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Abstract—Several fault attacks against pairing-based
cryptography have been described theoretically in recent
years. Interestingly, none of these have been practically
evaluated. We accomplished this task and prove that fault
attacks against pairing-based cryptography are indeed
possible and are even practical — thus posing a serious
threat. Moreover, we successfully conducted a second-
order fault attack against an open source implementation
of the eta pairing on an AVR XMEGA A1. We injected
the first fault into the computation of the Miller Algorithm
and applied the second fault to skip the final exponen-
tiation completely. We introduce a low-cost setup that
allowed us to generate multiple independent faults in one
computation. The setup implements these faults by clock
glitches which induce instruction skips. With this setup we
conducted the first practical fault attack against a complete
pairing computation.

Index Terms—Pairing-Based Cryptography, Fault At-
tacks, eta Pairing.

I. INTRODUCTION

Public-key cryptography is based on mathematical
problems which are assumed to be hard. The secret
information is protected by an attacker’s inability to
solve these problems. However, by inducing hardware
or software faults into the computation of an algorithm
and by analyzing the faulty result, an attacker might
reveal that secret information without the need to solve
the mathematical problem. Since fault attacks were first
described in 1997 [15], they have been applied against
various cryptographic algorithms [40] and became a
standard tool to facilitate cryptanalysis. Nowadays, many
techniques exist to induce faults, e.g., clock glitching,
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power glitching, and laser beams [9]. To thwart counter-
measures against fault attacks, even two faults within one
computation have been performed [26]. These attacks are
often called second-order attacks [19].

In this work, we present a successful fault attack
against a pairing computation. Pairings are bilinear maps
defined over groups on elliptic curves. Originally, they
have been used for cryptanalytic techniques [28]. In
2001, however, they gained the research communities
attention when they were used to realize identity-based
encryption [16], [38]. Today, a wide range of dif-
ferent pairings is used [6] and several cryptographic
protocols are based on pairings, e.g., attribute-based
encryption [37], identity-based signatures [23], and key
agreement protocols [24]. Moreover, pairings help to
secure useful technologies such as wireless sensor net-
works [33], [34].

When we argue about attacks on pairings, we need
to understand that most pairings are computed with the
so-called Miller Algorithm, followed by a final exponen-
tiation. In general both steps are considered hard to invert
[21], [25]. This is different from other cryptographic
primitives such as elliptic curve cryptography (ECC)
with only one computational step. Here, a single fault is
sufficient to reveal the secret [13]. Furthermore, in ECC
the secret key is a scalar [20], while in pairing-based
cryptography (PBC) it is an elliptic curve point [16].
Hence, attacks on ECC [13] can not simply be applied
to PBC.

Previous results on fault attacks against pairing com-
putations have two drawbacks. None of the proposed
attacks against PBC have been practically evaluated on
a real pairing implementation to date. Furthermore, the
existing theoretical approaches use only a single fault to
target either the Miller Algorithm, e.g. [30], [42], or the
final exponentiation [27]. It is not clear how the two steps



can be combined to break the complete pairing with a
single fault. In [21], it was even argued that inverting
pairings in one combined step does not seem to work.
Therefore, it is very natural to inject two faults in one
pairing computation to facilitate the inversion of pairings.

Our contribution: We conducted the first practical
fault attack against a real-world pairing implementation.
We successfully realized a second-order fault attack
against an open source implementation [5] of the eta
pairing [11]. We skipped two instructions in the pairing
computation. With the first fault we attacked the Miller
Algorithm and with the second fault we completely
skipped the final exponentiation. We show a general
mathematical analysis for this type of attacks and apply
it to the concrete fault attack we conducted. Together
with an automation of the analysis, this easily leads to
the secret key: for the most cases were able to reveal the
secret key in a few minutes. This proves the claim that
fault attacks on pairings are a serious threat. Moreover,
we showed that our mechanism of skipping instructions
can be used to practically realize previous attacks. In
order to perform general second-order attacks, we built
a setup which precisely generates multiple clock glitches
to skip specific instructions of the code.

Remark on the eta pairing: The eta pairing is no
longer recommended for security applications [4], [10],
[22]. It was important for us not to attack a self-made
and tweaked implementation. For our target device, an
XMEGA A1 from the Atmel AVR family, the eta pairing
was the only publicly available implementation with
acceptable performance. We emphasize that our attack
is not at all restricted to this pairing and can be directly
applied to other pairings.

Organization: The rest of this work is structured as
follows: in Section II we present mathematical back-
ground information on pairings. In Section III, we dis-
cuss related work on fault attacks against pairings and
categorize existing attacks into two distinct categories.
In Section IV, we describe the low-cost setup that we
used for the fault induction. In Section V, we describe
how we used this setup to conduct a second-order fault
attack against an open source pairing implementation.
We resume the description of the second-order fault
attack in Section VI by explaining how the faulty pairing
computations can be analyzed to reveal the secret input
point. Finally, we conclude in Section VII.

