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Abstract

We consider reputation systems where users are allowed to rate products that they pur-
chased previously. To obtain trustworthy reputations, they are allowed to rate these
products only once. As long as they do so, the users stay anonymous. Everybody is
able to detect users deviating from the rate-products-only-once policy and the anonymity
of such dishonest users can be revoked by a system manager. In this paper we present
formal models for such reputation systems and their security. Based on group signatures
we design an efficient reputation system that meets all our requirements.

Keywords: Reputation, trust, group signatures, anonymity, linkability, verifier-local re-
vocation, traceability, strong-exculpability

1 Introduction

Reputation systems are an increasingly popular tool to give providers and customers valuable
information about previous transactions. To provide trustworthy, reliable, and honest ratings
there is a need for anonymous reputation systems that also guarantee that customers rate
products only once. To further increase trust in the system, everyone - even outsiders - should
be able to verify the validity of ratings. In this paper, we propose models for secure and
anonymous reputation systems and give an efficient construction of such a system.
Some of the properties for reputation systems stated above have been studied in the context
of group signatures, as defined in [4] for the static and in [5] for the dynamic case. However,
the concept of group signatures does not meet all the requirements for reputation systems. In
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particular, reputation systems do not consist of a single group of users. Rather one can think
of reputation systems as a family of group signature schemes - one for each product.
Moreover, we may have providers with several products. Hence, when looking at security and
anonymity group signature schemes for different products can not be considered in isolation.
Finally, known constructions of group signatures do not provide all properties that we need for
a secure and anonymous reputation system and do not provide them simultaneously.

Our Contribution. We define models for secure and anonymous reputation systems and
give a first construction of such a system based on group signature schemes. We use the terms
rating and message synonymously. Our construction provides anonymity, traceability, strong-
exculpability, verifier-local revocation, and public linkability. Anonymity means that signatures
of honest users are indistinguishable. Traceability means that it is impossible for any set of
colluding users to create ratings that can not be traced back to a user of the system. Strong-
exculpability means that nobody can produce signatures on behalf of honest users. A system
has verifier-local revocation, if revocation messages only have to be sent to signature verifiers,
but not to individual signers. Public linkability requires that anyone can decide whether or not
two ratings for the same product were created by the same user, i.e. no secret key is required
to link messages. Note that public linkability implies that users can only stay anonymous as
long as they rate products just once. As a remark, it is well known how to realize the described
properties in the context of group signatures, although not necessarily simultaneously.
Our construction of a reputation system is based on the group signature scheme by Boneh,
Boyen, and Shacham [6] (BBS) and the dynamic version of the scheme presented by Deler-
ablée and Pointcheval [11]. These schemes already give us anonymity, traceability, and strong-
exculpability. To achieve verifier-local revocation we modify a technique by [26]. With the
same technique we achieve public linkability. Note that anonymity of group signatures does
not imply anonymity in our reputation system. This is due to the fact that providers control
the groups corresponding to several products. Hence, they may combine information for differ-
ent groups to violate anonymity. To prevent this, we need a system manager that contributes
a trustworthy component to each group public key. In Section 3 we present a formal model
for reputation systems. The security of our system can be shown in the random oracle model
and is based on the Decision Linear Assumption and the q-SDH Assumption in bilinear groups.
Figure 1 illustrates informally the architecture of our reputation system.

Related Work. Reputation systems are a popular research topic in economics and computer
science, see for example [2, 10, 12, 13, 19, 20]. Although privacy, i.e. anonymity and security,
i.e. unforgeability, have been identified as key properties of reputation systems, no generally
accepted privacy and security definitions for reputation systems have emerged. Definitions of
anonymity based on differential privacy have been proposed in [10, 12, 28]. These are restricted
to special reputation functions. In [2, 21, 25] cryptography has been proposed as a methodology
to achieve anonymity in reputation systems, albeit without providing detailed definitions. In
contrast to this, (anonymous) group signatures have been well studied in cryptography and
formal security models exist. Important techniques to design group signature schemes were
first described by Ateniese et al. [3]. For the case of static groups formal definitions of security
were first given by Bellare, Micciancio and Warinschi [4], for dynamic groups by Bellare, Shi
and Zhang [5]. Both works provide frameworks to construct group signature schemes. One
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Figure 1: Informal architecture of our reputation system.

of the most efficient static schemes is that of Boneh, Boyen and Shacham [6]. Schemes with
verifier-local revocation include [8, 26], linkable, though not publicly linkable, group signature
schemes include [18, 15, 24]. In the context of ring signatures different definitions of linkability
have been considered before, for example in [16, 9, 29, 23]. Our definition of public linkability
is based on the definition given in [16].

2 Notation

Throughout this paper we will use the following notations. If S is a set, then |S| denotes its
size. An empty string is denoted by ε. We distinguish three assignment operators. If x is a
variable and y is an expression, then x := y denotes the assignment of the value of y to the

variable x. If S is a finite set, then we write x
$←S to indicate that an element x of S is picked

uniformly at random. If A is an (probabilistic) algorithm running on inputs y1, y2, . . ., then
x←−A(y1, y2, . . .) denotes the operation of assigning the output of A to the variable x. The
set of all possible outputs of an algorithm A with input y1, y2, . . . we denote by [A(y1, y2, . . .)].
If A and B are interactive algorithms, then the set of all possible outputs of the interactive
algorithms A and B we denote by [A(y1, y2, . . .)]× [B(z1, z2, . . .)]. Running an algorithm A with
inputs y1, y2, . . . and access to the oracles O1,O2, . . . we denote by A(y1, y2, . . . : O1,O2, . . .).

3 A Model for Reputation Systems

In this section we provide a model for reputation systems. This model is based on the model
for dynamic group signature schemes by Bellare, Shi, and Zhang [5]. Therefore, we will use
the same notation for the authorities, algorithms and security properties as Bellare, Shi, and
Zhang.
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3.1 Algorithms

A reputation system consists of one authority called the group manager, a set of authorities
called the key issuers, and a set of users. The group manager is assumed to be honest, provides
the group manager’s public key gmpk and is able to trace group members. Every key issuer
provides items with corresponding item-based public keys ipk [item], which will be used by the
group members to rate/vote a specific item. Users have unique identities i ∈ N and may become
group members by registering at the group manager.
The specification of a reputation system is a tuple RS = (KeyGenGM , KeyGenKI , KeyGenU ,
RegisterGM , RegisterU , Join, Issue, Sign, Verify, Open, Link, Revoke) of polynomial-time algo-
rithms. Their functionality is described as follows.
KeyGenGM(): This randomized algorithm is run in the setup phase by the group manager to
create the public key gmpk and the secret key gmsk . The secret key gmsk contains elements
which allow tracing of group members and the creation of revocation tokens.
KeyGenKI(item): This randomized algorithm is run by a key issuer for every item he pro-
vides. For the given item this algorithm creates an item-based public key ipk [item] and a
corresponding item-based secret key isk [item]. The tuple (item, ipk [item]) is added to the
ItemList .
KeyGenU(i): This randomized algorithm is run to create the user’s public and secret key pair
(upk [i], usk [i]). The user’s public key upk [i] is used during the registration to the group, the
corresponding secret key usk [i] is used to create signatures.
RegisterGM(StGM ,MGM),RegisterU(StU ,MU): These randomized interactive algorithms
are run by the group manager and a user i ∈ N, who wants to become a group member. During
this protocol the user’s public and secret key pair (upk [i], usk [i]) is chosen by using the KeyGenU
algorithm. If the group manager accepts, the tuple (i, upk [i]) is added to the registration table
reg . The input parameters of the algorithms are some state information and a message, which
was received from the communicating partner. It is assumed that the user starts the interaction.
Join(StU ,MU), Issue(StKI,MKI): These randomized interactive algorithms are run by a
user i ∈ N and a key issuer. The input parameters of the algorithms are some state information
and a message, which was received from the communicating partner. It is assumed that the
user starts the interaction. The first message of the user must contain his public key upk [i], an
item, and his identity i. If Issue accepts, the key issuer sends a personal signing key for the
given item gsk [i, item] to the user and saves the tuple (upk [i], gsk [i, item]) in the identification
list ILitem for the specified item.
Sign(item, gmpk , ipk [item ], gsk [i, item ], usk [i],M): This randomized algorithm is run
by a user to create a signature for the specified item. Given an item, the group manager’s
public key gmpk , an item-based public key ipk [item], the signing key for the given item of user
i gsk [i, item], the secret key of user i usk [i], and a message M , Sign computes and outputs a
signature σ on M under the given keys.
Verify(item, gmpk , ipk [item ],RL,M, σ): This deterministic algorithm can be run by any
user, even by an outsider, having access to the public ItemList , the group manager’s public key
gmpk , the revocation list RL, a message M and a candidate signature σ for M , to obtain a bit
v. We say that σ is a valid signature of M with respect to the given keys, iff the bit v is 1.
Open(gmpk , gmsk ,M, σ): This deterministic algorithm is run by the group manager to
open signatures. Given the group manager’s public key gmpk , the group manager’s secret key
gmsk , a message M and a signature σ, output the identity of the signer or failure.
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Link(item, gmpk , ipk[item ], (M ′, σ′), (M ′′, σ′′)): This deterministic algorithm can be
run by any user, even by an outsider, having access to the public ItemList , the group manager’s
public key gmpk and two message-signature pairs (M ′, σ′), (M ′′, σ′′), to obtain a bit `. If Link
outputs ` = 1, we call σ′ and σ′′ publicly linkable signatures.
Revoke(gmpk , gmsk , i): This deterministic algorithm is run by the group manager to revoke
signers in case of misuse. Given the group manager’s public key gmpk , the group manager’s
secret key gmsk and the identity of the group member to revoke, compute the revocation token
grt [i] and add it to the public revocation list RL.

Figure 2 illustrates the interaction of the described parties and the algorithms involved. It is
not hard to see that the number of key issuers is not important in this model: a single key issuer
has the same capabilities as a colluding set of key issuers. Therefore, in all formal definitions
we will only consider the case that the number of key issuers is 1. Additionally, we assume that
the signing keys from the key issuer given to a user are publicly verifiable, i.e. the correctness
of keys can be checked using only public parameters.

Group/System Manager

User i Key Issuer/Provider

5)σ←− Sign
2)(ipk [item], isk [item])←−KeyGenKI

1)(gmsk , gmpk)←−KeyGenGM
Open
Revoke

4b) verify registration information

3a) RegisterU
3b) RegisterGM

4a) Join

4c) Issue

Outsiders Verify, Link

Figure 2: Interaction of the parties within a reputation system.

Correctness: A reputation system must satisfy the following correctness requirements:
For all i ∈ N, all item ∈ {0, 1}∗, all (gmpk , gmsk) ∈ [KeyGenGM ], all (ipk [item], isk [item]) ∈
[KeyGenKI ], all (upk [i], usk [i]) ∈ [RegisterGM ] × [RegisterU ], all gsk [i, item] ∈ [Join] × [Issue],
and all grt [i] ∈ [Revoke]:

Verify(item, gmpk , ipk [item],RL,M, Sign(item, gmpk , ipk [item], gsk [i, item], usk [i],M)) = 1

⇐⇒ grt [i] /∈ RL,
Open(gmpk , gmsk ,M, Sign(item, gmpk , ipk [item], gsk [i, item], usk [i],M)) = i
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and

Link(item, gmpk , ipk[item], (M ′, Sign(item, gmpk , ipk [item], gsk [i, item], usk [i],M ′)),

(M ′′, Sign(item, gmpk , ipk [item], gsk [i, item], usk [i],M ′′))) = 1.

