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Abstract

Given a lattice L ⊂ Rn and some target vector, this paper studies the algorithms for approximate closest vector
problem (CVPγ) by using an approximate shortest independent vectors problem oracle (SIVPγ). More precisely, if the
distance between the target vector and the lattice is no larger than c

γnλ1(L) for any constant c > 0, we give randomized
and deterministic polynomial time algorithms to find a closest vector, which improves the known result by a factor
of 2c. Moreover, if the distance between the target vector and the lattice is larger than some quantity with respect to
λn(L), using SIVPγ oracle and Babai’s nearest plane algorithm, we can solve CVPγ

√
n in deterministic polynomial

time. Specially, if the approximate factor γ ∈ (1, 2) in the SIVPγ oracle, we obtain a better reduction factor for CVP.
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1 Introduction

Lattices are discrete subgroups of Rn. They are powerful mathematical objects that have been used to efficiently solve
many important problems in computer science, most notably in the areas of cryptography and combinatorial optimization.
In lattice theory, the most important and widely studied computational problems are Shortest Vector Problem (SVP) and
Closest Vector Problem (CVP). Given a lattice L ⊆ Rn, the SVPγ is the problem of finding a non-zero lattice vector
of length at most γλ1(L), where λ1(L) denotes the length of shortest non-zero lattice vector. Given a lattice L ⊆ Rn

and a target vector t ∈ Rn, the CVPγ is the problem of finding a v ∈ L such that ∥v − t∥ ≤ γ dist (t, L), where
dist (t, L) = min{∥u − t∥ : ∀u ∈ L} denotes the distance between t and L. In 1999, Goldreich, Micciancio, Safra
and Seifert [1] first studied the relationship between these two problems and gave a deterministic polynomial-time rank-
preserving reduction from SVPγ to CVPγ for any approximate factor γ ≥ 1, which implies that SVPγ is not harder than
CVPγ .

It is natural to ask whether CVPγ is strictly harder than SVPγ . In terms of known computational complexity results,
the answer may be Yes. Since for any constant c and approximate factor γ = nc/ log log n, CVPγ is NP-hard under
deterministic reductions [2], while the proof that SVPγ is NP-hard with the same approximate factor is randomized and
under a strong complexity assumption [3]. A possible way to derandomized is giving a deterministic reduction from
CVPγ to SVPγ . Using an exact SVP oracle, Kannan [4] presented a deterministic polynomial time algorithm for solving
approximate closest vector problem CVP√

n. Ajtai et al. [5] generalized Kannan’s reduction technique and proposed a
2O(1+1/ϵ)n time algorithm for solving CVP1+ϵ by sampling short vectors. In another survey paper [6], using dual lattice
and transference theorem in the geometry of numbers [7], Kannan proved that CVPγ2n3/2 can be reduced to SVPγ in
deterministic polynomial time. Recently, combining Kannan’s lattice-embedding technique [4] with the reduction from
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BDD1/2γ to uSVPγ given by Lyubashevsky and Micciancio [8], Dubey and Holenstein [9] improved Kannan’s result [6]
and obtained a deterministic polynomial-time rank-preserving reduction from CVPγ2

√
n to SVPγ .

Ajtai’s groundbreaking work [10] which connected the worst-case and average-case complexity of certain compu-
tational problems on lattices has opened the door to cryptography based on worst-case hardness. Regev’s results [11]
further broaden the foundation of lattice-based cryptography. Their works show that the security of all the cryptographic
protocols based on SIS (Small Integer Solution) and LWE (Learning With Errors) depends on the worst-case hardness of
SIVPγ (the definition will be given in Section 2). Therefore it is essential to compare the harness among SIVPγ , SVPγ

and CVPγ . In order to study the hardness of SIVPγ , Blömer and Seifert [12] first gave a deterministic polynomial time
reduction from exact CVP to exact SIVP, but the reduction didn’t preserve the rank of lattices. Combining the lattice-
embedding technique with the relationship of primal-dual lattices, Micciancio [13] improved their result and obtained
a deterministic polynomial-time rank-preserving reduction. Furthermore, through constructing sublattice skillfully, the
reference [13] also gave a deterministic polynomial-time rank-preserving reduction from SIVPγ to CVPγ for any ap-
proximate factor γ ≥ 1, which implies that the exact CVP and the exact SIVP are equivalent and SIVPγ is not harder
than CVPγ . Naturally, we also want to know whether CVPγ is strictly harder than SIVPγ . In SODA 2008, Micciancio
[13] proposed the following open problem:

Open Problem: Is there a deterministic polynomial time reduction from CVPγ to SIVPγ that preserves the rank of
the lattice and approximation factor?