II. BACKGROUND ON PAIRINGS

Let E denote an elliptic curve that is defined over a
finite field Fq, where q = pm for some prime p and

m ≥ 1. Based on the chord and tangent law [20], we
define an additive group (E,⊕). With [a]U we denote
scalar multiplication of U with a ∈ Z. For U, V ∈ E,
let lU,V denote the line through U and V . With gU we
denote the tangent line through U at E. Hence, lU,V and
gU are the lines that occur while computing U ⊕ V and
[2]U , respectively.

A pairing is an efficiently computable, non-degenerate
bilinear map e : G1 × G2 → GT , where G1 and G2

are rth order subgroups of an elliptic curve E. In this
work, we always assume r to be prime. The group GT ,
which is a subgroup of F∗qk , is also of order r. Here, k
is the so-called embedding degree, which is defined as
the smallest integer k such that r divides (qk− 1). Most
pairings e(P,Q) on elliptic curves are computed by first
computing the Miller function fn,P (Q) [29] followed by
a final exponentiation to the power z = (qk−1)/r. Since
the Miller function can be efficiently evaluated with the
Miller Algorithm, cf. Algorithm 1, these two steps are
often called Miller loop and final exponentiation [17].

Algorithm 1 Miller Algorithm and final exponentiation

Require: n =
∑t−1

j=0 nj2
j with nj ∈ {0, 1} and

nt−1 = 1, P,Q ∈ E
Ensure: fn,P (Q)

1: T ← P , f ← 1
2: for j = t− 2 .. 0 do
3: f ← f2 · gT (Q)/l[2]T,−[2]T (Q)
4: T ← [2]T
5: if nj = 1 then
6: f ← f · lT,P (Q)/lT⊕P,−(T⊕P )(Q)
7: T ← T ⊕ P
8: end if
9: end for

10: f ← fz . final exponentiation
11: return f

For a detailed background on the arithmetic of elliptic
curves and cryptographic pairings we refer to [14], [20].

In this work, we invert a pairing with the help of faults.
We induce faults in the computation of e(P,Q) and
reveal the secret input point Q. Thus, the faults facilitate
the mathematical cryptanalysis, which targets the so-
called first argument pairing inversion problem (FAPI-1):
given a point P ∈ G1 and a value γ ∈ GT , both chosen
at random, find Q ∈ G2 such that e(P,Q) = γ [21].
(FAPI-2 is the problem with P unknown and Q ∈ G2

chosen at random.) In the literature, FAPI-1 is usually
split into two parts: the exponentiation inversion problem



is, given (P, z, γ), to compute the field element β ∈ F ∗qk
such that βz = γ and β = fn,P (Q), where Q ∈ G2 is
the solution of FAPI-1 for (P, γ) [41]. The other part of
FAPI-1 is the Miller inversion problem: given (n, β, P )
with n ∈ N, β ∈ F ∗qk and P ∈ G1 chosen at random,
compute the point Q ∈ G2 such that fn,P (Q) = β,
where fn,P (Q) is the output of the Miller loop for input
(n, P,Q).

III. EXISTING WORK ON FAULT ATTACKS

AGAINST PAIRINGS

In recent years, several fault attacks against pairings
have been proposed [7], [27], [30], [31], [35], [36], [42].
Most of them focus on the Miller Algorithm, while
lately also an attack against the final exponentiation was
published [27].

Some works contain categorizations of fault attacks,
which help to structure this field and to classify known
and new attacks. In [40], fault attacks were classified
following the main components of a processor, regarding
the precision of a fault an adversary is able to induce, and
regarding the particular abstraction level on which a fault
is exploited. Fault attacks have also been categorized as
having three main effects on an algorithm: knock out
a step in the computation, cause a loop to either end
prematurely or run over, and to cause the data being
operated on to be corrupted in some way [42]. In the
same work, the authors also considered the locations
that a data corruption fault can target in the Miller loop.
Regarding fault attacks on pairing computations, faults
were also described as corrupting precomputed values
or parameters, inputs to the pairing, and intermediate
values [31]. All these criteria are helpful to describe fault
attacks on a high level, but they are not unambiguous:
A fault which knocks out a step in the computation so
that the loop runs over cannot be uniquely categorized in
accordance with [42]. A fault in a program flow which
alters the public input P after some iterations of the loop
and thus, also alters the intermediate values, cannot be
uniquely categorized in accordance with [31].

Algebraic Categorization of Faults against the
Miller Algorithm

For the analysis of faulty computations, the physical
realization of the fault attack is not relevant. Moreover,
different physical faults or fault injection techniques may
lead to the same effect on the algorithm. In our opinion,
when talking about the effects a single fault can have
on the Miller Algorithm, there are only two distinct

categories. A fault can either be modeled as having
modified the Miller bound n, or it can be modeled as
having modified the Miller variable f .

