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Abstract. Reputation systems are used to compute and publish reputation scores for services or products. We
consider reputation systems where users are allowed to rate products that they purchased previously. To obtain
trustworthy reputations, they are allowed to rate these products only once. As long as users rate products once,
they stay anonymous. Everybody is able to detect users deviating from the rate-products-only-once policy and
the anonymity of such dishonest users can be revoked by a system manager. In this paper we present formal
models for such reputation systems and their security. Based on group signatures presented by Boneh, Boyen,
and Shacham we design an efficient reputation system that meets all our requirements.
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1 Introduction

Reputation systems are an increasingly popular tool to provide vendors and buyers with valuable infor-
mation about products. Examples for such systems are the online reputation system amazon and eBay,
to name just two. However, these reputation systems have serious drawbacks and limitations. On the
one hand, ratings are not anonymous. On the other hand, there are no mechanisms to prevent misuse of
the system, e.g. dissatisfied customers can rate the same product several times under various, seemingly
unrelated, identities. Hence, there is a need for anonymous reputation systems that provide trustworthy
and reliable ratings. In this paper we propose models for secure and anonymous reputation systems and
give an efficient construction of such a system.
Many of the properties for reputation systems stated above have been studied in the context of group
signatures, as defined in [13] for the static and in [14] for the dynamic case. However, the concept of group
signatures, static or dynamic, does not meet all the requirements for reputation systems. In particular,
reputation systems do not consist of a single group of users. Rather one can think of reputation systems
as a family of group signature schemes - one for each product. Moreover, we may have vendors with
several products. Hence, when looking at security and anonymity properties group signature schemes for
different products can not be considered in isolation. Finally, known constructions of group signatures do
not provide all properties that we need for a secure and anonymous reputation system and do not provide
them simultaneously.

Our Contribution. We define models for secure and anonymous reputation systems and give a first con-
struction of such a system based on group signature schemes. In particular, ratings in our system consist
of signed messages. Consequently we use the terms rating and signature synonymously. Our construc-
tion provides anonymity, traceability, strong-exculpability, verifier-local revocation, and public linkability.
Anonymity means that signatures of honest users are indistinguishable. Traceability means that it is im-
possible for any set of colluding users to create ratings that can not be traced back to a user of the system.
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Strong-exculpability means that no user can produce signatures on behalf of other users. A system has
local-verifier revocation, if revocation messages only have to be sent to signature verifiers, but not to
individual signers. Public linkability requires that anyone can decide whether or not two ratings for the
same product were created by the same user, i.e. no secret key is required to link messages. Note that
public linkability implies that users can only stay anonymous as long as they rate products just once. But
in a reputation system users that try to rate products at least twice are dishonest, and there is no need to
guarantee anonymity for dishonest users. Whereas it is well known how to realize the other properties in
the context of group signatures, although not necessarily simultaneously, public linkability as defined in
this paper has not been realized before. In particular, previous definitions of linkability always required a
special secret key to link signatures.
Our construction of a reputation system is based on the group signature scheme by Boneh, Boyen, and
Shacham [6] and the dynamic version of the scheme presented by Delerablée and Pointcheval [3]. These
schemes already give us anonymity, traceability, and strong-exculpability. To achieve verifier-local revo-
cation we modify a technique by Nakanishi and Funabiki [15]. With the same technique we achieve public
linkability. Note that anonymity of group signatures does not necessarily imply anonymity in our repu-
tation system. This is due to the fact that vendors control the groups corresponding to several products.
Hence, they may combine information for different groups to violate anonymity. To prevent this we need
a system manager that contributes a trustworthy component to each group public key. Moreover, we use
hash functions modeled as random oracles. The security of our system is based on the same assumptions
as the scheme by Boneh, Boyen, Shacham [6], i.e. the q-SDH assumption and the so called Decision Linear
Assumption (DLA) for bilinear groups.

1.1 Related Work

Although reputation systems are a popular research topic in economics, to the best of our knowledge
prior to this work they have not been considered from a cryptographic point of view. In contrast to this,
group signatures have been well studied in cryptography. Here we briefly review the work most relevant
for our models and constructions. Group signature schemes were introduced by Chaum and van Heyst
[7]. Important techniques to design group signature schemes were first described by Ateniese et al. [10].
For the case of static groups formal definitions of security were first given by Bellare, Micciancio and
Warinschi [13]. The same is done for dynamic groups by Bellare, Shi and Zhang [14]. Both works provide
frameworks to construct group signature schemes. One of the most efficient static schemes is that of
Boneh, Boyen and Shacham (BBS) [6]. Schemes with verifier-local revocation include [5,15]. Linkable,
though not publicly linkable, group signature schemes are presented by Hwang et al. [11]. In the context
of ring signatures public linkability has been considered before, for example in [9]. Our definition of public
linkability is based on the definition given there.

1.2 Organization

The remainder of this paper is organized as follows: In Section 2 we define the notation that is used
throughout this paper. In Section 3 we provide a formal model for reputation systems and their security.
Cryptographic assumptions are defined in Section 4. In Section 5 we give a zero-knowledge protocol as
a building block of our first construction of a reputation system, which is defined and proven secure in
Section 6.

2 Notation

Throughout this paper we will use the following notations. If S is a set, then |S| denotes its size. An empty
string is denoted by ε. We distinguish three assignment operators. If x is a variable and y is an expression,
then x : = y denotes the assignment of the value of y to the variable x. If S is a finite set, then we write



Anonymous and Publicly Linkable Reputation Systems 3

x
R←−S to indicate that an element x of S is picked uniformly at random. If A is an (probabilistic)

algorithm running on inputs y1, y2, . . ., then x←−A(y1, y2, . . .) denotes the operation of assigning the
output of A to the variable x. The set of all possible outputs of an algorithm A with input y1, y2, . . . we
denote by [A(y1, y2, . . .)]. If A and B are interactive algorithms, then the set of all possible outputs of
the interactive algorithms A and B we denote by [A(y1, y2, . . .)] × [B(z1, z2, . . .)]. Running an algorithm
A with inputs y1, y2, . . . and access to the oracles O1,O2, . . . we denote by A(y1, y2, . . . : O1,O2, . . .).

3 A Model for Reputation Systems

In this section we provide a model for reputation systems. This model is based on the model for dynamic
group signature schemes by Bellare, Shi, and Zhang [14]. Therefore, we will use the same notation for the
authorities, algorithms and security properties as Bellare, Shi, and Zhang.

3.1 Algorithms

A reputation system consists of one authority called the group manager, a set of authorities called the
key issuers, and a set of users. The group manager is assumed to be honest, provides the group manager’s
public key gmpk and is able to trace group members. Every key issuer provides items with corresponding
item-based public keys ipk [item], which will be used by the group members to rate/vote a specific item.
Users have unique identities i ∈ N and may become group members by registering at the group manager.
The specification of a reputation system is a tuple RS = (KeyGenGM , KeyGenKI , KeyGenU , RegisterGM ,
RegisterU , Join, Issue, Sign, Verify, Open, Link, Revoke) of polynomial-time algorithms. Their function-
ality is described as follows.
KeyGenGM(): This randomized algorithm is run in the setup phase by the group manager to create the
public key gmpk and the secret key gmsk . The secret key gmsk contains elements which allow tracing of
group members and the creation of revocation tokens.
KeyGenKI(item): This randomized algorithm is run by a key issuer for every item he provides. For
the given item this algorithm creates an item-based public key ipk [item] and a corresponding item-based
secret key isk [item]. The tuple (item, ipk [item]) is added to the ItemList .
KeyGenU(i): This randomized algorithm is run to create the user’s public and secret key pair (upk [i],
usk [i]). The user’s public key upk [i] is used during the registration to the group, the corresponding secret
key usk [i] is used to create signatures.
RegisterGM(StGM ,MGM),RegisterU(StU ,MU): These randomized interactive algorithms are run
by the group manager and a user i ∈ N, who wants to become a group member. During this protocol
the user’s public and secret key pair (upk [i], usk [i]) is chosen by using the KeyGenU algorithm. If the
group manager accepts, the tuple (i, upk [i]) is added to the registration table reg . The input parameters
of the algorithms are some state information and a message, which was received from the communicating
partner. It is assumed that the user starts the interaction.
Join(StU ,MU), Issue(StKI ,MKI): These randomized interactive algorithms are run by a user i ∈ N
and a key issuer. The input parameters of the algorithms are some state information and a message, which
was received from the communicating partner. It is assumed that the user starts the interaction. The first
message of the user must contain his public key upk [i], an item, and his identity i. If Issue accepts, the
key issuer sends a personal signing key for the given item gsk [i, item] to the user and saves the tuple
(upk [i], gsk [i, item]) in the identification list ILitem for the specified item.
Sign(item, gmpk , ipk [item], gsk [i, item], usk [i],M): This randomized algorithm is run by a user to
create a signature for the specified item. Given an item, the group managers’ public key gmpk , an item-
based public key ipk [item], the signing key for the given item of user i gsk [i, item], the secret key of user
i usk [i], and a message M , Sign computes and outputs a signature σ on M under the given keys.
Verify(item, gmpk , ipk [item],RL,M, σ): This deterministic algorithm can be run by any user, even
by an outsider, having access to the public ItemList , the group managers’ public key gmpk , the revocation
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list RL, a message M and a candidate signature σ for M , to obtain a bit v. We say that σ is a valid
signature of M with respect to the given keys, iff the bit v is 1.
Open(gmpk , gmsk ,M, σ): This deterministic algorithm is run by the group manager to open signa-
tures. Given the group managers’ public key gmpk , the group managers’ secret key gmsk , a message M
and a signature σ, output the identity of the signer or failure.
Link(item, gmpk , ipk[item], (M ′, σ′), (M ′′, σ′′)): This deterministic algorithm can be run by any
user, even by an outsider, having access to the public ItemList , the group managers’ public key gmpk and
two message-signature pairs (M ′, σ′), (M ′′, σ′′), to obtain a bit `. If Link outputs ` = 1, we call σ′ and σ′′

publicly linkable signatures.
Revoke(gmpk , gmsk , i): This deterministic algorithm is run by the group manager to revoke signers in
case of misuse. Given the group managers’ public key gmpk , the group managers’ secret key gmsk and
the identity of the group member to revoke, compute the revocation token grt [i] and add it to the public
revocation list RL.
It is not hard to see that the number of key issuers is not important in this model: a single key issuer
has the same capabilities as a colluding set of key issuers. Therefore, in all formal definitions we will only
consider the case that the number of key issuers is 1. Additionally, we assume that the signing keys from
the key issuer given to a user are publicly verifiable, i.e. the correctness of keys can be checked using only
public parameters.

Correctness: A reputation system must satisfy the following correctness requirements:
For all i ∈ N, all item ∈ {0, 1}∗, all (gmpk , gmsk) ∈ [KeyGenGM ], all (ipk [item], isk [item]) ∈ [KeyGenKI ],
all (upk [i], usk [i]) ∈ [RegisterGM ]× [RegisterU ], all gsk [i, item] ∈ [Join]× [Issue], and all grt [i] ∈ [Revoke]:

Verify(item, gmpk , ipk [item],RL,M, Sign(item, gmpk , ipk [item], gsk [i, item], usk [i],M)) = 1

⇐⇒ grt [i] /∈ RL,
Open(gmpk , gmsk ,M, Sign(item, gmpk , ipk [item], gsk [i, item], usk [i],M)) = i

and

Link(item, gmpk , ipk[item], (M ′, Sign(item, gmpk , ipk [item], gsk [i, item], usk [i],M ′)),

(M ′′, Sign(item, gmpk , ipk [item], gsk [i, item], usk [i],M ′′))) = 1.