OUR RESULTS. Stemmed from the efforts to solve the open problem, we give a helpful exploration about the relationships
between SIVPγ and some special CVPγ instances. More precisely, if the distance between the target vector and the lattice
is less than some quantity with respect to λ1(L), we give randomized and deterministic polynomial time reductions from
BDD c

γn
to SIVPγ for any constant c > 0, which improves the known result by a factor of 2c. Moreover, if the distance

between the target vector and the lattice is lager than some quantity with respect to λn(L), using SIVPγ oracle and Babai’s
nearest plane algorithm [14], we can solve CVPγ

√
n in deterministic polynomial time, and for a uniformly chosen target

vector, its distance from the lattice satisfies this constraint with probability not less than 1/2. Specially, if the approximate
factor γ ∈ (1, 2) in the SIVPγ oracle, we obtain a better result.

ROAD MAP. In Section 2, we review necessary concepts and notations, and then gives some useful lemmas for our proof.
Our main results are stated and proved in Section 3 and Section 4. Using the SIVPγ oracle, two algorithms for finding a
closest vector when the target is close to the lattice are presented in Section 3. Section 4 gives polynomial time algorithms
to approximate a closest vector when the target is far from the lattice. Finally, we conclude the paper in Section 5.

2 Preliminaries

In this section, we will give some necessary concepts on lattices and some useful lemmas for our proofs. First, we give
some notations. For any real x, ⌊x⌋ denotes the largest integer not larger than x and ⌈x⌉ denotes the smallest integer not
smaller than x. The n-dimensional Euclidean space is represented by Rn. ∥ · ∥ denotes the Euclidean norm. We use bold
lower letters (e.g.,x) to denote vectors, and bold upper case letters (e.g.,M) to denote matrices. The i-th coordinate of
x is denoted xi. For a set S ⊆ Rn, r ∈ R, rS = {ry : y ∈ S} denotes the scaling of S by r.

2.1 Lattices and lattice problems

LATTICES. A lattice consists of all linear combinations with integer coefficients of some set of linearly independent
vectors in the Euclidean space. If b1, · · · ,bn ∈ Rm are linearly independent, then the lattice spanned by these vectors is
given by

L = L(B) =

{
n∑

i=1

zibi : zi ∈ Z

}
.

where the matrix B = [b1, · · · ,bn] ⊂ Rm×n is called a basis of the lattice. Usually, the basis of a lattice L is not unique.
The number m is called the dimension of the lattice L and n is called the rank of the lattice L. If m = n, the lattice is
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called full rank. In the Euclid space, every non-full rank lattice is isomorphic to a full rank lattice. Hence without loss of
generality, in the rest of our paper, we assume that all the lattices are full rank. The fundamental parallelepiped of B is
defined as

P(B) =

{
n∑

i=1

xibi : xi ∈ [0, 1)

}
.

We denote the volume of the fundamental parallelepiped as det(L), which is independent of the choice of the basis.

MINKOWSKI’S MINIMA. For any 1 ≤ i ≤ n, the i-th successive minimum with respect to a lattice L is defined as

λi(L) = inf{r > 0 : dim(span(L ∩ rB(0, 1))) ≥ i},

where B(0, 1) denotes the open unit ball in the Euclidean norm. Specially, λ1(L) = min{∥v∥ : v ∈ L,v ̸= 0} denotes
the length of the shortest non-zero lattice vector.

COVERING RADIUS. The covering radius associated to a lattice L is defined to be ρ(L) = maxt∈Rn minv∈L ∥v − t∥.

GRAM-SCHMIDT ORTHOGONALIZATION. Let b1, · · · ,bn ∈ Rn be linearly independent vectors. Let πi denote the
projection over the orthogonal supplement of the linear span of b1, · · · ,bi−1. The Gram-Schmidt orthogonalization
(GSO) is the family (b̃1, . . . , b̃n) defined as: b̃1 = b1 and for i ≥ 2, b̃i = πi(bi). Then b̃i = bi −

∑i−1
j=1 µi,jb̃j , where

µi,j = ⟨bi, b̃j⟩/∥b̃j∥2 for 1 ≤ j < i ≤ n.