Modification of n: In this category we classify all
faults that can be modeled by a modification of the Miller
bound n to n′, cf. [7], [30], [31], [35], [36]. This includes
the following interesting attacks:
• Modification of n while loading the loop counter.
• Modification of n to n′ directly in memory [30].
• Early termination of the Miller loop.
• Skipping of conditional if branches [7].
• Corruption of pointer to the Miller variable.
Modification of f : This category includes all faults

which result in a modification of the Miller variable f ,
cf. [31], [42]. The Miller variable is updated during all
iterations of the Miller loop. Thus, it can be modified
during any iteration of the loop. Note that the actual
fault does not have to alter f directly, but, e.g., the
intermediate point T , cf. Algorithm 1. However, this
will result in a modified computation of f . This category
includes the following interesting attacks:
• Disturb loading of P or Q during line computations.
• Skip update of point during line computations.
• Corrupt a field element directly in memory [42].
• Sign change fault attack [42].
All attacks from both categories can be realized with

our setup from Section IV. We will present one practical
example in Section V-B.

IV. LOW-COST PLATFORM FOR MULTIPLE

INSTRUCTION GLITCHES

In this section, we explain the fundamental setup that
we used for our second-order fault attack. For this attack,
we use instruction skip faults, i.e., transient faults which
skip parts of the executed code. We generate these faults
by means of clock glitching. In Section IV-A, we intro-
duce our universal low-cost platform that generates clock
glitches, and Section IV-B shows how clock glitches can
be used to skip instructions.

A. System Setup

In this section, we detail our general setup for imple-
menting CPU clock glitching. This is the mechanism of
altering the code execution by clocking the CPU outside
its specification for a short period of time. Our setup
is similar to the setup of [8] besides that we are able
to introduce multiple faults into one computation. The
setup is not specialized to our attack and can be used
in other scenarios. It consists of three main components:
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Figure 2. The figure shows the output gl_clk of the glitcher with two glitches. The first glitch is introduced with a delay of t1 = 3
cycles of the 33 MHz clock, measured relatively to the trigger gl_trig. Its duration is d1 = 2. With p1 = 1, the 99 MHz clock is directly
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to the first glitch. Its duration is d2 = 1. With p2 = 2, the 99 MHz clock is gated in the second half of the 33 MHz clock cycle.
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Figure 1. Simplified block diagram of our setup. The host configures
the glitcher, which generates the glitches on the external clock of the
target device. The target executes the program under attack.

the glitcher, the host system, and the target. A block
diagram of the setup is shown in Figure 1, and Figure 3
shows a picture of our setup. The glitcher is used to
generate the external clock for the target device. It is
also used to generate the glitches on the clock signal.
The host system is used to configure the glitcher and
to acquire the output of the device under attack. The
target executes the attacked program. We now describe
the three components individually.

Clock Glitcher: For the hardware of the glitcher we
use the DDK [32]. This is a security-focused low-cost
open source development platform which consists of a
field programmable gate array (FPGA) and an ARM
CPU. The FPGA is used to perform the timing critical
parts such as generation of the target’s clock signal. The
ARM CPU is mainly used to interface the FPGA with the
host system. It implements a serial terminal that provides
external control of the FPGA and an easy automation of
the setup.

The glitcher uses two internal clocks: a low frequency
clock at fl = 33 MHz and a high frequency clock
at fh = 99 MHz. The FPGA implements a 32-bit
timer that manages the timing of different events. The
clock source of the timer is fl. The glitcher provides a
trigger input gl_trig to synchronize it with the target.
Internally, this input is basically used to reset the timer.
The main functionality of the glitcher is to generate a
clock signal gl_clk for the target. This output can be
switched between fl and fh. A glitch is defined by three
parameters, a timestamp t, a duration d, and a pattern
p. When the timer reaches t, a glitch is generated by a
synchronized switch from fl to fh for d periods of fl, i.e.,
3 · d periods of fh. We implemented two glitch patterns.
For p = 1, the high frequency clock fh is directly used to
generate the glitch. For p = 2, the clock is gated during
the second half of the fl clock period.

It is crucial for our second-order attack to perform
two synchronized glitches. Therefore, the glitcher im-
plements a glitch queue. This queue can be filled with
up to 256 triples (t1, d1, p1), . . . , (t256, d256, p256). Then,
for every element in the queue, the corresponding glitch



is generated. For second-order attacks only two glitches
need to be scheduled in the glitch queue. For more
details on how the glitcher works, see [18]. To fill the
queue, the glitcher’s internal ARM CPU listens to the
serial input at gl_cfg.

Figure 2 shows two glitches. The first glitch is
introduced with a delay of t1 = 3 cycles of the 33 MHz
clock, measured relatively to the trigger gl_trig. Its
duration is d1 = 2. With p1 = 1, the 99 MHz clock is
directly used to generate the glitch pattern. The second
glitch is introduced with a delay of t2 = 2 cycles of the
33 MHz clock, measured relatively to the first glitch. Its
duration is d2 = 1. With p2 = 2, the 99 MHz clock is
gated in the second half of the 33 MHz clock cycle.