That means, every signature output by the Sign algorithm must be valid, as long as all used keys are
generated by the corresponding algorithms and the signing user was not revoked. Furthermore, the Open
algorithm outputs the identity of the signer when the signature was created by the Sign algorithm using
valid keys, and Link outputs 1, iff a signer i created two signatures for two messages for the same item
using the Sign algorithm and valid keys.

3.2 Security Notions

To model the different attack capabilities of an adversary, we introduce certain oracles, which will be used
in the definitions of security. The oracle definitions given in Figure 1 are based on [14]. Therefore, we
assume that a security experiment has run KeyGenGM () to obtain (gmpk , gmsk), and manages the global
sets HU , CU , RU , J IU , GS, reg and ItemList . Except ItemList and reg all sets are only used within the
formal definitions of Figure 1 and Figure 2. With HU we denote the set of honest users, with CU the set
of corrupted users. The set RU contains all identities of users that currently engage in the registration
protocol. The set J IU contains all identities of users that currently engage in the join-issue protocol.
With GS we denote the set of queried signatures. All sets are assumed to be initially empty.
AddU(i): To add honest users to the group the adversary can call this add user oracle with an identity
i ∈ N as argument. The oracle adds i to the set of honest users and executes the registration protocol
by running RegisterGM and RegisterU . When RegisterGM accepts, the tuple (i, upk [i]) is stored in the
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registration table reg . When RegisterU accepts, the pair (usk [i], upk [i]) is the key pair of user i. The oracle
returns upk [i] to the adversary.
AddItem(item): An adversary can add items by using this add item oracle. The oracle then runs the
KeyGenKI algorithm to obtain a secret and a public key for the specified item. Afterwards, the item is
added to the ItemList and the public key of the item is returned to the adversary.
USK(i): To get the secret key usk [i] of an honest user i ∈ N an adversary can call the user secret key
oracle with an identity i as argument. Then the user i is added to CU .
GSK(i, item): To get the secret signing key gsk [i, item] of a corrupted user i ∈ N for a specified item,
an adversary can call the signing key oracle with an identity i and an already existing item as arguments.
If no signing key is found, the oracle generates a new one.
RevU(i): To get the revocation token of an honest user i ∈ N an adversary can call this revoke user
oracle with an identity i as argument. Then the revocation token is added to RL and returned to the
adversary.
GSig(i, item,M): An adversary can use the signing oracle to obtain a valid signature for the message
M with respect to the signing key of user i ∈ N, and the item-based public key ipk [item]. The queried
signature is added to GS.
SndToKI(i, item, upk [i],MKI): After corruption of user i ∈ N, the adversary can use this send to key
issuer oracle to engage in a key issuing protocol with the key issuer. The adversary provides the item and
the public key of user i for which he wants to get a secret signing key. Furthermore, the message MKI is
sent to the key issuer. The oracle honestly executes the Issue protocol and computes a response to MKI .
If Issue accepts the communication, the user’s secret signing key is saved in the identification list ILitem

and MU contains the tuple (upk [i], gsk [i, item]).
SndToGM(i,MGM): Similarly to the SndToKI oracle, the send to group manager oracle can be used by
an adversary to engage in a registration protocol with the honest group manager. The adversary provides
an identity i ∈ N and a message MGM sent to the group manager. The oracle executes honestly the
RegisterGM protocol and saves (i, upk [i]) in the registration table reg [i], iff RegisterGM accepts. The user
i is added to CU .
WItemList(item, ipk): An adversary can use the write to item list oracle to manipulate the item-based
public key of the specified item. If ipk = ε the item is deleted from the list. Otherwise, the specified public
key is set.
WIdentList(item, i, upk [i], gsk): Using the write to identification list oracle an adversary can modify
the secret signing key of user i ∈ N for the specified item. If gsk = ε the key information about user i is
deleted from the list.
Open(item,M, σ): The opening oracle can be used by the adversary with a message M , a signature σ
and an item as arguments to get the output of the Open algorithm.

Using the oracle definitions from Figure 1 we can define the security experiments. In our reputation
system we need anonymity, traceability, public linkability and strong exculpability. The anonymity and
traceability experiments are based on [14], the public linkability experiment is based on [9] and the
strong-exculpability experiment is based on [2,10,14]. The experiments are defined in Figure 2.

Definition 1. Let RS be a reputation system. We denote the advantage of an algorithm A in solving
Expanon−b

A,RS (k) by

Adv Expanon−b
A,RS (k)

def
=
∣∣∣Pr
[
Expanon−1

A,RS (k) = 1
]
− Pr

[
Expanon−0

A,RS (k) = 1
]∣∣∣ .

The probability is over the random bits of A, as well as the random bits used in the experiment. We call RS
(t, ε)−anonymous, iff for every algorithm A running in time at most t the advantage Adv Expanon−b

A,RS (k)
is at most ε.



6 Johannes Blömer, Jakob Juhnke and Christina Kolb

AddU(i): // everybody
If (i ∈ HU ∪ CU) then return ε.
HU : =HU ∪ {i}
StiU : =(gmpk , i)
MU : = ε
StiGM : =(gmpk , gmsk)
(StiU ,MGM ,modei)←−RegisterU (StiU ,MU )
while (modei = continue) do

(StiGM ,MU ,modei)←−RegisterGM (StiGM ,MGM )
If (modei = accept) then reg [i] : =(i, upk [i])
(StiU ,MGM ,modei)←−RegisterU (StiU ,MU )

return upk [i]

AddItem(item): // everybody
If (item ∈ ItemList) then return ε.
(ipk [item], isk [item])←−KeyGenKI(item)
ItemList : = ItemList ∪{(item, ipk [item])}
return ipk [item]

USK(i): // corrupted users
If (i /∈ HU) then return ε.
HU : =HU \ {i}
CU : = CU ∪ {i}
return usk [i]

GSK(i, item): // corrupted users
If (i /∈ CU) then return ε.
If (item /∈ ItemList) then return ε.
If ((upk [i], ·) /∈ ILitem) then

StiU : =(gmpk , ipk [item], upk [i], i)
MU : = ε
StiKI : =(gmpk , upk [i])
(StiU ,MKI ,modei)←− Join(StiU ,MU )
while (modei = continue) do

(StiKI ,MU ,modei)←− Issue(StiKI ,MKI)
If (modei = accept) then

ILitem : = ILitem ∪{(upk [i], gsk [i, item])}
(StiU ,MKI ,modei)←− Join(StiU ,MU )

return gsk [i, item]

RevU(i): // corrupted users
If (i /∈ HU) then return ε
RL : =RL ∪ {grt [i]}
return grt [i]

Open(item,M, σ): // everybody
If (item /∈ ItemList) then return failure.
return Open(gmpk , gmsk ,M, σ)

SndToKI(i, item, upk [i],MKI): // corrupted users
If (i /∈ CU) then return ε.
If (item /∈ ItemList) then return ε.
If (i /∈ JIU) then StiKI : = ε
JIU : =JIU ∪ {i}
(StiKI ,MU ,modei)←− Issue(StiKI ,MKI)
If (modei = accept) then

(upk [i], gsk [i, item]) := MU

ILitem : = ILitem ∪{(upk [i], gsk [i, item])}
J IU : =JIU \ {i}

If (modei = deny) then JIU : =JIU \ {i}
return (MU ,modei)

SndToGM(i,MGM ): // corrupted users
If (i ∈ HU ∪ CU) then return ε.
If (i /∈ RU) then StiGM : =(gmpk , gmsk)
RU : =RU ∪ {i}
(StiGM ,MU ,modei)←−RegisterGM (StiGM ,MGM )
If (modei = accept) then

reg [i] := (i, upk [i])
CU : = CU ∪ {i}
RU : =RU \ {i}

If (modei = deny) then RU : =RU \ {i}
return (MU ,modei)

WItemList(item, ipk): // corrupted key issuer
ItemList : = ItemList \{(item, ipk [item])}
If (ipk 6= ε) then ItemList : = ItemList ∪{(item, ipk)}
return 1

WIdentList(item, i, upk [i], gsk): // corrupted key issuer
If (item /∈ ItemList) then return 0.
If ((i, upk [i]) 6= reg [i]) return 0.
ILitem : = ILitem \{(upk [i], gsk [i, item])}
If (gsk 6= ε) then ILitem : = ILitem ∪{(upk [i], gsk)}
return 1

GSig(i, item,M): // everybody
If (i /∈ HU) then return ε
If (item /∈ ItemList) then return ε
If ((upk [i], ·) /∈ ILitem) then

StiU : =(gmpk , ipk [item], upk [i], i)
MU : = ε
StiKI : =(gmpk , upk [i])
(StiU ,MKI ,modei)←− Join(StiU ,MU )
while (modei = continue) do

(StiKI ,MU ,modei)←− Issue(StiKI ,MKI)
If (modei = accept) then

ILitem : = ILitem ∪{(upk [i], gsk [i, item])}
(StiU ,MKI ,modei)←− Join(StiU ,MU )

σ←−Sign(item, gmpk , ipk [item], gsk [i, item], usk [i],M)
GS : =GS ∪ {(item, i,M, σ)}
return σ

Fig. 1. Oracle definitions. Adversaries who can call an oracle are stated behind the oracle’s name.

The anonymity requirements can slightly be relaxed to an experiment where an adversary is not allowed
to query the Open oracle. We denote this modification by CPA-anonymity and the anonymity experiment
as defined in Figure 2 by CCA2-anonymity, analogously to [6].
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Experiment Expanon−b
A,RS (k) // b ∈ {0, 1}

HU : = ∅, CU : = ∅,RL : = ∅, ItemList : = ∅, reg : = ∅,RU : = ∅,JIU : = ∅,GS : = ∅
(gmsk , gmpk)←−KeyGenGM ()
(i0, i1, item,M, St)←−A(gmpk : AddU, USK, RevU, GSig, SndToGM, WItemList, WIdentList, Open, choose)
σ←−Sign(item, gmpk , ipk [item], gsk [ib, item], usk [ib],M)
d←−A(σ,St: AddU, USK, RevU, GSig, SndToGM, WItemList, WIdentList, Open, guess)
If ((item, i0, ·, ·) ∈ GS) ∨ ((item, i1, ·, ·) ∈ GS) ∨ (i0 /∈ HU) ∨ (i1 /∈ HU) ∨ (A queried Open(item,M, σ)) then return 0
return d

Experiment Exppublink
A,RS (k)

HU : = ∅, CU : = ∅,RL : = ∅, ItemList : = ∅, reg : = ∅,RU : = ∅,JIU : = ∅,GS : = ∅
(gmsk , gmpk)←−KeyGenGM ()

{(item,mi, σi)}|CU|+1
i=1 ←−A(gmpk : AddItem, SndToKI, SndToGM)

If there exists an i ∈ {1, . . . , |CU|+ 1} such that Verify(item, gmpk , ipk [item],RL,mi, σi) = 0 then return 0
If there are i, j ∈ {1, . . . , |CU|+ 1} with i 6= j such that Link(item, gmpk , ipk [item], (mi, σi), (mj , σj)) = 1 then return 0
return 1

Experiment Exptrace
A,RS(k)

HU : = ∅, CU : = ∅,RL : = ∅, ItemList : = ∅, reg : = ∅,RU : = ∅,JIU : = ∅,GS : = ∅
(gmsk , gmpk)←−KeyGenGM ()
(item,m, σ)←−A(gmpk : AddU, AddItem, USK, GSK, RevU, GSig, SndToKI, SndToGM, Open)
If (Verify(item, gmpk , ipk [item],RL,m, σ) = 0) then return 0
If (Open(gmpk , gmsk ,m, σ) = failure) then return 1
i←−Open(gmpk , gmsk ,m, σ)
If (i ∈ CU) ∨ ((item, i,m, σ) ∈ GS) then return 0
return 1

Experiment Expstr−ex
A,RS (k)

HU : = ∅, CU : = ∅,RL : = ∅, ItemList : = ∅, reg : = ∅,RU : = ∅,JIU : = ∅,GS : = ∅
(gmsk , gmpk)←−KeyGenGM ()
(item,m, σ)←−A(gmpk : AddU, USK, RevU, GSig, SndToGM, WItemList, WIdentList, Open)
If (Verify(item, gmpk , ipk [item],RL,m, σ) = 0) then return 0
If (Open(gmpk , gmsk ,m, σ) = failure) then return 0
i←−Open(gmpk , gmsk ,m, σ)
If (i /∈ HU) ∨ ((item, i,m, σ) ∈ GS) then return 0
return 1

Fig. 2. Experiment definitions.