DUALITY. Given a lattice L = L(B), the dual lattice of L is the lattice

L⋆ = {w ∈ span(L) : ⟨w,v⟩ ∈ Z,∀v ∈ L}.

It is easy to verify that (BT)−1 is a basis of L⋆, which is called the dual basis of B.

LATTICE PROBLEMS. For computational purpose, it is usually assumed that all lattices vectors have integer entries,
namely, the lattice basis is given by an integer matrix B ∈ Zn×n. There are several important computational problems in
lattice theory. Here we give their strict definitions as follows.

Definition 2.1 (Shortest Vector Problem (SVPγ)). Given a basis B ∈ Zn×n for a lattice L = L(B), find a lattice vector
v ∈ L such that ∥v∥ ≤ γλ1(L).

Definition 2.2 (Closest Vector Problem (CVPγ)). Given a basis B ∈ Zn×n for a lattice L = L(B) and some vector t ∈
Rn (generally not in L), find a lattice vector v ∈ L such that ∥v−t∥ ≤ γ dist (t, L), where dist (t, L) = minu∈L ∥u−t∥
denotes the distance between t and L.

Definition 2.3 (Bounded Distance Decoding (BDDγ)). Given a basis B ∈ Zn×n for a lattice L = L(B) and a target
point t ∈ Rn such that dist (t, L) ≤ γλ1(L), output a lattice vector v ∈ L(b) such that ∥v − t∥ ≤ γλ1(L).

Definition 2.4 (Shortest Independent Vectors Problem (SIVPγ)). Given a basis B ∈ Zn×n for a lattice L = L(B) and
our goal is to find n linearly independent vectors v1, · · · ,vn ∈ L such that maxi ∥vi∥ ≤ γλn(L).

2.2 Useful lemmas

In this subsection, we will give some useful lemmas for our reductions.
Since we study lattices from a computational point of view, without loss of generality, we assume that lattices are

represented by a basis with integer coordinates. By the definition of Gram-Schmidt orthogonalization, the following
lemma bounds the bit size of the representation of any Gram-Schmidt orthogonalization vector.

Lemma 2.5 ([15]). For a sequence of n linearly independent vectors b1, · · · ,bn, their Gram-Schmidt orthogonalization
is the sequence of vectors b̃1, · · · , b̃n. Then the representation of any vector b̃i as a vector of quotients of natural numbers
takes at most poly(M) bits for M = max{n, log(maxi ∥bi∥)}.
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Clearly, any set of n linearly independent lattice vectors is not necessary a lattice basis. The following useful lemma
says that any full-rank set of vectors in a lattice can be efficiently converted into a basis of the lattice, without increasing
the length of the Gram-Schmidt vectors.

Lemma 2.6 ([15]). There is a deterministic polynomial time algorithm ConverttoBasis(B,S) that on input a lattice
basis B and linearly independent lattice vectors S = {s1, · · · , sn} ⊂ L(B) such that ∥s1∥ ≤ ∥s2∥ ≤ · · · ≤ ∥sn∥,
outputs a basis R equivalent to B such that ∥rk∥ ≤ max{(

√
k/2)∥sk∥, ∥sk∥} for all k = 1, · · · , n. Moreover, the new

basis satisfies span(r1, · · · , rk) = span(s1, · · · , sk) and the length of their Gram-Schmidt orthogonalization vectors
satisfying ∥r̃k∥ ≤ ∥s̃k∥ for all k = 1, · · · , n.

About the relationships between primal lattice and its dual, we have the following two important results. Lemma 2.7
shows that, in appropriate order, the Gram-Schmidt orthogonalization vectors of the dual basis are in the same direction as
that of the primal basis and their lengths are the inverses of each other. Lemma 2.8 is well known as transference theorem.
It reflects the properties of the successive minima between a lattice and its dual.

Lemma 2.7 ([16]). Let b1, · · · ,bn be some basis of L and b̃1, · · · , b̃n be its Gram-Schmidt orthogonalization. Let
d1, · · · ,dn be the dual basis of b1, · · · ,bn and let d̃n, · · · , d̃1 be its Gram-Schmidt orthogonalization in reverse order.

