assumption with advantage 2−n · ε(λ).

Proof. Without loss of generality, we assume that when x∗ is A’s challenge query then A never queries
constrained keys that could evaluate x∗, nor its Prove oracle on x∗. We construct B, which receives
an n-MDDH challenge consisting of a group-sequence description ~G and elements g = g1, g

c1 , . . . , gcn+1

and T , which is either gn
∏
i∈[n+1] cj or a random element from Gn. B picks a random value x∗←$ {0, 1}n,

which it hopes will be A’s challenge query, and z1, . . . , zn←$ Zp and sets

Di,β :=

{
gci if x∗i = β
gzi if x∗i 6= β

for i ∈ [n], β ∈ {0, 1},

which implicitly defines di,x∗i := ci and di,x∗i := zi (with x∗i denoting 1− x∗i ). It also defines γ := cn+1

by setting C := gcn+1 . B then runs A on input the public key (~G, C, {Di,β}i∈[n], β∈{0,1}), which is
distributed as in the real scheme.

Constrain queries. Suppose A queries a secret key for v ∈ {0, 1, ?}n. Let V := {i ∈ [n] |vi 6= ?} be
the set of indices that v fixes. B selects j ∈ V such that vj 6= x∗j . If no such j exists then the key
could be used to evaluate F (sk, x∗), meaning B’s guess was wrong, as we assumed A would not make
such a query. In this case B aborts outputting a random guess b′←$ {0, 1}.

If |V | = 1 then V = {j}, thus B knows zj with Dj,vj = Dj,x∗i
= gzj and sets kv := zj . If

|V | > 1 then by repeatedly applying the bilinear maps to the values {Di,vi}i∈V \{j}, it computes

(g|V |−1)
∏
i∈V \{j} di,vi and raises this value to zj = dj,vj to compute kv := (g|V |−1)

∏
i∈V di,vi . B answers

the query with (pk, kv).
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Prove queries. Since P (sk, x) is identical to a key for v = x, this value can be computed as for the
constrained-key query above. F (sk, x) is computed by pairing it with C.

Challenge query. If A’s challenge query is different from x∗ then B aborts outputting a random
guess b′←$ {0, 1}. Otherwise, it outputs T as a response to the query. If T = gn

∏
i∈[n+1] cj then

T = gn
γ
∏
i∈[n] di,x∗i = F (sk, x∗). When A outputs a guess b′ then B, if it has not aborted, outputs the

same guess b′.

Success probability. We analyze the probability that B wins the MDDH game. Let abort denote
the event that B aborts during the simulation. B aborts if and only if A queries its Challenge
oracle on a value different from x∗ (as A does not make any “illegal” queries, B only aborts during
Constrain and Prove queries if its guess of x∗ was wrong). We therefore have Pr[abort] = 1−2−n.
Moreover, if B aborts then it outputs a random bit, thus yielding Pr[B wins | abort] = 1

2 . If B does
not abort then it wins with the same probability as A (since A’s success is independent of B’s guess
of x∗), whose advantage is ε(λ), thus Pr[B wins | abort ] = 1

2 + ε(λ). Together, we have

Pr[B wins] = Pr[B wins | abort] · Pr[abort] + Pr[B wins | abort ] · Pr[ abort ]

= 1
2 · (1− 2−n) +

(
1
2 + ε(λ)

)
· 2−n = 1

2 + 2−n · ε(λ) ,

which shows that B’s advantage in breaking n-MDDH is ε′(λ) = 2−n · ε(λ).

5 Circuit-Constrained VRF

Consider a polynomial-size circuit f as in Definition 1. Our second VRF construction allows us to
derive a constrained key skf enabling function evaluations and proof computations for exactly those
values x, for which f(x) = 1. Letting C be the set of all polynomial-size circuits, we have

S := {Sf ⊆ {0, 1}n | f ∈ C} , with Sf := {x ∈ {0, 1}n | f(x) = 1} .

Our circuit-constrained VRF is derived from the Boneh-Waters PRF [BW13] for the same set
system. Their PRF values are in Gκ with κ = n+ `, where ` is the maximum depth of the supported
circuits. In Appendix A.2 we show that their PRF construction can be modified and defined over a
group sequence with κ = n+ `− 1, by shifting the PRF value and elements of the constrained key
down by one level. Pseudorandomness then follows from (n+ `− 1)-MDDH.

For our constrained VRF we define the proofs as the values of the modified PRF in Gn+`−1 (so
proofs can be constructed using the constrained keys of the modified PRF), then add back one level in
the group hierarchy and define the function values in Gn+` as pairings of the proof with an additional

public-key element gγ . The Boneh-Waters PRF is defined as FPRF(k, x) := gκ
α′

∏
i∈[n] di,xi , where the

key k consists of α′ and the elements di,β. Our VRF values can be seen as the same but with α′ split

into α and γ, thus F (sk, x) := gκ
α·γ

∏
i∈[n] di,xi . The proof is the same value without γ and lives one

level below the function value: P (sk, x) := (gκ−1)
α
∏
i∈[n] di,xi .

5.1 Construction

Setup(1λ, 1n, 1`): On input the security parameter λ, the bit length n and the maximum depth ` of

the circuits, Setup does the following: Run G(1λ, κ) with κ := n + ` to obtain a sequence of groups
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~G = (G1, . . . ,Gκ) of prime order p, with generators g = g1, . . . , gκ. Choose secret-key values α, γ←$ Zp
and (d1,0, d1,1), . . . , (dn,0, dn,1)←$ Z 2

p and set A := g α` , C := gγ and Di,β := gdi,β for i ∈ [n] and

β ∈ {0, 1}. The VRF public key pk is defined as the group sequence ~G and
(
A,C, {Di,β}i∈[n], β∈{0,1}

)
.

The secret key sk consists of the public key as well as
(
α, γ, {di,β}i∈[n], β∈{0,1}

)
.

We define the domain as X := {0, 1}n, the range as Y := Gκ, and the proof space as P := Gκ−1.
On input x = (x1, . . . , xn) ∈ X , the function value and the proof are defined as

F (sk, x) := gκ
α·γ

∏
i∈[n] di,xi P (sk, x) := (gκ−1)

α
∏
i∈[n] di,xi

Verify(pk, x, y, π): Given a public key pk = (~G, A,C, {Di,β}i,β) and (x, y, π) ∈ {0, 1}n × Gκ × Gκ−1,

first compute D(x) := gn
∏
i∈[n] di,xi by applying the bilinear maps to (D1,x1 , . . . , Dn,xn) and return 1 if

the following equations hold (and return 0 otherwise):

e(g, π) = e(A,D) e(C, π) = y

Constrain(sk, f = (n, q,A,B, GateType)): On input the secret key and a circuit description f , with n

input wires, q gates (labeled from n+ 1 to n+ q), and the wire n+ q designated as output wire, the
constrain algorithm does the following:

Choose r1, . . . , rn+q−1←$ Zp and set rn+q := α. For every wire w generate a key component Kw,
whose structure depends on the type of the wire: input wire, OR gate, or AND gate.