Informally, that means

1. honestly created signatures of non-revoked users will be accepted by the Verify algorithm,

2. honestly created signatures can be traced back to the correct signer,

3. two different signatures for the same item created by a single user will be detected by the
Link algorithm.

3.2 Security Notions

To model the different attack capabilities of an adversary, we introduce certain oracles, which
will be used in the definitions of security. The oracle definitions given in Figure 3 are based on
[5]. Therefore, we assume that a security experiment has run KeyGenGM() to obtain (gmpk ,
gmsk), and manages the global setsHU , CU , RU , J IU , GS, reg and ItemList . Except ItemList
and reg all sets are only used within the formal definitions of Figure 3 and Figure 4. With HU
we denote the set of honest users, with CU the set of corrupted users. The set RU contains all
identities of users that currently engage in the registration protocol. The set J IU contains all
identities of users that currently engage in the join-issue protocol. With GS we denote the set
of queried signatures. All sets are assumed to be initially empty.
AddU(i): To add honest users to the group the adversary can call this add user oracle with
an identity i ∈ N as argument. The oracle adds i to the set of honest users and executes
the registration protocol by running RegisterGM and RegisterU . When RegisterGM accepts,
the tuple (i, upk [i]) is stored in the registration table reg . When RegisterU accepts, the pair
(usk [i], upk [i]) is the key pair of user i. The oracle returns upk [i] to the adversary.
AddItem(item): An adversary can add items by using this add item oracle. The oracle
then runs the KeyGenKI algorithm to obtain a secret and a public key for the specified item.
Afterwards, the item is added to the ItemList and the public key of the item is returned to the
adversary.
USK(i): To get the secret key usk [i] of an honest user i ∈ N an adversary can call the user
secret key oracle with an identity i as argument. Then the user i is added to CU .
GSK(i, item): To get the secret signing key gsk [i, item] of a corrupted user i ∈ N for a
specified item, an adversary can call the signing key oracle with an identity i and an already
existing item as arguments. If no signing key is found, the oracle generates a new one.
RevU(i): To get the revocation token of an honest user i ∈ N an adversary can call this revoke
user oracle with an identity i as argument. Then the revocation token is added to RL and
returned to the adversary.
GSig(i, item,M): An adversary can use the signing oracle to obtain a valid signature for
the message M with respect to the signing key of user i ∈ N, and the item-based public key
ipk [item]. The queried signature is added to GS.
SndToKI(i, item, upk [i],MKI): After corruption of user i ∈ N, the adversary can use this
send to key issuer oracle to engage in a key issuing protocol with the key issuer. The adversary
provides the item and the public key of user i for which he wants to get a secret signing
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key. Furthermore, the message MKI is sent to the key issuer. The oracle honestly executes
the Issue protocol and computes a response to MKI . If Issue accepts the communication, the
user’s secret signing key is saved in the identification list ILitem and MU contains the tuple
(upk [i], gsk [i, item]).
SndToGM(i,MGM): Similarly to the SndToKI oracle, the send to group manager oracle can
be used by an adversary to engage in a registration protocol with the honest group manager.
The adversary provides an identity i ∈ N and a message MGM sent to the group manager. The
oracle executes honestly the RegisterGM protocol and saves (i, upk [i]) in the registration table
reg [i], iff RegisterGM accepts. The user i is added to CU .
WItemList(item, ipk): An adversary can use the write to item list oracle to manipulate
the item-based public key of the specified item. If ipk = ε the item is deleted from the list.
Otherwise, the specified public key is set.
WIdentList(item, i, upk [i], gsk): Using the write to identification list oracle an adversary
can modify the secret signing key of user i ∈ N for the specified item. If gsk = ε the key
information about user i is deleted from the list.
Open(item,M, σ): The opening oracle can be used by the adversary with a message M , a
signature σ and an item as arguments to get the output of the Open algorithm.

Using the oracle definitions from Figure 3 we can define the security experiments. In our
reputation system we need anonymity, traceability, public linkability and strong-exculpability.
The anonymity and traceability experiments are based on [5], the public linkability experiment
is based on [16] and the strong-exculpability experiment is based on [22, 3, 5]. The experiments
are defined in Figure 4.

Definition 3.1:
Let RS be a reputation system. We denote the advantage of an algorithm A in solving
Expanon−b

A,RS (k) by

Adv Expanon−b
A,RS (k)

def
=
∣∣Pr
[
Expanon−1

A,RS (k) = 1
]
− Pr

[
Expanon−0

A,RS (k) = 1
]∣∣ .

The probability is over the random bits of A, as well as the random bits used in the experiment.
We callRS (t, ε)−anonymous, iff for every algorithm A running in time at most t the advantage
Adv Expanon−b

A,RS (k) is at most ε.

The anonymity requirements can slightly be relaxed to an experiment where an adversary is
not allowed to query the Open oracle. We denote this modification by CPA-anonymity and the
anonymity experiment as defined in Figure 4 by CCA2-anonymity, analogously to [6].

Definition 3.2:
Let RS be a reputation system. We denote the advantage of an algorithm A in solving
Exppublink

A,RS (k) by

Adv Exppublink
A,RS (k)

def
= Pr

[
Exppublink

A,RS (k) = 1
]
.

The probability is over the random bits of A, as well as the random bits used in the experiment.
We call RS (t, ε)−public linkable, iff for every algorithm A running in time at most t the
advantage Adv Exppublink

A,RS (k) is at most ε.
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AddU(i): // everybody

If (i ∈ HU ∪ CU) then return ε.
HU :=HU ∪ {i}
StiU :=(gmpk , i)
MU := ε
StiGM :=(gmpk , gmsk)

(StiU ,MGM ,modei)←−RegisterU (StiU ,MU )

while (modei = continue) do

(StiGM ,MU ,modei)←−RegisterGM (StiGM ,MGM )

If (modei = accept) then reg[i] :=(i, upk [i])
(StiU ,MGM ,modei)←−RegisterU (StiU ,MU )

return upk [i]

AddItem(item): // everybody

If (item ∈ ItemList) then return ε.
(ipk [item], isk [item])←−KeyGenKI(item)
ItemList := ItemList ∪{(item, ipk [item])}
return ipk [item]

USK(i): // corrupted users

If (i /∈ HU) then return ε.
HU :=HU \ {i}
CU := CU ∪ {i}
return usk [i]

GSK(i, item): // corrupted users

If (i /∈ CU) then return ε.
If (item /∈ ItemList) then return ε.
If ((upk [i], ·) /∈ ILitem ) then

StiU :=(gmpk , ipk [item], upk [i], i)
MU := ε
StiKI :=(gmpk , upk [i])

(StiU ,MKI ,modei)←− Join(StiU ,MU )

while (modei = continue) do

(StiKI ,MU ,modei)←− Issue(StiKI ,MKI)

If (modei = accept) then

ILitem := ILitem ∪{(upk [i], gsk [i, item])}
(StiU ,MKI ,modei)←− Join(StiU ,MU )

return gsk [i, item]

RevU(i): // corrupted users

If (i /∈ HU) then return ε
RL :=RL ∪ {grt [i]}
return grt [i]

Open(item,M, σ): // everybody

If (item /∈ ItemList) then return failure.
return Open(gmpk , gmsk ,M, σ)

SndToKI(i, item, upk [i],MKI): // corrupted users

If (i /∈ CU) then return ε.
If (item /∈ ItemList) then return ε.
If (i /∈ JIU) then StiKI := ε
JIU :=JIU ∪ {i}
(StiKI ,MU ,modei)←− Issue(StiKI ,MKI)

If (modei = accept) then

(upk [i], gsk [i, item]) := MU

ILitem := ILitem ∪{(upk [i], gsk [i, item])}
J IU :=JIU \ {i}

If (modei = deny) then JIU :=JIU \ {i}
return (MU ,modei)

SndToGM(i,MGM ): // corrupted users

If (i ∈ HU ∪ CU) then return ε.
If (i /∈ RU) then StiGM :=(gmpk , gmsk)
RU :=RU ∪ {i}
(StiGM ,MU ,modei)←−RegisterGM (StiGM ,MGM )

If (modei = accept) then

reg[i] := (i, upk [i])
CU := CU ∪ {i}
RU :=RU \ {i}

If (modei = deny) then RU :=RU \ {i}
return (MU ,modei)

WItemList(item, ipk): // corrupted key issuer

ItemList := ItemList \{(item, ipk [item])}
If (ipk 6= ε) then ItemList := ItemList ∪{(item, ipk)}
return 1

WIdentList(item, i, upk [i], gsk): // corrupted key issuer

If (item /∈ ItemList) then return 0.
If ((i, upk [i]) 6= reg[i]) return 0.
ILitem := ILitem \{(upk [i], gsk [i, item])}
If (gsk 6= ε) then ILitem := ILitem ∪{(upk [i], gsk)}
return 1

GSig(i, item,M): // everybody

If (i /∈ HU) then return ε
If (item /∈ ItemList) then return ε
If ((upk [i], ·) /∈ ILitem ) then

StiU :=(gmpk , ipk [item], upk [i], i)
MU := ε
StiKI :=(gmpk , upk [i])

(StiU ,MKI ,modei)←− Join(StiU ,MU )

while (modei = continue) do

(StiKI ,MU ,modei)←− Issue(StiKI ,MKI)

If (modei = accept) then

ILitem := ILitem ∪{(upk [i], gsk [i, item])}
(StiU ,MKI ,modei)←− Join(StiU ,MU )

σ←−Sign(item, gmpk , ipk [item], gsk [i, item], usk [i],M)
GS :=GS ∪ {(item, i,M, σ)}
return σ

Figure 3: Oracle definitions.
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Experiment Expanon−b
A,RS (k) // b ∈ {0, 1}

HU := ∅, CU := ∅,RL := ∅, ItemList := ∅, reg := ∅,RU := ∅,JIU := ∅,GS := ∅
(gmsk , gmpk)←−KeyGenGM ()
(i0, i1, item,M,St)←−A(gmpk : AddU, USK, RevU, GSig, SndToGM, WItemList, WIdentList, Open, choose)
σ←−Sign(item, gmpk , ipk [item], gsk [ib, item], usk [ib],M)
d←−A(σ,St: AddU, USK, RevU, GSig, SndToGM, WItemList, WIdentList, Open, guess)
If ((item, i0, ·, ·) ∈ GS) ∨ ((item, i1, ·, ·) ∈ GS) ∨ (i0 /∈ HU) ∨ (i1 /∈ HU)
∨(grt [i0] ∈ RL) ∨ (grt [i1] ∈ RL) ∨ (A queried Open(item,M, σ))
then return 0

return d

Experiment Exppublink
A,RS (k)

HU := ∅, CU := ∅,RL := ∅, ItemList := ∅, reg := ∅,RU := ∅,JIU := ∅,GS := ∅
(gmsk , gmpk)←−KeyGenGM ()

{(item,mi, σi)}
|CU|+1
i=1 ←−A(gmpk : AddItem, SndToKI, SndToGM)

If there exists an i ∈ {1, . . . , |CU|+ 1} such that Verify(item, gmpk , ipk [item],RL,mi, σi) = 0 then return 0
If there are i, j ∈ {1, . . . , |CU|+ 1} with i 6= j such that Link(item, gmpk , ipk [item], (mi, σi), (mj , σj)) = 1 then return 0
return 1

Experiment Exptrace
A,RS(k)

HU := ∅, CU := ∅,RL := ∅, ItemList := ∅, reg := ∅,RU := ∅,JIU := ∅,GS := ∅
(gmsk , gmpk)←−KeyGenGM ()
(item,m, σ)←−A(gmpk : AddU, AddItem, USK, GSK, RevU, GSig, SndToKI, SndToGM, Open)
If (Verify(item, gmpk , ipk [item],RL,m, σ) = 0) then return 0
If (Open(gmpk , gmsk ,m, σ) = failure) then return 1
i←−Open(gmpk , gmsk ,m, σ)
If (i ∈ CU) ∨ ((item, i,m, σ) ∈ GS) then return 0
return 1

Experiment Expstr−ex
A,RS (k)

HU := ∅, CU := ∅,RL := ∅, ItemList := ∅, reg := ∅,RU := ∅,JIU := ∅,GS := ∅
(gmsk , gmpk)←−KeyGenGM ()
(item,m, σ)←−A(gmpk : AddU, USK, RevU, GSig, SndToGM, WItemList, WIdentList, Open)
If (Verify(item, gmpk , ipk [item],RL,m, σ) = 0) then return 0
If (Open(gmpk , gmsk ,m, σ) = failure) then return 0
i←−Open(gmpk , gmsk ,m, σ)
If (i /∈ HU) ∨ ((item, i,m, σ) ∈ GS) then return 0
return 1

Figure 4: Experiment definitions.

