
Diffusion Matrices from Algebraic-Geometry Codes with Efficient SIMD
Implementation?

Daniel Augot1,2, Pierre-Alain Fouque3,4, and Pierre Karpman1,5,2

1 Inria, France
2 LIX — École Polytechnique, France

3 Université de Rennes 1, France
4 Institut universitaire de France, France

5 Nanyang Technological University, Singapore
{daniel.augot,pierre.karpman}@inria.fr, pierre-alain.fouque@irisa.fr

Abstract. This paper investigates large linear mappings with very good diffusion and efficient software
implementations, that can be used as part of a block cipher design. The mappings are derived from linear
codes over a small field (typically F24) with a high dimension (typically 16) and a high minimum distance.
This results in diffusion matrices with equally high dimension and a large branch number. Because we
aim for parameters for which no MDS code is known to exist, we propose to use more flexible algebraic-
geometry codes.
We present two simple yet efficient algorithms for the software implementation of matrix-vector multi-
plication in this context, and derive conditions on the generator matrices of the codes to yield efficient
encoders. We then specify an appropriate code and use its automorphisms as well as random sampling
to find good such matrices.
We provide concrete examples of parameters and implementations, and the corresponding assembly
code. We also give performance figures in an example of application which show the interest of our ap-
proach.

Keywords: Diffusion matrix, algebraic-geometry codes, algebraic curves, SIMD, vector implementation,
SHARK.

1 Introduction

The use of MDS matrices over finite fields as a linear mapping in block cipher design is an old trend,
followed by many prominent algorithms such as the AES/Rijndael family [6]. These matrices are
called MDS as they are derived from maximum distance separable linear error-correcting codes,
which achieve the highest minimum distance possible for a given length and dimension. This no-
tion of minimum distance coincides with the one of branch number of a mapping [6], which is a
measure of the effectiveness of a diffusion layer. MDS matrices thus have an optimal diffusion, in a
cryptographic sense, which makes them attractive for cipher designs.

The good security properties that can be derived from MDS matrices are often counter-balanced
by the cost of their computation. The standard matrix-vector product is quadratic in the dimension
of the vector, and finite field operations are not always efficient. For that reason, there is often a
focus on finding matrices allowing efficient implementations. For instance, the AES matrix is circu-
lant and has small coefficients. More recently, the PHOTON hash function [8] introduced the use of
matrices that can be obtained as the power of a companion matrix, which sparsity may be useful in
lightweight hardware implementations. The topic of finding such so-called recursive diffusion lay-
ers has been quite active in the past years, and led to a series of papers investigating some of their
various aspects [17,22,2]. One of the most recent developments shows how to systematically con-
struct some of these matrices from BCH codes [1]. This allows in particular to construct very large
recursive MDS matrices, for instance of dimension 16 over F28 . This defines a linear mapping over a
full 128-bit block with excellent diffusion properties, at a moderate hardware implementation cost.

As interesting as it may be in hardware, the cost in software of a large linear mapping tends to
make these designs rather less attractive than more balanced solutions. An early attempt to use a
large matrix was the block cipher SHARK, a Rijndael predecessor [15]. It is a 64-bit cipher which

? A shorter version of this paper is to appear in the proceedings of SAC 2014.

uses an MDS matrix of dimension 8 over F28 for its linear diffusion. The usual technique for imple-
menting such a mapping in software is to rely on a table of precomputed multiples of the matrix
rows. However, table-based implementations now tend to be frown upon as they may lead to tim-
ing attacks [20], and this could leave ciphers with a structure similar to SHARK’s without reasonable
software implementations when resistance to these attacks is required. Yet, such designs also have
advantages of their own; their diffusion acts on the whole state at every round, and therefore makes
structural attacks harder, while also ensuring that many S-Boxes are kept active. Additionally, the
simplicity of the structure makes it arguably easier to analyze than in the case of most ciphers.

Our contributions. In this work, we revisit the use of a SHARK structure for block cipher design and
endeavour to find good matrices and appropriate algorithms to achieve both a linear mapping with
very good diffusion and efficient software implementations that are not prone to timing attacks. To
be more specific on this latter point, we target software running on 32 or 64-bit CPUs featuring an
SIMD vector unit.

An interesting way of trying to meet both of these goals is to decrease the size of the field from
F28 to F24 . However, according to the MDS conjecture, there is no MDS code over F24 of length
greater than 17, and no such code is known [14]. Because a diffusion matrix of dimension n is
typically obtained from a code of length 2n, MDS matrices over F24 are therefore restricted to di-
mensions less than 8. Hence, the prospect of finding an MDS matrix over F24 diffusing on more
than 8×4 = 32 bits is hopeless. Obviously, 32 bits is not enough for a large mapping à la SHARK. We
must therefore search for codes with a slightly smaller minimum distance in the hope that they can
be made longer.

Our proposed solution to this problem is to use algebraic-geometry codes [21], as they precisely
offer this tradeoff. One way of defining these codes is as evaluation codes on algebraic curves;
thus our proposal brings a nice connection between these objects and symmetric cryptography.
Although elliptic and hyperelliptic curves are now commonplace in public-key cryptography, we
show a rare application of an hyperelliptic curve to the design of block ciphers. We present a spe-
cific code of length 32 and dimension 16 over F24 with minimum distance 15, which is only 2
less than what an MDS code would achieve. This lets us deriving a very good diffusion matrix on
16× 4 = 64 bits in a straightforward way. Interestingly, this matrix can also be applied to vectors
over an extension of F24 such as F28 , while keeping the same good diffusion properties. This allows
for instance to increase the diffusion to 16×8 = 128 bits.

We also study two simple yet efficient algorithms for implementing the matrix-vector multi-
plication needed in a SHARK structure, when a vector permute instruction is available. From one
of these, we derive conditions on the matrix to make the product faster to compute, in the form
of a cost function; we then search for matrices with a low cost, both randomly, and by using au-
tomorphisms of the code and of the hyperelliptic curve on which it is based. The use of codes
automorphisms to derive efficient encoders is not new [10,5], but it is not generally applied to the
architecture and dimensions that we consider in our case.

We conclude this paper by presenting examples of performance figures of assembly implemen-
tations of our algorithms when used as the linear mapping of a block cipher.

Structure of the paper. We start with a few background notions in §2. We then present our al-
gorithms for matrix-vector multiplication and their context in §3, and derive a cost function for
the implementation of matrices. This is followed by the definition of the algebraic-geometry code
used in our proposed linear mapping, and a discussion of how to derive efficient encoders in §4.
We conclude with insights into the performance of the mapping when used over both F24 and F28

in §5.

2

2 Preliminaries

We note F2m the finite field with 2m elements. We often consider F24 , and implicitly use this spe-
cific field if not mentioned otherwise. W.l.o.g. we use the representation F24 ∼= F2[α]/(α4 +α+ 1).
We freely use “integer representation” for elements of F24 by writing n ∈ {0 . . .15} = ∑3

i=0 ai 2i to
represent the element x ∈ F24 =∑3

i=0 aiα
i .

Bold variables denote vectors (in the sense of elements of a vector space), and subscripts are
used to denote their i th coordinate, starting from zero. For instance, x = (1,2,7) and x2 = 7. If M is a
matrix of n columns, we call mi = (Mi , j , j = 0. . .n −1) the row vector formed from the coefficients
of its i th row. We use angle brackets “〈” and “〉” to write ordered sets.

Arrays, or tables, (in the sense of software data structures) are denoted by regular variables
such as x or T , and their elements are accessed by using square brackets. For instance, T [i] is the
i th element of the table T , starting from zero.