Input wire: If w ∈ [n], it corresponds to the w-th input and the key component is

Kw := grw·dw,1 .

OR gate: If w ∈ Gates with GateType(w) = OR and depth(w) = j then choose aw, bw←$ Zp and
compute the following key components:

Kw,1 := gaw Kw,2 := gbw Kw,3 := (gj−1)
rw−aw·rA(w) Kw,4 := (gj−1)

rw−bw·rB(w)

AND gate: If w ∈ Gates with GateType(w) = AND and depth(w) = j then choose aw, bw←$ Zp and
compute the following key components:

Kw,1 := gaw Kw,2 := gbw Kw,3 := (gj−1)
rw−aw·rA(w)−bw·rB(w)

The constrained key skf consists of these components for all n + q wires together with the circuit
description f and the public key pk.

Prove(skf , x): Given a constrained key skf for circuit f = (n, q,A,B, GateType) and input x ∈ {0, 1}n,

if f(x) = 0, return (⊥,⊥). Otherwise, evaluate the circuit level by level starting from the input

wires. For every wire w that evaluates to 1, compute the value Pw = (gn+j−1)
rw

∏
i∈[n] di,xi , where

j = depth(w). Note that since rn+q = α, we have Pn+q = P (sk, x), from which we can then compute
F (sk, x) by pairing it with C. For every wire we distinguish the following cases:

Input wire: For w ∈ [n] we only consider those w for which xw = fw(x) = 1. Repeatedly apply

the bilinear maps to the values {Di,xi}i 6=w to compute (gn−1)
∏
i∈[n]\{w} di,xi and pair it with

Kw = grw·dw,1 to obtain Pw = gn
rw

∏
i∈[n] di,xi .
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OR gate: Let w ∈ Gates be such that fw(x) = 1 and GateType(w) = OR and let j = depth(w).

Define D(x) := gn
∏
i∈[n] di,xi , which can be computed from the set {Di,xi}i∈[n].

If fA(w)(x) = 1 then compute:

e(PA(w),Kw,1) · e(Kw,3, D(x))

= e
(
(gn+j−2)

rA(w)

∏
i di,xi , gaw

)
· e
(
(gj−1)

rw−aw·rA(w) , gn
∏
i di,xi

)
= (gj+n−1)

rw
∏
i di,xi = Pw .

Otherwise, we must have fB(w)(x) = 1, so compute:

e(PB(w),Kw,2) · e(Kw,4, D(x)) = (gj+n−1)
rw

∏
i di,xi = Pw .

AND gate: Let w ∈ Gates be such that fw(x) = 1, GateType(w) = AND and depth(w) = j. We have
fA(w) = fB(w) = 1 and with D(x) as above we compute:

e(PA(w),Kw,1) · e(PB(w),Kw,2) · e(Kw,3, D(x))

= e
(
(gn+j−2)

rA(w)

∏
i di,xi , gaw

)
·e
(
(gn+j−2)

rB(w)

∏
i di,xi , gbw

)
·e
(
(gj−1)

rw−aw·rA(w)−bw·rB(w) , gn
∏
i di,xi

)
= (gj+n−1)

rw
∏
i di,xi = Pw .

Evaluating level by level all wires w for which fw(x) = 1, we arrive at Pn+q = (gn+`−1)
α
∏
i di,xi =

P (sk, x), from which we compute

e(C,P (sk, x)) = e
(
gγ , (gκ−1)

α
∏
i di,xi

)
= F (sk, x)

and output
(
F (sk, x), P (sk, x)

)
.

5.2 Properties

Provability. When
(
pk = (~G, A,C, {Di,β}), sk

)
←$ Setup(1λ, 1n, 1`) then from the definition of F and

P it follows that for all x ∈ {0, 1}n: e
(
g, P (sk, x)

)
= e
(
A,D(x)

)
and e

(
C,P (sk, x)

)
= F (sk, x).

Moreover, given a constrained key skf derived from sk for a depth-` circuit f and x ∈ {0, 1}n with
f(x) = 1, we see that when running the Prove algorithm, the value computed for every depth-j gate

w for which fw(x) = 1 is Pw = (gn+j−1)
rw

∏
i∈[n] di,xi . Since the value rn+q for the output gate was set

as rn+q := α, Prove outputs (gn+`−1)
α
∏
i∈[n] di,xi = P (sk, x) and e

(
C,P (sk, x)

)
= F (sk, x), which are

the values that satisfy verification.

Uniqueness. Consider a public key pk, consisting of ~G = (G1, . . . ,Gn+`), A ∈ G`, C ∈ G1 and
{Di,β}i∈[n], β∈{0,1} ∈ G 2n

1 , a value x ∈ {0, 1}n and values (y0, π0), (y1, π1) ∈ Gn+`×Gn+`−1 that satisfy
Verify(pk, x, yβ, πβ) = 1, for β ∈ {0, 1}. It suffices to show that y0 = y1.

Let α, γ, di,β ∈ Zp be such that A = g α` , C = gγ and Di,β = gdi,β for i ∈ [n], β ∈ {0, 1}. The first

verification equation is e(g, π) = e(A,D(x)) = e
(
g α` , gn

∏
i∈[n] di,xi

)
= (gn+`)

α
∏
i∈[n] di,xi , which can only

be satisfied by π = (gn+`−1)
α
∏
i∈[n] di,xi . We thus have π0 = π1 = π.

The second verification equation is y = e(C, π). Since e(C, π) = e
(
gγ , (gn+`−1)

α
∏
i∈[n] di,xi

)
, the

only satisfying value for y is y = (gn+`)
α·γ

∏
i∈[n] di,xi ; thus y0 = y1 = y, which proves uniqueness.