Definition 3.3:
Let RS be a reputation system. We denote the advantage of an algorithm A in solving
Exptrace

A,RS(k) by

Adv Exptrace
A,RS(k)

def
= Pr

[
Exptrace

A,RS(k) = 1
]
.

The probability is over the random bits of A, as well as the random bits used in the experiment.
We call RS (t, ε)−traceable, iff for every algorithm A running in time at most t the advantage
Adv Exptrace

A,RS(k) is at most ε.

Definition 3.4:
Let RS be a reputation system. We denote the advantage of an algorithm A in solving
Expst−ex

A,RS(k) by

Adv Expstr−ex
A,RS (k)

def
= Pr

[
Expstr−ex

A,RS (k) = 1
]
.
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The probability is over the random bits of A, as well as the random bits used in the experiment.
We call RS (t, ε)−strong-exculpable, iff for every algorithm A running in time at most t the
advantage Adv Expstr−ex

A,RS (k) is at most ε.

3.2.1 Discussion:

The anonymity experiment Expanon−b
A,RS (k) asks an adversary to distinguish which of two group

members signed a message for some item, where the identities, the message, and the item were
chosen by the adversary. The adversary’s attack capabilities are strong: it is possible to corrupt
the key issuer and all but two users. These two users must be honest because otherwise the
adversary could possibly link different signatures or use the revocation token of the users to
determine their identities.
The strong-exculpability experiment Expstr−ex

A,RS (k) asks an adversary to output a message-
signature pair, for some item chosen by the adversary, which is valid and can be traced back to
an honest user. We give an adversary the possibility to corrupt users and the key issuer, so the
attack capabilities are very strong. Because the key issuer can always generate signing keys for
non-existing users, we force the adversary to output a signature on behalf of an honest user.
The public linkability experiment Exppublink

A,RS (k) asks an adversary to output message-signature
pairs, for the same item chosen by the adversary, such that all pairs are valid and there are no
two pairs that can be linked. The number of pairs must be one more than the number of users
in the group. We allow the adversary to corrupt all users, but the key issuer has to be honest.
If the key issuer is corrupted, then he can create signing keys for non-existing users. Hence, he
can also create signatures which can not be linked to signatures created by the group members.
The traceability experiment Exptrace

A,RS(k) asks an adversary to output a message-signature pair,
for some item chosen by the adversary, which is valid but can not be traced back to a corrupted
user. In this experiment the key issuer must be honest because he could generate signing keys
for non-existing users.

Discussion: The defined experiments imply two different attack scenarios:

In the first scenario, for anonymity and strong-exculpability, we allow an adversary to
corrupt the key issuer and a set of users. One could argue, that there is an oracle missing
to allow an adversary to send corrupted data to honest users in the join-issue protocol.
But this functionality is covered by the SndToGM, WItemList, and WIdentList oracles.
Due to the assumption that all signing keys are publicly verifiable by the users (as stated
in Subsection 3.1), an honest user would only accept valid keys in the join-issue protocol.
The same is implicitly done by our oracles and in the experiments. Hence, we omit such
an oracle.

In the second scenario, for public linkability and traceability, key issuers are assumed
to be honest, whereas a set of users can be corrupted. In particular, this implies that
users and key issuers are disjoint sets. The restriction to honest key issuers is necessary
because a corrupted key issuer could generate secret keys for non-existing users. With an
appropriate identity management this can be prevented and we could also allow corrupted
key issuers in the experiments for public linkability and traceability.

An important issue is that of timing the operations. The key issuer may correlate transactions
and ratings by their timing, thereby threatening the anonymity of users. Hence, our reputation
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systems needs a mechanism to prevent such attacks. In [10], [21], and [17] different solutions
to this problem are proposed, which can be incorporated into our construction.

4 Preliminaries

In this section we introduce the main building blocks for our reputation system.

4.1 Bilinear Maps

First we review some concepts related to bilinear maps, following the notation of [7]:

1. G1 and G2 are multiplicative groups of prime order p,

2. ψ is an isomorphism from G2 to G1,

3. g1 is a generator of G1 and g2 is a generator of G2, with g1 = ψ(g2), and

4. e is a map e: G1 ×G2 −→ GT with the following properties:

Bilinearity: for all u ∈ G1, v ∈ G2 and a, b ∈ Zp: e(ua, vb) = e(u, v)ab

Non-degeneracy: e(g1, g2) 6= 1GT .

We say the groups (G1,G2) as described above are bilinear groups, iff the group operations in
G1 and G2, the isomorphism ψ and the mapping e are efficiently computable.

4.2 Computational Assumptions

Here we introduce the computational assumptions we use to prove the security of our reputation
system. Since these assumptions are standard, we can be brief.

Definition 4.1 - Decision Linear Problem – D-Linear1:
Let G be a cyclic group of prime order p. Given arbitrary generators u, v, w ∈ G and uα, vβ, wγ ∈
G, where α, β

$←Zp, the Decision Linear Problem is to decide whether γ = α + β.

Definition 4.2:
The advantage of an algorithm A in deciding the Decision Linear Problem is

AdvD−Linear1
A

def
=

∣∣∣∣∣∣ Pr
[
A(u, v, w, uα, vβ, wα+β) = 1: u, v, w

$←G, α, β $←Zp
]

−Pr
[
A(u, v, w, uα, vβ, wγ) = 1: u, v, w

$←G, α, β, γ $←Zp
] ∣∣∣∣∣∣ .

The probability is over the uniform choices of the parameters u, v, w, α, β, γ and over the random
bits of A. We say that algorithm A (t, ε)-decides D-Linear1 if A runs in time at most t and
AdvD−Linear1

A is at least ε. We say that D-Linear1 (t, ε)-holds in G if no algorithm running in
time t has advantage at least ε in solving D-Linear1 in G.

Lemma 4.1 Random self-reducibility of D-Linear1:
Let G be a multiplicative group of prime order p and let G := (u, v, w, ua, vb, wc) be an instance
of the Decision Linear Problem. Then we can construct another instance H := (r, s, t, rd, se, tf )
that is independent of G, but has the same distribution as G.
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Proof. Choose the values α, β, γ, δ, ε, ϕ
$←Zp and set r := uα·β·ϕ, s := vγ·δ·ϕ, t := wϕ, rd :=

(ua)α·β·ε·ϕ, se := (vb)γ·δ·ε·ϕ, and tf := (wc)ε·ϕ. With α, β, γ, δ, ϕ
$←Zp the first five components

of H are distributed uniformly at random. For the exponents d, e and f holds d = a ·ε, e = b ·ε,
and f = c · ε. Hence, f = d + e⇔ c · ε = a · ε + b · ε⇔ c = a + b, H is independent of G and
H is distributed exactly as G.

Definition 4.3 - q-Strong Diffie-Hellman Problem – q-SDH:
Let G1,G2 be two (multiplicative) groups of prime order p (where possibly G1 = G2), let ψ be
an efficiently computable isomorphism from G2 to G1, let g2 ∈ G2 be an arbitrary generator

and let g1 = ψ(g2). Given a (q+2)-tuple (g1, g2, g
γ
2 , g

(γ2)
2 , . . . , g

(γq)
2 ), the q-Strong Diffie-Hellman

Problem is to output a pair

(
g

1
x+γ

1 , x

)
, where x ∈ Zp.

Definition 4.4:
The advantage of an algorithm A in solving q-SDH in (G1,G2) is

Advq−SDH
A

def
= Pr

[
A
(
g1, g2, g

γ
2 , g

(γ2)
2 , . . . , g

(γq)
2

)
=

(
g

1
x+γ

1 , x

)
: g2

$←G2, g1 = ψ(g2), γ
$←Zp

]
.

The probability is over the uniform choices of the parameters g2, γ and over the random bits
of A. We say that algorithm A (t, ε)-solves q-SDH in (G1,G2) if A runs in time at most t and
Advq−SDH

A is at least ε. We say that q-SDH (t, ε)-holds in (G1,G2) if no algorithm running in
time t has advantage at least ε in solving q-SDH in (G1,G2).

Definition 4.5 - extended q-Strong Diffie-Hellman Problem – extended q-SDH:
Let G1,G2 be two (multiplicative) groups of prime order p (where possibly G1 = G2), let ψ
be an efficiently computable isomorphism from G2 to G1, let g2 ∈ G2 be arbitrary generator,

let g1 = ψ(g2) and h
$←G1. Given a (q + 3)-tuple

(
g1, h, g2, g

γ
2 , g

(γ2)
2 , . . . , g

(γq)
2

)
, the extended

q-Strong Diffie-Hellman Problem is to output a tuple
(

(g1 · hy)
1

x+γ , x, y
)

, where x, y ∈ Zp.

Definition 4.6:
The advantage of an algorithm A in solving extended q-SDH in (G1,G2) is

Advext−q−SDH
A

def
= Pr

[
A
(
g1, h, g2, g

γ
2 , g

(γ2)
2 , . . . , g

(γq)
2

)
=
(

(g1 · hy)
1

x+γ , x, y
)

: h
$←G1, g2

$←G2, γ
$←Zp, g1 = ψ(g2)

]
.

The probability is over the uniform choices of the parameters h, g2, γ and over the random bits
of A. We say that algorithm A (t, ε)-solves extended q-SDH in (G1,G2) if A runs in time at
most t and Advext−q−SDH

A is at least ε. We say that extended q-SDH (t, ε)-holds in (G1,G2) if
no algorithm running in time t has advantage at least ε in solving extended q-SDH in (G1,G2).
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Lemma 4.2:
Let G1,G2 be two cyclic groups of prime order p and let A be an algorithm that (t′, ε′)-solves
extended q-SDH in (G1,G2). Then there exists an algorithm B that (t, ε)-solves q-SDH in
(G1,G2), where t = t′ +O(1).

Proof. Algorithm B is given an instance of a q-SDH problem (g1, g2, g
γ
2 , g

(γ2)
2 , . . . , g

(γq)
2 ). Now B

chooses α
$←Zp and computes h := gα1 . Then the extended q-SDH instance

(
g1, h, g2, gγ2 , g

(γ2)
2 ,

. . ., g
(γq)
2

)
is given to algorithm A. A outputs a solution

(
(g1 · hy)

1
x+γ , x, y

)
to this problem

with advantage ε. Now B computes

c := (1 + α · y)−1 and
(

(g1 · hy)
1

x+γ

)c
= (g1 · hy)

c
x+γ = (g1 · gα·y1 )

c
x+γ = g

(1+α·y)
x+γ

· 1
(1+α·y)

1 = g
1

x+γ

1 .