We conclude with two definitions.

Definition 1 (Systematic form and dual of a code) Let C be an [n,k,d]F2m code of length n, dimen-
sion k and minimum distance d with symbols in F2m . A generator matrix for C is in systematic form
if it is of the form (Ik A), with Ik the identity matrix of dimension k and A a matrix of k rows and
n −k columns. A systematic generator matrix for the dual of C is given by (In−k At).

Definition 2 (Branch number [6]) Let A be the matrix of a linear mapping over F2m , and wm(x) be
the number of non-zero positions of the vector x over F2m . Then the differential branch number of A is
equal to minx6=0(wm(x)+wm(A(x))), and the linear branch number of A is equal to minx6=0(wm(x)+
wm(At (x))).

Note that if A is such that (Ik A) is a generator matrix of a code of minimum distance d which
dual code has minimum distance d ′, then A has a differential (resp. linear) branch number of d
(resp. d ′).

3 Efficient algorithms for matrix-vector multiplication

This section presents software algorithms for matrix-vector multiplication over F24 . We focus on
square matrices of dimension 16. This naturally defines linear operations on 64 bits, which can
also be extended to 128 bits, as it will be made clear in §5. Both cases are a common block size for
block ciphers.

Targeted architecture. The algorithms in this section target CPUs featuring vector instructions, in-
cluding in particular a vector shuffle instruction such as Intel’s pshufb from the SSSE3 instruction
set extension [11]. These instructions are now widespread and have already been used success-
fully in fast cryptographic implementations, see e.g. [9,19,3]. We mostly considered SSSE3 when
designing the algorithms, but other processor architectures do feature vector instructions. This is
for instance the case of ARM’s NEON extensions, which may also yield efficient implementations,
see e.g. [4]. We do not consider these explicitly in this paper, however.

Because it plays an important role in our algorithms, we briefly recall the semantics of pshufb.
The pshufb instruction takes two 128-bit inputs1. The first (the destination operand) is an xmm SSE
vector register which logically represents a vector of 16 bytes. The second (the source operand) is
either a similar xmm register, or a 128-bit memory location. The result of calling pshufb x y is to
overwrite the input x with the vector x ′ defined by:

x ′[i] =
{

x[by[i]c4] if the most significant bit of y[i] is not set
0 otherwise

1 The instruction can actually also be used on 64-bit operands, but we do not consider this possibility here.

3

where b·c4 denotes truncation to the 4 least significant bits. This instruction allows to arbitrarily
shuffle a vector according to a mask, with possible repetition and omission of some of the vector
values2. Notice that this instruction can also be used to perform 16 parallel 4-to-8-bit table lookups:
let us call T this table; take as first operand to pshufb the vector x = (T [i], i = 0. . .15), as second
operand the vector y = (a,b,c,d , . . .) on which to perform the lookup; then we see that the first byte
of the result is x[y[0]] = T [a], the second is x[y[1]] = T [b], etc.

Finally, there is a three-operand variant of this instruction in the more recent AVX instruction
set and onward [11], which allows not to overwrite the first operand.

Targeted properties. In this paper we focus solely on algorithms that can easily be implemented
in a way that makes them immune to timing-attacks [20]. Specifically, we consider the matrix as
a known constant but the vector as a secret, and we wish to perform the multiplication without
secret-dependent branches or memory accesses. It might not always be important to be immune
(or even partially resistant) to this type of attacks, but we consider that it should be important for
any cryptographic primitive or structure to possibly be implemented in such a way. Hence we try to
find efficient such implementations for the SHARK structure and therefore for dense matrix-vector
multiplications.

We now go on to describe the algorithms. In all of the remainder of this section, x and y are two
(column) vectors of F16

24 , and M a matrix of M 16(F24). We first briefly recall the principle of table
implementations, which are unsatisfactory when timing attacks are taken into account.

3.1 Table implementation

We wish to compute y = M · x. The idea behind this algorithm is to use table lookups to perform
the equivalent multiplication yt = xt ·M t , i.e. yt =∑15

i=0 xi · (mt)i (where (mt)i is the i th row of M t).
This can be computed efficiently by tabulating beforehand the products λ · (mt)i ,λ ∈ F24 (resulting
in 16 tables, each of 16 entries of 64 bits), and then for each multiplication by accessing the table
for (mt)i at the index xi and summing all the retrieved table entries together. This only requires 16
table lookups per multiplication. However, the memory accesses depend on the value of x, which
makes this algorithm inherently vulnerable to timing attacks.

Note that there is a more memory-efficient alternative implementation of this algorithm which
consists in computing each term λ · (mt)i with a single pshufb instruction instead of using a table-
lookup. In that case, only the 16 multiplication tables need to be stored, but their accesses still
depend on the secret value x.

3.2 A generic constant-time algorithm

We now describe our first algorithm, which can be seen as a variant of table multiplication that
is immune to timing attacks. The idea consists again in computing the right multiplication yt =
xt ·M t , i.e. yt =∑15

i=0 xi ·(mt)i . However, instead of tabulating the results of the scalar multiplication
of the matrix rows (mt)i , those are always recomputed, in a way that does not explicitly depend on
the value of the scalar.

Description of algorithm 1. We give the full description of Alg. 1 in appendix A.1, and focus here
on the intuition. We want to perform the scalar multiplication λ · z for an unknown scalar λ and
a known, constant vector z, over F24 . Let us write λ as the polynomial λ3 ·α3 +λ2 ·α2 +λ1 ·α+
λ0 with coefficients in F2. Then, the result of λ · z is simply λ3 · (α3 · z)+λ2 · (α2 · z)+λ1 · (α · z)+
λ0 · z. Thus we just need to precompute the products αi · z, select the right ones with respect to

2 We will use the word shuffle with this precise meaning in the remainder of this paper.

4

the binary representation of λ, and add these together. This can easily be achieved thanks to a
broadcast function defined as:

broadcast(x, i)n =
{

1n if the i th bit of x is set
0n otherwise

where 1n and 0n denote the n-bit binary string made all of one and all of zero respectively. The full
algorithm then just consists in using this scalar-vector multiplication 16 times, one for each row of
the matrix.

Implementation of algorithm 1 with SSSE3 instructions. We now consider how to efficiently im-
plement algorithm 1 in practice. The only non-trivial operation is the broadcast function, and we
show that this can be performed with only one or two pshufb instructions.

To compute broadcast(λ, i)64, withλ a 4-bit value, we can use a single pshufbwith first operand
x, such that x[j] = 111111112 if the i th bit of j is set and 0 otherwise, and with second operand
y = (λ,λ,λ, . . .). The result of pshufb x y is indeed (x[λ], x[λ], . . .) which is 164 if the i th bit of λ is set,
and 064 otherwise, that is broadcast(λ, i)64.

In practice, the vector x can conveniently be constructed offline and stored in memory, but the
vector y might not be readily available before performing this computation3. However, it can easily
be computed thanks to an additional pshufb. Alternatively, if the above computation is done with
a vector y = (λ, ?, ?, . . .) instead (with ? denoting unknown values) and call z its result (x[λ], ?, ?, . . .),
then we have broadcast(λ, i)n = pshufb z (0,0, . . .).

In the specific case of matrices of dimension 16 over F24 , one can take advantage of the 128-bit
wide xmm registers by interleaving, say, 8·x with 4·x, and 2·x with x, and by computing a slightly more
complex version of the broadcast function broadcast(x, i , j)2n which interleaves broadcast(x, i)n

with broadcast(x, j)n . In that case, an implementation of one step of algorithm 1 only requires two
broadcast calls, two logical and, folding back the interleaved vectors (which only needs a couple of
logical shift and exclusive or), and adding the folded vectors together. We give a snippet of such an
implementation in appendix B.1.