In other words, d̃n = dn, d̃i = di −
∑

j>i νi,jd̃j , where νi,j =
⟨di,d̃j⟩
⟨d̃j ,d̃j⟩

for 1 ≤ i < j ≤ n. Then

∀1 ≤ i ≤ n, d̃i =
b̃i

∥b̃i∥2
.

Lemma 2.8 ([7]). For any n-dimensional lattice L, λ1(L)λn(L
⋆) ≤ n.

In SODA’00, Klein [17] proposed a randomized algorithm to find the closest vector when the target vector is unusually
close to the lattice. Actually, it is a randomized version of Babai’s algorithm [14]. The algorithm randomly samples lattice
points from a Gaussian-like distribution and chooses the closest points among all the samples.

Lemma 2.9 ([17]). There is a randomized algorithm Klein(B, t) that, when given an n-dimensional lattice L generated
by basis vectors b1, · · · ,bn and a target t ∈ Rn that’s at distance D away from L, will find the closest lattice vector to
t, in time nD2/mini ∥b̃i∥2 , where b̃1, · · · , b̃n are Gram-Schmidt orthogonalization vectors of b1, · · · ,bn.

3 Find a closest lattice vector when it’s close to the lattice

In this section, we shall study the algorithms for special CVP instance-BDDγ problem with an SIVPγ oracle. We improve
the presented result in two different algorithms, randomized and deterministic. First, we review some previous work as
following.

Lemma 3.1 ([8]). For any γ ≥ 1, there is a polynomial time Cook-reduction from BDD1/(2γ) to uSVPγ .

Lemma 3.2 ([18]). For any γ ≥ 1, there is a probabilistic polynomial time reduction from uSVPγn to SIVPγ .

Combining the above two lemmas, we have the following result which is also shown in reference [19].

Lemma 3.3. For any γ ≥ 1, there is a probabilistic polynomial time reduction from BDD1/(2γn) to SIVPγ .

Combining Klein’s algorithm [17] and the relationship between primal and dual lattices, we first improve Lemma 3.3
using a randomized reduction algorithm. Namely, we prove the following result.

Theorem 3.4. For any γ ≥ 1 and any constant c > 0, there exists a randomized polynomial time reduction from BDDc/γn

to SIVPγ .
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Algorithm 1 BDD Algorithm: BDD (B, t)

Input: A lattice basis B ∈ Zn×n, a target vector t such that dist (t, L) < c
γnλ1(L) and a SIVPγ oracle O, where

1 < γ ≤ poly(n), c > 0 be any constant.
Output: A lattice vector v ∈ L such that dist (t, L) = ∥v − t∥.

1: Compute the dual basis of B: W = [w1, · · · ,wn] = (BT)−1, which is a basis of L⋆.
2: Invoking SIVPγ oracle on the lattice L⋆, output S = {s1, · · · , sn} ← SIVPγ(L

⋆).
3: Compute a basis of L⋆: D = [d1, · · · ,dn]← ConverttoBasis(W ,S).
4: Compute a basis of the original lattice L: R = [r1, · · · , rn] = (DT)−1.
5: Return v← Klein(R, t).

Proof. Given an SIVPγ oracle and any constant c > 0, we only need to show that Algorithm 1 will output a lattice vector
v ∈ L such that ∥v − t∥ = dist (t, L) in poly(n) time. In fact, in step 2, for any 1 ≤ i ≤ n, ∥s̃i∥ ≤ ∥si∥ ≤ γλn(L

⋆).
In step 3, by Lemma 2.6, the n linearly independent vectors s1, · · · , sn can be converted into a basis of dual lattice L⋆:
d1, · · · ,dn satisfying

∥di∥ ≤ max

{√
i

2
∥si∥, ∥si∥

}
, ∥d̃i∥ ≤ ∥s̃i∥,

where 1 ≤ i ≤ n, d̃1, · · · , d̃n and s̃1, · · · , s̃n are Gram-Schmidt orthogonalization vectors of d1, · · · ,dn and s1, · · · , sn,
respectively.