So B can output

(
g

1
x+γ

1 , x

)
as a solution to his q-SDH problem with advantage ε in time

t = t′ +O(1), as claimed.

5 A Zero-Knowledge protocol for extended q-SDH –

Intuition to the Reputation System

We give a zero-knowledge proof of knowledge to prove possession of a solution to an extended
q-SDH problem. That means, the prover has to show that he knows a triple (A, x, y) such that
Ax+γ = g1 · hy, where A, g1, h ∈ G1 and x, y, γ ∈ Zp (here the γ is not known by the prover).
We assume to have an efficiently computable isomorphism ψ from G2 to G1 and an efficiently
computable non-degenerative bilinear mapping e : G1 ×G2 → GT . The groups G1,G2,GT are
groups of prime order p. Furthermore, we assume that the Decision Linear Problem holds in
G1.
The secret key of the prover is the triple (A, x, y), the public values are g1, d, f , h, u, v, w,

C ∈ G1 and g2,W ∈ G2, where g2
$←G2, W = gγ2 for some (secret) γ ∈ Zp, g1 = ψ(g2),

h, d, f, u, v, w
$←G1, and C = hy. The value A is determined by A = (g1 · hy)

1
x+γ , but can not

be computed by the prover because γ is unknown.
The triple (A, x, y) is a solution of the extended q-SDH problem, iff the equation e(A, g2)x ·
e(A,W ) · e(h, g2)−y = e(g1, g2) holds. This will be used in the protocol.

Protocol 5.1:

1. P chooses α, β, µ
$←Zp and computes T1 := uα, T2 := vβ, T3 := A · wα+β, T4 := dµ,

T5 := fµ+y, δ1 := x · α, and δ2 := x · β. Now P and V undertake a proof of knowledge of
values (α, β, x, y, µ, δ1, δ2).

2. P chooses rα, rβ, rx, ry, rµ, rδ1 , rδ2
$←Zp, computes R1 := urα , R2 := vrβ , R3 := e(T3, g2)rx ·

e(w,W )−rα−rβ · e(w, g2)−rδ1−rδ2 · e(h, g2)−ry , R4 := T rx1 · u−rδ1 , R5 := T rx2 · v−rδ2 , R6 := drµ ,
and R7 := f rµ+ry , and sends (T1, T2, T3, T4, T5, R1, R2, R3, R4, R5, R6, R7) to V .

3. The verifier V chooses c
$←Zp as a challenge and sends c to the prover P .
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4. The prover computes sα := rα + c · α, sβ := rβ + c · β, sx := rx + c · x, sy := ry + c · y,
sµ := rµ + c · µ, sδ1 := rδ1 + c · δ1, sδ2 := rδ2 + c · δ2 and sends them to the verifier V .

5. The verifier V checks the following equations: R1
?
= usα · T−c1 , R2

?
= vsβ · T−c2 , R3

?
=

e(T3, g2)sx ·e(w,W )−sα−sβ ·e(w, g2)−sδ1−sδ2 ·e(h, g2)−sy ·e(T3,W )c·e(g1, g2)−c, R4
?
= T sx1 ·u−sδ1 ,

R5
?
= T sx2 · v−sδ2 , R6

?
= dsµ · T−c4 , R7

?
= f sµ+sy · T−c5 and accepts if all hold.

Lemma 5.1:
The Protocol 5.1 is complete (the verifier always accepts an interaction with an honest prover).

Proof. If the prover P is honest and in possession of a triple (A, x, y) such that Ax+γ = g1 ·hy, he
follows the computations specified for him in the protocol. In this case the following equations
hold:

usα · T−c1 = urα+c·α · (uα)−c = urα = R1

vsβ · T−c2 = vrβ+c·β · (vβ)−c = vrβ = R2

e(T3,g2)sx ·e(w,W )
−sα−sβ ·e(w,g2)

−sδ1−sδ2 ·e(h,g2)−sy

e(T3,W )−c·e(g1,g2)c

= e(T3,g2)rx+c·x·e(w,W )
−rα−c·α−rβ−c·β ·e(w,g2)

−rδ1−c·δ1−rδ2−c·δ2 ·e(h,g2)−ry−c·y

e(T3,W )−c·e(g1,g2)c

= R3 ·
[

e(T3,g2)x·e(w,W )−α−β ·e(w,g2)−δ1−δ2 ·e(h,g2)−y

e(T3,W )−1·e(g1,g2)

]c
= R3 ·

[
e(A·wα+β ,g2)x·e(w,W )−α−β ·e(w,g2)x·(−α−β)·e(h,g2)−y

e(A·wα+β ,W )−1·e(g1,g2)

]c
= R3 ·

[
e(A,g2)x·e(w,W )−α−β ·e(h,g2)−y ·e(A·wα+β ,W )

e(g1,g2)

]c
= R3 ·

[
e(A,g2)x·e(h,g2)−y ·e(A,W )

e(g1,g2)

]c
= R3 ·

[
e(Ax+γ ·h−y ,g2)

e(g1,g2)

]c
= R3 ·

[
e(g1,g2)
e(g1,g2)

]c
= R3

T sx1 · u−sδ1 = (uα)rx+c·x · u−rδ1−c·δ1 = (uα)rx+c·x · u−rδ1−c·x·α = (uα)rx · u−rδ1 = R4

T sx2 · v−sδ2 = (vβ)rx+c·x · v−rδ2−c·δ2 = (vβ)rx+c·x · v−rδ2−c·x·β = (vβ)rx · v−rδ2 = R5

dsµ · T−c4 = drµ+c·µ · (dµ)−c = drµ = R6

f sµ+sy · T−c5 = f rµ+c·µ+ry+c·y · (fµ+y)−c = f rµ+ry = R7

So the verifier will always accept when the prover is honest.

Lemma 5.2:
Assuming the Decision Linear Problem holds in G1, transcripts of Protocol 5.1 can be simulated.

Proof. We describe a simulator that outputs transcripts for Protocol 5.1 that are indistinguish-
able from real protocol transcripts.

In the first step the simulator chooses Â
$←G1 and ŷ, α, β, µ

$←Zp. Then the values T1 := uα,

T2 := vβ, T3 := Â · wα+β, T4 := dµ, and T5 := fµ+ŷ are computed. In the second step
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the simulator chooses the value c
$←Zp as a simulated challenge and the values sα, sβ, sx,

sŷ, sµ, sδ1 , sδ2
$←Zp. Then the simulator computes R1 := usα · T−c1 , R2 := vsβ · T−c2 , R3 :=

e(T3, g2)sx · e(w,W )−sα−sβ · e(w, g2)−sδ1−sδ2 · e(h, g2)−sŷe(T3,W )c · e(g1, g2)−c, R4 := T sx1 · u−sδ1 ,
R5 := T sx2 · v−sδ2 , R6 := dsµ · T−c4 , and R7 := f sµ+sŷ · T−c5 using the verification equations from
Protocol 5.1 and outputs (T1, T2, T3, T4, T5, R1, R2, R3, R4, R5, R6, R7, c, sα, sβ, sx, sŷ, sµ,
sδ1 , sδ2) as the transcript.
Now we show that the transcripts created by the simulator are indistinguishable from transcripts
of the real protocol, assuming D-Linear1 holds in G1.
Together with the public values u, v, w, h, d, f , C = hy the 6-tuples (u, v, w, T1, T2, T3)
and (h, d, f , C, T4, T5) are completely random instances of the Decision Linear Problem in
G1. Hence, the distribution of this tuples in the simulation can not be distinguished from the
distribution in the real protocol.
By choosing the values sα, sβ, sx, sŷ, sµ, sδ1 , sδ2 and c uniformly at random, the values R1, R2,
R3, R4, R5, R6, R7 are fixed, such that the verification equations are satisfied. Therefore
the tuple (R1, R2, R3, R4, R5, R6, R7, c, sα, sβ, sx, sŷ, sµ, sδ1 , sδ1) is distributed as in the
real protocol. Using a standard hybrid argument, it follows that transcripts generated by the
simulator are indistinguishable from transcripts of the real protocol, assuming the Decision
Linear Problem holds in G1.

Lemma 5.3:
The Protocol 5.1 is a proof of knowledge (there exists an extractor for this protocol).

Proof. Suppose an algorithm E (the extractor) that is given two transcripts of protocol 5.1 (T1,
T2, T3, T4, T5, R1, R2, R3, R4, R5, R6, R7, c, sα, sβ, sx, sy, sµ, sδ1 , sδ2) and (T1, T2, T3, T4, T5,
R1, R2, R3, R4, R5, R6, R7, c′, s′α, s′β, s′x, s

′
y, s

′
µ, s′δ1 , s

′
δ2

) where c 6= c′. Then a valid extended
q-SDH triple can be computed by E as follows: ∆c := c− c′, ∆sα := sα − s′α, ∆sβ := sβ − s′β,
∆sx := sx − s′x, ∆sy := sy − s′y, ∆sµ := sµ − s′µ, ∆sδ1 := sδ1 − s′δ1 , and ∆sδ2 := sδ2 − s′δ2 .
Dividing the two instances for each of the verification equations gives

1G1 = usα · T−c1 · u−s
′
α · T c′1 = u∆sα · T−∆c

1 =⇒ T∆c
1 = u∆sα =⇒ T1 = uα̂ where α̂ =

∆sα
∆c

1G1 = vsβ · T−c2 · v
−s′β · T c′2 = v∆sβ · T−∆c

2 =⇒ T∆c
2 = v∆sβ =⇒ T2 = vβ̂ where β̂ =

∆sβ
∆c

1G1 = dsµ · T−c4 · d−s
′
µ · T c′4 = d∆sµ · T−∆c

4 =⇒ T∆c
4 = d∆sµ =⇒ T4 = dµ̂ where µ̂ =

∆sµ
∆c

1G1 = f sµ+sy · T−c5 · f−s
′
µ−s′y · T c′5 = f∆sµ+∆sy · T−∆c

5 =⇒ T∆c
5 = f∆sµ+∆sy

=⇒ T5 = f µ̂+ŷ where ŷ =
∆sy
∆c

1G1 = T sx1 · u−sδ1 · T
−s′x
1 · us

′
δ1 = T∆sx

1 · u−∆sδ1 =⇒ T∆sx
1 = u∆sδ1 =⇒ α̂ ·∆sx = ∆sδ1

1G1 = T sx2 · v−sδ2 · T
−s′x
2 · vs

′
δ2 = T∆sx

2 · v−∆sδ2 =⇒ T∆sx
2 = v∆sδ2 =⇒ β̂ ·∆sx = ∆sδ2

1GT =
e(T3, g2)sx · e(w,W )−sα−sβ · e(w, g2)−sδ1−sδ2 · e(h, g2)−sy

e(T3, g2)s′x · e(w,W )−s
′
α−s′β · e(w, g2)−s

′
δ1
−s′δ2 · e(h, g2)−s

′
y

· e(T3,W )−c
′ · e(g1, g2)c

′

e(T3,W )−c · e(g1, g2)c

= e(T3, g2)∆sx · e(w,W )−∆sα−∆sβ · e(w, g2)−∆sδ1−∆sδ2 · e(h, g2)−∆sy · e(T3,W )∆c

e(g1, g2)∆c
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⇐⇒ (
e(g1, g2)

e(T3,W )

)∆c

= e(T3, g2)∆sx · e(w,W )−∆sα−∆sβ · e(w, g2)−∆sδ1−∆sδ2 · e(h, g2)−∆sy

taking ∆c-th root and letting x̂ = ∆sx
∆c

we obtain

e(g1, g2)

e(T3,W )
= e(T3, g2)x̂ · e(w,W )−α̂−β̂ · e(w, g2)−α̂·x̂−β̂·x̂ · e(h, g2)−ŷ

this can be rearranged as

e(g1, g2) = e(T3, g2)x̂ · e(w−α̂−β̂,W ) · e(w−α̂−β̂, g2)x̂ · e(h, g2)−ŷ · e(T3,W )

= e(T3 · w−α̂−β̂, g2)x̂ · e(h, g2)−ŷ · e(T3 · w−α̂−β̂,W )

letting Â = T3 · w−α̂−β̂ it holds

e(g1, g2) = e(Â, g2)x̂ · e(h, g2)−ŷ · e(Â,W ).