Host System: The host is a Linux based system
that configures the glitcher and automates the setup. It
provides two serial IO lines. One is used to configure
the glitcher while the other is used to receive the output
from the target. The host system includes a Python [3]
library to interface with the glitcher. For example, this
allows an in-place analysis and logging of the target’s
output, followed by a direct reconfiguration of the next
attacks. Another functionality provided by the host is
to periodically execute a self test routine for testing the
integrity of the setup.

Target: For an automated reset of the target the
glitcher controls the target’s reset pin. Furthermore, the
CPU of the target device is clocked with an external
clock tgt_clk. We control the CPU clock by connect-
ing tgt_clk to the glitcher output gl_clk.

For the concrete attack of this paper, we assume
that the target generates a trigger on output tgt_trig
before the computation of the target program is started.
It is used to synchronize the target with the glitcher
via gl_trig. Generating the trigger by the target is
used to simplify the setup. In a real attack, it has to
be generated by other means. For example, it could
be derived from sniffing the targets IO to locate the
command that initiates the attacked computation.

Finally, the IO of the target is connected to the host
for initiating the attacked computation and for analysis
of the computation’s results.

B. Instruction Skips

Clock glitches can generate instruction skip faults,
instruction replacement faults, and data corruption faults
on an AVR CPU [8], which is our target in the concrete
attack described in Section V. Introducing faults by
clock glitching is done by systematically overclocking
the target device at defined instructions. Figure 2 shows a

waveform of the target CPU clock. A glitch is introduced
at t1 = 3. If the difference ∆ of two consecutive edges is
outside of the functional range of the CPU circuit, there
is a fair chance that the CPU computation gets disturbed.
For example, the opcode of the current instruction may
be altered to a non-existing opcode. An AVR CPU
ignores invalid opcodes during program execution [8].
This results in instruction skips. Instruction skips by
faults can be used to provoke very different effects on
the execution of a concrete algorithm. In Section V and
Section VI we will show how instruction skips can be
used to attack a concrete pairing implementation.

V. SECOND-ORDER FAULT ATTACK AGAINST THE

ETA PAIRING

This section describes our concrete second-order fault
attack against an open source pairing implementation. To
conduct the attack, we use the setup that we explained
in the previous section. This setup generates the required
clock glitches which induce instruction skips.

In Section V-A, we first give an overview how we
perform second-order attacks with the setup. We will
split the attack into two stages, a profiling phase and a
target phase. The profiling phase is only required once.
We use it to learn relevant characteristics of the target
implementation. Then, in the target phase, the attack can
be performed against similar victim devices that store
different secrets.

In Section V-B, we introduce our target device and
explain our concrete attack on the pairing. Furthermore,
we will explain how we were able to break the target
implementation in a few minutes for most of the cases.

A. Realization of Second-Order Fault Attacks against a
Pairing Computation

We use the setup described in Section IV-A. This setup
allows us to apply the instruction skip mechanism and
log the output of the computation. We place the first
fault during the execution of Algorithm 1 such that the
cryptanalysis of the Miller inversion will be facilitated.
The second fault will be introduced at line 10 to skip
the procedure call to the final exponentiation.

To configure the glitcher from Section IV-A, the
timing t, the duration d, and the pattern p of the
glitches are required. The timing depends on the secret
argument of the pairing. Hence, the timing is a priori
unknown to us, which makes it challenging to determine
t1 and t2. Thus, we execute a profiling phase to find
reasonable configurations (t1, d1, p1) and (t2, d2, p2) for
the two glitches. We emphasize that once the profiling



is completed, we do not need to repeat it when we
attack new secrets on similar devices. Without loss of
generality, we now assume that the second argument
Q ∈ G2 is the secret point.

1) Profiling Phase: The profiling relies on two as-
sumptions:
• The assembly code of the target pairing implemen-

tation is known to us.
• We are able to execute arbitrary profiling code on

a profiling device similar to the target device.
Based on these assumptions, we first execute a modified
pairing implementation on the profiling device. We mod-
ify the implementation in one or more of the following
ways:
• We are able to compute the pairing for different

values of Q that are chosen by us.
• We implement triggers T1 and T2 on two external

IO pins. Here, T1 is raised immediately before the
first target instruction and T2 is raised immediately
before the second target instruction.

• We implement an emulation mode that branches
over the first target instruction from the assembly.
This emulates successfully skipping the first target
instruction.

These modifications allow us to determine t1 and t2,
the timings of the two target instructions, in every
computation of the modified pairing. Note that t2 is
measured relatively to t1. To measure t2 we use the
emulation mode because we are interested in the delay
for the case were the first fault has been successful.
We execute the modified implementation for different
secrets Q chosen uniformly at random from G2. As a
result, we obtain distributions for t1 and t2. Since these
distributions are obtained over the random choices of Q,
we will choose the parameter triples in the target phase
according to them.