3.3 A faster algorithm exploiting matrix structure

The above algorithm is already reasonably efficient, and has the advantage of being completely
generic w.r.t. the matrix. Yet, better solutions may exist in more specific cases. We present here an
alternative that can be much faster when the matrix possesses a particular structure.

The idea behind this second algorithm is to take advantage of the fact that in a matrix-vector
product, the same constant values may be used many times in finite-field multiplications. Hence,
we try to take advantage of this fact by performing those in parallel. The fact that we now focus on
multiplications by constants (i.e. matrix coefficients) allows us to compute these multiplications
with a single pshufb instead of using the process from algorithm 1.

Description of algorithm 2. We give the full description of Alg. 2 in appendix A.2, and focus here
on the intuition. Let us first consider a small example, and compute M ·x defined as:

1 0 2 2
3 1 2 3
2 3 3 2
0 2 3 1

 ·


x0

x1

x2

x3

 . (1)

It is obvious that this is equal to:
x0

x1

0
x3

+ 2 ·


x2

x2

x0

x1

+ 2 ·


x3

0
x3

0

+ 3 ·


0
x0

x1

x2

+3 ·


0
x3

x2

0

 ,

3 And because it depends on what we assume to be a secret value, it cannot either be fetched from memory.

5

where both the constant multiplications of the vector (x0 x1 x2 x3)t and the shuffles of its coef-
ficients can be computed with a single pshufb instruction each, while none of these operations
directly depends on the value of the vector. This type of decomposition can be done for any matrix,
but the number of operations depends on the value of its coefficients.

We now sketch one way of obtaining an optimal decomposition as above. We consider a ma-
trix product M · x with M constant and x unknown, where x is seen as the formal arrangement
of variables xi . Let us define S (M ,γ) as one of the minimal sets of shuffles of coefficients of x,
such that there exists a unique vector z ∈ S (M ,γ) with zi = x j iff Mi , j = γ. For instance, in the
above example, we have S (M ,2) = {(x2 x2 x0 x1)t , (x3 0 x3 0)t }. Equivalently, we could have taken
S (M ,2) = {(x3 x2 x3 0)t , (x2 0 x0 x1)t }. These sets are straightforward to compute from this particu-
lar matrix, and so are they in the general case.

From the definition of S , it is clear that we have M ·x = ∑
γ∈F∗

24

∑
s∈S (M ,γ)γ · s. Once the values

of the sets S have been determined, it is clear that we only need to compute this sum to get our
result, and this is precisely what this second algorithm does.

Cost of algorithm 2. The cost of computing a matrix-vector product with algorithm 2 depends on
the coefficients of the matrix, since the size of the sets S (M ,γ) depends both on the density of the
matrix and of how its coefficients are arranged.

If we assume that a vector implementation of this algorithm is used, and if the dimension and
the field of the matrix are well chosen, we can assume that both the scalar multiplication of x by
a constant and its shuffles can be computed with a single pshufb and a few ancillary instructions.
Hence, we can define a cost function for a matrix with respect to its implementation with algo-
rithm 2 to be cost2(M) = (∑

γ∈F24∗ 1(S (M ,γ))+#S (M ,γ)
)− 1(S (M ,1)), where 1(E) with E a set is

one if E 6= ;, and zero otherwise. We may notice that #S (M ,γ) is equal to the maximum number
of occurrence of γ in a single row of M , and the cost2 function is therefore easy to compute. As an
example the cost of the matrix M from equation 1 is 7.

In order to find matrices that minimize the cost2 function, we would like to minimize the sum of
the maximum number of occurrence of γ for every γ ∈ F∗

24 . A simple observation is that for matrices
with the same number of non-zero coefficients, this amount is minimal when every row can be
deduced by permutation of a single one; an important particular case being the one of circulant
matrices. More generally, we can heuristically hope that the cost of a matrix will be low if all of its
rows can be deduced by permutation of a small subset thereof.

We can try to estimate the minimum cost for an arbitrary dense circulant matrix of dimension
16 over F24 . It is fair to assume that nearly all of the values of F24 should appear as coefficients of
such a matrix, 14 of them needing a multiplication. Additionally, 15–16 permutations are needed
if all the rows are to be different. Hence we can assume that the cost2 function of such a matrix is
about 30.

Finally, let us notice that special cases of this algorithm have already been used for circulant
matrices, namely in the case of the AES MixColumn matrix [9,3].

Implementation of algorithm 2 with SSSE3 instructions. The implementation of algorithm 2 is
quite straightforward. We give nonetheless a small code snippet in appendix B.2.

3.4 Performance

In Table 2 of §5, we give a few performance figures for ciphers with a SHARK structure using as-
sembly implementations of algorithms 1 and 2 for their linear mapping. From there it can be seen
without surprise that algorithm 2 is more efficient if the matrix is well chosen. However, algorithm 1
still performs reasonably well, without imposing any condition on the matrix.

6

4 Diffusion matrices from algebraic-geometry codes

In this section, we present so-called algebraic-geometry codes and show how they can give rise
to diffusion matrices with interesting parameters. We also focus on implementation aspects, and
investigate how to find matrices with efficient implementations with respect to the algorithms of
§3, and in particular algorithm 2.

4.1 A short introduction to algebraic-geometry codes

We first briefly present the concept of algebraic-geometry codes (or AG codes for short), which are
linear codes, and how to compute their generator matrices. Because the codes are linear, these
encoders are matrices. We do not give a complete description of AG codes, and refer to e.g. [21] for
a more thorough treatment. We present a class of AG codes as a generalization of Reed-Solomon
(RS) codes. We give a quick presentation of RS codes in appendix C for the reader not familiar with
them.

We see AG codes as evaluation codes: to build the codeword for a message w , we consider w as
a function, and the codeword as a vector of values of this function evaluated on some “elements”.
In our case, the elements are points of the two-dimensional affine space A2(F2m), and the functions
are polynomials in two variables, that is elements of F2m [x, y]. The core idea of AG codes is to con-
sider points of a (smooth) projective curve of the projective space P2(F2m) and functions from the
curve’s function space. Points at infinity are never included in the (ordered) set of points. However,
points of the curve at infinity are useful in defining the curve’s function (sub)-space, which is why
we do consider the curve in the projective space instead of the affine one.

We first give the definition of the Riemann-Roch space in the special case where it is defined
from a divisor made of a single point at infinity. We refer to e.g. [18] or [21] for a more complete and
rigorous definition.

Definition 3 (Riemann-Roch space) Let X be a smooth projective curve of P2(F2m) defined by the
homogeneous polynomial p(x, y, z), and let p ′(x, y) be the dehomogenized of p. We define F2m [X] =
F2m [x, y]/p ′ as the coordinate ring of X , and its corresponding quotient field F2m (X) as the function
field of X . Assume Q is the only point of X at infinity, and let r be a positive integer. The Riemann-
Roch space L (rQ) is the set of all functions of F2m (X) with poles only at Q of order less than r . This
is a finite-dimensional F2m -vector-space. Furthermore, let oQ (x) and oQ (y) be the order of the poles
of x and y in Q4, then a basis of L (rQ) is formed by all the monomial functions xi y j that are such
that i ·oQ (x)+ j ·oQ (y) ≤ r .

This space is particularly important because of the following theorem, which links its dimen-
sion with the genus of X [18].