Constraint-hiding. The proof algorithm P maps sk =
(
α, γ, {di,β}i∈[n], β∈{0,1}

)
∈ Z 2n+2

p and

x ∈ {0, 1}n to P (sk, x) := (gn+`−1)
α
∏
i∈[n] di,xi . Since by provability, this is precisely the value that

Prove(skf , x) outputs for any x ∈ {0, 1}n and any key skf ∈ [Constrain(sk, f)] for any `-level circuit f
with f(x) = 1, the constraint-hiding property follows immediately.
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5.3 Proof of Pseudorandomness

Theorem 2. If there exists a PT adversary A that makes one challenge query and breaks pseudoran-
domness of the above n-bit depth-` circuit-constrained VRF with advantage ε(λ) then there exists a PT
algorithm B that breaks the (n+ `)-Multilinear Decisional Diffie-Hellman assumption with advantage
2−n · ε(λ).

Proof. The proof follows that of [BW13] closely. Consider a PT algorithm A that wins the pseudo-
randomness game with advantage ε(λ). Without loss of generality, we assume that A never queries a
key for a circuit f with f(x∗) = 1 and never queries its Prove oracle on x∗ (where x∗ is the value
queried to Challenge). We construct an algorithm B that uses A to break (n+ `)-MDDH.

Setup. B receives a challenge consisting of a group sequence ~G and values g = g1, g
c1 , . . . , gcn+`+1

and T , where T is either (gn+`)
∏
i∈[n+`+1] ci or a random group element in Gn+`. Using the challenge,

B sets up the keys as follows. It chooses x∗←$ {0, 1}n and z1, . . . , zn←$ Zp and sets

Di,β :=

{
gci if x∗i = β
gzi if x∗i 6= β

for i ∈ [n], β ∈ {0, 1},

Repeatedly applying the bilinear maps, it computes A := g
cn+1···cn+`
` and sets C := gcn+`+1 . Note

that this defines di,x∗i = ci and di,x∗i = zi (where x∗i denotes 1 − x∗i ), as well as α = cn+1 · · · cn+` and
γ = cn+`+1, which is distributed as in the real scheme. The parameters are set up so that we have

F (sk, x∗) = (gn+`)
α·γ

∏
i∈[n] di,x∗i = (gn+`)

∏
i∈[n+`+1] ci . B runsA on input pk = (~G, A,C, {Di,β}i∈[n], β∈{0,1}).

Constrain queries. Suppose A queries a private key for a circuit f . If f(x∗) = 1 then B aborts and
outputs a guess b′ ← {0, 1}. Otherwise, it must compute the key component Kw for every wire w of
f . The simulation follows [BW13], who base their technique on [GGH+13c].

For the final gate w = n+q we have rw = α and elements ofKn+q contain (g`−1)
α = (g`−1)

cn+1···cn+` ,
which B cannot compute. Simulating this is thus the tricky part and is done as follows. In order to
compute e.g. Kn+q,4 = (g`−1)

α−bn+q ·rB(n+q) (if the last gate is an OR gate), B sets bn+q := cn+` and
rB(n+q) := cn+1 · · · cn+`−1 (and adds some known randomness to each), so α cancels out and B can
compute Kn+q. Now rB(n+q) in level ` − 1 contains cn+1 · · · cn+`−1, which has one fewer challenge
value. Applying the trick again, B chooses the randomness of B(n+ q)’s parent gates in level `− 2 as
cn+1 · · · cn+`−2, and so on.

Note that since fn+q(x
∗) = f(x∗) = 0, if gate n+q is an OR gate then both its parents must satisfy

fA(n+q)(x
∗) = fB(n+q)(x

∗) = 0 and we need to embed challenge elements in both rB(n+q) and rA(n+q)
to simulate Kn+q. On the other hand, for an AND gate w with fw(x∗) = 0, only one of its parent gates
must evaluate x∗ to 0, and for the cancellation trick to work, it suffices to embed cn+1 · · · cn+depth(w)−1
in the randomness of that parent.

For every gate w at level j for which fw(x∗) = 0, we thus set rw := cn+1 · · · cn+j (plus some
ηw←$ Zp to make rw uniform). For the input wires we have rw := cn+1 + ηw, for which we can
simulate Kw = grw·dw,1 , since dw,1 = zw when fw(x∗) = x∗w = 0. Note that this does not work for wires
and gates w with fw(x∗) = 1, for which it however suffices to compute the key elements Kw honestly.

Formalizing the above, B answers a Constrain query for f = (n, q,A,B, GateType) by computing
Kw for every gate starting from the input wires:

Input wire: Suppose w ∈ [n]. If x∗w = 1 then choose rw←$ Zp and compute the key component

Kw := (Dw,1)
rw = grw·dw,1 .
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If x∗w = 0 (in which case dw,1 = zw), we choose ηw←$ Zp, implicitly set rw := cn+1 + ηw and
compute

Kw :=
(
gcn+1 · gηw

)zw = grw·dw,1 .

OR gate: If GateType(w) = OR, we let j = depth(w) and again distinguish two cases. If fw(x∗) = 1,
choose aw, bw, rw←$ Zp and set Kw as specified by Constrain:

Kw,1 := gaw Kw,2 := gbw Kw,3 := (gj−1)
rw−aw·rA(w) Kw,4 := (gj−1)

rw−bw·rB(w)

(Even when rA(w) = cn+1 · · · cn+j−1 + ηA(w), one can compute (gj−1)
rA(w) using the pairings.)

If fw(x∗) = 0, B chooses ψw, φw, ηw←$ Zp and implicitly sets aw := cn+j + ψw, bw := cn+j + φw
and rw := cn+1 · · · cn+j + ηw. Since fw(x∗) = 0 implies fA(w)(x

∗) = fB(w)(x
∗) = 0, we have

rA(w) = cn+1 · · · cn+j−1 + ηA(w) and rB(w) = cn+1 · · · cn+j−1 + ηB(w). This enables B to create
the key components as follows:

Kw,1 := gcn+j · gψw Kw,2 := gcn+j · gφw

Kw,3 := (gj−1)
ηw−cn+j ·ηA(w)−ψw(cn+1···cn+j−1+ηA(w))

= (gj−1)
cn+1···cn+j+ηw−(cn+j+ψw)·(cn+1···cn+j−1+ηA(w)) = (gj−1)

rw−aw·rA(w)

Kw,4 := (gj−1)
ηw−cn+j ·ηB(w)−φw(cn+1···cn+j−1+ηB(w)) = (gj−1)

rw−bw·rB(w)

(Again, B can compute Kw,3 and Kw,4 by computing (gj−1)
cn+1···cn+j−1 via the pairings.)