These steps of the profiling can be done either by an
oscilloscope or by programming a special profiling mode
into the FPGA of the glitcher. The profiling mode counts
the number of clock cycles between tgt_trig and T1,
and between T1 and T2.

In the next step of the profiling, we determine useful
combinations of the remaining glitching parameters d1,
d2, p1, and p2. We do this by performing a large number
of experiments where we use the glitcher to introduce
glitches at T1 and T2 that are close to the target instruc-
tions. We use the fact that we know the values of Q in
the profiling phase. Hence, we can predict the output of
the algorithm when successfully glitching either one or

both of the target instructions. This allows us to identify
successful tests and their respective parameters.

2) Target Phase: In the subsequent target phase, the
actual target device with the unmodified code and the
unknown secret is attacked. Therefore, we perform a
sequence of experiments with different combinations
of (t1, d1, p1) and (t2, d2, p2) until we are successful
in skipping the two target instructions. We select the
combinations and their order based on the results of the
profiling phase.

B. Realization of our Concrete Second-Order
Fault Attack against the eta Pairing

For the concrete pairing implementation we used the
RELIC toolkit [5]. It includes C implementations of finite
field arithmetic, ECC, and PBC for different hardware
platforms like Atmel’s AVR family. The RELIC toolkit
has also been used in TinyPBC for the implementation of
PBC in wireless sensor networks [33]. To the best of our
knowledge it is the only freely available implementation
of PBC for AVR CPUs. In our concrete second-order
fault attack, we targeted an AVR XMEGA A1 [1]. AVR
controllers are also used in modern smart cards, while
our version is freely programmable. A microcontroller
from the AVR family was also analyzed in [8]. For our
attack, we use RELIC version 0.3.5 without modifica-
tions of the source code. We compile the library with
the avr-gcc-4.8.2 toolchain and optimization level
-O11. The RELIC AVR default configuration defines the
eta pairing [11] (function pb_map_etats()) as the
standard pairing.

In our experiments both arguments P and Q are
loaded from the internal memory. Loading the public
argument from memory and not via the serial line helps
to simplify the setup, but is not essential for the attack.
Then e(P,Q) is computed on the target device and the
output is returned on the serial IO tgt_io.

We placed the first fault at line 9 of Algorithm 1 such
that the for loop is left after the first iteration. The
second fault was introduced at line 10 of Algorithm 1
to skip the procedure call to the final exponentiation.
A successful attack gave us a faulty computation where
the for loop was executed exactly once and the final
exponentiation was not executed at all. In Section VI,

1If the RELIC library is compiled with optimization level -O2,
the compiler replaces the function call to the final exponentiation
by inline codex. We currently work on an attack for -O2. Here,
we will facilitate the exponentiation inversion by a fault during
the computation of the final exponentiation and by an improved
mathematical analysis.



Table I
ASSEMBLY OF END OF FOR LOOP GENERATED WITH AVR-GCC .

3 call fb4_mul_dxs
4 .LVL43:
5 /*decrement loop counter LSB, MSB */
6 subi r16,1
7 sbc r17,__zero_reg__
8 .loc 1 247 0 discriminator 2
9 breq .+2

10 /*jump to loop begin */
11 rjmp .L2
12 .LBE2:
13 .loc 1 486 0
14 /* clean stack*/
15 subi r28,36
16 sbci r29,-2
17 out __SP_L__,r28
18 out __SP_H__,r29
19 pop r29

Table II
DISTRIBUTION OF THE EXECUTION TIME t1 OF THE RJMP

INSTRUCTION IN TABLE I, DEPENDING ON THE INPUT Q OF
ALGORITHM 1.

t1 in instruction cycles occurrence in %
422,780 1 < 0.01
424,515 1 < 0.01
424,941 1 < 0.01
427,731 1 < 0.01
431,069 1 < 0.01
581,804 3 0.01
581,903 28 0.08
582,001 7 0.02
582,002 590 1.66
582,100 30 0.08
582,101 1,763 4.95
582,111 1 < 0.01
582,199 297 0.83
582,200 32,890 92.35

we will show how this attack can be analyzed to obtain
the secret argument of the pairing. To understand how
we attack the end of the for loop, we refer to Table I.
It shows how the compiler generates the end of the
for loop. An instruction skip fault that removes the
rjmp instruction in line 11 causes the loop to terminate
immediately.

1) Profiling Phase: In the first step, we estimated t1,
the clock cycle of the rjmp instruction t1. Therefore,
we executed approximately 32,000 experiments with ran-
dom choices of Q and measured t1 for each experiment.
The distribution of t1 is given in Table II. Then we
determined t2, the number of clock cycles from the

rjmp to the call of the final exponentiation. We used
the emulation mode of the profiling code. It allowed us to
skip the rjmp instruction at t1. We obtained a constant
value of t2 = 28. Here, t2 is constant because if the first
glitch was successful in leaving the for loop, the code
executed between t1 and t2 is independent of the secret.