Assume that r̃n, r̃n−1, · · · , r̃1 are the Gram-Schmidt orthogonalization of r1, r2, · · · , rn in reverse order. Then, by
Lemma 2.7 and Lemma 2.8, for all 1 ≤ i ≤ n, r̃i = d̃i

∥d̃i∥2
and

∥r̃i∥ =
1

∥d̃i∥
≥ 1

∥s̃i∥
≥ 1

γλn(L⋆)
≥ λ1(L)

γn
.

Combining with Lemma 2.9, we can find the closest lattice vector to t in time nD2/mini ∥r̃i∥2 = O(nc2). ⊓⊔

Furthermore, we can improved the above algorithm in a deterministic way.

Theorem 3.5. For any γ ≥ 1 and any constant c > 0, there exists a deterministic polynomial time reduction from
BDDc/γn to SIVPγ .

Proof. We give our algorithm in two steps. Firstly, we show how to reduce BDD1/(2γn) to SIVPγ , which, in fact, is a
derandomization of Lemma 3.3. Secondly, for arbitrary but finite constant c > 1

2 , we give a self-reduction from BDDc/γn

to BDD√
c2−1/4/γn

with a SIVPγ oracle.
Step 1: Reducing BDD1/(2γn) to SIVPγ .
Our reduction is shown in Algorithm 2. Clearly, using Gaussian elimination, Algorithm 2 will output a lattice vector

efficiently. We only need to prove the correctness of Algorithm 2. Let (L(B), t) be an instance of BDD1/(2γn) with
dist (t, L) < λ1(L)/(2γn). Let v be a lattice vector in L such that ∥t − v∥ = dist (t, L). For 1 ≤ i ≤ n, since
∥si∥ ≤ γλn(L

⋆) and ⟨v, si⟩ ∈ Z. Then, by Lemma 2.8,

|⟨v, si⟩ − ⟨t, si⟩| = |⟨v − t, si⟩|

≤ ∥v − t∥ × ∥si∥ <
λ1(L)

2γn
× γλn(L

⋆) ≤ 1

2
.

It implies that ⟨v, si⟩ ∈ (⟨t, si⟩ − 1/2, ⟨t, si⟩ + 1/2). Since there exists at most one integer in this interval, the lattice
vector v satisfying the system of linear equations ⟨v, si⟩ = ⌈⟨t, si⟩⌋, 1 ≤ i ≤ n.
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Algorithm 2 BDD1/(2γn)(B, t)

Input: A lattice basis B ∈ Zn×n, a target vector t such that dist (t, L) < 1
2γnλ1(L) and a SIVPγ oracle, where

1 < γ ≤ poly(n).
Output: A lattice vector v ∈ L such that dist (t, L) = ∥v − t∥.

1: Invoking the SIVPγ oracle on the lattice L⋆, output S = {s1, · · · , sn} ← SIVPγ(L
⋆).

2: Solve the linear equations ⟨v, si⟩ = ⌈⟨t, si⟩⌋ for 1 ≤ i ≤ n and output v.

Step 2: Solving BDDc/(2γn) instances using BDD√
c2−1/4/γn

and SIVPγ oracles.
The algorithm is described in Algorithm 3.
Firstly, we shall prove the correctness of Algorithm 3. Let (L(B), t) be an instance of BDDc/(2γn) with dist (t, L) <

cλ1(L)/(2γn). Let v be a lattice vector in L such that ∥t−v∥ = dist (t, L). Invoke the SIVPγ oracle on the dual lattice
L⋆ and return a set of n independent lattice vectors {s1, . . . , sn} ⊂ L⋆ such that ∥si∥ ≤ γλn(L

⋆) and ⟨v, si⟩ ∈ Z for
1 ≤ i ≤ n. Then, for any 1 ≤ i ≤ n,

|⟨v, si⟩ − ⟨t, si⟩| = |⟨v − t, si⟩|

≤ ∥v − t∥ × ∥si∥ <
cλ1(L)

γn
× γλn(L

⋆) ≤ c.