Hence, the extractor obtains a tuple (Â, x̂, ŷ), which is a valid extended q-SDH triple. Moreover,
the Â is exactly the same as that in the Linear Encryption (T1, T2, T3), the ŷ is the same as in
T5 and so also x̂ is the same as in the transcripts. So the extractor gets exactly the same values
the prover knows.

6 Our Construction

In this section we define our reputation system based on extended q-SDH and D-Linear1.
To give some intuition for this system we provide an honest-verifier zero-knowledge proof of
knowledge in Section 5.

6.1 The Reputation System

We apply the Fiat-Shamir heuristic [14, 1] on Protocol 5.1 to obtain a signature of knowledge
which is secure in the random oracle model. By extending this signature scheme we construct
a reputation system. We use the challenge c as a part of the signature rather than the values
R1, . . . , R7, modelling the value c as the output of a random oracle. This technique is widely
used in the context of group signatures [6, 8, 3].
In a reputation system, the key issuer publishes items for which the signatures are created.
Every user can create a single signature for every item without losing anonymity. Due to the
public linkability two signatures for one item by the same user can be detected. In such a
case, the anonymity of the cheating user is revoked by the group manager. By publishing a
revocation token the group manager can declare signatures from the cheating user as invalid.
This invalidity can be checked by every verifier using verifier-local revocation [8, 26].
We assume the communication between users and the group manager and between users and
the key issuer to take place via secure channels. Furthermore, the user’s public key upk [i] is
certified by the group manager, such that the key issuer can verify the integrity of the public
keys during the Join-Issue protocol.
In the following definitions we consider bilinear groups G1 and G2, and two hash functions
modeled as random oracles: H : {0, 1}∗ −→ Zp and H1 : {0, 1}∗ −→ G2. Furthermore, as in
[6], we use Linear Encryption - a CPA-secure Elgamal-like encryption scheme based on the
Decision Linear Problem (Definition 4.1).
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KeyGenGM():

The group manager’s key generation algorithm proceeds as follows:

1. Select w
$←G1, ξ1, ξ2

$←Zp and compute u :=w
1
ξ1 , v :=w

1
ξ2 . The values (u, v, w)

are the public key of the Linear Encryption, the values (ξ1, ξ2) are the corre-
sponding secret key.

2. Select d̂
$←G2, ζ

$←Zp and compute d :=ψ(d̂), h := dζ as the basis for public
linkability and revocation.

3. Set gmpk :=(u, v, w, h, d, d̂) and gmsk :=(ξ1, ξ2, ζ) as the group manager’s public
and secret keys.

KeyGenKI(item):

The key issuer’s key generation algorithm proceeds as follows:

1. Select g2item
$←G2 and set g1item :=ψ(g2item ).

2. Select γitem
$←Zp and set Witem := gγitem2item

.

3. Add the item-based public key ipk [item] :=(g1item , g2item ,Witem) to the ItemList
and keep isk [item] := γitem secret as the item-based secret key.

KeyGenU(i):

The user’s key generation algorithm proceeds as follows:

1. Select yi
$←Zp, set upk [i] :=hyi and usk [i] := yi as the user’s public and secret

keys.

RegisterGM(StGM ,MGM),RegisterU(StU ,MU):

The interactive registration protocol proceeds as follows:

1. The user sends his identity i to the group manager.

2. The group manager checks if there already exists an entry reg [i] in the registra-
tion table. If so, he declares failure and exits. Otherwise, the group manager
runs KeyGenU to obtain the tuple (upk [i], usk [i]), sets reg [i] := (i, upk [i]) and
sends (upk [i], usk [i]) and a certificate for upk [i] to the user i.

Join(StU ,MU), Issue(StKI ,MKI):

The interactive key issuing protocol proceeds as follows:

1. The user looks up the public key corresponding to the used item ipk [item] =
(g1item , g2item , Witem) in the ItemList and sends (i, upk [i]) and the certificate for
upk [i] to the key issuer.

2. The key issuer verifies the certificate for upk [i] and checks that user i is not in
possession of a signing key for the given item, i.e. there exists no entry (upk [i], ·)
in ILitem . If the certificate is invalid or there already is a signing key in the list,

then he declares failure and exits. Otherwise, he selects xiitem
$←Zp, computes

Aiitem :=(g1item · upk [i])
1

xiitem
+γitem , gives gsk [i, item] :=(Aiitem , xiitem ) to the user i

as his signing key for the specified item, and saves (upk [i], gsk [i, item]) in the
identification list ILitem for this item.
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Revoke(gmpk , gmsk , i):

The revocation algorithm proceeds as follows:

1. Look up upk [i] in reg [i].

2. Using the group manager’s secret key gmsk compute Di := upk [i]
1
ζ = (hyi)

1
ζ = dyi

and add the revocation token grt [i] :=Di to the revocation list RL.

Sign(item, gmpk , ipk [item], gsk [i, item], usk [i],M):

The group signing algorithm proceeds as follows:

1. Obtain the value f̂ ∈ G2 by f̂ :=H1(item).

2. Choose α, β, µ
$←Zp, compute

T1 :=uα T2 := vβ T3 :=Aiitem · wα+β T4 := dµ T5 :=ψ(f̂)µ+yi

and the helper values δ1 :=α · xiitem and δ2 := β · xiitem .

3. Choose rα, rβ, rx, ry, rµ, rδ1 , rδ2
$←Zp and compute

R1 :=urα R2 := vrβ

R3 := e(T3, g2item )rx · e(w,Witem)−rα−rβ · e(w, g2item )−rδ1−rδ2 · e(h, g2item )−ry

R4 :=T rx1 · u−rδ1 R5 :=T rx2 · v−rδ2 R6 := drµ R7 :=ψ(f̂)rµ+ry .

4. Compute a challenge value c using H:

c :=H(M, item, T1, T2, T3, T4, T5, R1, R2, R3, R4, R5, R6, R7).

5. Compute

sα := rα + c · α sβ := rβ + c · β sx := rx + c · xiitem sy := ry + c · yi
sµ := rµ + c · µ sδ1 := rδ1 + c · δ1 sδ2 := rδ2 + c · δ2.

6. Output the signature σ :=(item, T1, T2, T3, T4, T5, c, sα, sβ, sx, sy, sµ, sδ1 , sδ2).

Verify(item, gmpk , ipk [item],RL,M, σ):

The signature verification algorithm proceeds as follows:

1. Obtain the value f̂ ∈ G2 by f̂ :=H1(item).

2. The verifier computes

R1 :=usα · T−c1 R2 := vsβ · T−c2

R3 :=
e(T3, g2item )sx · e(w,Witem)−sα−sβ · e(w, g2item )−sδ1−sδ2 · e(h, g2item )−sy

e(T3,Witem)c · e(g1, g2item )−c

R4 :=T sx1 · u−sδ1 R5 :=T sx2 · v−sδ2 R6 := dsµ · T−c4 R7 :=ψ(f̂)sµ+sy · T−c5 .

18



3. Check that the challenge c is correct:

c
?
= H(M, item, T1, T2, T3, T4, T5, R1, R2, R3, R4, R5, R6, R7).

If this holds, then accept, otherwise reject.

4. For each element D ∈ RL check whether D is encoded in (T4, T5): e
(
T5, d̂

)
?
=

e(D · T4, f̂). If this is false for all D ∈ RL, then the signer of σ has not been
revoked and Verify accepts, otherwise rejects.

5. If both checks accept, then output 1, otherwise 0.

Link(item, gmpk , ipk [item], (M ′, σ′), (M ′′, σ′′)):

The public linking algorithm proceeds as follows:

1. At first, check that σ′ is a valid signature for message M ′ and that σ′′ is a valid
signature for message M ′′. If not, output 0.

2. Obtain the value f̂ ∈ G2 by f̂ :=H1(item).

3. Output 1, if e
(
T ′5
T ′′5
, d̂
)

?
= e

(
T ′4
T ′′4
, f̂
)

holds and 0 otherwise.

Open(gmpk , gmsk ,M, σ):

The opening algorithm proceeds as follows:

1. Check that σ is a valid signature of knowledge for message M . If not, output
failure.

2. Compute Aiitem :=T3 · T−ξ11 · T−ξ22 using the group manager’s secret key.

3. The group manager looks up the user index i from the identification list ILitem .

4. If no entry for Aiitem can be found in ILitem return failure, otherwise return i.

Remarks: We assume the communication between users and the group manager and between
users and the key issuer to take place via secure channels. Furthermore, the user’s public key
upk [i] is certified by the group manager, such that the key issuer can verify the integrity of the
public keys during the join-issue protocol. Since we assume the group manager to be honest,
we can let him choose the user’s public and secret keys. We need the honest group manager to
prove security for the system.

Correctness: The correctness of the reputation system can be shown as follows:

• Protocol 5.1 is correct, i.e. every honestly created signature will be declared as valid.

• Revocation token are computed correctly.

• For honestly created signatures the group manager can always recover the identity of the
signer, because of the correctness of the Linear Encryption.

• Two signatures for the same item by the same user are declared as publicly linked.

• Every secret signing key gsk [i] created by the key issuer can be publicly verified by

e(Aiitem , g2)xiitem · e(Aiitem ,W ) · e(h, g2)−yi
?
= e(g1, g2).
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6.2 Security of the Reputation System

As mentioned in Section 3 the anonymity experiment as defined in Figure 4 can be relaxed to
CPA-anonymity. We will prove security in this slightly weaker model, analogously to [6]. In
the following lemmata Q is the overall number of oracle queries made by the adversary. The
proofs of security are all in the random oracle model.

Lemma 6.1:
If D-Linear1 (t′, ε′)-holds in G2, then the reputation system defined in Section 6 is (t, Q, qH1 ,
qAU , ε)-CPA-anonymous, where t = t′ − Q · O(1) and ε = ε′ · 2 · qAU · qH1 . Here qH1 is the
number of hash oracle queries to H1 and qAU is the number of AddU oracle queries.

Proof. Suppose A is an adversary that (t, ε)-breaks the anonymity of the reputation system.
Then we can construct an adversary B that decides D-Linear1 in G2 with advantage at least

ε
2·qAU ·qH1

in time t+Q · O(1).