To select combinations of d1, d2, p1 and p2 for the tar-
get phase we injected approximately 40,000 faults in less
than 72 hours. Since we knew Q during profiling, and
hence also the values of t1 and t2, we were always able to
introduce the faults at the correct instructions. Regarding
the two patterns p1 and p2 depicted in Figure 2, both
produced good results. To be save, we propose to use
both in the target phase. For the duration of the glitches,
we found d1 = 3 or d1 = 5 and d2 ≤ 5 as reasonable
settings to use in the target phase.

2) Target Phase: Based on our results from the profil-
ing shown in Table II we scheduled t1 as 582,200−i · 99
for i ∈ {0, . . . ,5}.2 If we did not succeed with one
of these values, we fell back to a brute force search
with t1 = 582,200 − i for i = 1,2,3, . . . until we were
successful. We combined each value of t1 with each
combination of d1, d2, p1, and p2 that we determined
in the profiling phase. For t2 we added a small safety
margin such that t2 ∈ {26, . . . ,30}. Furthermore, we
repeated each combination for 10 times because even
with the correct parameters glitching is not always
successful. Hence, for each value of t1 we performed
2 · 5 · 2 · 2 · (30 − 25) · 10 = 2,800 experiments. For our
setup, one test requires 7.5 seconds on average. This
includes configuration of the glitcher, communication
from target to host, and self-tests. Hence, we are able
to perform more than 10,000 experiments per day.

We will show in Section VI-B that we are able to
efficiently determine from the target’s output whether
both instruction skips were successful or not. Further-
more, we will show that for a successful attack, we are
able to efficiently compute the secret Q. Hence, once we
detected the first successful experiment we discarded all
remaining experiments to start the next attack.

We repeated the attack for five different secrets, drawn
uniformly at random from G2. We were always success-
ful in skipping both instructions. The analysis of the
experiments showed that for all secrets it occurred that
t1 was either 582,200 or 582,101. This is in line with
the distribution in Table II. Hence, for each attack we
required at most 2 · 2,800 experiments whereas in the

2We blame the occurrences at 582,199 as inaccurate and account
them for the delay 582,200.



cases with t1 = 582,200 much less experiments were
required and it took us only minutes to be successful.

VI. ANALYSIS OF FAULTY COMPUTATIONS

We now resume the description of the second-order
fault attack by explaining the mathematical analysis
which leads from the faulty computation to the secret
key. We will first provide mathematical details of the
attacked implementation and then give two examples,
one for each category from Section III. We chose these
two examples to illustrate the two categories. However,
we can realize any fault from both categories with our
setup from Section IV.

The first example is the concrete attack from Sec-
tion V. It illustrates the modification of the Miller loop
bound n. The second example illustrates the modification
of the Miller variable f . Both these analyses have already
been described similarly, cf. [30], [31], [36], [42]. In
both examples, we assume to know P = (xP , yP ),
while Q = (xQ, yQ) is secret. We induce the first fault
during the computation of the Miller Algorithm and
use the second fault to skip the function call to the
final exponentiation. Thus, we do not have to solve the
exponentiation inversion, but only a facilitated Miller
inversion.

A. Mathematical Details of the Attacked Implementation

We attacked an implementation of the eta pairing
in characteristic 2 on supersingular elliptic curves. We
decided to attack the eta pairing [11] despite current
research results which indicate that it should no longer
be used for security applications, cf. [4], [22]. This was
due to the fact that the eta pairing is the default for
AVR devices in the attacked RELIC library [5]. However,
the attack can be easily applied to other pairings. The
concrete implementation is very similar to the imple-
mentation proposed in [11, Section 6] and is presented
in Algorithm 2.

The elliptic curve E : y2 + y = x3 + x is defined
over the finite field Fq with q = 2m and m = 271 in
our implementation. For our case, i.e., m = 7 mod 8,
it holds that #E(Fq) = 2m + 2(m+1)/2 + 1. We define
the extension field Fq4 = Fq(s, t) of degree 4, with s2 =
s + 1 and t2 = t + s. Let z = (q4 − 1)/#E(Fq) =
(22m − 1) · (2m − 2(m+1)/2 + 1), n = 2(m+1)/2 + 1, and
ψ(x,y) = (x+1+1, y+sx+t). For input P,Q ∈ E(Fq)
the eta pairing η is then defined as

η(P,Q) = fn,−P (ψ(Q))z.

Because of the simple binary form of n, the main
loop of Algorithm 1 mainly reduces to point doubling
and squaring of field elements in Fq4 , followed by one
multiplication with l[2(m+1)/2](−P ),−P (ψ(Q)) for the least
significant bit of n. As in [11, Algorithm 3], the eta im-
plementation computes the loop in reversed order in the
RELIC library [5]. Therefore, P ′ =

[
2(m−1)/2)

]
(−P )

needs to be defined. Furthermore, the first loop is un-
rolled:

fn,−P (ψ(Q)) = l[2]P ′,−P (ψ(Q)) · gP ′(ψ(Q)) ·
(m−1)/2∏

j=1

g[2−j ]P ′(ψ(Q))2
j (1)

Algorithm 2 Implementation of η(P,Q) on E(F2m) for
m = 7 mod 8 and E : y2 + y = x3 + x.