AND gate: If GateType(w) = AND, we let j = depth(w) and distinguish two cases. If fw(x∗) = 1
then B chooses aw, bw, rw←$ Zp and defines Kw as specified by Constrain:

Kw,1 := gaw Kw,2 := gbw Kw,3 := (gj−1)
rw−aw·rA(w)−bw·rB(w)

Otherwise, choose ψw, φw, ηw←$ Zp. Suppose fA(w)(x
∗) = 0. Then implicitly set aw := cn+j +

ψw, bw := φw and rw := cn+1 · · · cn+j + ηw. Since we have rA(w) = cn+1 · · · cn+j−1 + ηA(w), and
since (gj−1)

rB(w) is computable via the pairings, B can compute the key components as follows:

Kw,1 := gcn+j · gψw Kw,2 := gφw

Kw,3 := (gj−1)
ηw−ψw·cn+1···cn+j−1−(cn+j+ψw)ηA(w)−φw·rB(w)

= (gj−1)
cn+1···cn+j+ηw−(cn+j+ψw)·(cn+1···cn+j−1+ηA(w))−φw·rB(w) = (gj−1)

rw−aw·rA(w)−bw·rB(w)

If fA(w)(x
∗) = 1 then we must have fB(w)(x

∗) = 0 and B can compute the key components as
above with the roles of aw and bw swapped.

Prove queries. Suppose A queries its Prove oracle on x. If x = x∗ then B aborts and outputs
b′←$ {0, 1}. Otherwise, let j be such that xj 6= x∗j . Repeatedly applying the bilinear maps, B com-

putes (gn−1)
∏
i∈[n]\{j} di,xi , and by raising it to zi = di,xi , obtains H = (gn−1)

∏
i∈[n] di,xi . This suffices to

compute

e(A,H) = e
(
g α` , (gn−1)

∏
i∈[n] di,xi

)
= P (sk, x)

e(C,P (sk, x)) = e
(
gγ , (gn+`−1)

α
∏
i∈[n] di,xi

)
= F (sk, x)
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Challenge query. When A queries the challenge oracle for a value different from x∗, B aborts
and outputs a random bit b′←$ {0, 1}. Otherwise it returns T , which is either (gn+`)

∏
i∈[n+`+1] ci =

(gn+`)
α·γ

∏
i∈[n] di,x∗i = F (sk, x∗) or a random element from Gn+`, thus perfectly simulating the experi-

ment for pseudorandomness. When A outputs a bit b′, B halts and returns b′.

Success probability. The probability that B wins the MDDH game is analyzed as for the bit-fixing
VRF. Let abort denote the event that B aborts during the simulation. Since B aborts if and only if A
queries its Challenge oracle on a value different from x∗, we have Pr[abort] = 1− 2−n. Moreover,
if B aborts then it outputs a random bit, thus we have Pr[B wins | abort] = 1

2 . If B does not abort
then it wins with the same probability as A (since A’s success is independent of B guess of x∗), whose
advantage is ε(λ). Thus Pr[B wins | abort ] = 1

2 + ε(λ). Together, this yields

Pr[B wins] = Pr[B wins | abort] · Pr[abort] + Pr[B wins | abort ] · Pr[ abort ]

= 1
2 · (1− 2−n) +

(
1
2 + ε(λ)

)
· 2−n = 1

2 + 2−n · ε(λ) ,

which shows that B’s advantage in breaking (n+ `)-MDDH is 2−n · ε(λ).
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A Constrained PRFs With Fewer Group Levels

In this appendix we show that the two constrained PRFs based on multilinear groups by Boneh and
Waters [BW13] can be defined with fewer levels in the group hierarchy. Constrained PRFs are basically
defined like constrained VRFs but without public keys and without the Verify algorithm. Instead of
Prove, there is an algorithm Eval which takes a constrained key and an input x and outputs F (k, x).
Besides correctness, it is required that a constrained PRF satisfies pseudorandomness, which is defined
as for constrained VRFs, but with the Prove oracle replaced by a Eval oracle, which queried on x
outputs F (k, x). For the precise definition of constrained PRFs we refer to [BW13].

A.1 Bit-Fixing PRF

We show that the bit-fixing PRF for inputs of length n from [BW13] can be defined over a sequence
of groups G1, . . . ,Gκ with κ := n − 1 rather than κ = n + 1, as in [BW13]. There the function

value is defined as FBW(k, x) := (gn+1)
α
∏
i∈[n] di,xi , which we show can be replaced by F (k, x) :=

(gn−1)
∏
i∈[n] di,xi , while removing α from the secret key. We adapt the definition of constrained keys

and prove the construction pseudorandom under the (n− 1)-MDDH assumption.

Setup(1λ, 1n): On input the security parameter λ and the input length n, the setup runs G(1λ, n− 1),

which outputs a sequence of groups ~G = (G1, . . . ,Gn−1) of prime order p, with generators g = g1, . . . ,
gn−1. It chooses (d1,0, d1,1), . . . , (dn,0, dn,1)←$ Z 2

p and sets Di,β := gdi,β for i ∈ [n] and β ∈ {0, 1}. The

PRF master key is k :=
(
~G = (G1, . . . ,Gn), {di,β}i∈[n], β∈{0,1}, {Di,β}i∈[n], β∈{0,1}

)
.
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The domain and range are defined as X := {0, 1}n and Y := Gn−1. The keyed function F for input
x = (x1, . . . , xn) ∈ {0, 1}n is defined as

F (k, x) := (gn−1)
∏
i∈[n] di,xi .

Constrain(k,v): The algorithm takes as input k and a vector v ∈ {0, 1, ?}n describing the constrained

input space as Sv := {x ∈ {0, 1}n | ∀i ∈ [n] : xi = vi ∨ vi = ?}. Let V := {i ∈ [n] |vi 6= ?} be the set of
indices fixed by v. Return kv = (~G, {Di,β}i∈[n]\V, β∈{0,1}, k′v), with k′v defined as follows:

If |V | > 1 then set k′v := (g|V |−1)
∏
i∈V di,vi ; if V = {j} then set k′v := dj,vj .

Eval(kv, x): Let V be as above and let V := {i ∈ [n] |vi = ?} be its complement; if xi 6= vi for some

i ∈ V then abort. Using the bilinear maps applied to {Di,xi}i∈V , first compute

DV (x) = (g|V |)
∏
i∈V di,xi .

If |V | > 1, output e(DV (x), k′v) = e
(
(g|V |)

∏
i∈V di,xi , (g|V |−1)

∏
i∈V di,vi

)
= (gn−1)

∏
i∈[n] di,xi = F (k, x).

If V = {j}, output DV (x)k
′
v =

(
(g|V |)

∏
i∈V di,xi

)dj,vj = (gn−1)
∏
i∈[n] di,xi = F (k, x).