Algorithm B is given an instance of the Decision Linear Problem (û, v̂, ŵ, ûâ, v̂b̂, ŵĉ) ∈ G6
2 and

has to decide whether ĉ = â+ b̂ holds. B does so by interacting with algorithm A.
At first, B sets HU := ∅, CU := ∅, RL := ∅, ItemList := ∅, reg := ∅, RU := ∅, J IU := ∅, GS := ∅
and computes a second, independent instance of D-Linear1 (ĥ, d̂, f̂ , ĥy

∗
, d̂µ

∗
, f̂ r

∗
) using the stan-

dard random self-reducibility technique (see Lemma 4.1).
Although A has to output two identities in his anonymity challenge, it suffices for B to guess
one identity, namely the one that is used in the challenge signature. Identities are created
using the AddU oracle, and there are at most qAU queries to this oracle. Hence, B chooses

`1
$←{1, . . . , qAU} as his guess which identity can be used for A’s challenge. Analogously, B has

to guess for which item A wants to be challenged. For every item the hash value H1(item)
is needed to create a signature, and there are at most qH1 queries to H1. Hence, B chooses

`2
$←{1, . . . , qH1} as his guess that the `2’th query to H1 is for the item that A wants to be

challenged on.
To compute the group manager’s public key B sets gmpk :=(u :=ψ(û), v :=ψ(v̂), w :=ψ(ŵ),
h :=ψ(ĥ), d :=ψ(d̂), d̂) and gives gmpk to A. Then A starts to interact with B via the oracles.
Algorithm B responds to oracle queries by running exactly the defined oracles from Figure 3,
except to queries to AddU,USK,RevU and GSig. These oracles are realized as follows:

H(·): For hash oracle queries to H B chooses c
$←Zp, gives c to A and ensures to respond

identically to repeated queries.
H1(item): To the `2’th query to H1 B responds by patching the oracle at item to match
f̂ . If this causes a collision, B declares failure and exits. Collisions happen with negligible
probability, hence here and in the remainder of the proof we ignore these probabilities. For

queries not equal to `2, B chooses f ′
$←G2 and gives f ′ to A. B ensures to respond identically

to repeated queries.
AddU(i): To the `1’th query B responds by setting i∗ := i, upk [i∗] :=ψ(ĥy

∗
) and returning

upk [i∗]. For every other query B follows the oracle definition of Figure 3.
USK(i): If i 6= i∗ then B responds as defined in Figure 3. If i = i∗ then B cannot respond as
usk [i∗] = y∗ is not known. Hence, B declares failure and exits.
RevU(i): If i 6= i∗ then B responds as defined in Figure 3. If i = i∗ then B cannot respond as
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usk [i∗] = y∗ is not known and dy
∗

can not be computed. Hence, B declares failure and exits.
GSig(i, item,M): Algorithm B has to handle three different cases:

• If i 6= i∗ then B responds as defined in Figure 3.

• If i = i∗∧H1(item) 6= f̂ then B simulates the signature using the simulator of Lemma 5.2.
To do this, B checks that i is an honest user, that there exists a public key for the given
item in the ItemList , and that user i owns a personal signing key gsk [i, item] ∈ ILitem . If
one of this three checks does not succeed, B returns an empty string (as defined in the GSig

oracle). Next B chooses α, β, µ, y′
$←Zp and computes T1 :=uα, T2 := vβ, T3 :=Ai∗item ·w

α+β,

T4 := dµ, T5 :=ψ(H1(item))µ+y′ . Afterwards, B chooses c, sα, sβ, sx, sy′ , sµ, sδ1 , sδ2
$←Zp

and computes R1, . . . , R7 using the verification equations from the Verify algorithm. To
ensure the signature is valid, B patches H at (M , item, T1, T2, T3, T4, T5, R1, R2, R3,
R4, R5, R6, R7) to equal c. If this causes a collision, B declares failure and exits. Finally,
B gives σ :=(item, T1, T2, T3, T4, T5, c, sα, sβ, sx, sy, sµ, sδ1 , sδ2) to A.

• If i = i∗ ∧H1(item) = f̂ then B declares failure and exits.

At some point A outputs a tuple (i0, i1, item,M, St). If i0 or i1 are not honest users or the
specified item does not exist in the ItemList , then B declares failure and exits. Also, B declares
failure and exits, if ib 6= i∗ or H1(item) 6= f̂ . Otherwise, the challenge is computed as follows:

B sets T1 :=ψ(ûâ), T2 :=ψ(v̂b̂), T3 :=Ai∗item · ψ(ŵĉ), T4 :=ψ(d̂µ
∗
), T5 :=ψ(f̂ r

∗
) and simulates the

values (c, sα, sβ, sx, sy, sµ, sδ1 , sδ2) as described in the GSig oracle. If this causes a collision
during the simulation of the hash value c, B declares failure and exits. Otherwise, the challenge
signature is given to A.
In the guess-phase B responds to A’s queries to the oracles as before. When A outputs it’s
guess b′ ∈ {0, 1} B outputs 1, iff ib′ = i∗ as his guess for his D-Linear1 challenge.
All keys given to A and the responses to A’s queries are properly distributed, except the com-
pletely simulated signatures, but these can not be distinguished from real signatures, assuming
D-Linear1 holds.
Now we analyze the advantage of B in deciding D-Linear1 in G2. Suppose the D-Linear1
instance given to B is a real D-Linear1 tuple, i.e. ĉ = â + b̂. Then also r∗ = y∗ + µ∗ and the
challenge signature is a valid signature of user ib. Hence, A has advantage ε in breaking the
anonymity of the reputation system.

Suppose the D-Linear1 instance given to B is a random instance, i.e. ĉ
$←Zp. Then also r∗

$←Zp
and the challenge signature is completely independent of ib. Hence, algorithm A’s advantage
is 0.
If B guesses the correct identity i∗ and the correct item for the challenge signature, then B
will not abort. Guessing the correct identity i∗ happens with a probability of at least 1

qAU
.

Analogously, guessing the correct item happens with a probability of at least 1
qH1

. Hence,

B outputs a guess for his D-Linear1 challenge with a probability of at least 1
qAU ·qH1

and the

advantage in deciding D-Linear1 is at least ε′ = ε
2·qAU ·qH1

. Algorithm B can compute a response

to A’s oracle queries in constant time. Because there are at most Q queries and A runs in time
t, B runs in time t′ = t+Q · O(1).
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Lemma 6.2:
If q-SDH (t′, ε′)-holds in (G1,G2), then the reputation system defined in Section 6 is (t, ε)-
publicly linkable, where t = t′−Q·O(1) and ε = qAI ·

√
32 · qH · (q − 1) · ε′+ qAI

p
. Furthermore,

the overall number of oracle queries to SndToGM must be at most q−1. Here qH is the number
of hash function queries to H, qAI is the number of oracle queries to the AddItem oracle made
by the adversary and p is the size of the groups G1 and G2.

Proof. Suppose A is an adversary that (t, ε)-breaks the public linkability of the reputation
system. Then we can construct an adversary B that solves q-SDH in (G1,G2) with advantage

ε′ of at least ε′ =
(

ε
qAI
− 1

p

)2

· 1
32·qH ·(q−1)

in time t′ = t +Q · O(1). Without loss of generality

we assume that A creates exactly q − 1 users via the SndToGM oracle.

Algorithm B is given an instance of the q-SDH problem
(
G1, G2, G

γ̂
2 , . . . , G

(γ̂q)
2

)
where G1 =

ψ(G2). B now chooses α, xj, yj
$←Zp, for j = 1, . . . , q−1, k

$←{1, . . . , q−1} and sets γ := γ̂−xk
which is unknown. Then the following values are computed by B:

g2 := G
α·
q−1∏
i=1

(γ̂−xk+xi)−yk·
q−1∏

i=1,i 6=k
(γ̂−xk+xi)

2 g1 := ψ(g2) (1)

ĥ := G

q−1∏
i=1,i 6=k

(γ̂−xk+xi)

2 h := ψ(ĥ) (2)

W :=

Gα·
q−1∏
i=1

(γ̂−xk+xi)−yk·
q−1∏

i=1,i 6=k
(γ̂−xk+xi)

2

γ̂−xk (3)

Aj := ψ


Gα·

q−1∏
i=1

(γ̂−xk+xi)−yk·
q−1∏

i=1,i 6=k
(γ̂−xk+xi)

2 ·G
yj ·

q−1∏
i=1,i 6=k

(γ̂−xk+xi)

2


1

γ+xj

 .
All products in the exponents are polynomials of γ̂ of degree at most q. By expanding the
products all the specified values can be computed using the given q-SDH instance. With
γ := γ̂ − xk, the value W equals gγ2 , while γ is unknown to B.

To generate the group manager’s public key, B selects w
$←G1, ζ, ξ1, ξ2

$←Zp and computes

u := w
1
ξ1 v := w

1
ξ2 d̂ := ĥ

1
ζ d := ψ(d̂).

Now B sets HU := ∅, CU := ∅, RL := ∅, ItemList := ∅, reg := ∅, RU := ∅, J IU := ∅, GS := ∅ and
gmpk := (u, v, w, h, d, d̂). Before the group manager’s public key is given to A, B has to guess
an item∗ as the item for which A will output the message-signature pairs as its solution to the

public linkability experiment. To do so, B selects `
$←{1, . . . , qAI} and uses the item of the `’th

query to the AddItem oracle as item∗.
Now B gives the group manager’s public key gmpk to A and starts to interact with A via the
oracles. A’s queries are answered as follows:

H(·): B chooses c
$←Zp, gives c to A and ensures to respond identically to repeated queries.

H1(item): B chooses f̂
$←G2, gives f̂ to A and ensures to respond identically to repeated

queries.
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AddItem(item): On the `’th query B sets item∗ := item and ipk [item∗] := (g1, g2,W ),
adds ipk [item∗] to the ItemList and returns ipk [item∗]. For every other query B executes the
KeyGenKI algorithm and returns the resulting item-based public key ipk [item].
SndToGM(i,MGM): Algorithm B responds to the j’th query by running exactly the defined
oracle from Figure 3 using yj as the sercret key of user i, i.e. usk [i] := yj and upk [i] := hyj .
SndToKI(i, item, upk [i],MKI): If item 6= item∗ then B executes exactly the oracle defined
in Figure 3. Otherwise, B runs the defined oracle using gsk [i, item∗] := (Aj, xj), where Aj and
xj correspond to user i’s secret key usk [i] = yj defined in the SndToGM oracle for user i.
At some point A outputs an item and exactly q message-signature pairs ((m1, σ1), . . . , (mq, σq)).
If item 6= item∗, at least one signature is invalid or there are at least two publicly linkable
signatures then B declares failure and exits. Otherwise, B computes the revocation tokens
grt [i] = dyi for all q − 1 group members, adds them to the revocation list RL and runs
the verification algorithm for every message-signature pair (mi, σi), i = 1, . . . , q. Since the
signatures are not publicly linkable, there must be at least one message-signature pair (mi∗ , σi∗)
such that σi∗ is still a valid signature. Now we apply the Forking Lemma [27] to obtain a second
solution to the linkability experiment which can be used to solve q-SDH.
A run of B interacting with A is completely described by the randomness string ω used by A
and B, and by the vectors ρH , ρH1 of responses made by the random oracles H and H1. We
assume that the random oracle queries by A are distinct and we denote the i’th query to H
by qiH and the i’th query to H1 by qiH1

. The response to qiH is denoted by ρiH , the response
to qiH1

is denoted by ρiH1
. Hence, a random choice of ρH and ρH1 exactly corresponds to the

random choices of H and H1. From here on, we abbreviate signatures as (m,σ0, c, σ1), where
σ0 = (item, T1, T2, T3, T4, T5, R1, R2, R3, R4, R5, R6, R7), σ1 = (sα, sβ, sx, sy, sµ, sδ1 , sδ2) and
c is the value derived by the random oracle H on input (m,σ0). The values omitted in the
signature can be computed according to the equations used in the Verify algorithm.
For a random choice of (ω, ρH1 , ρH) algorithm A outputs a solution to the public linkability
experiment with advantage ε. With probability 1

qAI
this solution is for item∗. For the message-

signature pair (mi∗ , σi∗) = (mi∗ , σ
0
i∗ , c, σ

1
i∗) the probability that c equals H(mi∗ , σ

0
i∗) is 1

p
, unless

it has been queried during the attack. Because this probability is negligable it is likely that A
queried H(mi∗ , σ

0
i∗). Let Ind(ω, ρH1 , ρH) be the index of this query, i.e. q

Ind(ω,ρH1
,ρH)

H = (mi∗ , σ
0
i∗)

and let Ind(ω, ρH1 , ρH) =∞ if the query is never made by A. Then we can define the sets

S = {(ω, ρH1 , ρH) | A succeeds and Ind(ω, ρH1 , ρH) 6=∞}
and

Si = {(ω, ρH1 , ρH) | A succeeds and Ind(ω, ρH1 , ρH) = i} for i ∈ {1, . . . , qH}.