Require: P = (xP , yP ), Q = (xQ, yQ) ∈ E
Ensure: η(P,Q)

1: u← xP , v ← xQ
2: g ← u · v + yP + yQ + 1 + (u+ xQ)s+ t
3: u← x2P
4: l← g + v + u+ s
5: f ← g · l
6: for i = 1 .. (m− 1)/2 do
7: xQ ← xQ

2, yQ ← yQ
2

8: xP ←
√
xP , yP ←

√
yP

9: u← xP , v ← xQ
10: g ← u · v + yP + yQ + 1 + (u+ xQ)s+ t
11: f ← f · g
12: end for
13: f ← fz

14: return f

Algorithm 2 shows how the computation of (1) is
implemented in the RELIC library.

B. Example: Analysis after Modification of n

Now, we analyze the output of our second-order
attack from Section V. For the concrete RELIC im-
plementation, the two instruction skip faults target the
first execution of line 12 and the execution of line 13
of Algorithm 2. Hence, Table I shows the generated
assembly for line 12 of Algorithm 2.

In an execution were both fault injections are success-
ful, the for loop is executed exactly once and the final
exponentiation is completely skipped. Since one loop
is unrolled, this corresponds to an execution with two
iterations of the loop in Algorithm 1, and a modification



of n from 2(m+1)/2 + 1 to 22 + 1. We see that our attack
is in the category of faults that modify n. Let α be the
output of the faulty computation f ′n,P (ψ(Q)). With (1)
we obtain

α = f ′n,−P (ψ(Q)) = l[2]P ′,−P (ψ(Q)) · gP ′(ψ(Q)) ·

g[2−1]P ′(ψ(Q))2.
(2)

The following steps describe how we recover the
secret input Q of Algorithm 2 from α.

1) Algebraic Model of the Secret: First, we define
variables x and y representing the x-coordinate and
the y-coordinate of the secret Q. Now we describe
Q as the root of a rational function. With (2) we
define

fP (x,y) := f ′n,−P (ψ(x,y))− α. (3)

Since f ′n,−P (ψ(x,y)) is a product of four lines,
fP (x,y) is of degree at most 4 in x and y. In our
case the secret is already defined over the strict
subfield Fq of Fq4 . We model this by considering
Fq4 as an k = 4 dimensional vector space over
Fq. Then (3) can be re-written as four individual
polynomials f (1)P , . . . ,f

(4)
P over Fq. This will reduce

the computational complexity of the analysis in the
next step.

2) Computation of Candidates: At this point, we
define the variety VQ = V

(
f
(1)
P , . . . , f

(k)
P

)
∩ E

by a (possibly overdetermined) system of nonlinear
multivariate equations. Since Q ∈ VQ, we now
compute all elements of VQ in this step. The com-
plexity of this step mainly depends on the degrees
of f

(1)
P , . . . , f

(k)
P and is reduced by using more

equations than variables.
3) Testing Candidates: In the final step, we identify

the secret from all elements in VQ. To do this,
we compute η(P,Q′) for the elements Q′ ∈ VQ.
Each result is compared with η(P,Q) that has been
obtained from an error-free execution to identify the
unique point Q.

Note that the case where P is the secret can be handled
analogously. The major difference is that we replace
fP (x,y) from Step 1 by a polynomial where x and y
represent x2[2−1]P ′ and y2[2−1]P ′ . Since lines parameterized
by (x,y) have degree 2 in x and y, the degree of
fP (x,y) will now become at most d = 8. Due to the
doubling of the degree, the analysis will become more
expensive. Furthermore, the result of Step 2 is the point[
2−1
]
P ′ = 2(m−3)/2P and hence, we need to multiply

this point by 2−(m−3)/2 mod #E(Fq) to finally obtain
a candidate for P .

Note that restricting to subfields as in Step 1 can
often be exploited. For example, it has been used in
[42] and [41]. Indeed, the most common optimization
for the implementation of pairings is to choose the first
argument P in G1 ⊆ E(Fq). Furthermore, for Type 1
pairings the second argument Q is also Fq-rational. For
Type 3 pairings, Q is defined in G2 ⊆ E′(Fqk′ ) where
E′ is a degree k′ twist of E and k′ divides k. For details
on the selection of pairing-friendly curves we refer to
[12].