Definition 2. Let RS be a reputation system. We denote the advantage of an algorithm A in solving
Exppublink

A,RS (k) by

Adv Exppublink
A,RS (k)

def
= Pr

[
Exppublink

A,RS (k) = 1
]
.

The probability is over the random bits of A, as well as the random bits used in the experiment. We call RS
(t, ε)−public linkable, iff for every algorithm A running in time at most t the advantage Adv Exppublink

A,RS (k)
is at most ε.

Definition 3. Let RS be a reputation system. We denote the advantage of an algorithm A in solving
Exptrace

A,RS(k) by

Adv Exptrace
A,RS(k)

def
= Pr

[
Exptrace

A,RS(k) = 1
]
.

The probability is over the random bits of A, as well as the random bits used in the experiment. We call
RS (t, ε)−traceable, iff for every algorithm A running in time at most t the advantage Adv Exptrace

A,RS(k)
is at most ε.
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Definition 4. Let RS be a reputation system. We denote the advantage of an algorithm A in solving
Expst−ex

A,RS(k) by

Adv Expstr−ex
A,RS (k)

def
= Pr

[
Expstr−ex

A,RS (k) = 1
]
.

The probability is over the random bits of A, as well as the random bits used in the experiment. We
call RS (t, ε)−strong-exculpable, iff for every algorithm A running in time at most t the advantage
Adv Expstr−ex

A,RS (k) is at most ε.

Discussion: The anonymity experiment Expanon−b
A,RS (k) asks an adversary to distinguish which of two

group members signed a message for some item, where the identities, the message, and the item were
chosen by the adversary. The adversary’s attack capabilities are very strong: it is possible to corrupt the
key issuer and all but two users. These two users must be honest because otherwise the adversary could
possibly link different signatures or use the revocation token of the users to determine their identities.
The strong-exculpability experiment Expstr−ex

A,RS (k) asks an adversary to output a message-signature pair,
for some item chosen by the adversary, which is valid and can be traced back to an honest user. We give
an adversary the possibility to corrupt users and the key issuer, so the attack capabilities are very strong.
Because the key issuer can always generate signing keys for non-existing users, we force the adversary to
output a signature on behalf of an honest user.
The public linkability experiment Exppublink

A,RS (k) asks an adversary to output message-signature pairs, for
the same item chosen by the adversary, such that all pairs are valid and there are no two pairs that can
be linked. The number of pairs must be one more than the number of users in the group. We allow the
adversary to corrupt all users, but the key issuer has to be honest. If the key issuer is corrupted, then
he can create signing keys for non-existing users. Hence, he can also create signatures which can not be
linked to signatures created by the group members.
The traceability experiment Exptrace

A,RS(k) asks an adversary to output a message-signature pair, for some
item chosen by the adversary, which is valid but can not be traced back to a corrupted user. In this
experiment the key issuer must be honest because he could generate signing keys for non-existing users.

The defined experiments imply two different attack scenarios:

In the first scenario, for anonymity and strong-exculpability, we allow an adversary to corrupt the
key issuer and a set of users. One could argue, that there is an oracle missing to allow an adversary
to send corrupted data to honest users in the join-issue protocol. But this functionality is covered by
the SndToGM, WItemList, and WIdentList oracles. Due to the assumption that all signing keys are
publicly verifiable by the users (as stated in Subsection 3.1), an honest user would only accept valid
keys in the join-issue protocol. The same is implicitly done by our oracles and in the experiments.
Hence, we omit such an oracle.
In the second scenario, for public linkability and traceability, only a set of corrupted users is allowed
- the key issuer is assumed to be honest. This restriction is necessary because a key issuer could
generate secret keys for non-existing users. With an appropriate identity management this can be
prevented. Then we could also allow a corrupted key issuer in the experiments for public linkability
and traceability.

Although, without loss of security, we can assume a corrupted group manager in the public linkabil-
ity, traceability and strong-exculpability experiments, we assume the group manager to be honest. In
particular, our construction has stronger security properties than stated in the theorems in Section 6.

4 Preliminaries

In this section we introduce the main building blocks for our reputation system.
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4.1 Bilinear Maps

First we review some concepts related to bilinear maps, following the notation of [4]:

1. G1 and G2 are multiplicative groups of prime order p,

2. ψ is an isomorphism from G2 to G1,

3. g1 is a generator of G1 and g2 is a generator of G2, with g1 = ψ(g2), and

4. e is a map e: G1 ×G2 −→ GT with the following properties:

Bilinearity: for all u ∈ G1, v ∈ G2 and a, b ∈ Zp: e(ua, vb) = e(u, v)ab

Non-degeneracy: e(g1, g2) 6= 1GT .

We say the groups (G1,G2) as described above are bilinear groups, iff the group operations in G1 and
G2, the isomorphism ψ and the mapping e are efficiently computable. We need the existence of the
isomorphism ψ only for the proofs of security. Hence, one could also set G1 = G2, but to be more general
we consider only the case where the two groups are different.

4.2 Computational Assumptions

Here we introduce the computational assumptions we use to prove the security of our reputation system.
Since these assumptions are standard, we can be brief.

Definition 5 (Decision Linear Problem – D-Linear1). Let G be a cyclic group of prime order p.

Given arbitrary generators u, v, w ∈ G and uα, vβ, wγ ∈ G, where α, β
R←−Zp, the Decision Linear Problem

is to decide whether γ = α+ β.

Definition 6. The advantage of an algorithm A in deciding the Decision Linear Problem is

AdvD−Linear1
A

def
=

∣∣∣∣∣∣Pr
[
A(u, v, w, uα, vβ, wα+β) = 1: u, v, w

R←−G, α, β R←−Zp
]

−Pr
[
A(u, v, w, uα, vβ, wγ) = 1: u, v, w

R←−G, α, β, γ R←−Zp
] ∣∣∣∣∣∣ .

The probability is over the uniform choices of the parameters u, v, w, α, β, γ and over the random bits of
A. We say that algorithm A (t, ε)-decides D-Linear1 if A runs in time at most t and AdvD−Linear1

A is at
least ε. We say that D-Linear1 (t, ε)-holds in G if no algorithm running in time t has advantage at least
ε in solving D-Linear1 in G.

Lemma 1 (Random self-reducibility of D-Linear1). Let G be a multiplicative group of prime order
p and let G := (u, v, w, ua, vb, wc) be an instance of the Decision Linear Problem. Then we can construct
another instance H := (r, s, t, rd, se, tf ) that is independent of G, but has the same distribution as G.

Proof. Choose the values α, β, γ, δ, ε, ϕ
R←−Zp and set r := uα·β·ϕ, s := vγ·δ·ϕ, t := wϕ, rd := (ua)α·β·ε·ϕ,

se := (vb)γ·δ·ε·ϕ, and tf := (wc)ε·ϕ. With α, β, γ, δ, ϕ
R←−Zp the first five components of H are distributed

uniformly at random. For the exponents d, e and f holds d = a · ε, e = b · ε, and f = c · ε. Hence,
f = d+ e⇔ c · ε = a · ε+ b · ε⇔ c = a+ b, H is independent of G and H is distributed exactly as G. ut

Definition 7 (q-Strong Diffie-Hellman Problem – q-SDH). Let G1,G2 be two (multiplicative)
groups of prime order p (where possibly G1 = G2), let ψ be an efficiently computable isomorphism
from G2 to G1, let g2 ∈ G2 be an arbitrary generator and let g1 = ψ(g2). Given a (q + 2)-tuple

(g1, g2, g
γ
2 , g

(γ2)
2 , . . . , g

(γq)
2 ), the q-Strong Diffie-Hellman Problem is to output a pair

(
g

1
x+γ

1 , x

)
, where

x ∈ Zp.
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Definition 8. The advantage of an algorithm A in solving q-SDH in (G1,G2) is

Advq−SDH
A

def
= Pr

[
A
(
g1, g2, g

γ
2 , g

(γ2)
2 , . . . , g

(γq)
2

)
=

(
g

1
x+γ

1 , x

)
: g2

R←−G2, g1 = ψ(g2), γ
R←−Zp

]
.

The probability is over the uniform choices of the parameters g2, γ and over the random bits of A. We say
that algorithm A (t, ε)-solves q-SDH in (G1,G2) if A runs in time at most t and Advq−SDH

A is at least ε.
We say that q-SDH (t, ε)-holds in (G1,G2) if no algorithm running in time t has advantage at least ε in
solving q-SDH in (G1,G2).

Definition 9 (extended q-Strong Diffie-Hellman Problem – extended q-SDH). Let G1,G2 be
two (multiplicative) groups of prime order p (where possibly G1 = G2), let ψ be an efficiently computable

isomorphism from G2 to G1, let g2 ∈ G2 be arbitrary generator, let g1 = ψ(g2) and h
R←−G1. Given a

(q + 3)-tuple
(
g1, h, g2, g

γ
2 , g

(γ2)
2 , . . . , g

(γq)
2

)
, the extended q-Strong Diffie-Hellman Problem is to output a

tuple
(

(g1 · hy)
1

x+γ , x, y
)

, where x, y ∈ Zp.

Definition 10. The advantage of an algorithm A in solving extended q-SDH in (G1,G2) is

Advext−q−SDH
A

def
= Pr

[
A
(
g1, h, g2, g

γ
2 , g

(γ2)
2 , . . . , g

(γq)
2

)
=
(

(g1 · hy)
1

x+γ , x, y
)

: h
R←−G1, g2

R←−G2, γ
R←−Zp, g1 = ψ(g2)

]
.

The probability is over the uniform choices of the parameters h, g2, γ and over the random bits of A. We say
that algorithm A (t, ε)-solves extended q-SDH in (G1,G2) if A runs in time at most t and Advext−q−SDH

A
is at least ε. We say that extended q-SDH (t, ε)-holds in (G1,G2) if no algorithm running in time t has
advantage at least ε in solving extended q-SDH in (G1,G2).

Lemma 2. Let G1,G2 be two cyclic groups of prime order p and let A be an algorithm that (t′, ε′)-solves
extended q-SDH in (G1,G2). Then there exists an algorithm B that (t, ε)-solves q-SDH in (G1,G2), where
t = t′ +O(1).

Proof. Algorithm B is given an instance of a q-SDH problem (g1, g2, g
γ
2 , g

(γ2)
2 , . . . , g

(γq)
2 ). Now B chooses

α
R←−Zp and computes h := gα1 . Then the extended q-SDH instance

(
g1, h, g2, g

γ
2 , g

(γ2)
2 , . . . , g

(γq)
2

)
is given

to algorithm A. A outputs a solution
(

(g1 · hy)
1

x+γ , x, y
)

to this problem with advantage ε. Now B
computes

c := (1 + α · y)−1 and
(

(g1 · hy)
1

x+γ

)c
= (g1 · hy)

c
x+γ =

(
g1 · gα·y1

) c
x+γ = g

(1+α·y)·
(

1
x+γ
· 1
(1+α·y)

)
1 = g

1
x+γ

1 .