Theorem 1 (Riemann and Roch) Let L (rQ) be a Riemann-Roch space defined on X , and g be the
genus of X . We have dim(L (rQ)) ≥ r +1− g , with equality when r > 2g −2.

We have also mentioned earlier that a basis for a space L (rQ) can be computed as soon as
the order of the poles of x and y in Q are known, and the dimension of the space can obviously
be computed from the basis. In practice, computing oQ (x) and oQ (y) can be done from a local
parameterization of x and y in Q. Both this parameterization and the values oQ (x) and oQ (y) can
easily be obtained from a computational algebra software such as Magma. Again, we refer to [21]
for more details.

We are now ready to define a simple class of AG codes.

4 We slightly abuse the notations here and actually mean x/z and y/z. But we prefer manipulating their dehomoge-
nized equivalents x and y . It is obvious that x/z and y/z indeed have poles in Q, which is at infinity and hence has a
zero z coordinate.

7

Definition 4 (Algebraic-Geometry codes) Let X be a smooth projective curve of P2(F2m) with a
unique point Q at infinity, and call #X its number of affine points (that is not counting Q). As-
sume that #X ≥ n and let r be s.t. dim(L (rQ)) = k, and call (f0, . . . , fk−1) one basis of this space. We
define the codeword of the [n,k,d]F2m algebraic-geometry code CAG associated with the message m
as the vector

∑
i=0...k−1(mi · fi (p j), j = 0. . .n −1), where P = 〈p0, . . . , pn−1〉 is an ordered set of points

of X /{Q}. The code CAG is the set of all such codewords.

These codes have the following properties: for fixed parameters n and k and a curve X , there
are

(#X
n

) ·n! equivalent codes, which corresponds to the number of possible ordered sets P ; it is
also obvious that the maximal length of a code over X is #X . We also have the following proposi-
tion [21]:

Proposition 1 Let CAG be a code of length n and dimension k, and let r be an integer such that
dim(L (rQ)) = k. Then the minimum distance of CAG is at least n−r . If X is of genus g and r > 2g−2,
this is equal to n − ((k −1)+ g) = n −k − g +1. Therefore, the “gap” between this code and an MDS
code of the same length is g . The same holds for the dual code.

The minimum distance of AG codes thus depends on the genus of the curves used to define them.
Because the maximal number of points on a curve increases with its genus, there is a tradeoff be-
tween the length of a code and its minimum distance.

Construction of a generator matrix of an AG code. Once the parameters of a code have been fixed,
including the ordered set P , one just has to specify a basis of L (rQ), and to form the encoding
matrix M ∈ M k,n(F2m) obtained by evaluating this basis on P . A useful basis is one such that the
encoding matrix is in systematic form, but it does not necessarily exist for any P . Note however that
in the case of MDS codes (such as RS codes) this basis always exists whatever the parameters and
the choice of P : this is because in this case every minor of M is of full rank [14]. When such a basis
exists, it is easy to find as one just has to start from an arbitrary basis and to compute the reduced
row echelon form of the matrix thus obtained.

Example 1: An AG code from an elliptic curve. We give parameters for a code built from the curve
defined on P2(F24) by the homogeneous polynomial x2z+xz2 = y3+y z2, or equivalently defined on
A2(F24) by x2+x = y3+ y . It is of genus 1, and hence it is an elliptic curve. It has 25 points, including
one point at infinity, the point Q = [1 : 0 : 0]; the order of the poles of x and y in Q are respectively
3 and 2. From this, a basis for the space L (12Q) can easily be obtained. This space has dimension
12+1− g = 12, and can be used to define a [24,12,12]F24 code by evaluation over the affine points
of the curve. This allows to define a matrix of dimension 12 over F24 , which diffuses over 12×4 = 48
bits and has a differential and linear branch number of 12.

Example 2: An AG code from an hyperelliptic curve. We increase the length of the code by using a
curve with a larger genus. We give parameters for a rather well-known code, built from the curve
defined on P2(F24) by the homogeneous polynomial x5 = y2z + y z4. This curve has 33 points, in-
cluding one point at infinity, the point Q = [0 : 1 : 0]; the order of the poles of x and y in Q are
respectively 2 and 5. From this, a basis for the space L (17Q) can easily be defined. This space has
dimension 17+ 1− g = 16, and can be used to define a [32,16,15]F24 code by evaluation over the
affine points of the curve. This code has convenient parameters for defining diffusion matrices:
from a generator matrix in systematic form (I16 A), we can extract the matrix A, which naturally
diffuses over 64 bits and has a differential and linear branch number of 15. Furthermore, the code
is self-dual, which means that A is orthogonal: A · At = I16. The inverse of A is therefore easy to
compute.

We give the right matrix of two matrices of this code in systematic form in appendices D.1
and D.2, the latter further including an example of a basis of L (17Q) and the order of the points
used to construct the matrix.

8

The problem for the rest of the section is now to find good point orders P for the hyperelliptic
code of Ex. 2 such that efficient encoders can be constructed thanks to algorithm 2 of §3.3. For
convenience, we name CH E any of the codes equivalent to the one of Ex. 2.

4.2 Compact encoders using code automorphisms

We consider matrices in systematic form (I16 A). For dense matrices, Alg. 2 tends to be most effi-
cient when all the rows of a matrix can be deduced by permutation of one of them, or more gener-
ally of a small subset of them. Our objective is thus to find matrices of this form.

The main tool we use to achieve this goal are automorphisms of CH E . Let us first give a defini-
tion. (In the following, Sn denotes the group of permutations of n elements.)

Definition 5 (Automorphisms of a code) The automorphism group Aut(C) of a code C of length n
is a subgroup of Sn such that π ∈ Aut(C) ⇒ (c ∈C ⇒π(c) ∈C).

Because we consider here the code CH E which is an evaluation code, we can equivalently de-
fine its automorphisms as being permutations of the points on which the evaluation is performed.
If π is an automorphism of CH E , if {O0, . . . ,Ol } are its orbits, and if the code is defined with a point
order P such that for each orbit all of its points are neighbours in the order P , then the effect of π
on a codeword of CH E is to cyclically permute its coordinates along each orbit.

To see that this is useful, assume that there is an automorphism π with two orbits O0 and O1 of
size n/2 each. Then, if M = (In/2 A) is obtained with point order P = 〈O0,O1〉, each row of M can
be obtained by the repeated action of π on, say, m0, and it follows that A is circulant (and therefore
has a low cost w.r.t. algorithm 2). More generally, if an automorphism can be found such that it has
orbits of size summing up to n/2, the corresponding matrix M can be deduced from a small set of
rows. We give two toy examples with Reed-Solomon codes, which can easily be verified.

π : F24 → F24 , x 7→ 8x. This automorphism has O0 = 〈1,8,12,10,15〉 and O1 = 〈2,3,11,7,13〉 for
orbits, among others. The systematic matrix for the [10,5,6]F24 code obtained with the points in
that order is then such that A is circulant and obtained from the cyclic permutation of the row
(12,10,2,6,3).

π : F24 → F24 , x 7→ 7x. This automorphism has O0 = 〈1,7,6〉, O1 = 〈2,14,12〉, O2 = 〈4,15,11〉, and
O3 = 〈8,13,5〉 for orbits, among others. The systematic matrix for the [12,6,7]F24 code obtained with

the points in that order is then of the form

(
I3 03 A B
03 I3 C D

)
with A, B , C and D circulant matrices. It can

thus be obtained by cyclic permutation of only two rows.