As explained in Section V, many experiments fail
in delivering the intended faults, i.e., in simultaneously
skipping both target instructions. For a failed experiment,
no candidate Q′ will pass Step 3. Hence, in practice it is
crucial to automate Step 2 and Step 3 for identifying the
first successful experiment. We automated the analysis
based on Sage [39], a free computer algebra system.
Therefore, we re-implemented the eta pairing from the
RELIC library in Sage. This implementation allows
us to compute the pairing on arbitrary inputs P , Q,
and n. Based on this implementation, we are able to
automatically construct the multivariate polynomial (3)
from Step 1 for any value α. Step 2 is an invocation
of the variety() function on the ideal generated by
f
(1)
P , . . . ,f

(4)
P and y2 + y = x3 + x. This computation

is based on Gröbner basis techniques. Hence, using five
equations for only two variables accelerates this step.
Finally, in Step 3 we use the implementation of the
pairing again, but evaluate it at the candidate points Q′

to identify Q.
Our non-optimized implementation requires less than

one second for processing one faulty output α. This
is less time than the target device requires to compute
the pairing. Hence, the mathematical computation is not
critical for the performance of our attack.

C. Example: Analysis after Modification of f .

For this example, we attack two computations of
η(P,Q). In both computations, the same input has to
be used. During the first computation, we only use
one fault and skip the final exponentiation. We denote
the output with α1, i.e., α1 = fn,−P (ψ(Q)). In the
second computation, we also skip the final exponen-
tiation. Prior to this fault, we induce another fault to
skip an instruction which is involved in the update of
the Miller variable f . In the general description of the
Miller Algorithm, this corresponds to the lines 3, 4, 6
or 7 of Algorithm 1. In our concrete implementation, cf.



Algorithm 2, also several instructions can be skipped to
achieve a modification of f . For this example, we choose
to illustrate the modification of f by skipping the update
of u once. Thus, either line 3 or line 9 in any round of
the for loop in Algorithm 2 can be skipped. We choose
to skip line 3. We denote the second faulty output with
α2, i.e., α2 = f ′n,−P (ψ(Q)). Since α1 and α2 are known,
we also know α = α1/α2 ∈ Fq4 .

1) Algebraic Model of the Secret: The two values
α1 and α2 have the same first factor g, which is
computed in line 2, but differ in their factor l, which
depends on u. Since u depends on xP afterwards,
which is not attacked itself in this scenario, all
further factors of α1 and α2 which are computed
during the for loop are equal. Thus, since all but
the respective factors l of α1 and α2 are equal, we
receive the equation

xP ·xQ + yP + yQ + 1

+ (xP + xQ) · s+ t+ xQ + x2P + s

= α · [xP ·xQ + yP + yQ + 1

+ (xP + xQ) · s+ t+ xQ + xP + s],

(4)

with all values except xQ and yQ known.
2) Computation of Candidates: The elliptic curve is

defined by E : y2+y = x3+x. It gives us a second
equation with root Q. By writing both E and (4)
as univariate polynomials in y and using the theory
of resultants, we get a univariate polynomial in x
which has degree at most 3.

Res(α · f ′n,−P (ψ(x, y))− fn,−P (ψ(x, y)), E)

= (α− 1)2 · (−x3 − x)

+
[
(α− 1)(xP ·x+ xP + x+ yP + 1

+ (xP + x+ 1) · s+ t)− x2P + xP

]2
−
[
(α− 1)(xP ·x+ xP + x+ yP + 1

+ (xP + x+ 1) · s+ t)− x2P + xP

]
· (α− 1)

(5)
All roots of this polynomial are candidates for xQ.
For each of these candidates we evaluate E and
thereby get two candidates for the secret point Q.

3) Testing Candidates: Since we know α1 =
fn,−P (ψ(Q)) and the concrete implementation, we
can now test all candidates for Q without using the
device under attack again. We have to test at most
six candidates.

Note that again, the roles of xQ and yQ can be
switched. The resulting univariate polynomial in y has

at most degree 4, and we will then get three candidates
for the secret point for each root. Thus, we have to test
at most twelve candidates.

VII. CONCLUSION

Several fault attacks against pairing-based cryptogra-
phy have been published in the past. Interestingly, none
of these have been practically evaluated. We accom-
plished this task and proved that fault attacks against
pairing-based cryptography are indeed possible and are
even practical — thus posing a serious threat. Moreover,
we successfully conducted a practical second-order fault
attack against an open source implementation of the eta
pairing on an AVR XMEGA A1. We used this freely
programmable chip to validate our attacks on a real-
world smart card platform. On the basis of a new two-
part categorization of all conceivable fault attacks against
the underlying Miller Algorithm, we were able to reveal
the secret point of a pairing in both categories.

Our practical results prove the requirement for strong
and efficient countermeasures. While generic counter-
measures like checksums and redundant computations
might also prevent fault attacks, they might be too
expensive or not effective against all types of faults in
the pairing-based context, as this turns out to be more
complex than traditional cryptography. Our successful
attacks highlight the demand for further research on how
to protect against the complete skipping of the final
exponentiation. Besides that, particularly the first and the
last rounds of the Miller Algorithm have to be secured
against fault attacks. Given that even RSA in CRT mode
is still struggling with the Bellcore attack — after almost
20 years of intensive research — it is natural that the
young field of pairing-based cryptography requires more
research after our successful attack.
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