So B can output

(
g

1
x+γ

1 , x

)
as a solution to his q-SDH problem with advantage ε in time t = t′ +O(1),

as claimed. ut

5 A Protocol for extended q-SDH – Intuition for the Revocation System

We give a protocol to prove possession of a solution to an extended q-SDH problem. That means, the
prover has to show that he knows a triple (A, x, y) such that Ax+γ = g1 · hy, where A, g1, h ∈ G1 and
x, y, γ ∈ Zp (here the γ is not known by the prover).
We assume to have an efficiently computable isomorphism ψ from G2 to G1 and an efficiently computable
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non-degenerative bilinear mapping e : G1 ×G2 → GT . The groups G1,G2,GT are groups of prime order
p. Furthermore, we assume that the Decision Linear Problem holds in G1.
The secret key of the prover is the triple (A, x, y), the public values are g1, d, f, h, u, v, w,C ∈ G1 and

g2,W ∈ G2, where g2
R←−G2, W = gγ2 for some (secret) γ ∈ Zp, g1 = ψ(g2), h, d, f, u, v, w

R←−G1, and

C = hy. The value A is determined by A = (g1 · hy)
1

x+γ , but can not be computed by the prover because
γ is unknown.
The triple (A, x, y) is a solution of the extended q-SDH problem, iff the equation e(A, g2)

x · e(A,W ) ·
e(h, g2)

−y = e(g1, g2) holds. This will be used in the protocol.

Protocol 1.

1. P chooses α, β, µ
R←−Zp and computes T1 := uα, T2 := vβ, T3 := A · wα+β, T4 := dµ, T5 := fµ+y,

δ1 := x ·α, and δ2 := x ·β. Now P and V undertake a proof of knowledge of values (α, β, x, y, µ, δ1, δ2).

2. P chooses rα, rβ, rx, ry, rµ, rδ1 , rδ2
R←−Zp, computes R1 := urα , R2 := vrβ , R3 := e(T3, g2)

rx ·
e(w,W )−rα−rβ · e(w, g2)

−rδ1−rδ2 · e(h, g2)
−ry , R4 := T rx1 · u

−rδ1 , R5 := T rx2 · v
−rδ2 , R6 := drµ , and

R7 := f rµ+ry , and sends (T1, T2, T3, T4, T5, R1, R2, R3, R4, R5, R6, R7) to V.

3. The verifier V chooses c
R←−Zp as a challenge and sends c to the prover P.

4. The prover computes sα := rα + c · α, sβ := rβ + c · β, sx := rx + c · x, sy := ry + c · y, sµ := rµ + c · µ,
sδ1 := rδ1 + c · δ1, sδ2 := rδ2 + c · δ2 and sends them to the verifier V.

5. The verifier V checks the following equations: R1
?
= usα · T−c1 , R2

?
= vsβ · T−c2 , R3

?
= e(T3, g2)

sx ·
e(w,W )−sα−sβ · e(w, g2)

−sδ1−sδ2 · e(h, g2)
−sy · e(T3,W )c · e(g1, g2)

−c, R4
?
= T sx1 ·u

−sδ1 , R5
?
= T sx2 · v

−sδ2 ,

R6
?
= dsµ · T−c4 , R7

?
= fsµ+sy · T−c5 and accepts if all hold.

Lemma 3. The Protocol 1 is complete (the verifier always accepts an interaction with an honest prover).

Proof. If the prover P is honest and in possession of a triple (A, x, y) such that Ax+γ = g1 · hy, he follows
the computations specified for him in the protocol. In this case the following equations hold:

usα · T−c1 = urα+c·α · (uα)−c = urα = R1

vsβ · T−c2 = vrβ+c·β · (vβ)−c = vrβ = R2

e(T3,g2)sx ·e(w,W )
−sα−sβ ·e(w,g2)

−sδ1−sδ2 ·e(h,g2)−sy
e(T3,W )−c·e(g1,g2)c

= e(T3,g2)rx+c·x·e(w,W )
−rα−c·α−rβ−c·β ·e(w,g2)

−rδ1−c·δ1−rδ2−c·δ2 ·e(h,g2)−ry−c·y
e(T3,W )−c·e(g1,g2)c

= R3 ·
[
e(T3,g2)x·e(w,W )−α−β ·e(w,g2)−δ1−δ2 ·e(h,g2)−y

e(T3,W )−1·e(g1,g2)

]c
= R3·

[
e(A·wα+β ,g2)x·e(w,W )−α−β ·e(w,g2)x·(−α−β)·e(h,g2)−y

e(A·wα+β ,W )−1·e(g1,g2)

]c
= R3·

[
e(A,g2)x·e(w,W )−α−β ·e(h,g2)−y ·e(A·wα+β ,W )

e(g1,g2)

]c
= R3 ·

[
e(A,g2)x·e(h,g2)−y ·e(A,W )

e(g1,g2)

]c
= R3 ·

[
e(Ax+γ ·h−y ,g2)

e(g1,g2)

]c
= R3 ·

[
e(g1,g2)
e(g1,g2)

]c
= R3

T sx1 · u
−sδ1 = (uα)rx+c·x · u−rδ1−c·δ1 = (uα)rx+c·x · u−rδ1−c·x·α = (uα)rx · u−rδ1 = R4

T sx2 · v
−sδ2 = (vβ)rx+c·x · v−rδ2−c·δ2 = (vβ)rx+c·x · v−rδ2−c·x·β = (vβ)rx · v−rδ2 = R5

dsµ · T−c4 = drµ+c·µ · (dµ)−c = drµ = R6

f sµ+sy · T−c5 = f rµ+c·µ+ry+c·y · (fµ+y)−c = f rµ+ry = R7

So the verifier will always accept when the prover is honest. ut

Lemma 4. Assuming the Decision Linear Problem holds in G1, transcripts of Protocol 1 can be simulated.

Proof. We describe a simulator that outputs transcripts for Protocol 1 that are indistinguishable from
real protocol transcripts.

In the first step the simulator chooses Â
R←−G1 and ŷ, α, β, µ

R←−Zp. Then the values T1 := uα, T2 := vβ,
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T3 := Â · wα+β, T4 := dµ, and T5 := fµ+ŷ are computed. In the second step the simulator chooses

the value c
R←−Zp as a simulated challenge and the values sα, sβ, sx, sŷ, sµ, sδ1 , sδ2

R←−Zp. Then the
simulator computes R1 := usα · T−c1 , R2 := vsβ · T−c2 , R3 := e(T3, g2)

sx · e(w,W )−sα−sβ · e(w, g2)
−sδ1−sδ2 ·

e(h, g2)
−sŷe(T3,W )c ·e(g1, g2)

−c, R4 := T sx1 ·u
−sδ1 , R5 := T sx2 ·v

−sδ2 , R6 := dsµ ·T−c4 , and R7 := f sµ+sŷ ·T−c5

using the verification equations from Protocol 1 and outputs (T1, T2, T3, T4, T5, R1, R2, R3, R4, R5, R6,
R7, c, sα, sβ, sx, sŷ, sµ, sδ1 , sδ2) as the transcript.
Now we show that the transcripts created by the simulator are indistinguishable from transcripts of the
real protocol, assuming D-Linear1 holds in G1.
Together with the public values u, v, w, h, d, f , C = hy the 6-tuples (u, v, w, T1, T2, T3) and (h, d, f , C,
T4, T5) are completely random instances of the Decision Linear Problem in G1. Hence, the distribution
of this tuples in the simulation can not be distinguished from the distribution in the real protocol.
By choosing the values sα, sβ, sx, sŷ, sµ, sδ1 , sδ2 and c uniformly at random, the values R1, R2, R3, R4,
R5, R6, R7 are fixed, such that the verification equations are satisfied. Therefore the tuple (R1, R2, R3,
R4, R5, R6, R7, c, sα, sβ, sx, sŷ, sµ, sδ1 , sδ1) is distributed as in the real protocol. Using a standard hybrid
argument, it follows that transcripts generated by the simulator are indistinguishable from transcripts of
the real protocol, assuming the Decision Linear Problem holds in G1. ut

Lemma 5. The Protocol 1 is a proof of knowledge (there exists an extractor for this protocol).

Proof. Suppose an algorithm E (the extractor) that is given two transcripts of protocol 1 (T1, T2, T3,
T4, T5, R1, R2, R3, R4, R5, R6, R7, c, sα, sβ, sx, sy, sµ, sδ1 , sδ2) and (T1, T2, T3, T4, T5, R1, R2, R3,
R4, R5, R6, R7, c

′, s′α, s′β, s′x, s′y, s
′
µ, s′δ1 , s′δ2) where c 6= c′. Then a valid extended q-SDH triple can be

computed by E as follows: ∆c := c− c′, ∆sα := sα − s′α, ∆sβ := sβ − s′β, ∆sx := sx − s′x, ∆sy := sy − s′y,
∆sµ := sµ − s′µ, ∆sδ1 := sδ1 − s′δ1 , and ∆sδ2 := sδ2 − s′δ2 . Dividing the two instances for each of the
verification equations gives

1G1 = usα · T−c1 · u−s′α · T c′1 = u∆sα · T−∆c1 =⇒ T∆c1 = u∆sα =⇒ T1 = uα̂ where α̂ =
∆sα
∆c

1G1 = vsβ · T−c2 · v−s
′
β · T c′2 = v∆sβ · T−∆c2 =⇒ T∆c2 = v∆sβ =⇒ T2 = vβ̂ where β̂ =

∆sβ
∆c

1G1 = dsµ · T−c4 · d−s′µ · T c′4 = d∆sµ · T−∆c4 =⇒ T∆c4 = d∆sµ =⇒ T4 = dµ̂ where µ̂ =
∆sµ
∆c

1G1 = fsµ+sy · T−c5 · f−s′µ−s′y · T c′5 = f∆sµ+∆sy · T−∆c5 =⇒ T∆c5 = f∆sµ+∆sy

=⇒ T5 = f µ̂+ŷ where ŷ =
∆sy
∆c

1G1 = T sx1 · u
−sδ1 · T−s

′
x

1 · us
′
δ1 = T∆sx1 · u−∆sδ1 =⇒ T∆sx1 = u∆sδ1 =⇒ α̂ ·∆sx = ∆sδ1

1G1 = T sx2 · v
−sδ2 · T−s

′
x

2 · vs
′
δ2 = T∆sx2 · v−∆sδ2 =⇒ T∆sx2 = v∆sδ2 =⇒ β̂ ·∆sx = ∆sδ2

1GT =
e(T3, g2)

sx · e(w,W )−sα−sβ · e(w, g2)
−sδ1−sδ2 · e(h, g2)

−sy

e(T3, g2)s
′
x · e(w,W )−s

′
α−s′β · e(w, g2)

−s′δ1−s
′
δ2 · e(h, g2)

−s′y
· e(T3,W )−c

′ · e(g1, g2)
c′

e(T3,W )−c · e(g1, g2)c

= e(T3, g2)
∆sx · e(w,W )−∆sα−∆sβ · e(w, g2)

−∆sδ1−∆sδ2 · e(h, g2)
−∆sy · e(T3,W )∆c

e(g1, g2)∆c

⇐⇒ (
e(g1, g2)

e(T3,W )

)∆c
= e(T3, g2)

∆sx · e(w,W )−∆sα−∆sβ · e(w, g2)
−∆sδ1−∆sδ2 · e(h, g2)

−∆sy

taking ∆c-th root and letting x̂ = ∆sx
∆c we obtain

e(g1, g2)

e(T3,W )
= e(T3, g2)

x̂ · e(w,W )−α̂−β̂ · e(w, g2)
−α̂·x̂−β̂·x̂ · e(h, g2)

−ŷ

this can be rearranged as

e(g1, g2) = e(T3, g2)
x̂ · e(w−α̂−β̂,W ) · e(w−α̂−β̂, g2)

x̂ · e(h, g2)
−ŷ · e(T3,W )
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= e(T3 · w−α̂−β̂, g2)x̂ · e(h, g2)
−ŷ · e(T3 · w−α̂−β̂,W )

letting Â = T3 · w−α̂−β̂ it holds

e(g1, g2) = e(Â, g2)
x̂ · e(h, g2)

−ŷ · e(Â,W ).