With these definitions, ν := Pr(S) = ε
qAI
− 1

p
is the probability that A is succesful, H(mi∗ , σ

0
i∗)

was queried by A and (mi∗ , σ
0
i∗ , c, σ

1
i∗) is a signature for item∗. Now let I be the set of the most

likely indices i:

I =

{
i | Pr(Si | S) ≥ 1

2 · qH

}
.

Then

Pr(Ind(ω, ρH1 , ρH) ∈ I | S) =
∑
i∈I

Pr(Si | S) = 1−
∑
i/∈I

Pr(Si | S) ≥ 1− qH ·
1

2 · qH
=

1

2
.
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Let ρH |ba denote the restriction of ρH to its elements ρaH , ρ
a+1
H , . . . , ρbH and let us define the sets

X = (ω, ρH1 , ρH |
j−1
1 )

Y = (ρH |qHj )

Ωj =

{
(x, y) ∈ X × Y

∣∣∣∣ Pr
y′∈Y

((x, y′) ∈ Sj) ≥
ν

4 · qH

}
for each j ∈ I.

Then Pr(Sj) = Pr(Sj) · Pr(S | Sj) = Pr(S) · Pr(Sj | S) ≥ ν
2·qH

and Pr(Ωj | Sj) ≥ 1
2
, by the

splitting lemma [27]. Furthermore, it holds

Pr(∃j ∈ I : Ωj ∩ Sj | S) = Pr

(⋃
j∈I

(Ωj ∩ Sj) | S

)
=
∑
j∈I

Pr(Ωj ∩ Sj | S)

=
∑
j∈I

Pr(Ωj | Sj) · Pr(Sj | S) ≥ 1

2
·
∑
j∈I

Pr(Sj | S) ≥ 1

4

because the subsets Sj are disjoint. This means, with probability ν
4

algorithm A succeeds by
outputting a signature (mi∗ , σ

0
i∗ , c, σ

1
i∗), which is derived from a tuple (x, y) ∈ Ωj for some j ∈ I.

Now we rewind A and B to the j’th query to H and proceed with an oracle vector ρ′H , where
ρ′H |

j−1
1 = ρH |j−1

1 and ρ′kH 6= ρkH for all k = j, . . . , qH . This means, we run A and B with
(ω, ρH1 , (ρH |

j−1
1 , ρ′H |

qH
j )) = (x, y′) ∈ X × Y and we know that Pr((x, y′) ∈ Sj) ≥ ν

4·qh
from the

definition of Ωj. Hence, A succeeds a second time by outputting a signature (mi∗ , σ
0
i∗ , c

′, σ1′
i∗)

where c 6= c′ and σ1
i∗ 6= σ1′

i∗ (of course, A again outputs q message-signaute pairs, but we are
only interested in the one with index i∗).
By using the extractor of Lemma 5.3, we obtain from (σ0

i∗ , c, σ
1
i∗) and (σ0

i∗ , c
′, σ1′

i∗) a q-SDH tuple
(A∗, x∗, y∗). This can be transformed into a solution to B’s q-SDH problem as follows:

A∗ = ψ


Gα·

q−1∏
i=1

(γ̂−xk+xi)−yk·
q−1∏

i=1,i 6=k
(γ̂−xk+xi)

2 ·G
y∗·

q−1∏
i=1,i 6=k

(γ̂−xk+xi)

2


1

γ+x∗


= ψ


Gα·

q−1∏
i=1

(γ̂−xk+xi)+(y∗−yk)·
q−1∏

i=1,i 6=k
(γ̂−xk+xi)

2


1

γ̂−xk+x∗
 . (4)

Let f(X) :=
q−1∏
i=1

(X − xk + xi) and g(X) :=
q−1∏

i=1,i 6=k
(X − xk + xi) then

f(γ̂) · 1

γ̂ − xk + x∗
= τ(γ̂) +

β

γ̂ − xk + x∗

and

g(γ̂) · 1

γ̂ − xk + x∗
= τ ′(γ̂) +

β′

γ̂ − xk + x∗

for some polynomials τ and τ ′ of degree at most q− 2, where β or β′ equals 0, iff (γ̂ − xk + x∗)
is a factor of f(γ̂) or g(γ̂). These cases will be discussed later. Using this representation we
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obtain

A∗ = ψ

[
G
α·
(
τ(γ̂)+ β

γ̂−xk+x∗

)
+(y∗−yk)·

(
τ ′(γ̂)+ β′

γ̂−xk+x∗

)
2

]
and we can define

A = ψ


Gα·

(
τ(γ̂)+ β

γ̂−xk+x∗

)
+(y∗−yk)·

(
τ ′(γ̂)+ β′

γ̂−xk+x∗

)
2

G
α·τ(γ̂)+(y∗−yk)·τ ′(γ̂)
2


1

α·β+(y∗−yk)·β′


= ψ


Gα·τ(γ̂)+α· β

γ̂−xk+x∗
+(y∗−yk)·τ ′(γ̂)+(y∗−yk)· β′

γ̂−xk+x∗

2

G
α·τ(γ̂)+(y∗−yk)·τ ′(γ̂)
2


1

α·β+(y∗−yk)·β′


= ψ

[(
G
α· β
γ̂−xk+x∗

+(y∗−yk)· β′
γ̂−xk+x∗

2

) 1
α·β+(y∗−yk)·β′

]

= ψ

[(
G

1
γ̂−xk+x∗

·(α·β+(y∗−yk)·β′)
2

) 1
α·β+(y∗−yk)·β′

]

= ψ

[
G

1
γ̂−xk+x∗

2

]
.

Hence, (A, x∗ − xk) is a solution to B’s q-SDH problem.
Now we discuss the different cases that can occur during the described transformation.

Case 1: (A∗, x∗, y∗) ∈ {(Aj, xj, yj)}q−1
j=1 : Obviously, if (A∗, x∗, y∗) is one of the triples B gener-

ated himself, no new information is obtained from (A∗, x∗, y∗). Hence, B cannot compute
A and has to abort.

Case 2: x∗ /∈ {xj}q−1
j=1 : In this case the values β and β′ are not equal to 0. Hence, the value A

can be computed as described above and (A, x∗−xk) is a solution to B’s q-SDH problem.

Case 3: x∗ ∈ {xj}q−1
j=1 : This case has to be devided into two different subcases:

a) x∗ 6= xk : Since x∗ is equal to xj for some j 6= k, (γ̂ − xk + xj) is a factor of both
polynoms f(γ̂) and g(γ̂). Hence, it holds β = β′ = 0, A cannot be computed and B
has to abort.

b) x∗ = xk : In this case (γ̂−xk+x∗) = γ̂ is a factor of f(γ̂), but not one of g(γ̂). Hence,
β = 0 and β′ 6= 0 holds. Also y∗ 6= yk (because otherwise A∗ would be equal to Ak)
and (y∗ − yk) · β′ 6= 0 holds, so (A, 0) is a solution to B’s q-SDH problem.

We know that B obtains a tuple (A∗, x∗, y∗) with a probability of at least ν2

16·qH
. Because A was

successful it holds y∗ /∈ {yi}q−1
i=1 . Hence, case 1 does not occur. If case 2 occurs, B can compute

a solution to its q-SDH problem with probability 1. For case 3 Pr(x∗ = xk) = 1
q−1

holds and

either case 2 or case 3 occurs with a probability of at least 1
2
.

Putting all together, assuming the more pessimistic scenario of case 3, B can compute a solution
to its q-SDH problem with a probability ε′ of at least

ε′ ≥ ν2

16 · qH
· 1

q − 1
· 1

2
=

(
ε

qAI
− 1

p

)2

· 1

32 · qH · (q − 1)
.
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The transformation of B’s q-SDH instance into q−1 tuples (Aj, xj, yj) and an item-based public
key can be done in constant time, for fixed q. Also algorithm B can respond to an oracle query
of A in constant time, and there are at most Q of such queries. The computation of (A, x)
using the extracted values (A∗, x∗, y∗) needs constant time, too. Hence, B can solve q-SDH in
time t′ = t+Q · O(1).

Lemma 6.3:
If q-SDH (t′, ε′)-holds in (G1,G2), then the reputation system defined in Section 6 is (t, ε)-
traceable, where t = t′−Q ·O(1) and ε = qAI · qAU ·

√
ε′ · (64 · qH) · (q − 1) + qAI ·qAU

p
. Here qAU

is the number of oracle queries to AddU, qAI is the number of oracle queries to AddItem, the
number of oracle queries to SndToGM is a most q − 1 − qAU , qH is the number of queries to
the random oracle H and p is the size of the groups G1 and G2.

Proof. Suppose A is an adversary that (t, ε)-solves the traceability of the reputation system.
Then we can construct an adversary B that solves q-SDH in (G1,G2) with advantage ε′ of at

least ε′ =
(

ε
qAI ·qAU

− 1
p

)2

· 1
64·qH

· 1
q−1

in time t′ = t + Q · O(1). Without loss of generality we

assume that A creates exactly q − 1 users via the AddU and SndToGM oracles.
Analogously to [6] we have to distinguish between two different forger types: the Type-I forger
outputs a valid message-signature pair (m,σ), for some item of his choice, such that the Open
algorithm outputs failure; the Type-II forger outputs a valid message-signature pair (m,σ),
for some item of his choice, that can be traced back to an honest user. Hence, B guesses the

forger type, with probability 1
2
, i.e. b

$←{I, II}, and behaves slightly different in the two cases.
Algorithm B transforms the q-SDH problem into tuples (Aj, xj, yj), for j = 1, . . . , q − 1, and

values (g1, g2, ĥ, h,W ) using the same technique as in the proof of public linkability (Lemma 6.2).
Furthermore, B guesses an item∗ as the item for which A will output the message-signature pair
as its solution to the traceability experiment. This can be done as in the proof of Lemma 6.2

by choosing `
$←{1, . . . , qAI} and handling the `’th query to the AddItem oracle appropriately.

To generate the group manager’s public key, B selects w
$←G1, ζ, ξ1, ξ2

$←Zp and computes

u := w
1
ξ1 v := w

1
ξ2 d̂ := ĥ

1
ζ d := ψ(d̂).

Now B sets HU := ∅, CU := ∅, RL := ∅, ItemList := ∅, reg := ∅, RU := ∅, J IU := ∅, GS := ∅ and

gmpk := (u, v, w, h, d, d̂). In the case that b = II, B selects Aq
$←G1 and yq

$←Zp, sets xq := ?
and guesses the honest user i∗ for which A will output the forged signature σ. This can be done

by choosing `1
$←{1, . . . , qAU} and handling the `1’th query to the AddU oracle appropriately.

The number of already registered users is counted using the variable ĵ, which is initially set to
0.
Now B gives the group manager’s public key gmpk to A and starts to interact with A via the
oracles. A’s queries are answered as follows:

H(·): B chooses c
$←Zp, gives c to A and ensures to respond identically to repeated queries.