The above construction is pseudorandom:

Theorem 3. If there exists a PT adversary A that breaks pseudorandomness of the above n-bit input
bit-fixing PRF with advantage ε(λ) then there exists a PT algorithm B that breaks the (n−1)-Multilinear
Decisional Diffie-Hellman assumption with advantage 2−n · ε(λ).

Proof. We assume that when x∗ is A’s (one-time) challenge query then A never queries constrained
keys that could evaluate x∗, nor its Eval oracle on x∗. We construct B, which receives an (n − 1)-
MDDH challenge consisting of a group-sequence description ~G and elements g = g1, g

c1 , . . . , gcn and
T , which is either (gn−1)

∏
i∈[n] cj or a random element from Gn−1. B picks x∗←$ {0, 1}n, which it

hopes will be A’s challenge query, and z1, . . . , zn←$ Zp and sets

Di,β :=

{
gci if x∗i = β
gzi if x∗i 6= β

for i ∈ [n] and β ∈ {0, 1}. Observe that this is distributed as in the real scheme.

Constrain queries. Suppose A queries a secret key for v ∈ {0, 1, ?}n. Let V := {i ∈ [n] |vi 6= ?} be
the set of fixed indices. B chooses an arbitrary j ∈ V such that vj 6= x∗j . If no such j exists then the
key could be used to evaluate F (k, x∗), in which case B aborts outputting a random guess b′←$ {0, 1}.

If |V | = 1 then V = {j}, thus B knows zj with Dj,vj = gzj and sets k′v := zj . If |V | > 1, then by

repeatedly applying the bilinear maps to the values {Di,vi}i∈V \{j}, it computes (g|V |−1)
∏
i∈V \{j} di,vi

and raises this value to zj = dj,vj to compute k′v := (g|V |−1)
∏
i∈V di,vi . B answers the query with

kv := (~G, {Di,β}i∈[n]\V, β∈{0,1}, k′v).

Evaluate queries. Since F (k, x) is identical to a key for v = x, this value can be computed as for
the constrained-key query above.

Challenge query. If A’s (one-time) challenge query is different from x∗ then B outputs a guess

b′←$ {0, 1}. Otherwise, replies with T . If T = (gn−1)
∏
i∈[n] cj then T = (gn−1)

∏
i∈[n] di,x∗i = F (k, x∗).

When A outputs a guess b′ then B, if it has not aborted, outputs the same guess b′.
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Success probability. The probability that B wins the MDDH game is analyzed as for the bit-fixing
VRF. Let abort denote the event that B aborts during the simulation. Since B aborts if and only if A
queries its Challenge oracle on a value different from x∗, we have Pr[abort] = 1− 2−n. Moreover,
if B aborts then it outputs a random bit, thus we have Pr[B wins | abort] = 1

2 . If B does not abort
then it wins with the same probability as A (since A’s success is independent of B guess of x∗), whose
advantage is ε(λ). Thus Pr[B wins | abort] = 1

2 + ε(λ). Together, this yields

Pr[B wins] = Pr[B wins | abort] · Pr[abort] + Pr[B wins | abort] · Pr[abort]

= 1
2 · (1− 2−n) +

(
1
2 + ε(λ)

)
· 2−n = 1

2 + 2−n · ε(λ) ,

which shows that B’s advantage in breaking MDDH is 2−n · ε(λ).

A.2 Constrained PRF for Circuit Predicates

The construction is almost identical to the one by Boneh and Waters [BW13], except that we set
κ := n + ` − 1 rather than κ := n + `, where n is the input length and ` the maximum depth of the
circuits. In the Constrain algorithm, we then define the key elements for input wires as elements from
G1 rather than G2 and key elements for gates of depth j will contain values from Gj−1 rather than
Gj . Moreover, the values Ew computed by Eval for a gate w of depth j will be in Gj+n−1 rather than
Gj+n; in particular the value of the output gate (which is F (k, x)) is in Gn+`−1 instead of Gn+`.

Setup(1λ, 1n, 1`): On input the security parameter, the bit length n and the maximum circuit depth `

do the following: Run G(1λ, κ) with κ := n+ `− 1 to compute a sequence of groups ~G = (G1, . . . ,Gκ)
of prime order p, with generators g1, . . . , gκ, and let g = g1. Choose random exponents α←$ Zp and
(d1,0, d1,1), . . . , (dn,0, dn,1)←$ Z 2

p and set Di,β := gdi,β for i ∈ [n] and β ∈ {0, 1}. The key is defined as

k :=
(
~G = (G1, . . . ,Gκ), α, {di,β}i∈[n], β∈{0,1}, {Di,β}i∈[n], β∈{0,1}

)
.

The domain is X = {0, 1}n and the range is Y = Gκ. On input x = (x1, . . . , xn) ∈ X , the function
value is defined as

F (k, x) = g
α
∏
i∈[n] di,xi

κ .

Constrain(k, f = (n, q,A,B, GateType)): On input the key and a circuit description f with n input

wires, q gates (and thus n + q wires), with the wire n + q designated as output wire, Constrain first
chooses r1, . . . , rn+q−1←$ Zp and sets rn+q := α. For every wire w, generate a key component Kw,
whose structure depends on the type of the wire: input wire, OR gate, or AND gate.

Input wire: If w ∈ [n] then it corresponds to the w-th input and the key component is:

Kw := grw·dw,1 .

OR gate: If w ∈ Gates with GateType(w) = OR and depth j = depth(w) then choose aw, bw←$ Zp
and compute Kw as:

Kw,1 := gaw Kw,2 := gbw Kw,3 := (gj−1)
rw−aw·rA(w) Kw,4 := (gj−1)

rw−bw·rB(w)

AND gate: If w ∈ Gates with GateType(w) = AND and depth(w) = j then choose aw, bw←$ Zp and
compute Kw as:

Kw,1 := gaw Kw,2 := gbw Kw,3 := (gj−1)
rw−aw·rA(w)−bw·rB(w)
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The constrained key kf consists of components Kw for all n + q wires together with the circuit
description f and the elements {Di,β}i∈[n], β∈{0,1}.

Eval(kf , x): Given a constrained key kf for circuit f = (n, q,A,B, GateType) and input x ∈ {0, 1}n,

abort if f(x) = 0. Otherwise, evaluate the circuit level by level starting from the input wires. For
every wire w that evaluates to 1, compute the value Ew := (gn+j−1)

rw
∏
i di,xi , where j = depth(w).