Hence, the extractor obtains a tuple (Â, x̂, ŷ), which is a valid extended q-SDH triple. Moreover, the Â is
exactly the same as that in the Linear Encryption (T1, T2, T3), the ŷ is the same as in T5 and so also x̂ is
the same as in the transcripts. So the extractor gets exactly the same values the prover knows. ut

6 Our Construction

In this section we define our reputation system based on extended q-SDH and D-Linear1. To give some
intuition for this system we provide an honest-verifier zero-knowledge proof of knowledge in Section 5.

6.1 The Reputation System

We apply the Fiat-Shamir heuristic [1,12] on Protocol 1 to obtain a signature of knowledge which is secure
in the random oracle model. By extending this signature scheme we construct a reputation system. We
use the challenge c as a part of the signature rather than the values R1, . . . , R7, modelling the value c as
the output of a random oracle. This technique is widely used in the context of group signatures [6,5,10].
In a reputation system, the key issuer publishes items for which the signatures are created. Every user
can create a single signature for every item without losing anonymity. Due to the public linkability two
signatures for one item by the same user can be detected. In such a case, the anonymity of the cheating
user is revoked by the group manager. By publishing a revocation token the group manager can declare
signatures from the cheating user as invalid. This invalidity can be checked by every verifier using verifier-
local revocation [5,15].

KeyGenGM ():

The group manager’s key generation algorithm proceeds as follows:

1. Select w
R←−G1, ξ1, ξ2

R←−Zp and compute u : =w
1
ξ1 , v : =w

1
ξ2 . The values (u, v, w) are the

public key of the Linear Encryption, the values (ξ1, ξ2) are the corresponding secret key.

2. Select d̂
R←−G2, ζ

R←−Zp and compute d : =ψ(d̂), h : = dζ as the basis for public linkability and
revocation.

3. Set gmpk : =(u, v, w, h, d, d̂) and gmsk : =(ξ1, ξ2, ζ) as the group manager’s public and secret
keys.

KeyGenKI(item):

The key issuer’s key generation algorithm proceeds as follows:

1. Select g2item
R←−G2 and set g1item : =ψ(g2item ).

2. Select γitem
R←−Zp and set Witem : = gγitem2item

.
3. Add the item-based public key ipk [item] : =(g1item , g2item ,Witem) to the ItemList and keep

isk [item] : = γitem secret as the item-based secret key.

KeyGenU (i):

The user’s key generation algorithm proceeds as follows:

1. Select yi
R←−Zp, set upk [i] : =hyi and usk [i] : = yi as the user’s public and secret keys.

RegisterGM (StGM ,MGM ),RegisterU (StU ,MU ):

The interactive registration protocol proceeds as follows:

1. The user sends his identity i to the group manager.
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2. The group manager checks if there already exists an entry reg [i] in the registration table. If so,
he declares failure and exits. Otherwise, the group manager runs KeyGenU to obtain the tuple
(upk [i], usk [i]), sets reg [i] := (i, upk [i]) and sends (upk [i], usk [i]) and a certificate for upk [i] to
the user i.

Join(StU ,MU ), Issue(StKI ,MKI):
The interactive key issuing protocol proceeds as follows:

1. The user looks up the public key corresponding to the used item ipk [item] = (g1item , g2item ,
Witem) in the ItemList and sends (i, upk [i]) and the certificate for upk [i] to the key issuer.

2. The key issuer verifies the certificate for upk [i] and checks that user i is not in possession
of a signing key for the given item, i.e. there exists no entry (upk [i], ·) in ILitem . If the cer-
tificate is invalid or there already is a signing key in the list, then he declares failure and

exits. Otherwise, he selects xiitem
R←−Zp, computes Aiitem : =(g1item · upk [i])

1
xiitem

+γitem , gives
gsk [i, item] : =(Aiitem , xiitem ) to the user i as his signing key for the specified item, and saves
(upk [i], gsk [i, item]) in the identification list ILitem for this item.

Revoke(gmpk , gmsk , i):
The revocation algorithm proceeds as follows:

1. Look up upk [i] in reg [i].

2. Using the group manager’s secret key gmsk compute Di : = upk [i]
1
ζ = (hyi)

1
ζ = dyi and add the

revocation token grt [i] : =Di to the revocation list RL.

Sign(item, gmpk , ipk [item], gsk [i, item], usk [i],M):
The group signing algorithm proceeds as follows:

1. Obtain the value f̂ ∈ G2 by f̂ : =H1(item).

2. Choose α, β, µ
R←−Zp, compute

T1 : =uα T2 : = vβ T3 : =Aiitem · wα+β T4 : = dµ T5 : =ψ(f̂)µ+yi

and the helper values δ1 : =α · xiitem and δ2 : =β · xiitem .

3. Choose rα, rβ, rx, ry, rµ, rδ1 , rδ2
R←−Zp and compute

R1 : =urα R2 : = vrβ

R3 : = e(T3, g2item )rx · e(w,Witem)−rα−rβ · e(w, g2item )−rδ1−rδ2 · e(h, g2item )−ry

R4 : =T rx1 · u
−rδ1 R5 : =T rx2 · v

−rδ2 R6 : = drµ R7 : =ψ(f̂)rµ+ry .

4. Compute a challenge value c using H:

c : =H(M, item, T1, T2, T3, T4, T5, R1, R2, R3, R4, R5, R6, R7).

5. Compute

sα : = rα + c · α sβ : = rβ + c · β sx : = rx + c · xiitem sy : = ry + c · yi
sµ : = rµ + c · µ sδ1 : = rδ1 + c · δ1 sδ2 : = rδ2 + c · δ2.

6. Output the signature σ : =(item, T1, T2, T3, T4, T5, c, sα, sβ, sx, sy, sµ, sδ1 , sδ2).

Verify(item, gmpk , ipk [item],RL,M, σ):
The signature verification algorithm proceeds as follows:

1. Obtain the value f̂ ∈ G2 by f̂ : =H1(item).
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2. The verifier computes

R1 : =usα · T−c1 R2 : = vsβ · T−c2

R3 : =
e(T3, g2item )sx · e(w,Witem)−sα−sβ · e(w, g2item )−sδ1−sδ2 · e(h, g2item )−sy

e(T3,Witem)c · e(g1, g2item )−c

R4 : =T sx1 · u
−sδ1 R5 : =T sx2 · v

−sδ2 R6 : = dsµ · T−c4 R7 : =ψ(f̂)sµ+sy · T−c5 .

3. Check that the challenge c is correct:

c
?
= H(M, item, T1, T2, T3, T4, T5, R1, R2, R3, R4, R5, R6, R7).

If this holds, then accept, otherwise reject.

4. For each element D ∈ RL check whether D is encoded in (T4, T5): e
(
T5, d̂

)
?
= e(D · T4, f̂).

If this is false for all D ∈ RL, then the signer of σ has not been revoked and Verify accepts,
otherwise rejects.

5. If both checks accept, then output 1, otherwise 0.

Link(item, gmpk , ipk [item], (M ′, σ′), (M ′′, σ′′)):
The public linking algorithm proceeds as follows:

1. At first, check that σ′ is a valid signature for message M ′ and that σ′′ is a valid signature for
message M ′′. If not, output 0.

2. Obtain the value f̂ ∈ G2 by f̂ : =H1(item).

3. Output 1, if e
(
T ′5
T ′′5
, d̂
)

?
= e

(
T ′4
T ′′4
, f̂
)

holds and 0 otherwise.

Open(gmpk , gmsk ,M, σ):
The opening algorithm proceeds as follows:

1. Check that σ is a valid signature of knowledge for message M . If not, output failure.
2. Compute Aiitem : =T3 · T−ξ11 · T−ξ22 using the group manager’s secret key.
3. The group manager looks up the user index i from the identification list ILitem .
4. If no entry for Aiitem can be found in ILitem return failure, otherwise return i.

Remarks: We assume the communication between users and the group manager and between users and
the key issuer to take place via secure channels. Furthermore, the user’s public key upk [i] is certified by
the group manager, such that the key issuer can verify the integrity of the public keys during the join-issue
protocol. Since we assume the group manager to be honest, we can let him choose the user’s public and
secret keys. We need the honest group manager to prove security for the system.

Correctness: The correctness of the reputation system can be shown as follows:

– Protocol 1 is correct, i.e. every honestly created signature will be declared as valid.
– Revocation token are computed correctly.
– For honestly created signatures the group manager can always recover the identity of the signer,

because of the correctness of the Linear Encryption.
– Two signatures for the same item by the same user are declared as publicly linked.
– Every secret signing key gsk [i] created by the key issuer can be publicly verified by

e(Aiitem , g2)
xiitem · e(Aiitem ,W ) · e(h, g2)

−yi ?
= e(g1, g2).
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6.2 Security of the Reputation System

As mentioned in Section 3 the anonymity experiment as defined in Figure 2 can be relaxed to CPA-
anonymity. We will prove security in this slightly weaker model, analogously to [6]. In the following
lemmata Q is the overall number of oracle queries made by the adversary. The proofs of security are all
in the random oracle model.

Lemma 6. If D-Linear1 (t′, ε′)-holds in G2, then the reputation system defined in Section 6 is (t, Q,
qH1, qAU , ε)-CPA-anonymous, where t = t′ −Q · O(1) and ε = ε′ · 2 · qAU · qH1. Here qH1 is the number
of hash oracle queries to H1 and qAU is the number of AddU oracle queries.

Proof. Suppose A is an adversary that (t, ε)-breaks the anonymity of the reputation system. Then we
can construct an adversary B that decides D-Linear1 in G2 with advantage at least ε

2·qAU ·qH1
in time

t+Q · O(1).