Application to CH E . Automorphisms of CH E are quite harder to find than ones of RS codes. They
can however be found within automorphisms of the curve X on which it is based [18]. This is quite
intuitive, as these will precisely permute points on the curve, which are the points on which the
code is defined. We mostly need to be careful to ensure that the point at infinity is fixed by these
automorphisms. We considered the degree-one automorphisms of X described by Duursma [7].
They have two generators: π0 : F2

24 → F2
24 , (x, y) 7→ (ζx, y) with ζ5 = 1, and π1(a,b) : F2

24 → F2
24 , (x, y) 7→

(x +a, y +a8x2 +a4x +b4), with (a,b) an affine point of X . These generators span a group of order
160. When considering their orbit decomposition, the break-up of the size of the orbits can only be
of one of five types, given in Table 1.
From these automorphisms, it is possible to define a partitions of P in two sets of size 16, which are
union of orbits. We may therefore hope to obtain systematic matrices of the type we are looking for.
Unfortunately, after an extensive search5, it appears that ordering P in this fashion never results in
obtaining a systematic matrix. We recall that indeed, because AG codes are not MDS, it is not always
the case that computing the reduced row echelon form of an arbitrary encoding matrix yields a
systematic matrix.

5 Both on CH E and on the smaller elliptic code of Ex. 1. However, we are not as yet able to explain this fact.

9

Table 1. Possible combination of orbit sizes of automorphisms of CH E spanned by π0 and π1. A number n in col. c
means that an automorphism of this type has n orbits of size c.

Orbit size 1 2 4 5 10

Type 1 32 0 0 0 0
Type 2 0 16 0 0 0
Type 3 0 0 8 0 0
Type 4 2 0 0 6 0
Type 5 0 1 0 0 3

Extending the automorphisms with the Frobenius mapping. We extend the previous automor-
phisms with the Frobenius mapping θ : F2

24 → F2
24 , (x, y) 7→ (x2, y2); this adds another 160 auto-

morphisms for X . However, these will not anymore be automorphisms for the code CH E in gen-
eral, and we will therefore obtain matrices of a form slightly different from what we first hoped to
achieve.

The global strategy is still the same, however, and consists in ordering the points along orbits
of the curve automorphisms. By using the Frobenius, new combinations of orbits are possible, no-
tably 4 of size 8. We study below the result of ordering P along the orbits of one such automorphism.
We take the example of σ= θ ◦σ2 ◦σ1, with σ1 : (x, y) 7→ (x +1, y + x2 + x +7), σ2 : (x, y) 7→ (12x, y),
and θ the Frobenius mapping. The key observation is that in this case, onlyσ0 andσ4 are automor-
phisms of CH E . Note that not all orbits orderings of σ for P yield a systematic matrix. However,
unlike as above, we were able to find some orders that do. In these cases, the right matrix “A” of the
full generator matrix (I16 A) is of the form:

(a0,a1,a2,a3,σ4(a0),σ4(a1),σ4(a2),σ4(a3),a8,a9,a10,a11,σ4(a8),σ4(a9),σ4(a10),σ4(a11))t ,

with a0, . . . ,a3, a8, . . . ,a11 row vectors of dimension 16. For instance, the first and fifth row of one
such matrix are:

a0 = (5,2,1,3,8, 5, 1, 5,12,10,14,6,7, 11, 4, 11)

a4 =σ4(a0) = (8, 5, 1, 5,5,2,1,3,7, 11, 4, 11,12,10,14,6).

We give the full matrix in appendix D.1. We have therefore partially reached our goal of being able
to describe A from a permutation of a subset of its rows. However this subset a0, . . . ,a3, a8, . . . ,a11

is not small, as it is of size 8 —half of the matrix dimension. Consequently, these matrices have a
moderate cost according to the cost2 function, when implemented with algorithm 2, but it is not
minimal. Interestingly, all the matrices of this form that we found have the same cost of 52.

4.3 Fast random encoders

We conclude this section by presenting the results of a very simple random search for efficient
encoders of CH E with respect to algorithm 2. Unlike the above study, this one does not exploit
any kind of algebraic structure. Indeed, the search only consists in repeatedly generating a random
permutation of the affine points of the curve, building a matrix for the code with the corresponding
point order, tentatively putting it in systematic form (I16 A), and if successful evaluating the cost2
function from §3.3 on A. We then collect matrices with a minimum cost.

Because there are 32! ≈ 2117,7 possible point orders, we can only explore a very small part of
the search space. However, matrices of low cost can be found even after a moderate amount of
computation, and we found many matrices of cost 43, though none of a lower cost. We present in
Table 3 from appendix E the number of matrices of cost strictly less than 60 that we found during
a search of 238 encoders. We give an example of a matrix of cost 43 in appendix D.2, which is only
about a factor 1.5 away from the estimate of the minimum cost of a circulant matrix given in §3.3.
We observe that the transpose of this matrix also has a cost of 43.

10

5 Applications and performance

This last section presents the performance of straightforward assembly implementations of both
of our algorithms when applied to a fast encoder of the code CH E from §4. More precisely, we
consider the diffusion matrix “MH 16” of appendix D.2; it is of dimension 16 over F24 and has a
differential and linear branch number of 15. We do this study in the context of block ciphers, by
assuming that MH 16 is used as the linear mapping of two ciphers with a SHARK structure: one with
4-bit S-Boxes and a 64-bit block, and one with 8-bit S-Boxes and a 128-bit block. What we wish to
measure in both cases is the speed in cycles per byte of such hypothetical ciphers, so as to be able
to gauge the efficiency of this linear mapping and of the resulting ciphers. In order to do this, we
need to estimate how many rounds would be needed for the ciphers to be secure.

Basic statistical properties of a 64-bit block cipher with 4-bit S-Boxes and MH 16 as a linear map-
ping. We use standard wide-trail considerations to study differential and linear properties of this
cipher [6]. This is very easy to do thanks to the simple structure of the cipher. The branch number
of MH 16 is 15, which means that at least 15 S-boxes are active in any two rounds of a differential
path or linear characteristic. The best 4-bit S-boxes have a maximum differential probability and a
maximal linear bias of 2−2 (see e.g. [16,13]). By using such S-boxes, one can upper-bound the prob-
ability of a single differential path or linear characteristic for 2n rounds by 2−2·15n . This is smaller
than 2−64 as soon as n > 2. Hence we conjecture that 6 to 8 rounds are enough to make a cipher
resistant to standard statistical attacks.

If one were to propose a concrete cipher, a more detailed analysis would of course be needed,
especially w.r.t. more dedicated structural attacks. However, it seems reasonable to consider at a
first glance that 8 rounds would indeed be enough to bring adequate security. It is only 2 rounds
less than AES-128, which uses a round with comparatively weaker diffusion. Also, 6 rounds might
be enough. Consequently, we present software performance figures for 6 and 8 rounds of such
an hypothetical 64-bit cipher with 4-bit S-Boxes in Table 2, on the left. We include data both for
a strict SSSE3 implementation and for one using AVX extensions, which can be seen to bring a
considerable benefit. Note that the last round is complete and includes the linear mapping, unlike
e.g. AES. Also, note that the parallel application of the S-Boxes can be implemented very efficiently
with a single pshufb, and thus has virtually no impact on the speed.