Note that since rn+q = α, we have En+q = F (k, x). For every wire we distinguish the following cases:

Input wire: If w ∈ [n], we only consider those w for which xw = fw(x) = 1. By repeatedly applying
the multilinear maps to the values {Di,xi}i 6=w, compute D−w(x) := (gn−1)

∏
i 6=w di,xi and pair it

with Kw = grw·dw,1 to obtain Ew := gn
rw

∏
i di,xi .

OR gate: Let w ∈ Gates be such that fw(x) = 1 and GateType(w) = OR and let j = depth(w). Apply
the bilinear maps to {Di,xi}i∈[n] to compute D(x) := gn

∏
i di,xi . If fA(w)(x) = 1 then compute:

e(EA(w),Kw,1) · e(Kw,3, D(x))

= e
(
(gn+j−2)

rA(w)

∏
i di,xi , gaw

)
· e
(
(gj−1)

rw−aw·rA(w) , gn
∏
i di,xi

)
= (gj+n−1)

rw
∏
i di,xi = Ew

Otherwise, we must have fB(w)(x) = 1, so compute:

e(EB(w),Kw,2) · e(Kw,4, D(x)) = (gj+n−1)
rw

∏
i di,xi = Ew

AND gate: Let w ∈ Gates be such that fw(x) = 1, GateType(w) = AND and let j = depth(w). We
have fA(w) = fB(w) = 1 and with D(x) as above we compute:

e(EA(w),Kw,1) · e(EB(w),Kw,2) · e(Kw,3, D(x))

= e
(
(gn+j−2)

rA(w)

∏
i di,xi , gaw

)
· e
(
(gn+j−2)

rB(w)

∏
i di,xi , gbw

)
· e
(
(gj−1)

rw−aw·rA(w)−bw·rB(w) , gn
∏
i di,xi

)
= (gj+n−1)

rw
∏
i di,xi = Ew

Evaluating all wires w in order, we arrive at En+q = (gn+`−1)
α
∏
i di,xi = F (k, x).

Pseudorandomness. The above construction satisfies pseudorandomness for constrained PRFs:

Theorem 4. If there exists a PT adversary A that makes 1 challenge query and breaks pseudoran-
domness of the above n-bit depth-` circuit-constrained PRF with advantage ε(λ) then there exists a
PT algorithm B that breaks the (n + ` − 1)-Multilinear Decisional Diffie-Hellman assumption with
advantage 2−n · ε(λ).

Proof. Consider a PT algorithm A that wins the pseudorandomness game with advantage ε(λ). We
assume that A only queries its Challenge oracle once, say on x∗. Without loss of generality, we
moreover assume that A never queries its Constrain oracle on a circuit f with f(x∗) = 1 and it never
queries its Eval oracle on x∗. We construct an algorithm B that uses A to break (n+ `− 1)-MDDH.

Setup. B receives a challenge consisting of a group sequence ~G and g = g1, g
c1 , . . . , gcn+` along with

T , where T is either (gn+`−1)
∏
i∈[n+`] ci or a random element from Gn+`−1. Using the challenge, B

implicitly defines the key k as follows: It chooses x∗←$ {0, 1}n and z1, . . . , zn←$ Zp and sets

Di,β :=

{
gci if x∗i = β
gzi if x∗i 6= β
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for i ∈ [n], β ∈ {0, 1}. This defines di,x∗i := ci and di,x∗i := zi (where x∗i denotes 1− x∗i ); moreover we
will view α as cn+1 · · · cn+`. All values are distributed as in the real scheme.

Constrain queries. Suppose that A queries a constrained key for circuit f = (n, q,A,B, GateType).
If f(x∗) = 1 then B aborts and outputs a random guess b′←$ {0, 1}. Otherwise, it produces the key
component Kw for every wire w of f starting from the input wires:

Input wire: Suppose w ∈ [n]. If x∗w = 1 then choose rw←$ Zp and compute the key component:

Kw = (Dw,1)
rw := grw·dw,1 .

If x∗w = 0 (in which case dw,1 = zw), choose ηw←$ Zp, implicitly set rw := cn+1+ηw and compute

Kw :=
(
gcn+1 · gηw

)zw = grw·dw,1 .

OR gate: For w ∈ Gates with GateType(w) = OR and depth(w) = j, again distinguish two cases. If
fw(x∗) = 1, choose aw, bw, rw←$ Zp and create the components as specified by Constrain:

Kw,1 := gaw Kw,2 := gbw Kw,3 := (gj−1)
rw−aw·rA(w) Kw,4 := (gj−1)

rw−bw·rB(w)

(If e.g. rA(w) contains cn+1 · · · cn+j−1, compute (gj−1)
rA(w) via the pairings.) If fw(x∗) = 0 then

B chooses ψw, φw, ηw←$ Zp and implicitly sets aw := cn+j + ψw, bw := cn+j + φw and rw :=
cn+1 · · · cn+j + ηw. Since fA(w)(x

∗) = fB(w)(x
∗) = 0, we have rA(w) := cn+1 · · · cn+j−1 + ηA(w)

and rB(w) := cn+1 · · · cn+j−1 + ηB(w). This enables B to create the key components as follows:

Kw,1 := gcn+j · gψw Kw,2 := gcn+j · gφw

Kw,3 := (gj−1)
ηw−cn+j ·ηA(w)−ψw(cn+1···cn+j−1+ηA(w))

= (gj−1)
cn+1···cn+j+ηw−(cn+j+ψw)·(cn+1···cn+j−1+ηA(w)) = (gj−1)

rw−aw·rA(w)

Kw,4 := (gj−1)
ηw−cn+j ·ηB(w)−φw(cn+1···cn+j−1+ηB(w)) = (gj−1)

rw−bw·rB(w)

AND gate: For w ∈ Gates with GateType(w) = AND and depth(w) = j again distinguish two cases.
If fw(x∗) = 1, choose aw, bw, rw←$ Zp and compute:

Kw,1 := gaw Kw,2 := gbw Kw,3 := (gj−1)
rw−aw·rA(w)−bw·rB(w)

If fw(x∗) = 0 then choose ψw, φw, ηw←$ Zp. If fA(w)(x
∗) = 0 then implicitly set aw := cn+j+ψw,

bw := φw, rw := cn+1 · · · cn+j + ηw. Since we have rA(w) = cn+1 · · · cn+j−1 + ηA(w) and since
(gj−1)

rB(w) can be computed via the pairings, B can compute the key components as follows

Kw,1 := gcn+j · gψw Kw,2 := gφw

Kw,3 := (gj−1)
ηw−ψw·cn+1···cn+j−1−(cn+j+ψw)ηA(w)−φw·rB(w)

= (gj−1)
cn+1···cn+j+ηw−(cn+j+ψw)·(cn+1···cn+j−1+ηA(w))−φw·rB(w) = (gj−1)

rw−aw·rA(w)−bw·rB(w)

If fA(w)(x
∗) = 1 then we must have fB(w)(x

∗) = 0 and B can compute the key components as
above with the roles of aw and bw reversed.
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Evaluate queries. Suppose A queries Eval on x. If x = x∗ then B aborts and outputs b′←$ {0, 1}.
Otherwise, let j be such that xj 6= x∗j . Repeatedly applying the pairings, B computes g

cn+1···cn+`
` =

g α` =: A, as well as (gn−1)
∏
i∈[n]\{j} di,xi , and by raising it to zi = di,xi , obtains H := (gn−1)

∏
i∈[n] di,xi .