Algorithm B is given an instance of the Decision Linear Problem (û, v̂, ŵ, ûâ, v̂b̂, ŵĉ) ∈ G6
2 and has to

decide whether ĉ = â+ b̂ holds. B does so by interacting with algorithm A.
At first, B sets HU : = ∅, CU : = ∅, RL : = ∅, ItemList : = ∅, reg : = ∅, RU : = ∅, J IU : = ∅, GS : = ∅ and
computes a second, independent instance of D-Linear1 (ĥ, d̂, f̂ , ĥy

∗
, d̂µ

∗
, f̂ r

∗
) using the standard random

self-reducibility technique (see Lemma 1).
Although A has to output two identities in his anonymity challenge, it suffices for B to guess one identity,
namely the one that is used in the challenge signature. Identities are created using the AddU oracle, and

there are at most qAU queries to this oracle. Hence, B chooses `1
R←−{1, . . . , qAU} as his guess which identity

can be used for A’s challenge. Analogously, B has to guess for which item A wants to be challenged. For
every item the hash value H1(item) is needed to create a signature, and there are at most qH1 queries to

H1. Hence, B chooses `2
R←−{1, . . . , qH1} as his guess that the `2’th query to H1 is for the item that A

wants to be challenged on.
To compute the group manager’s public key B sets gmpk : =(u : =ψ(û), v : =ψ(v̂), w : =ψ(ŵ), h : =ψ(ĥ),
d : =ψ(d̂), d̂) and gives gmpk to A. Then A starts to interact with B via the oracles. Algorithm B
responds to oracle queries by running exactly the defined oracles from Figure 1, except to queries to
AddU,USK,RevU and GSig. These oracles are realized as follows:

H(·): For hash oracle queries to H B chooses c
R←−Zp, gives c to A and ensures to respond identically to

repeated queries.
H1(item): To the `2’th query to H1 B responds by patching the oracle at item to match f̂ . If this causes
a collision, B declares failure and exits. Collisions happen with negligible probability, hence here and in

the remainder of the proof we ignore these probabilities. For queries not equal to `2, B chooses f ′
R←−G2

and gives f ′ to A. B ensures to respond identically to repeated queries.
AddU(i): To the `1’th query B responds by setting i∗ : = i, upk [i∗] : =ψ(ĥy

∗
) and returning upk [i∗]. For

every other query B follows the oracle definition of Figure 1.
USK(i): If i 6= i∗ then B responds as defined in Figure 1. If i = i∗ then B cannot respond as usk [i∗] = y∗

is not known. Hence, B declares failure and exits.
RevU(i): If i 6= i∗ then B responds as defined in Figure 1. If i = i∗ then B cannot respond as usk [i∗] = y∗

is not known and dy
∗

can not be computed. Hence, B declares failure and exits.
GSig(i, item,M): Algorithm B has to handle three different cases:

– If i 6= i∗ then B responds as defined in Figure 1.

– If i = i∗ ∧H1(item) 6= f̂ then B simulates the signature using the simulator of Lemma 4. To do this,
B checks that i is an honest user, that there exists a public key for the given item in the ItemList ,
and that user i owns a personal signing key gsk [i, item] ∈ ILitem . If one of this three checks does not

succeed, B returns an empty string (as defined in the GSig oracle). Next B chooses α, β, µ, y′
R←−Zp

and computes T1 : =uα, T2 : = vβ, T3 : =Ai∗item · w
α+β, T4 : = dµ, T5 : =ψ(H1(item))µ+y

′
. Afterwards,
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B chooses c, sα, sβ, sx, sy′ , sµ, sδ1 , sδ2
R←−Zp and computes R1, . . . , R7 using the verification equations

from the Verify algorithm. To ensure the signature is valid, B patches H at (M , item, T1, T2, T3,
T4, T5, R1, R2, R3, R4, R5, R6, R7) to equal c. If this causes a collision, B declares failure and exits.
Finally, B gives σ : =(item, T1, T2, T3, T4, T5, c, sα, sβ, sx, sy, sµ, sδ1 , sδ2) to A.

– If i = i∗ ∧H1(item) = f̂ then B declares failure and exits.

At some point A outputs a tuple (i0, i1, item,M, St). If i0 or i1 are not honest users or the specified item
does not exist in the ItemList , then B declares failure and exits. Also, B declares failure and exits, if
ib 6= i∗ or H1(item) 6= f̂ . Otherwise, the challenge is computed as follows:

B sets T1 : =ψ(ûâ), T2 : =ψ(v̂b̂), T3 : =Ai∗item · ψ(ŵĉ), T4 : =ψ(d̂µ
∗
), T5 : =ψ(f̂ r

∗
) and simulates the values

(c, sα, sβ, sx, sy, sµ, sδ1 , sδ2) as described in the GSig oracle. If this causes a collision during the simulation
of the hash value c, B declares failure and exits. Otherwise, the challenge signature is given to A.
In the guess-phase B responds toA’s queries to the oracles as before. WhenA outputs it’s guess b′ ∈ {0, 1}
B outputs 1, iff ib′ = i∗ as his guess for his D-Linear1 challenge.
All keys given to A and the responses to A’s queries are properly distributed, except the completely
simulated signatures, but these can not be distinguished from real signatures, assuming D-Linear1 holds.
Now we analyze the advantage of B in deciding D-Linear1 in G2. Suppose the D-Linear1 instance given
to B is a real D-Linear1 tuple, i.e. ĉ = â+ b̂. Then also r∗ = y∗+µ∗ and the challenge signature is a valid
signature of user ib. Hence, A has advantage ε in breaking the anonymity of the reputation system.

Suppose the D-Linear1 instance given to B is a random instance, i.e. ĉ
R←−Zp. Then also r∗

R←−Zp and
the challenge signature is completely independent of ib. Hence, algorithm A’s advantage is 0.
If B guesses the correct identity i∗ and the correct item for the challenge signature, then B will not
abort. Guessing the correct identity i∗ happens with a probability of at least 1

qAU
. Analogously, guessing

the correct item happens with a probability of at least 1
qH1

. Hence, B outputs a guess for his D-Linear1

challenge with a probability of at least 1
qAU ·qH1

and the advantage in deciding D-Linear1 is at least

ε′ = ε
2·qAU ·qH1

. Algorithm B can compute a response to A’s oracle queries in constant time. Because there

are at most Q queries and A runs in time t, B runs in time t′ = t+Q · O(1). ut

Lemma 7. If q-SDH (t′, ε′)-holds in (G1,G2), then the reputation system defined in Section 6 is (t, ε)-
publicly linkable, where t = t′−Q·O(1) and ε = qAI ·

√
32 · qH · (q − 1) · ε′+ qAI

p . Furthermore, the overall
number of oracle queries to SndToGM must be at most q − 1. Here qH is the number of hash function
queries to H, qAI is the number of oracle queries to the AddItem oracle made by the adversary and p is
the size of the groups G1 and G2.

Proof. Suppose A is an adversary that (t, ε)-breaks the public linkability of the reputation system.
Then we can construct an adversary B that solves q-SDH in (G1,G2) with advantage ε′ of at least

ε′ =
(

ε
qAI
− 1

p

)2
· 1
32·qH ·(q−1) in time t′ = t+Q·O(1). Without loss of generality we assume that A creates

exactly q − 1 users via the SndToGM oracle.

Algorithm B is given an instance of the q-SDH problem
(
G1, G2, G

γ̂
2 , . . . , G

(γ̂q)
2

)
where G1 = ψ(G2).

B now chooses α, xj , yj
R←−Zp, for j = 1, . . . , q − 1, k

R←−{1, . . . , q − 1} and sets γ := γ̂ − xk which is
unknown. Then the following values are computed by B:

g2 := G
α·
q−1∏
i=1

(γ̂−xk+xi)−yk·
q−1∏

i=1,i6=k
(γ̂−xk+xi)

2 g1 := ψ(g2) (1)

ĥ := G

q−1∏
i=1,i 6=k

(γ̂−xk+xi)

2 h := ψ(ĥ) (2)
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W :=

Gα·
q−1∏
i=1

(γ̂−xk+xi)−yk·
q−1∏

i=1,i 6=k
(γ̂−xk+xi)

2


γ̂−xk

(3)

Aj := ψ


Gα·

q−1∏
i=1

(γ̂−xk+xi)−yk·
q−1∏

i=1,i 6=k
(γ̂−xk+xi)

2 ·G
yj ·

q−1∏
i=1,i 6=k

(γ̂−xk+xi)

2


1

γ+xj

 .
All products in the exponents are polynomials of γ̂ of degree at most q. By expanding the products all
the specified values can be computed using the given q-SDH instance. With γ := γ̂ − xk, the value W
equals gγ2 , while γ is unknown to B.

To generate the group manager’s public key, B selects w
R←−G1, ζ, ξ1, ξ2

R←−Zp and computes

u := w
1
ξ1 v := w

1
ξ2 d̂ := ĥ

1
ζ d := ψ(d̂).

Now B sets HU : = ∅, CU : = ∅, RL : = ∅, ItemList : = ∅, reg : = ∅, RU : = ∅, J IU : = ∅, GS : = ∅ and gmpk :=
(u, v, w, h, d, d̂). Before the group manager’s public key is given to A, B has to guess an item∗ as the item
for which A will output the message-signature pairs as its solution to the public linkability experiment.

To do so, B selects `
R←−{1, . . . , qAI} and uses the item of the `’th query to the AddItem oracle as item∗.

Now B gives the group manager’s public key gmpk to A and starts to interact with A via the oracles. A’s
queries are answered as follows:

H(·): B chooses c
R←−Zp, gives c to A and ensures to respond identically to repeated queries.

H1(item): B chooses f̂
R←−G2, gives f̂ to A and ensures to respond identically to repeated queries.

AddItem(item): On the `’th query B sets item∗ := item and ipk [item∗] := (g1, g2,W ), adds ipk [item∗]
to the ItemList and returns ipk [item∗]. For every other query B executes the KeyGenKI algorithm and
returns the resulting item-based public key ipk [item].
SndToGM(i,MGM): Algorithm B responds to the j’th query by running exactly the defined oracle
from Figure 1 using yj as the sercret key of user i, i.e. usk [i] := yj and upk [i] := hyj .
SndToKI(i, item, upk [i],MKI): If item 6= item∗ then B executes exactly the oracle defined in Figure 1.
Otherwise, B runs the defined oracle using gsk [i, item∗] := (Aj , xj), where Aj and xj correspond to user
i’s secret key usk [i] = yj defined in the SndToGM oracle for user i.

At some point A outputs an item and exactly q message-signature pairs ((m1, σ1), . . . , (mq, σq)). If
item 6= item∗, at least one signature is invalid or there are at least two publicly linkable signatures
then B declares failure and exits. Otherwise, B computes the revocation tokens grt [i] = dyi for all q − 1
group members, adds them to the revocation listRL and runs the verification algorithm for every message-
signature pair (mi, σi), i = 1, . . . , q. Since the signatures are not publicly linkable, there must be at least
one message-signature pair (mi∗ , σi∗) such that σi∗ is still a valid signature. Now we apply the Forking
Lemma [8] to obtain a second solution to the linkability experiment which can be used to solve q-SDH.
A run of B interacting with A is completely described by the randomness string ω used by A and B,
and by the vectors ρH , ρH1 of responses made by the random oracles H and H1. We assume that the
random oracle queries by A are distinct and we denote the i’th query to H by qiH and the i’th query
to H1 by qiH1

. The response to qiH is denoted by ρiH , the response to qiH1
is denoted by ρiH1

. Hence, a
random choice of ρH and ρH1 exactly corresponds to the random choices of H and H1. From here on, we
abbreviate signatures as (m,σ0, c, σ1), where σ0 = (item, T1, T2, T3, T4, T5, R1, R2, R3, R4, R5, R6, R7),
σ1 = (sα, sβ, sx, sy, sµ, sδ1 , sδ2) and c is the value derived by the random oracle H on input (m,σ0). The
values omitted in the signature can be computed according to the equations used in the Verify algorithm.
For a random choice of (ω, ρH1 , ρH) algorithm A outputs a solution to the public linkability experi-
ment with advantage ε. With probability 1

qAI
this solution is for item∗. For the message-signature pair



Anonymous and Publicly Linkable Reputation Systems 19

(mi∗ , σi∗) = (mi∗ , σ
0
i∗ , c, σ

1
i∗) the probability that c equals H(mi∗ , σ

0
i∗) is 1

p , unless it has been queried

during the attack. Because this probability is negligable it is likely that A queried H(mi∗ , σ
0
i∗). Let

Ind(ω, ρH1 , ρH) be the index of this query, i.e. q
Ind(ω,ρH1

,ρH)

H = (mi∗ , σ
0
i∗) and let Ind(ω, ρH1 , ρH) = ∞ if

the query is never made by A. Then we can define the sets

S = {(ω, ρH1 , ρH) | A succeeds and Ind(ω, ρH1 , ρH) 6=∞}
and

Si = {(ω, ρH1 , ρH) | A succeeds and Ind(ω, ρH1 , ρH) = i} for i ∈ {1, . . . , qH}.