It implies that ⟨v, si⟩ ∈ (⟨t, si⟩ − c, ⟨t, si⟩ + c). Since there are at most ⌈2c⌉ integers in this interval, the integer ⟨v, si⟩
could be one of these adjacent integers. Each vector si ∈ L⋆ (1 ≤ i ≤ n) can partition L into subsets L ∩Hi,j (j ∈ Z)
where Hi,j denotes an (n−1)-dimensional hyperplane Hi,j = {x ∈ Rn : ⟨x, si⟩ = j}. Clearly, the distance between any
two adjacent hyperplanes Hi,j and Hi,j+1 is 1/∥si∥. The above analysis shows that the closest vector v must be located
on one of the ⌈2c⌉ adjacent hyperplanes of t for each partition induced by si. We discuss in the following cases:

Case 1. Suppose that v is located on all Hi,⌈⟨t,si⟩⌋ for 1 ≤ i ≤ n. Solving the linear equations ⟨v, si⟩ = ⌈⟨t, si⟩⌋ for
1 ≤ i ≤ n can immediately recover v.

Case 2. Suppose that v lies on Hi,j for some 1 ≤ i ≤ n and j ̸= ⌈⟨t, si⟩⌋. Then, by Lemma 2.8, we obtain the
following two results

∥t− t′i,j∥ ≥
1

2∥si∥
≥ 1

2γλn(L⋆)
≥ λ1(L)

2γn
.

dist (ti,j , Li,j) = dist (t′i,j , L ∩Hi,j)

= ( dist 2(t, L)− ∥t− t′i,j∥2)1/2

<

(
c2λ2

1(L)

γ2n2
− λ2

1(L)

4γ2n2

)1/2

≤
√

c2 − 1/4

γn
λ1(L) ≤

√
c2 − 1/4

γn
λ1(Li,j).

It’s easy to verify that Li,j is an (n − 1)-dimensional sublattice of L. Therefore, the recovery of v is converted to a
BDD√

c2−1/4/(γn)
instance (Li,j , ti,j).

Now, we analyze the efficiency of Algorithm 3. In step 2 of Algorithm 3, the vector v0 can be found efficiently
by Gaussian elimination. Using Euclidean algorithm, we can find wi,j efficiently in step 5 of Algorithm 3, and, in
step 7, Micciancio [13] presents an efficient and deterministic algorithm to find a basis of Li,j . Therefore, invoking
BDD√

c2−1/4/(γn)
oracle at most 2cn times, we can find a closest vector v ∈ L to t in deterministic polynomial time in

n.
For arbitrary but finite constant c > 0, given an SIVPγ oracle, the BDDc/γn can be solved by invoking O(2cn) times

BDD√
c2−1/4/γn

oracle. Recursively, the BDDc/γn problem can be reduced to BDD√
c2−m/4/γn

after (2cn)m recursions.
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Let
√

c2 −m/4/γn ≤ 1/(2γn), we have m ≥ 4c2 − 1. This implies that, combining Algorithm 2 and Algorithm 3,
invoking SIVPγ oracle at most (2cn)4c

2−1 times, we can solve a BDDc/γn instance in deterministic polynomial time.

Algorithm 3 BDDc/(γn)(B, t)

Input: A lattice basis B ∈ Zn×n and some constant c > 1
2 , a target vector t such that dist (t, L) < c

γnλ1(L),
BDD√

c2−1/4/γn
and SIVPγ oracles, where 1 < γ ≤ poly(n).

Output: A lattice vector v ∈ L such that dist (t, L) = ∥v − t∥.
1: Invoking SIVPγ oracle on the lattice L⋆, output S = {s1, · · · , sn} ← SIVPγ(L

⋆).
2: Solve the linear equations ⟨v0, si⟩ = ⌈⟨t, si⟩⌋ for 1 ≤ i ≤ n and output v0.
3: for i = 1, · · · , n do
4: for j = ⌈⟨t, si⟩ − c⌉, · · · , ⌊⟨t, si⟩+ c⌋ do
5: Compute an vector wi,j ∈ L ∩Hi,j .
6: Compute the projection of t on Hi,j : t′i,j .
7: Li,j ← L ∩Hi,j −wi,j , ti,j ← t′i,j −wi,j .
8: v′

i,j ← BDD√
c2−1/4/γn

(Li,j , ti,j)

9: vi,j ← v′
i,j +wi,j .

10: end for
11: end for
12: Output the closest point to t among all the points vi,j and v0.