H1(item): B chooses f̂
$←G2, gives f̂ to A and ensures to respond identically to repeated

queries.
AddItem(item): On the `’th query B sets item∗ := item and ipk [item∗] := (g1, g2,W ), adds
ipk [item∗] to the ItemList and returns ipk [item∗]. For every other query B executes exactly
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the oracle as defined in Figure 3.
AddU(i): If b = II, on the `1’th query B sets i∗ := i, usk [i∗] := yq, upk [i∗] := hyq , reg [i∗] :=
(i∗, upk [i∗]) and returns upk [i∗]. In any other case, B sets ĵ := ĵ + 1 and executes the oracle
defined in Figure 3, using yĵ as the secret key of user i.

SndToGM(i,MGM): Algorithm B sets ĵ := ĵ+ 1 and executes the oracle defined in Figure 3,
using yĵ as the secret key of user i.
USK(i): If b = II and i = i∗ then B declares failure and exits. Otherwise, algorithm B
responds by running exactly the defined oracle from Figure 3.
GSK(i, item): Algorithm B responds by running exactly the defined oracle from Figure 3.
RevU(i): Algorithm B responds by running exactly the defined oracle from Figure 3.
SndToKI(i, item, upk [i],MKI): If item = item∗ then B runs the defined oracle using
gsk [i, item∗] := (Aj, xj), where Aj and xj correspond to user i’s secret key usk [i] = yj de-
fined in the AddU or SndToGM oracle for user i. In any other case, B responds by running
exactly the defined oracle from Figure 3.
Open(item,m, σ): Algorithm B responds by running exactly the defined oracle from Figure 3.
GSig(i, item,m): Algorithm B has to handle two different cases:

• If (b = I) ∨ (b = II ∧ (i 6= i∗ ∨ item 6= item∗)) then B responds as defined in Figure 3.
If for an honest user i the signing key gsk [i, item] is empty, such a key can be generated,
before the signature is created. If item = item∗ the tuple (Aj, xj, yj) corresponding to
usk [i] = yj has to be used as secret signing key.

• If b = II, i = i∗ and item = item∗ then B simulates the signature using the simulator of
Lemma 5.2. Here the first step of the simulator is replaced by setting the following val-

ues: B chooses α, β, µ
$←Zp and computes T1 :=uα, T2 := vβ, T3 :=Ai∗

item∗
·wα+β, T4 := dµ,

T5 :=ψ(H1(item∗))µ+yi∗ . Afterwards, B chooses c, sα, sβ, sx, sy, sµ, sδ1 , sδ2
$←Zp and com-

putes R1, . . . , R7 using the verification equations from the Verify algorithm. To ensure
the signature is valid, B patches H at (M , item∗, T1, T2, T3, T4, T5, R1, R2, R3, R4, R5,
R6, R7) to equal c. If this causes a collision, B declares failure and exits. Finally, B gives
σ :=(item∗, T1, T2, T3, T4, T5, c, sα, sβ, sx, sy, sµ, sδ1 , sδ2) to A.

At some point A outputs a triple (item,m, σ). If item 6= item∗ or the signature is invalid,
verified with an empty revocation list RL, B decleares failure and exits. Otherwise, depending
on b ∈ {I, II}, B has to distinguish two different cases:

b = I: If σ opens to some A∗ ∈ {Aj}q−1
j=1, B declares failure and exits. Otherwise, A successfully

forged a signature for a non-existing user.

b = II: If σ opens to some A∗ 6= Aq, B declares failure and exits. Otherwise, A successfully
forged a signature for user i∗.

For a Type-I forger the environment is simulated perfectly, because B knows all secret and
public keys. Hence, B is always able to compute correct and properly distributed responses
to A’s queries and A outputs a valid forgery (item∗,m∗, σ∗), for the guessed item∗, with a
probability of at least ε

qAI
.

For a Type-II forger the environment is simulated perfectly unless A queries the USK oracle for
user i∗ or a collision occurs while simulating a signature (since the probability of such a collision
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is negligable we will ignore it in the analysis). Hence, A outputs a valid forgery (item∗,m∗, σ∗),
for the guessed item∗, that traces to i∗ with a probability of at least ε

qAI ·qAU
.

Now we apply the Forking Lemma [27] to obtain a second solution to the traceability experiment
which can be used to solve q-SDH. The needed technique is exactly the same as in the proof
of public linkability in Lemma 6.2. That means, with ν = ε

qAI
− 1

p
for a Type-I forger and

ν = ε
qAI ·qAU

− 1
p

for a Type-II forger, we obtain a q-SDH tuple (A∗.x∗, y∗) with a probability

of at least ν2

16·qH
. This tuple is not one of the tuples B created, because otherwise the forger

would not be successful. Hence, either case 2 or case 3 described in Lemma 6.2 occurs with a
probability of at least 1

2
. Moreover, B guesses the correct forger type with a probability of at

least 1
2

and can compute a solution (A, x) to its q-SDH problem with a probability ε′ of at least

ε′ ≥ ν2

16 · qH
· 1

q − 1
· 1

2
· 1

2
=

(
ε

qAI · qAU
− 1

p

)2

· 1

64 · qH
· 1

q − 1

assuming the more pessimistic scenario of case 3 and a Type-II forger.
As shown in Lemma 6.2, the transformation of B’s q-SDH instance can be done in constant
time, for fixed q. Also algorithm B can respond to an oracle query of A in constant time, and
there are at most Q of such queries. The computation of (A, x) using the extracted values
(A∗, x∗, y∗) needs constant time, too. Hence, B can solve q-SDH in time t′ = t+Q · O(1).

Lemma 6.4:
If the discrete logarithm problem is (t′, ε′)-hard in G2, then the reputation system defined in
Section 6 is (t, ε)-strong exculpable, where t = t′ −Q · O(1) and ε = qAU ·

√
ε′ · 16 · qH + qAU

p
.

Here qAU is the number of oracle queries made by the adversary to AddU, qH is the number of
queries to the random oracle H and p is the size of the groups G1 and G2.

Proof. Suppose A is an adversary that (t, ε)-breaks the strong-exculpability of the reputation
system above. Then we construct an adversary B that solves the discrete logarithm problem

in G2 with advantage at least ε′ =
(

ε
qAU
− 1

p

)2

· 1
16·qH

in time t′ = t+Q · O(1).

B setsHU := ∅, CU := ∅,RL := ∅, ItemList := ∅, reg := ∅,RU := ∅, J IU := ∅, GS := ∅ and guesses
the user i∗ for which the adversary A will output a signature σ as its solution to the strong-

exculpability experiment. This can be done by choosing i∗
$←{1, ..., qAU} and handling the i∗-th

query to the GSig, USK, RevU, and AddU oracles appropriately.
The proof is divided into three parts. In the first part of the proof, we describe a simulation
for B interacting with A.

Setup: B is given (ĥ,D) as an instance of the discrete logarithm problem in G2, where ĥ
$←G2

and D $←G2. The goal of B is to output the logarithm of D with respect to ĥ. Pick w
$←G1,

ξ1, ξ2
$←Zp and compute u :=w

1
ξ1 , v :=w

1
ξ2 . Select ζ

$←Zp. Set h = ψ(ĥ), d̂ = ĥ
1
ζ , and d = ψ(d̂).

Set gmpk :=(u, v, w, h, d, d̂) and gmsk :=(ξ1, ξ2, ζ) as the group manager’s public and secret
keys. Make a list of pairs (upk [i], usk [i]) for i = 1, ..., qAU as follows: For i∗, set usk [i] = ?
indicating that yi corresponding to upk[i] = ψ(D) is not known. Otherwise (upk [i], usk [i]) is

a pair constructed as yi
$←Zp, upk [i] = hyi and usk [i] = yi. To run A, give gmpk to A. A’s

oracle queries are answered as follows:
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H(·): B responds with an element chosen uniformly at random of Zp and ensures that repeated
queries are answered consistently.

H1(item): When A asks for a hash of an item, B chooses ritem
$←Zp, responds with f̂ = ĥritem ,

and ensures that repeated queries are answered consistently.
GSig(i, item,m): B checks, if upk [i] ∈ ILitem . If not, B answers by running exactly the
defined oracle from Figure 3. Otherwise: If i 6= i∗, B runs the reputation system signing

algorithm to obtain a signature σ and gives σ to A. If i = i∗, B chooses α, β, µ
$←Zp, uses Aiitem

and computes T1 := uα, T2 := vβ, T3 := Aiitem · wα+β, T4 := dµ and T5 := ψ(ĥritem ·µ · Dritem ).
The value T5 is correct, since

T5 = ψ(ĥritem ·µ · Dritem ) = ψ(ĥritem ·µ · ĥyi·ritem ) = ψ(ĥritem )µ+yi = ψ(f̂)µ+yi .

Now, B runs the protocol simulator with T1, T2, T3, T4, T5 and obtains a transcript (T1, T2, T3,
T4, T5, R1, R2, R3, R4, R5, R6, R7, c, sα, sβ, sx, sŷ, sµ, sδ1 , sδ2). To ensure that the signature
σ :=(item, T1, T2, T3, T4, T5, c, sα, sβ, sx, sy, sµ, sδ1 , sδ2) is valid, B patches H at (M , item
,T1,T2,T3,T4,T5, R1,R2,R3,R4,R5,R6,R7) to equal c. If there is a collision, B declares failure
and exits. This happens only with negligible probability, thus we ignore it in the analysis.
Otherwise B returns σ to A.
USK(i): If i 6= i∗, B looks up usk [i] in the list of key pairs and returns yi to A. If i = i∗, B
declares failure and exits.
RevU(i): If i 6= i∗, B looks up upk [i] in reg[i]. Using gmsk , B computes Di := upk [i]

1
ζ =

(hyi)
1
ζ = dyi , adds the revocation token grt [i] := Di to the revocation list, and gives Di as

response to A. If i = i∗, B sets grt [i∗] := ψ(D)
1
ζ and gives it to A.

AddU(i): If i 6= i∗, B looks up the upk [i] in the list of key pairs and answers with upk [i]. If
i = i∗, B gives ψ(D) to A.
The oracle queries to SndToGM, WItemList, WIdentList, and Open are answered by B running
exactly the defined oracles from Figure 3.
Finally A outputs σ :=(item, T1, T2, T3, T4, T5, c, sα, sβ, sx, sy, sµ, sδ1 , sδ2) on M for an item.
In the second part of the proof, we analyze the simulation above. Except for USK and GSig, B
can answer all queries exactly as defined in Figure 3. Hence, the simulation is perfect, unless A
queries the USK oracle for user i∗. In case i 6= i∗ the signing oracle GSig produces signatures
by following the signing algorithm. Hence, those signatures are properly distributed. In case
i = i∗ the signature is obtain by the simulator of Protocol 5.1. T1, T2, T3,T4, and T5 are
properly distributed, so by using the simulator with these values, we obtain a signature σ that
is distributed as in the real reputation scheme. Hence, the probability that A outputs a valid
signature σ for an honest user is ε. The probability that this signature traces to user i∗ is at
least ε

qAU
.

In the third part of this proof, we use the Forking Lemma [27] to obtain a solution for the discrete
logarithm problem. The technique is exactly the same as in the proof of public linkability
(Lemma 6.2).
Using the Forking Lemma one can compute two forged signatures (σ0, c, σ1) and (σ0, c

′, σ′1) that
trace to the honest user i∗ with probability

ν2

16 · qH
=

(
ε

qAU
− 1

p

)2

· 1

16 · qH
.
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Using the extractor from Lemma 5.3, we obtain a triple (A, x, y), where y is the secret key
corresponding to i∗’s public key upk [i∗] = ψ(D). Hence y = logh(ψ(D)), and y = logĥ(D), as
required.
Algorithm B can respond to an oracle query of A in constant time, and there are at most Q
of such queries. The computation of (A, x, y) needs constant time, too. Hence, B can solve the
discrete logarithm problem in time t′ = t+Q · O(1).
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