Basic statistical properties of a 128-bit block cipher with 8-bit S-Boxes and MH 16 as a linear
mapping. Although the code CH E from which the matrix MH 16 is built was initially defined with
F24 as an alphabet, this latter can be replaced by an algebraic extension of F24 such as F28 , to yield
a code CH E

′ with the same parameters, namely a [32,16,15]F28 code. Indeed, by using a suitable
representation such as F24 ∼= F2[α]/(α4+α3+α2+α+1); F28 ∼= F24 [t]/(t 2+ t +α)6, an element of F28

is represented as a degree-one polynomial at +b over F24 . It follows that the minimum weight of
a codeword w = (ai t +bi), i ∈ {0 . . .31} of CH E

′ is at least equal to the minimum weight of words
(ai), i = 0. . .31 and (bi), i ∈ {0 . . .31}. If those are taken among codewords of CH E , their minimum
weight is 15, and thus so is the one of w . It is also possible to efficiently compute the multiplication
by MH 16 over F28 from two computations over F24 : because the coefficients of MH 16 are in F24 , we
have MH 16 · (ai t +bi) = (MH 16 · (ai) · t)+ (MH 16 · (bi)). As a result, applying MH 16 to F28 has only
twice the cost of applying it to F24 , while effectively doubling the size of the block.

From wide-trail considerations, the resistance of such a cipher to statistical attacks is compar-
atively even better than when using 4-bit S-Boxes, when an appropriate 8-bit S-Box is used. For
instance, the AES S-box has a maximal differential probability and linear bias of 2−6 [6]. This im-
plies that the probability of a single differential path or linear characteristic for 2n rounds is upper-
bounded by 2−6·15n , which is already much smaller than 2−128 as soon as n > 1. Again, 8 rounds of
such a cipher should bring adequate security, and 6 rounds might be enough. We provide perfor-
mance figures for both an SSSE3 and an AVX implementation in Table 2, on the right. However, in

6 This representation is used by Hamburg in [9].

11

the case of 8-bit S-Boxes, the S-Box application is rather more complex and expensive a step than
with 4-bit S-Boxes. In these test programs, we decided to use the efficient vector implementation
of the AES S-Box from Hamburg [9].

Table 2. Performance of software implementations of the hypothetical 64 and 128-bit cipher, in cycles per byte (cpb).
Figures in parentheses are for an AVX implementation (when applicable).

64-bit Block 128-bit Block

Processor type # rounds cpb (Alg. 1) cpb (Alg. 2) cpb (Alg. 1) cpb (Alg. 2)

Intel Xeon E5-2650 @ 2.00GHz
6 50 (45.5) 33 (24.2) 58 (52.3) 32.7 (26.5)
8 66.5 (60.2) 44.5 (31.9) 76.8 (69.6) 43.8 (35.7)

Intel Xeon E5-2609 @ 2.40GHz
6 72.3 (63.7) 45.3 (33.2) 79.8 (75.6) 47.1 (36.8)
8 95.3 (84.7) 63.3 (45.6) 106.6 (97.1) 62.1 (50.3)

Intel Xeon E5649 @ 2.53GHz
6 84.7 46 84.5 47
8 111.3 59.8 111 61.9

Discussion. The performance figures given in Table 2 are average for a block cipher. For instance, it
compares favourably with the optimized vector implementations of 64-bit ciphers LED and Piccolo
in sequential mode from [3], which run at speeds between 70 and 90 cpb., depending on the CPU.
It is however slower than Hamburg’s vector implementation of AES, with reported speeds of 6 to 22
cpb. (9 to 25 for the inverse cipher) [9,19].

6 Conclusion

We revisited the SHARK structure by replacing the MDS matrix of its linear diffusion layer by a ma-
trix built from an algebraic-geometry code. Although this code is not MDS, it has a very high min-
imum distance, while being defined over F24 instead of F28 . This allows to reduce the size of the
coefficients of the matrix from 8 to 4 bits, and has important consequences for efficient implemen-
tations of this linear mapping. We studied algorithms suitable for a vector implementation of the
multiplication by this matrix, and how to find matrices that are most efficiently implemented with
those algorithms. Finally, we gave performance figures for assembly implementations of hypothet-
ical SHARK-like ciphers using this matrix as a linear layer.

This work provided the first generalizations of SHARK that are not vulnerable to timing attacks
as is the original cipher, and also the first generalization to 128-bit blocks. It also showed that even
if not the fastest, such potential design could be implemented efficiently in software.

As a future work, it would be interesting to investigate how to use the full automorphism group
of the code to design matrices with a lower cost. In that case, we would not restrict ourselves to
derive the rows from a single row and the powers of a single automorphism, but could use several
independent automorphisms instead.

Acknowledgments

Pierre Karpman is partially supported by the Singapore National Research Foundation Fellowship
2012 (NRF-NRFF2012-06).

12

References

1. Augot, D., Finiasz, M.: Direct Construction of Recursive MDS Diffusion Layers using Shortened BCH Codes. In: FSE.
Lecture Notes in Computer Science (to appear), Springer. Available at https://www.rocq.inria.fr/secret/
Matthieu.Finiasz/research/2014/augot-finiasz-fse14.pdf.

2. Augot, D., Finiasz, M.: Exhaustive Search for Small Dimension Recursive MDS Diffusion Layers for Block Ciphers
and Hash Functions. In: ISIT, IEEE (2013) 1551–1555

3. Benadjila, R., Guo, J., Lomné, V., Peyrin, T.: Implementing lightweight block ciphers on x86 architectures. In Lange,
T., Lauter, K., Lisonek, P., eds.: Selected Areas in Cryptography. Volume 8282 of Lecture Notes in Computer Science.,
Springer (2013) 324–351

4. Bernstein, D.J., Schwabe, P.: NEON Crypto. In Prouff, E., Schaumont, P., eds.: CHES. Volume 7428 of Lecture Notes
in Computer Science., Springer (2012) 320–339

5. Chen, J.P., Lu, C.C.: A Serial-In-Serial-Out Hardware Architecture for Systematic Encoding of Hermitian Codes via
Gröbner Bases. IEEE Transactions on Communications 52(8) (2004) 1322–1332

6. Daemen, J., Rijmen, V.: The Design of Rijndael: AES — The Advanced Encryption Standard. Information Security
and Cryptography. Springer (2002)

7. Duursma, I.: Weight distributions of geometric Goppa codes. Transactions of the American Mathematical Society
351(9) (1999) 3609–3639

8. Guo, J., Peyrin, T., Poschmann, A.: The PHOTON Family of Lightweight Hash Functions. In Rogaway, P., ed.: CRYPTO.
Volume 6841 of Lecture Notes in Computer Science., Springer (2011) 222–239

9. Hamburg, M.: Accelerating AES with Vector Permute Instructions. In Clavier, C., Gaj, K., eds.: CHES. Volume 5747
of Lecture Notes in Computer Science., Springer (2009) 18–32

10. Heegard, C., Little, J., Saints, K.: Systematic Encoding via Gröbner Bases for a Class of Algebraic-Geometric Goppa
Codes. IEEE Transactions on Information Theory 41(6) (1995) 1752–1761

11. Intel Corporation: Intel® 64 and IA-32 Architectures Software Developer’s Manual. (March 2012)
12. Knudsen, L.R., Wu, H., eds.: Selected Areas in Cryptography, 19th International Conference, SAC 2012, Windsor, ON,

Canada, August 15-16, 2012, Revised Selected Papers. In Knudsen, L.R., Wu, H., eds.: Selected Areas in Cryptography.
Volume 7707 of Lecture Notes in Computer Science., Springer (2013)

13. Leander, G., Poschmann, A.: On the Classification of 4 Bit S-Boxes. In Carlet, C., Sunar, B., eds.: WAIFI. Volume 4547
of Lecture Notes in Computer Science., Springer (2007) 159–176

14. MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. North-Holland Mathematical Library.
North-Holland (1978)

15. Rijmen, V., Daemen, J., Preneel, B., Bosselaers, A., Win, E.D.: The Cipher SHARK. In Gollmann, D., ed.: FSE. Volume
1039 of Lecture Notes in Computer Science., Springer (1996) 99–111

16. Saarinen, M.J.O.: Cryptographic Analysis of All 4×4-Bit S-Boxes. In Miri, A., Vaudenay, S., eds.: Selected Areas in
Cryptography. Volume 7118 of Lecture Notes in Computer Science., Springer (2011) 118–133

17. Sajadieh, M., Dakhilalian, M., Mala, H., Sepehrdad, P.: Recursive Diffusion Layers for Block Ciphers and Hash Func-
tions. In Canteaut, A., ed.: FSE. Volume 7549 of Lecture Notes in Computer Science., Springer (2012) 385–401

18. Stichtenoth, H.: Algebraic Function Fields and Codes. 2 edn. Volume 254 of Graduate Texts in Mathematics. Springer
(2009)

19. Suzaki, T., Minematsu, K., Morioka, S., Kobayashi, E.: TWINE: A Lightweight Block Cipher for Multiple Platforms.
[12] 339–354

20. Tromer, E., Osvik, D.A., Shamir, A.: Efficient Cache Attacks on AES, and Countermeasures. J. Cryptology 23(1) (2010)
37–71

21. Van Lint, J.H.: Introduction to Coding Theory. 3 edn. Volume 86 of Graduate Texts in Mathematics. Springer (1999)
22. Wu, S., Wang, M., Wu, W.: Recursive Diffusion Layers for (Lightweight) Block Ciphers and Hash Functions. [12]

355–371

A Algorithms for matrix-vector multiplication

A.1 Broadcast-based algorithm

The broadcast-based algorithm for matrix-vector multiplication of §3.2 is given in Algorithm 1,
where“∧64” denotes the bitwise logical and on 64-bit values.

13

https://www.rocq.inria.fr/secret/Matthieu.Finiasz/research/2014/augot-finiasz-fse14.pdf
https://www.rocq.inria.fr/secret/Matthieu.Finiasz/research/2014/augot-finiasz-fse14.pdf

Algorithm 1 Broadcast-based matrix-vector multiplication

Input: x ∈ F16
24 , M ∈M 16(F24)

Output: y = xt ·M t

Offline phase
1: for i ∈ {0 . . .15} do
2: 8mi ←α3 ·mi

3: 4mi ←α2 ·mi

4: 2mi ←α ·mi

5: end for
Online phase

6: y ← 064
7: for i ∈ {0 . . .15} do
8: γ8

i ← 8mi ∧64 broadcast(xi ,3)64

9: γ4
i ← 4mi ∧64 broadcast(xi ,2)64

10: γ2
i ← 2mi ∧64 broadcast(xi ,1)64

11: γ1
i ← mi ∧64 broadcast(xi ,0)64

12: γi ← γ8
i +γ4

i +γ2
i +γ1

i
13: y ← y+γi
14: end for
15: return y

A.2 Shuffle-based algorithm

The shuffle-based algorithm for matrix-vector multiplication of §3.3 is given in Algorithm 2.

Algorithm 2 Shuffle-based matrix-vector multiplication

Input: x ∈ F16
24 , M ∈M 16(F24)

Output: y = M ·x
Offline phase

1: for i ∈ {1 . . .15} do
2: si [] ←S (M , i) . Initialize the array si with one of the possible sets of shuffles S (M , i)
3: end for

Online phase
4: y ← 064
5: for i ∈ {1 . . .15} do
6: for j < #si do
7: y ← y+ i · si [j]
8: end for
9: end for

10: return y

B Excerpts of assembly implementations of matrix-vector multiplication

B.1 Excerpt of an implementation of algorithm 1

; cleaning mask
cle: dq 0x0f0f0f0f0f0f0f0f , 0x0f0f0f0f0f0f0f0f
; mask for the selection of v, 2v
oe1: dq 0xff0ff000ff0ff000 , 0xff0ff000ff0ff000
; mask for the selection of 4v, 8v
oe2: dq 0xf0f0f0f000000000 , 0xffffffff0f0f0f0f
; m0 and 2m0 interleaved
c01: dq 0x91a7efa76c126cb5 , 0x9124fd91cb3636d9
; 4m0 and 8m0 interleaved
c02: dq 0x24efd9efb548b5a7 , 0x248391245acbcb12
; etc.
c11: dq 0x249183244800cb6c , 0x6cfd12485a91b55a

14

c12: dq 0x83246c8336005ab5 , 0xb59148367e24a77e
c21: dq 0xfdd9b5122424b591 , 0xa73612ef122436d9
c22: dq 0x9112a7488383a724 , 0xefcb48d94883cb12
; [...]

; macro for one matrix row multiplication and accumulation
; (nasm syntax)

; 1 is input
; 2, 3, 4, 5 are storage
; 6 is constant zero
; 7 is accumulator
; 8 is index
%macro m_1_row 8

; selects the right double -masks
movdqa %2, [oe1]
movdqa %3, [oe2]
pshufb %2, %1
pshufb %3, %1
; shift the input for the next round
psrldq %1, 1
; expand
pshufb %2, %6
pshufb %3, %6
; select the rows with the double -masks
pand %2, [c01 + %8*16*2]
pand %3, [c02 + %8*16*2]
; shift and xor the rows together
movdqa %4, %2
movdqa %5, %3
psrlq %2, 4
psrlq %3, 4
pxor %4, %5
pxor %2, %3
; accumulate everything
pxor %2, %4
pxor %7, %2

%endmacro

; the input is in xmm0 , with only the four lsb of each byte set
_m64:

; constant zero
pxor xmm5 , xmm5
; accumulator
pxor xmm6 , xmm6

.mainstuff:
m_1_row xmm0 , xmm1 , xmm2 , xmm3 , xmm4 , xmm5 , xmm6 , 0
m_1_row xmm0 , xmm1 , xmm2 , xmm3 , xmm4 , xmm5 , xmm6 , 1
m_1_row xmm0 , xmm1 , xmm2 , xmm3 , xmm4 , xmm5 , xmm6 , 2
; [...]

.fin:
; the result is in xmm0 , and still of the same form
pand xmm6 , [cle]
movdqa xmm0 , xmm6
ret

B.2 Excerpt of an implementation of algorithm 2

; multiplication tables (in the order where we need them)
ttim2 : dq 0x0e0c0a0806040200 , 0x0d0f090b05070103
ttim8 : dq 0x0d050e060b030800 , 0x0109020a070f040c
; [...]

15

; shuffles
; 0xff for not selected nibbles (it will zero them)
pp10: dq 0x0005000507040d02 , 0x0f01040a03060809
pp11: dq 0xffff0e0c0e0bffff , 0xff0b08ff040cffff
pp12: dq 0xffffff0eff0dffff , 0xffffffffffffffff

pp20: dq 0x050306070602040e , 0x0408010c01000b04
pp21: dq 0x0c0e0909ff0307ff , 0x0bff020effff0dff
pp22: dq 0xffffff0fff0affff , 0xffffffffffffffff

pp30: dq 0xffffff02ff09ff09 , 0x0affff04ffffff02
pp31: dq 0xffffff04ff0eff0a , 0x0effff0fffffff0f
; [...]