⊓⊔

4 Approximate a closer lattice vector when it’s far from the lattice

First, we review some previous known results about the distance between a uniformly random chosen target and a lattice,

Lemma 4.1 ([20]). Given an n-dimensional lattice L(B) and a vector t chosen uniformly from P(L), then

Pr
t

(
dist (t, L(B)) ≥ ρ(L)

2

)
≥ 1

2
,

where ρ(L) denotes the covering radius of L.

Lemma 4.2 ([15]). For any n-dimensional lattice L(B),

λn(L)

2
≤ ρ(L) ≤

√
n

2
λn(L)

By Lemma 4.1 and Lemma 4.2, we have that for any uniformly chosen target vector t,

Pr
t

(
dist (t, L(B)) ≥ λn(L)

4

)
≥ Pr

t

(
dist (t, L(B)) ≥ ρ(L)

2

)
≥ 1

2
.

Given a lattice L = L(B) and a target vector t ∈ Rn, If we have n linearly independent vectors s1, · · · , sn satisfying
that for any 1 ≤ i ≤ n, ∥si∥ ≤ γλn(L) in hand. Then compute their Gram-Schmidt orthogonalization vectors s̃1, · · · , s̃n,
using Babai’s nearest plane algorithm [14], we can find a vector v ∈ L such that

dist (v, t) ≤

√√√√ n∑
i=1

(
∥s̃i∥
2

)2

≤ 1

2

√√√√ n∑
i=1

∥si∥2

≤ 1

2

√
nmax

i
∥si∥ ≤

1

2
γ
√
nλn(L).

7



If dist (t, L(B)) ≥ λn(L)
4 , then using SIVPγ oracle we can find a vector v ∈ L such that

dist (v, t) ≤ 1

2
γ
√
nλn(L) ≤ 2γ

√
ndist (t, L).

In summary, the above analysis contains the following result.

Corollary 4.3. Given an n-dimensional lattice L = L(B) and a target vector t ∈ Rn, if dist (t, L) ≥ λn(L)/4, then
CVP2γ

√
n can be reduced to SIVPγ in deterministic polynomial time. Specially, for uniformly chosen target vector, the

reduction algorithm is correct with probability not less than 1/2.

Furthermore, if 1 < γ < 2, using lattice-embedding technique we can get a better result.

Theorem 4.4. Given an n-dimensional lattice L = L(B) and a target vector t ∈ Rn, for any real k >
√
3
3 , 1 < γ <

2k√
1+k2

, if dist (L, t) = minv∈L ∥v− t∥ > γ
2kλn(L), then there exists a Cook reduction from CVP√

3k(1+1/n) to SIVPγ .

Proof. Let µ = dist (t, L), using Babai’s nearest plane algorithm, we can get a real d satisfying µ ≤ d < 2nµ, namely,
µ ∈ (d/2n, d]. Divide the interval (d/2n, d] into poly(n) small intervals

(
d
2n

(
1 + 1

n

)i
, d
2n

(
1 + 1

n

)i+1
]
. For each

i0 = 0, · · · , ⌈n log(1+1/n) 2⌉, guess

µ ∈

(
d

2n

(
1 +

1

n

)i0

,
d

2n

(
1 +

1

n

)i0+1
]
.

Let µ0 =
d
2n

(
1 + 1

n

)i0+1, then µ ≤ µ0 < µ
(
1 + 1

n

)
.

Let

B̃ =

(
B t
0 kµ0

)

=

(
b1 · · · bn t
0 · · · 0 kµ0

)
=

(
d1 · · · dn dn+1

)
.

The reduction algorithm goes as Algorithm 4.

Algorithm 4 Lattice-embedding(B, t)

Input: A lattice basis B ∈ Zn×n parameters k >
√
3
3 , µ0, 1 < γ < 2k√

1+k2
and a SIVPγ oracle

Output: A lattice vector v ∈ L such that dist (t, L) = ∥v − t∥.
1: Construct a new lattice L̃ = L(B̃).
2: Invoking SIVPγ oracle on L̃, v1,v2, · · · , vn+1 ← SIVPγ(L̃).
3: Express each vi =

∑n+1
j=1 zijdj .

4: Return v =
∑n

j=1 zi0,jbj where (zi0,1, · · · , zi0,n, zi0,n+1) satisfies |zi0,n+1| ̸= 0.