From this it computes
e(A,H) = e

(
gα` , (gn−1)

∏
i∈[n] di,xi

)
= F (k, x) .

Challenge query. WhenA queries the challenge oracle for a value different from x∗, B aborts and out-

puts b′←$ {0, 1}. Otherwise, it returns T , which is either (gn+`−1)
∏
i∈[n+`] ci = (gn+`−1)

α
∏
i∈[n] di,x∗i =

F (k, x∗) or a random group element in Gn+`−1, thus perfectly simulating the pseudorandomness ex-
periment. When A terminates outputting a bit b′, B halts and returns b′.

Success probability. The probability that B wins the MDDH game is analyzed as for the bit-fixing
VRF. Let abort denote the event that B aborts during the simulation. Since B aborts if and only if A
queries its Challenge oracle on a value different from x∗, we have Pr[abort] = 1− 2−n. Moreover,
if B aborts then it outputs a random bit, thus we have Pr[B wins | abort] = 1

2 . If B does not abort
then it wins with the same probability as A (since A’s success is independent of B guess of x∗), whose
advantage is ε(λ). Thus Pr[B wins | abort] = 1

2 + ε(λ). Together, this yields

Pr[B wins] = Pr[B wins | abort] · Pr[abort] + Pr[B wins | abort] · Pr[abort]

= 1
2 · (1− 2−n) +

(
1
2 + ε(λ)

)
· 2−n = 1

2 + 2−n · ε(λ) ,

which shows that B’s advantage in breaking MDDH is 2−n · ε(λ).

B Implementing Our Constructions With Graded Encodings

B.1 Graded Encoding Systems.

Garg, Gentry and Halevi [GGH13a] define an “approximate” version of multilinear groups, which
they call graded encoding systems. Roughly speaking, to an element of a multilinear group, such

as g αi corresponds a set S
(α)
i of bit strings in a graded encoding system. These encodings permit

additive homomorphisms (corresponding to the group operation in Gi) and a bounded multiplicative
homomorphism (corresponding to the multilinear map e).

Formally, a κ-graded encoding system consists of a ring R and a system of sets S = {S(α)
i ⊂ {0, 1}∗ |

i ∈ [κ], α ∈ R}, such that for every i ∈ [κ] and every distinct α1, α2 ∈ R, the sets S
(α1)
i and S

(α2)
i

are disjoint. For α ∈ R, the set S
(α)
i represents the possible level-i encodings of α, and we define

Si :=
⋃
α∈R S

(α)
i , which corresponds to the group Gi. We require that there exist the following

efficient procedures:

Instance generation: On input the security parameter and the number of levels κ, InstGen(1λ, 1κ)
outputs parameters params, which describe a κ-graded encoding system and pzt, the zero-test
element for level κ. The value params will be an implicit input to all of the following procedures.

Ring sampler: samp() outputs a level-0 encoding a ∈ S(α)0 for a uniformly random α←$R.

Encoding: enc(i, a) takes a level i ∈ [κ] and a level-0 encoding a ∈ S(α)
0 for some α ∈ R, and outputs

a level-i encoding u ∈ S(α)
i for the same α.
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Re-randomization: reRand(u) re-randomizes a level-i encoding u of α, outputting an element of

S
(α)
i . Given two encodings u0, u1 ∈ S

(α)
i , the output distributions of u′0←$ reRand(i, u0) and

u′1←$ reRand(i, u1) are statistically the same.2

Addition and negation: Given i ∈ [κ] and two encodings u1 ∈ S(α1)
i and u2 ∈ S(α2)

i , add(i, u1, u2)

outputs an encoding u ∈ S(α1+α2)
i and neg(i, u1) outputs an encoding u ∈ S(−α1)

i .

Multiplication: For u1 ∈ S(α1)
i and u2 ∈ S(α2)

j , with i+ j ≤ κ, mul(i, u1, j, u2) outputs an encoding

u ∈ S(α1·α2)
i+j .

Zero-test: Algorithm isZero(pzt, u) outputs 1 if u ∈ S
(0)
κ and outputs 0 otherwise. Together with

negation and addition, this yields an equality test for elements in Sκ.

Extraction: This outputs a canonical, random representation of ring elements from one of their level-

κ encodings: ext(pzt, u) outputs K ∈ {0, 1}`(λ), such that for any α ∈ R, and any u1, u2 ∈ S(α)
κ ,

we have
ext(pzt, u1) = ext(pzt, u2)

with overwhelming probability. Moreover, for a uniform α←$R and any u ∈ S(α)
κ , the output

of ext(pzt, u) is statistically uniform in {0, 1}`(λ).

The GDDH assumption. Gentry et al. [GGH13a] define a hardness assumption for graded en-
codings, which corresponds to the κ-multilinear decisional Diffie-Hellman assumption in multilinear
groups. Consider the following game:

• The challenger runs (params,pzt)←$ InstGen(1λ, 1κ), and for i = 1, . . . , κ + 1, samples level-0
encodings of random elements αi←$R and computes level-1 encodings of them:

ai←$ samp() ui←$ enc(1, ai)

• It computes a level-0 encoding of
∏
i∈[κ+1] αi by setting ã←$

∏
i∈[κ+1] ai, where for u1, . . . , un ∈

S0 we use the product notation to denote∏
i∈[n] ui := mul

(
0, . . .mul

(
0,mul(0, u1, 0, u2), 0, u3

)
, . . . , 0, un

)
. (2)

• It chooses a level-0 encoding of a random element: â←$ samp(). It flips a bit b←$ {0, 1}, sets
T0←$ enc(κ, ã) and T1←$ enc(κ, â), and sends (params,pzt, {ui}i∈[κ+1], Tb) to the adversary, who
returns a bit b′.

The κ-GDDH assumption states that the probability that the adversary outputs b′ = b does not exceed
1
2 by more than an amount that is negligible in λ.