; 2 useful macros (nasm syntax)

; 1 is the location of the vector ,
; 2 is storage for the multiplied thingy ,
; 3 is the constant index
%macro vec_mul 3

movdqa %2, [ttim2 + %3*16]
pshufb %2, %1
movdqa %1, %2

%endmacro

; 1 is the accumulator ,
; 2 is the multiplied vector ,
; 3 is storage for the shuffled thingy ,
; 4 is the index for the shuffle
%macro pp_accu 4

movdqa %3, %2
pshufb %3, [pp10 + %4*16]
pxor %1, %3

%endmacro

; the input is in xmm0 , with only the four lsb of each byte set
_m64:

pxor xmm1 , xmm1 ; init the accumulator
.mainstuff:

; 1.x
pp_accu xmm1 , xmm0 , xmm2 , 0
pp_accu xmm1 , xmm0 , xmm2 , 1
pp_accu xmm1 , xmm0 , xmm2 , 2
; 2.x
vec_mul xmm0 , xmm2 , 0
pp_accu xmm1 , xmm0 , xmm2 , 3
pp_accu xmm1 , xmm0 , xmm2 , 4
pp_accu xmm1 , xmm0 , xmm2 , 5
; 3.x
vec_mul xmm0 , xmm2 , 1
pp_accu xmm1 , xmm0 , xmm2 , 6
pp_accu xmm1 , xmm0 , xmm2 , 7

; [...]
.fin:

; the result is in xmm0 , and still of the same form
movdqa xmm0 , xmm1
ret

C A short introduction to Reed-Solomon codes

Definition 6 (Reed-Solomon codes) Let CRS be an [n,k,d]F2m Reed-Solomon code of length n, di-
mension k, and minimal distance d with symbols in F2m . The codeword CRS(m) corresponding to the

16

message m of dimension k is defined as the vector (m(pi), i = 0. . .n −1), where m is seen as the poly-
nomial

∑
i=0...k−1 mi · xi of F2m [x] of degree at most k −1, and where P = 〈p0, . . . , pn−1〉 is an ordered

set of n elements of F2m , n ≤ 2m . The code is the set of all such codewords.

These codes have the following properties: for fixed parameters n and k, there are
(2m

n

)·n! equivalent
codes, which corresponds to the number of possible ordered sets P ; the minimal distance d of a
code of parameters n and k is at least n− (k −1) = n−k +1. This is because a polynomial of degree
k − 1 has at most k − 1 zeros, and hence any codeword except the all-zero word is non-zero on
at least n − (k −1) positions. Because this bound reaches the Singleton bound, RS codes are MDS
codes; finally, it is obvious that the maximal length of an RS code over F2m is 2m .

D Examples of diffusion matrices of dimension 16 over F24

D.1 A matrix of cost 52

The following matrix for the diffusion part of CH E was found thanks to the automorphisms from
§4.2, based on the Frobenius mapping. It has cost 52, and both a differential and a linear branch
number of 15. 

5 2 1 3 8 5 1 5 12 10 14 6 7 11 4 11
2 2 4 1 5 12 2 1 9 15 8 11 7 6 9 3
1 4 4 3 1 2 15 4 5 13 10 12 9 6 7 13
3 1 3 3 5 1 4 10 14 2 14 8 15 13 7 6
8 5 1 5 5 2 1 3 7 11 4 11 12 10 14 6
5 12 2 1 2 2 4 1 7 6 9 3 9 15 8 11
1 2 15 4 1 4 4 3 9 6 7 13 5 13 10 12
5 1 4 10 3 1 3 3 15 13 7 6 14 2 14 8

12 9 5 14 7 7 9 15 7 6 11 3 15 5 13 7
10 15 13 2 11 6 6 13 6 6 7 9 5 10 2 14
14 8 10 14 4 9 7 7 11 7 7 6 13 2 8 4
6 11 12 8 11 3 13 6 3 9 6 6 7 14 4 12
7 7 9 15 12 9 5 14 15 5 13 7 7 6 11 3

11 6 6 13 10 15 13 2 5 10 2 14 6 6 7 9
4 9 7 7 14 8 10 14 13 2 8 4 11 7 7 6

11 3 13 6 6 11 12 8 7 14 4 12 3 9 6 6


D.2 A matrix of cost 43

The following matrix, for the same code, was found by randomly testing permutations of the points
of the curve. It has cost 43, and so does its transpose.

11 6 1 6 10 14 10 9 13 3 3 12 9 15 2 9
6 12 0 4 2 8 9 2 5 11 9 5 4 1 15 6
9 11 2 2 1 11 13 15 13 3 2 1 14 1 3 10
0 0 9 8 11 6 2 1 11 10 15 10 10 15 1 14

13 13 3 15 3 1 11 2 9 2 10 14 1 11 1 2
1 9 8 4 14 10 2 5 15 2 12 12 9 10 1 9
5 9 11 2 15 1 12 4 6 0 6 4 5 8 2 9
1 4 14 9 13 2 10 12 0 6 6 9 2 0 11 10

13 10 3 9 2 15 6 6 11 1 9 9 12 14 10 3
0 10 6 12 11 0 4 9 1 14 10 2 9 2 13 6
2 0 5 6 9 0 1 5 15 12 13 15 1 11 13 11

11 2 10 1 1 15 0 8 0 9 14 10 10 6 11 15
12 14 10 11 3 10 6 0 5 11 1 8 2 9 2 3
15 2 2 5 1 10 9 4 1 8 9 9 12 10 14 12
15 1 12 5 13 11 0 6 2 5 11 1 15 0 9 13
5 6 11 0 2 9 14 11 12 10 3 2 8 10 3 1


17

It can easily be obtained as follows. First, define a basis of L (17Q), for instance: (1, x, x2, y, x3, x y,
x4, x2 y, x5, x3 y, x6, x4 y, x7, x5 y, x8, x6 y). Then, arrange the affine points of the curve on which CH E

is defined in the order7: 〈 (8, 7), (13, 2), (4, 5), (0, 0), (14, 5), (15, 6), (7, 3), (1, 7), (2, 2), (11, 3), (3, 3),
(10, 7), (6, 4), (5, 5), (9, 5), (12, 6), (3, 2), (11, 2), (12, 7), (13, 3), (4, 4), (0, 1), (1, 6), (7, 2), (9, 4), (6, 5),
(2, 3), (5, 4), (15, 7), (10, 6), (14, 4), (8, 6) 〉. Finally, evaluate the basis of L (17Q) on these points (this
defines a matrix of 16 rows and 32 columns), and compute the reduced row echelon form of this
matrix; the right square matrix of dimension 16 of the result is the matrix above.

E Statistical distribution of the cost of matrices of CH E

Table 3. Statistical distribution of the cost of 238 randomly-generated generator matrices of CH E .

cost #matrices cumulative #matrices cumulative proportion of the
search space

43 146 482 146 482 0.00000053
44 73 220 219 702 0.00000080
45 218 542 438 244 0.0000016
46 879 557 1 317 801 0.0000048
47 1 978 159 3 295 960 0.000012
48 5 559 814 8 855 774 0.000032
49 21 512 707 30 368 481 0.00011
50 93 289 020 123 657 501 0.00045
51 356 848 829 480 506 330 0.0017
52 1 282 233 658 1 762 739 988 0.0064
53 3 534 412 567 5 297 152 555 0.019
54 8 141 274 412 13 438 426 967 0.049
55 15 433 896 914 28 872 323 881 0.11
56 24 837 735 898 53 710 059 779 0.20
57 33 794 051 687 87 504 111 466 0.32
58 38 971 338 149 126 475 449 615 0.46
59 38 629 339 524 165 104 789 139 0.60

7 We omit the z coordinate for conciseness, as it is always 1.

18

	Diffusion Matrices from Algebraic-Geometry Codes with Efficient SIMD Implementation