Now we prove the correctness of our algorithm in two cases:
Case 1: λn+1(L̃) ≤

√
µ2 + (kµ0)2. For every vector vi can be represented as an integer linear combination of

d1, · · · ,dn+1, there must be some vector with a non-zero coefficient in dn+1. Without loss of generality, assume that

vn+1 =

n∑
i=1

zidi + zn+1dn+1

=

(
n∑

i=1

zibi + zn+1t, zn+1kµ0

)
, zn+1 ̸= 0,

8



Now we will show that |zn+1| = 1. In fact, if |zn+1| ≥ 2, then ∥vn+1∥2 ≥ 4(kµ0)
2. While, in step 2, we know

∥vn+1∥2 = ∥
∑n

i=1 zibi + zn+1t∥2 + z2n+1(kµ0)
2 ≤ γ2λ2

n+1(L̃) ≤ γ2
(
µ2 + (kµ0)

2
)
, which implies that

4(kµ0)
2 ≤ γ2

(
µ2
0 + (kµ0)

2
)

⇒ 4k2 ≤ γ2(1 + k2)⇒ γ ≥ 2k√
1 + k2

.

This contradicts with the condition in our theorem. Therefore |zn+1| = 1. Let v =
∑n

i=1 zibi. Then

∥v + t∥2 = v2
n+1 − z2n+1(kµ0)

2

≤ γ2µ2 + (γ2 − 1)(kµ0)
2

≤ γ2(1 + k2)µ2
0 − k2µ2

0 ≤ 3k2µ2
0.

⇒ ∥v + t∥ ≤
√
3kµ0 ≤

√
3k

(
1 +

1

n

)
µ.

Case 2: λn+1(L̃) >
√

µ2 + (kµ0)2. In this case, by the definition of λn+1(L̃) and λn(L), we have
√

µ2 + (kµ0)2 <
λn+1(L̃) ≤ λn(L).

Similarly, we also show that |zn+1| = 1. In fact, if |zn+1| ≥ 2, then ∥vn+1∥2 ≥ 4(kµ0)
2. While, in step 2, we know

∥vn+1∥2 =

∥∥∥∥∥
n∑

i=1

zibi + zn+1t

∥∥∥∥∥
2

+ z2n+1(kµ0)
2

≤ γ2λ2
n+1(L̃) ≤ γ2λn(L)

2.

Hence, 4(kµ0)
2 ≤ γ2λn(L)

2 ⇒ µ0 ≤ γ
2kλn(L) ⇒ µ ≤ γ

2kλn(L). This contradicts with the condition in our theorem.
Therefore |zn+1| = 1. Let v =

∑n
i=1 zibi. Then

∥v + t∥2 = v2
n+1 − z2n+1(kµ0)

2

≤ γ2λ2
n(L)− (kµ0)

2 < 4k2µ2 − k2µ2
0

≤ 4k2µ2 − k2µ2 = 3k2µ2.

⇒ ∥v + t∥ <
√
3kµ.

Combining the above two cases, we complete the proof of Theorem 4.4.
⊓⊔

Remark 4.5. In fact, let γ
2k = 1

4 in Theorem 4.4, we immediately obtain that, if dist (t, L) > 1
4λn(L), CVP2

√
3γ(1+1/n)

can be reduced to SIVPγ for 1 < γ <
√
15
2 . The reduction factor for CVP is much better than that in Corollary 4.3 for

n ≥ 5. If we fix the reduction factor, let 2γ
√
n =
√
3k(1 + 1/n), then γ

2k =
√
3(1+1/n)
4
√
n

< 1
4 in the conditions that n ≥ 5

and 1 < γ <
√

4− 3(1 + 1
n)

2/4n. This implies that, for n ≥ 5 and 1 < γ <
√

4− 3(1 + 1
n)

2/4n, the reduction in
Theorem 4 is valid for much more target vectors than that in Corollary 4.3.

5 Conclusion

Motivated by the open problem presented by Micciancio in SODA 2008, this paper studies the relationships between
CVP and SIVP. Given a lattice and some target vector, intuitively, the hardness is different when the distance between the
target vector and the lattice varies. Along this way, we gives some preliminary results about the relations between SIVP
and some special CVP instances, which may be helpful for the full and final solution of the open problem. Solving this
problem has a great impact on the computational complexity theory and security of lattice-based cryptosystems, which is
the direction of our future work.
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