2More precisely, since the realization of graded encodings in [GGH13a] are “noisy” encodings over ideal lattices,
encodings u0 and u1 must be below a given noise bound, so that the distributions of u′0 and u′1 are statistically the same.
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B.2 The Bit-Fixing VRF Implemented With Graded Encoding Systems

Construction. Boneh and Waters [BW13] show that their multilinear-group based constrained PRF
can be transformed to the setting of graded encoding system. Here, we show that our bit-fixing
VRF can also be implemented in graded encoding systems, and note that the transformation of our
circuit-constrained VRF works analogously. A scheme that includes a verification procedure (as for
VRFs) which is first defined using the abstraction of multilinear groups and then tranformed to
graded encodings, is the construction of identity-based aggregate signatures by Hohenberger, Sahai
and Waters [HSW13a]. Our graded-encodings-based bit-fixing VRF is defined as follows:

Setup(1λ, 1n): On input λ and the input length n, Setup runs InstGen(1λ, 1n) to generate parameters

(params,pzt) for the graded encoding system. params includes a level-1 encoding of 1 ∈ R, which we
denote as g. Next, run samp() 2n+1 times to generate level-0 encodings c and di,β of random elements
γ, δi,β ←$R, for i ∈ [n], β ∈ {0, 1}. Define C←$ enc(1, c) and Di,β ←$ enc(1, di,β) for i ∈ [n], β ∈ {0, 1}.
The VRF public and secret key are defined as

pk :=
(
params,pzt, C, {Di,β}i∈[n], β∈{0,1}

)
(3)

sk :=
(
pk, c, {di,β}i∈[n], β∈{0,1}

)
The domain is X = {0, 1}n, the range of the function is Y = {0, 1}`(λ) (with ` defined as the output
length of the extraction algorithm ext), and proofs are in Sn−1.

The function value and proof computation for input x = (x1, . . . , xn) ∈ {0, 1}n are defined as

F (sk, x) := ext
(
pzt, enc(n, c ·

∏
i∈[n] di,xi)

)
P (sk, x) := reRand

(
enc(n− 1,

∏
i∈[n] di,xi)

)
where the product is defined as repeated application of the multiplication algorithm mul to level-0
encodings, as in Equation (2).

Verify(pk, x, y, π): To verify a tuple (x, y, π) ∈ {0, 1}n×{0, 1}`(λ)×Sn−1 w.r.t. a public key pk as in (3),

compute D(x), a level-n encoding of
∏
i∈[n] δi,xi , by multiplying the public-key elements {Di,xi}i∈[n]:

D(x)←$ mul
(
n− 1, . . . ,mul

(
2,mul(1, D1,x1 , 1, D2,x2), 1, D3,x3

)
, . . . , 1, Dn,xn

)
∈ S

(
∏
i∈[n] δi,xi )

n

First, we check whether the purported proof π is a level-(n−1) encoding of
∏
i∈[n] δi,xi , that is, whether

π ∈ (Sn−1)
(
∏
i∈[n] δi,xi ). We can do this by multiplying π with g (the level-1 encoding of 1 contained in

params), which for correct proofs yields an element of Sn
(
∏
i∈[n] δi,xi ). Subtracting D(x), which is an

element of this set, should then yield and encoding of 0, which can be verified using the zero-test for
level-n elements.

It then remains to check whether y is the canonical representative of γ ·
∏
i∈[n] δi,xi ∈ R, which

can be done by multiplying C and π, which yields an element of Sn
(γ·

∏
i∈[n] δi,xi ), from which we can

extract the canonical representation. Verify thus output 1 if the following equations are satisfied:

isZero
(
add
(
n,mul(1, G, n− 1, π), neg(n,D(x))

))
= 1 ext

(
pzt,mul(1, C, n− 1, π)

)
= y

Constrain(sk,v): Since multiplying a proof P (sk, x) with the public-key element C and extracting

the canonical representative yields F (sk, x) (cf. the second verification equation), it suffices that a
constrained key lets us construct P (sk, x).
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Constrain takes as input sk and a vector v ∈ {0, 1, ?}n describing the constrained input space as
Sv := {x ∈ {0, 1}n | ∀i ∈ [n] : xi = vi ∨ vi = ?}. Let V := {i ∈ [n] |vi 6= ?} be the set of indices fixed
by v. Return skv := (pk, kv), with kv defined as follows:

If V = {j} then set kv←$ reRand(dj,vj ) ∈ S
(dj,vj )

0 .

If |V | > 1 then repeatedly apply mul to di,vi for all i ∈ V , to compute a level-0 encoding k′v of∏
i∈V δi,vi and set kv←$ reRand

(
enc(|V | − 1, kv)

)
∈ (S|V |−1)

(
∏
i∈V δi,vi ).

Prove(skv, x): Again let V := {i ∈ [n] |vi 6= ?} and let V := {i ∈ [n] |vi = ?} be its complement.

If xi 6= vi for some i ∈ V then abort. Otherwise compute a level-|V | encoding DV (x) of
∏
i∈V δi,xi

by repeatedly applying mul to {Di,xi}i∈V . Then multiply DV (x) with the constrained key kv, which
yields a level-(n− 1) encoding of

∏
i∈[n] δi,xi , which we rerandomize to obtain the proof:

π ←$ reRand
(
mul(|V |, DV , |V | − 1, kv)

)
∈ (Sn−1)

(
∏
i∈[n] δi,xi ) .

Output F (sk, x) := ext
(
pzt,mul(1, C, n− 1, π)

)
, the random representative of γ ·

∏
i∈[n] δi,xi ∈ R.

Security. Provability and uniqueness follow from the correctness of the algorithms for the graded
encoding system. In contrast to the instantiation based on multilinear groups, there is no unique proof;
instead, every level-(n−1) encoding of

∏
i∈[n] δi,xi satisfies the verification equation. Constraint-hiding

follows form the fact that Constrain randomizes the proof elements before outputting them.
The proof of pseudorandomness proceeds analogously to that for our instantiation in Section 4.

Given an n-GDDH challenge (params,pzt, {ui}i∈[n+1], T ), the simulator guesses the challenge query
x∗←$ {0, 1}n and sets the public-key components Di,x∗i

:= ui and C := un+1. For the remaining
components, it samples n level-0 elements zi←$ samp() and sets Di,x∗i

:= enc(1, zi) (where x∗i denotes
the bit 1−x∗i ). The challenge query is answered as ext(pzt, T ), while constrained-key and prove queries
are simulated using the values zi as in the proof for our construction based on multilinear groups in
Section 4.3.
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