With these definitions, ν := Pr(S) = ε
qAI
− 1
p is the probability that A is succesful, H(mi∗ , σ

0
i∗) was queried

by A and (mi∗ , σ
0
i∗ , c, σ

1
i∗) is a signature for item∗. Now let I be the set of the most likely indices i:

I =

{
i | Pr(Si | S) ≥ 1

2 · qH

}
.

Then

Pr(Ind(ω, ρH1 , ρH) ∈ I | S) =
∑
i∈I

Pr(Si | S) = 1−
∑
i/∈I

Pr(Si | S) ≥ 1− qH ·
1

2 · qH
=

1

2
.

Let ρH |ba denote the restriction of ρH to its elements ρaH , ρ
a+1
H , . . . , ρbH and let us define the sets

X = (ω, ρH1 , ρH |
j−1
1 )

Y = (ρH |qHj )

Ωj =

{
(x, y) ∈ X × Y

∣∣∣∣ Pr
y′∈Y

((x, y′) ∈ Sj) ≥
ν

4 · qH

}
for each j ∈ I.

Then Pr(Sj) = Pr(Sj) · Pr(S | Sj) = Pr(S) · Pr(Sj | S) ≥ ν
2·qH and Pr(Ωj | Sj) ≥ 1

2 , by the splitting
lemma [8]. Furthermore, it holds

Pr(∃j ∈ I : Ωj ∩ Sj | S) = Pr

⋃
j∈I

(Ωj ∩ Sj) | S

 =
∑
j∈I

Pr(Ωj ∩ Sj | S)

=
∑
j∈I

Pr(Ωj | Sj) · Pr(Sj | S) ≥ 1

2
·
∑
j∈I

Pr(Sj | S) ≥ 1

4

because the subsets Sj are disjoint. This means, with probability ν
4 algorithm A succeeds by outputting

a signature (mi∗ , σ
0
i∗ , c, σ

1
i∗), which is derived from a tuple (x, y) ∈ Ωj for some j ∈ I.

Now we rewind A and B to the j’th query to H and proceed with an oracle vector ρ′H , where ρ′H |
j−1
1 =

ρH |j−11 and ρ′kH 6= ρkH for all k = j, . . . , qH . This means, we run A and B with (ω, ρH1 , (ρH |
j−1
1 , ρ′H |

qH
j )) =

(x, y′) ∈ X × Y and we know that Pr((x, y′) ∈ Sj) ≥ ν
4·qh from the definition of Ωj . Hence, A succeeds

a second time by outputting a signature (mi∗ , σ
0
i∗ , c

′, σ1
′
i∗) where c 6= c′ and σ1i∗ 6= σ1

′
i∗ (of course, A again

outputs q message-signaute pairs, but we are only interested in the one with index i∗).
By using the extractor of Lemma 5, we obtain from (σ0i∗ , c, σ

1
i∗) and (σ0i∗ , c

′, σ1
′
i∗) a q-SDH tuple (A∗, x∗, y∗).

This can be transformed into a solution to B’s q-SDH problem as follows:

A∗ = ψ


Gα·

q−1∏
i=1

(γ̂−xk+xi)−yk·
q−1∏

i=1,i 6=k
(γ̂−xk+xi)

2 ·G
y∗·

q−1∏
i=1,i 6=k

(γ̂−xk+xi)

2


1

γ+x∗
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= ψ


Gα·

q−1∏
i=1

(γ̂−xk+xi)+(y∗−yk)·
q−1∏

i=1,i 6=k
(γ̂−xk+xi)

2


1

γ̂−xk+x∗
 . (4)

Let f(X) :=
q−1∏
i=1

(X − xk + xi) and g(X) :=
q−1∏

i=1,i 6=k
(X − xk + xi) then

f(γ̂) · 1

γ̂ − xk + x∗
= τ(γ̂) +

β

γ̂ − xk + x∗

and

g(γ̂) · 1

γ̂ − xk + x∗
= τ ′(γ̂) +

β′

γ̂ − xk + x∗

for some polynomials τ and τ ′ of degree at most q− 2, where β or β′ equals 0, iff (γ̂− xk + x∗) is a factor
of f(γ̂) or g(γ̂). These cases will be discussed later. Using this representation we obtain

A∗ = ψ

[
G
α·
(
τ(γ̂)+ β

γ̂−xk+x∗

)
+(y∗−yk)·

(
τ ′(γ̂)+ β′

γ̂−xk+x∗

)
2

]
and we can define

A = ψ


Gα·

(
τ(γ̂)+ β

γ̂−xk+x∗

)
+(y∗−yk)·

(
τ ′(γ̂)+ β′

γ̂−xk+x∗

)
2

G
α·τ(γ̂)+(y∗−yk)·τ ′(γ̂)
2


1

α·β+(y∗−yk)·β′


= ψ


Gα·τ(γ̂)+α·

β
γ̂−xk+x∗

+(y∗−yk)·τ ′(γ̂)+(y∗−yk)· β′
γ̂−xk+x∗

2

G
α·τ(γ̂)+(y∗−yk)·τ ′(γ̂)
2


1

α·β+(y∗−yk)·β′


= ψ

(Gα· β
γ̂−xk+x∗

+(y∗−yk)· β′
γ̂−xk+x∗

2

) 1
α·β+(y∗−yk)·β′


= ψ

[(
G

1
γ̂−xk+x∗

·(α·β+(y∗−yk)·β′)
2

) 1
α·β+(y∗−yk)·β′

]

= ψ

[
G

1
γ̂−xk+x∗

2

]
.

Hence, (A, x∗ − xk) is a solution to B’s q-SDH problem.

Now we discuss the different cases that can occur during the described transformation.

Case 1: (A∗, x∗, y∗) ∈ {(Aj , xj , yj)}q−1j=1 : Obviously, if (A∗, x∗, y∗) is one of the triples B generated him-
self, no new information is obtained from (A∗, x∗, y∗). Hence, B cannot compute A and has to abort.

Case 2: x∗ /∈ {xj}q−1j=1 : In this case the values β and β′ are not equal to 0. Hence, the value A can be
computed as described above and (A, x∗ − xk) is a solution to B’s q-SDH problem.

Case 3: x∗ ∈ {xj}q−1j=1 : This case has to be devided into two different subcases:
a) x∗ 6= xk : Since x∗ is equal to xj for some j 6= k, (γ̂ − xk + xj) is a factor of both polynoms f(γ̂)

and g(γ̂). Hence, it holds β = β′ = 0, A cannot be computed and B has to abort.
b) x∗ = xk : In this case (γ̂ − xk + x∗) = γ̂ is a factor of f(γ̂), but not one of g(γ̂). Hence, β = 0 and

β′ 6= 0 holds. Also y∗ 6= yk (because otherwise A∗ would be equal to Ak) and (y∗ − yk) · β′ 6= 0
holds, so (A, 0) is a solution to B’s q-SDH problem.
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We know that B obtains a tuple (A∗, x∗, y∗) with a probability of at least ν2

16·qH . Because A was successful

it holds y∗ /∈ {yi}q−1i=1 . Hence, case 1 does not occur. If case 2 occurs, B can compute a solution to its
q-SDH problem with probability 1. For case 3 Pr(x∗ = xk) = 1

q−1 holds and either case 2 or case 3 occurs

with a probability of at least 1
2 .

Putting all together, assuming the more pessimistic scenario of case 3, B can compute a solution to its
q-SDH problem with a probability ε′ of at least

ε′ ≥ ν2

16 · qH
· 1

q − 1
· 1

2
=

(
ε

qAI
− 1

p

)2

· 1

32 · qH · (q − 1)
.

The transformation of B’s q-SDH instance into q− 1 tuples (Aj , xj , yj) and an item-based public key can
be done in constant time, for fixed q. Also algorithm B can respond to an oracle query of A in constant
time, and there are at most Q of such queries. The computation of (A, x) using the extracted values
(A∗, x∗, y∗) needs constant time, too. Hence, B can solve q-SDH in time t′ = t+Q · O(1). ut

Lemma 8. If q-SDH (t′, ε′)-holds in (G1,G2), then the reputation system defined in Section 6 is (t, ε)-
traceable, where t = t′ − Q · O(1) and ε = qAI · qAU ·

√
ε′ · (64 · qH) · (q − 1) + qAI ·qAU

p . Here qAU is the
number of oracle queries to AddU, qAI is the number of oracle queries to AddItem, the number of oracle
queries to SndToGM is a most q − 1 − qAU , qH is the number of queries to the random oracle H and p
is the size of the groups G1 and G2.

Proof. Suppose A is an adversary that (t, ε)-solves the traceability of the reputation system. Then
we can construct an adversary B that solves q-SDH in (G1,G2) with advantage ε′ of at least ε′ =(

ε
qAI ·qAU −

1
p

)2
· 1
64·qH ·

1
q−1 in time t′ = t+Q ·O(1). Without loss of generality we assume that A creates

exactly q − 1 users via the AddU and SndToGM oracles.

Analogously to [6] we have to distinguish between two different forger types: the Type-I forger out-
puts a valid message-signature pair (m,σ), for some item of his choice, such that the Open algorithm
outputs failure; the Type-II forger outputs a valid message-signature pair (m,σ), for some item of his
choice, that can be traced back to an honest user. Hence, B guesses the forger type, with probability 1

2 ,

i.e. b
R←−{I, II}, and behaves slightly different in the two cases.

Algorithm B transforms the q-SDH problem into tuples (Aj , xj , yj), for j = 1, . . . , q − 1, and values

(g1, g2, ĥ, h,W ) using the same technique as in the proof of public linkability (Lemma 7). Furthermore,
B guesses an item∗ as the item for which A will output the message-signature pair as its solution to the

traceability experiment. This can be done as in the proof of Lemma 7 by choosing `
R←−{1, . . . , qAI} and

handling the `’th query to the AddItem oracle appropriately. To generate the group manager’s public key,

B selects w
R←−G1, ζ, ξ1, ξ2

R←−Zp and computes

u := w
1
ξ1 v := w

1
ξ2 d̂ := ĥ

1
ζ d := ψ(d̂).

Now B sets HU : = ∅, CU : = ∅, RL : = ∅, ItemList : = ∅, reg : = ∅, RU : = ∅, J IU : = ∅, GS : = ∅ and gmpk :=

(u, v, w, h, d, d̂). In the case that b = II, B selects Aq
R←−G1 and yq

R←−Zp, sets xq := ? and guesses
the honest user i∗ for which A will output the forged signature σ. This can be done by choosing

`1
R←−{1, . . . , qAU} and handling the `1’th query to the AddU oracle appropriately. The number of al-

ready registered users is counted using the variable ĵ, which is initially set to 0.
Now B gives the group manager’s public key gmpk to A and starts to interact with A via the oracles. A’s
queries are answered as follows:

H(·): B chooses c
R←−Zp, gives c to A and ensures to respond identically to repeated queries.
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H1(item): B chooses f̂
R←−G2, gives f̂ to A and ensures to respond identically to repeated queries.

AddItem(item): On the `’th query B sets item∗ := item and ipk [item∗] := (g1, g2,W ), adds ipk [item∗]
to the ItemList and returns ipk [item∗]. For every other query B executes exactly the oracle as defined in
Figure 1.
AddU(i): If b = II, on the `1’th query B sets i∗ := i, usk [i∗] := yq, upk [i∗] := hyq , reg [i∗] := (i∗, upk [i∗])
and returns upk [i∗]. In any other case, B sets ĵ : = ĵ+ 1 and executes the oracle defined in Figure 1, using
yĵ as the secret key of user i.

SndToGM(i,MGM): Algorithm B sets ĵ : = ĵ + 1 and executes the oracle defined in Figure 1, using yĵ
as the secret key of user i.
USK(i): If b = II and i = i∗ then B declares failure and exits. Otherwise, algorithm B responds by
running exactly the defined oracle from Figure 1.
GSK(i, item): Algorithm B responds by running exactly the defined oracle from Figure 1.
RevU(i): Algorithm B responds by running exactly the defined oracle from Figure 1.
SndToKI(i, item, upk [i],MKI): If item = item∗ then B runs the defined oracle using gsk [i, item∗] :=
(Aj , xj), where Aj and xj correspond to user i’s secret key usk [i] = yj defined in the AddU or SndToGM
oracle for user i. In any other case, B responds by running exactly the defined oracle from Figure 1.
Open(item,m, σ): Algorithm B responds by running exactly the defined oracle from Figure 1.
GSig(i, item,m): Algorithm B has to handle two different cases:

– If (b = I) ∨ (b = II ∧ (i 6= i∗ ∨ item 6= item∗)) then B responds as defined in Figure 1. If for an
honest user i the signing key gsk [i, item] is empty, such a key can be generated, before the signature
is created. If item = item∗ the tuple (Aj , xj , yj) corresponding to usk [i] = yj has to be used as secret
signing key.

– If b = II, i = i∗ and item = item∗ then B simulates the signature using the simulator of Lemma 4.

Here the first step of the simulator is replaced by setting the following values: B chooses α, β, µ
R←−Zp

and computes T1 : =uα, T2 : = vβ, T3 : =Ai∗
item∗
·wα+β, T4 : = dµ, T5 : =ψ(H1(item∗))µ+yi∗ . Afterwards,

B chooses c, sα, sβ, sx, sy, sµ, sδ1 , sδ2
R←−Zp and computes R1, . . . , R7 using the verification equations

from the Verify algorithm. To ensure the signature is valid, B patches H at (M , item∗, T1, T2, T3,
T4, T5, R1, R2, R3, R4, R5, R6, R7) to equal c. If this causes a collision, B declares failure and exits.
Finally, B gives σ : =(item∗, T1, T2, T3, T4, T5, c, sα, sβ, sx, sy, sµ, sδ1 , sδ2) to A.

At some point A outputs a triple (item,m, σ). If item 6= item∗ or the signature is invalid, verified with
an empty revocation list RL, B decleares failure and exits. Otherwise, depending on b ∈ {I, II}, B has
to distinguish two different cases:

b = I: If σ opens to some A∗ ∈ {Aj}q−1j=1, B declares failure and exits. Otherwise, A successfully forged a
signature for a non-existing user.

b = II: If σ opens to some A∗ 6= Aq, B declares failure and exits. Otherwise, A successfully forged a
signature for user i∗.

For a Type-I forger the environment is simulated perfectly, because B knows all secret and public keys.
Hence, B is always able to compute correct and properly distributed responses to A’s queries and A
outputs a valid forgery (item∗,m∗, σ∗), for the guessed item∗, with a probability of at least ε

qAI
.

For a Type-II forger the environment is simulated perfectly unless A queries the USK oracle for user i∗

or a collision occurs while simulating a signature (since the probability of such a collision is negligable
we will ignore it in the analysis). Hence, A outputs a valid forgery (item∗,m∗, σ∗), for the guessed item∗,
that traces to i∗ with a probability of at least ε

qAI ·qAU .
Now we apply the Forking Lemma [8] to obtain a second solution to the traceability experiment which
can be used to solve q-SDH. The needed technique is exactly the same as in the proof of public linkability
in Lemma 7. That means, with ν = ε

qAI
− 1

p for a Type-I forger and ν = ε
qAI ·qAU −

1
p for a Type-II forger,

we obtain a q-SDH tuple (A∗.x∗, y∗) with a probability of at least ν2

16·qH . This tuple is not one of the tuples
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B created, because otherwise the forger would not be successful. Hence, either case 2 or case 3 described
in Lemma 7 occurs with a probability of at least 1

2 . Moreover, B guesses the correct forger type with a
probability of at least 1

2 and can compute a solution (A, x) to its q-SDH problem with a probability ε′ of
at least

ε′ ≥ ν2

16 · qH
· 1

q − 1
· 1

2
· 1

2
=

(
ε

qAI · qAU
− 1

p

)2

· 1

64 · qH
· 1

q − 1

assuming the more pessimistic scenario of case 3 and a Type-II forger.
As shown in Lemma 7, the transformation of B’s q-SDH instance can be done in constant time, for fixed
q. Also algorithm B can respond to an oracle query of A in constant time, and there are at most Q of
such queries. The computation of (A, x) using the extracted values (A∗, x∗, y∗) needs constant time, too.
Hence, B can solve q-SDH in time t′ = t+Q · O(1). ut

Lemma 9. If the discrete logarithm problem is (t′, ε′)-hard in G2, then the reputation system defined in
Section 6 is (t, ε)-strong exculpable, where t = t′−Q ·O(1) and ε = qAU ·

√
ε′ · 16 · qH + qAU

p . Here qAU is
the number of oracle queries made by the adversary to AddU, qH is the number of queries to the random
oracle H and p is the size of the groups G1 and G2.

Proof. Suppose A is an adversary that (t, ε)-breaks the strong-exculpability of the reputation system
above. Then we construct an adversary B that solves the discrete logarithm problem in G2 with advan-

tage at least ε′ =
(

ε
qAU
− 1

p

)2
· 1
16·qH in time t′ = t+Q · O(1).

B sets HU : = ∅, CU : = ∅, RL : = ∅, ItemList : = ∅, reg : = ∅, RU : = ∅, J IU : = ∅, GS : = ∅ and guesses the
user i∗ for which the adversary A will output a signature σ as its solution to the strong-exculpability

experiment. This can be done by choosing i∗
R←−{1, ..., qAU} and handling the i∗-th query to the GSig,

USK, RevU, and AddU oracles appropriately.

The proof is divided into three parts. In the first part of the proof, we describe a simulation for B
interacting with A.

Setup: B is given (ĥ,D) as an instance of the discrete logarithm problem in G2, where ĥ
R←−G2 and

D R←−G2. The goal of B is to output the logarithm of D with respect to ĥ. Pick w
R←−G1, ξ1, ξ2

R←−Zp
and compute u : =w

1
ξ1 , v : =w

1
ξ2 . Select ζ

R←−Zp. Set h = ψ(ĥ), d̂ = ĥ
1
ζ , and d = ψ(d̂). Set gmpk : =(u,

v, w, h, d, d̂) and gmsk : =(ξ1, ξ2, ζ) as the group manager’s public and secret keys. Make a list of pairs
(upk [i], usk [i]) for i = 1, ..., qAU as follows: For i∗, set usk [i] = ? indicating that yi corresponding to

upk[i] = ψ(D) is not known. Otherwise (upk [i], usk [i]) is a pair constructed as yi
R←−Zp, upk [i] = hyi and

usk [i] = yi. To run A, give gmpk to A. A’s oracle queries are answered as follows:
H(·): B responds with an element chosen uniformly at random of Zp and ensures that repeated queries
are answered consistently.

H1(item): When A asks for a hash of an item, B chooses ritem
R←−Zp, responds with f̂ = ĥritem , and

ensures that repeated queries are answered consistently.
GSig(i, item,m): B checks, if upk [i] ∈ ILitem . If not, B answers by running exactly the defined oracle
from Figure 1. Otherwise: If i 6= i∗, B runs the reputation system signing algorithm to obtain a signature

σ and gives σ to A. If i = i∗, B chooses α, β, µ
R←−Zp, uses Aiitem and computes T1 := uα, T2 := vβ,

T3 := Aiitem · wα+β, T4 := dµ and T5 := ψ(ĥritem ·µ · Dritem ). The value T5 is correct, since

T5 = ψ(ĥritem ·µ · Dritem ) = ψ(ĥritem ·µ · ĥyi·ritem ) = ψ(ĥritem )µ+yi = ψ(f̂)µ+yi .

Now, B runs the protocol simulator with T1, T2, T3, T4, T5 and obtains a transcript (T1, T2, T3, T4,
T5, R1, R2, R3, R4, R5, R6, R7, c, sα, sβ, sx, sŷ, sµ, sδ1 , sδ2). To ensure that the signature σ : =(item,
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T1, T2, T3, T4, T5, c, sα, sβ, sx, sy, sµ, sδ1 , sδ2) is valid, B patches H at (M , item ,T1,T2,T3,T4,T5,
R1,R2,R3,R4,R5,R6,R7) to equal c. If there is a collision, B declares failure and exits. This happens only
with negligible probability, thus we ignore it in the analysis. Otherwise B returns σ to A.
USK(i): If i 6= i∗, B looks up usk [i] in the list of key pairs and returns yi to A. If i = i∗, B declares
failure and exits.
RevU(i): If i 6= i∗, B looks up upk [i] in reg[i]. Using gmsk , B computes Di := upk [i]

1
ζ = (hyi)

1
ζ = dyi ,

adds the revocation token grt [i] := Di to the revocation list, and gives Di as response to A. If i = i∗, B
sets grt [i∗] := ψ(D)

1
ζ and gives it to A.

AddU(i): If i 6= i∗, B looks up the upk [i] in the list of key pairs and answers with upk [i]. If i = i∗, B
gives ψ(D) to A.
The oracle queries to SndToGM, WItemList, WIdentList, and Open are answered by B running exactly
the defined oracles from Figure 1.
Finally A outputs σ : =(item, T1, T2, T3, T4, T5, c, sα, sβ, sx, sy, sµ, sδ1 , sδ2) on M for an item.

In the second part of the proof, we analyze the simulation above. Except for USK and GSig, B can
answer all queries exactly as defined in Figure 1. Hence, the simulation is perfect, unless A queries the
USK oracle for user i∗. In case i 6= i∗ the signing oracle GSig produces signatures by following the signing
algorithm. Hence, those signatures are properly distributed. In case i = i∗ the signature is obtain by the
simulator of Protocol 1. T1, T2, T3,T4, and T5 are properly distributed, so by using the simulator with
these values, we obtain a signature σ that is distributed as in the real reputation scheme. Hence, the
probability that A outputs a valid signature σ for an honest user is ε. The probability that this signature
traces to user i∗ is at least ε

qAU
.

In the third part of this proof, we use the Forking Lemma [8] to obtain a solution for the discrete
logarithm problem. The technique is exactly the same as in the proof of public linkability (Lemma 7).
Using the Forking Lemma one can compute two forged signatures (σ0, c, σ1) and (σ0, c

′, σ′1) that trace to
the honest user i∗ with probability

ν2

16 · qH
=

(
ε

qAU
− 1

p

)2

· 1

16 · qH
.

Using the extractor from Lemma 5, we obtain a triple (A, x, y), where y is the secret key corresponding
to i∗’s public key upk [i∗] = ψ(D). Hence y = logh(ψ(D)), and y = logĥ(D), as required.
Algorithm B can respond to an oracle query of A in constant time, and there are at most Q of such
queries. The computation of (A, x, y) needs constant time, too. Hence, B can solve the discrete logarithm
problem in time t′ = t+Q · O(1). ut
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