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Abstract. In cryptography, forward secrecy is a well-known property of key agreement protocols. It
ensures that a session key remains secure even if one of the long-term secret keys is compromised in
the future. In this paper, we investigate some forward security properties for Public-key Encryption
with Keyword Search (PEKS) schemes, which allow a client to store encrypted data and delegate
search operations to a server. The proposed properties guarantee that the client’s privacy is protected
to the maximum extent when his private key is compromised. Motivated by the generic transforma-
tion from anonymous Identity-Based Encryption (IBE) to PEKS, we correspondingly propose some
forward security properties for IBE, in which case we assume the attacker learns the master secret
key. We then study several existing PEKS and IBE schemes, including a PEKS scheme by Nishioka,
an IBE scheme by Boneh, Raghunathan and Segev, and an IBE scheme by Arriaga, Tang and Ryan.
Our analysis indicates that the proposed forward security properties can be achieved by some of
these schemes if the attacker is RO-non-adaptive (the attacker does not define its distributions based
on the random oracle). Finally, we show how to extend the Boyen-Waters anonymous IBE scheme
to achieve the forward security properties for adaptive attackers.

1 Introduction

In the seminal work [8], Boneh et al. proposed the concept of Public-key Encryption with Keyword
Search (PEKS) and formulated it as a cryptographic primitive with four algorithms (KeyGen, Encrypt,
TrapGen, Test). PEKS is a two-party (i.e. client-server) primitive aiming at protecting a client, say
Alice’s, privacy in the following encrypted email routing scenario.

1. Alice runs a KeyGen algorithm to generate a public/private key pair (PK, SK) and publishes PK.
2. When any user, say Bob, sends an email to Alice, he can generate a tag Encrypt(x,PK) for a key-

word x and attach it to the email (the email should be encrypted independently and the detail is
omitted here). In the view of the email server, it has a list of emails indexed by Encrypt(x1,PK),
Encrypt(x2,PK), · · · respectively.

3. If Alice wants to retrieve those emails indexed with a keyword y, she sends a trapdoor TrapGen(y,SK)
to the email server, which can then run an algorithm Test on the input (TrapGen(y, SK),Encrypt(xi,PK))
for every i ≥ 1 to figure out whether y = xi.

As shown in this scenario, PEKS only supports equality testing (or, exact matching) of keywords.
To support more complex search queries, a lot of extensions have been proposed. Among them, [13, 21,
22] support search queries with conjunctive keywords, [13, 27] support subset and range queries, and
[23] supports disjunctions, polynomial equations, and inner products. In contrast to the large number
of follow-up works to extend the PEKS functionality, very little has been done to investigate its full
security capabilities and the only few we know are [3, 4, 9–11].

1.1 Problem Statement

With a PEKS scheme implemented, the server has a list of tags from message senders and a list of
trapdoors from the client. As a result of the desired search functionality, the server can categorize the
tags and the trapdoors into three groups.

– Group 1: the tags, which do not match any trapdoor.
– Group 2: the trapdoors, which do not match any tag.
– Group 3: the tags and trapdoors, which match at least one trapdoor or tag.



The seminal work [8] and most of follow-ups only considered the ciphertext privacy property, which
captures the privacy of keywords encrypted by the tags in Group 1. Boneh et al. [10, 11] introduced
a new function privacy property which captures privacy of keywords encrypted by the tags and
trapdoors in Group 3. Arriaga, Tang, and Ryan [3, 4] introduced a new search pattern privacy property
which captures the privacy of keywords in the trapdoors in Group 2. Moreover, they showed that these
properties are not compatible with each other.

Ideally, a PEKS scheme should provide maximal protection for the keywords in all three groups. In
this work, we try to answer two questions.

1. Are the security properties from [3, 4, 9–11] the strongest we can have?
2. How to construct PEKS schemes to achieve all properties simultaneously?

Interestingly, both questions can also be asked against the extensions of PEKS (and searchable
encryption schemes in the symmetric-key setting as well). We leave this as a future work.

1.2 Concerning the Entropy of Keywords

With respect to PEKS and its extensions, there is a concern about the low entropy nature of keywords.
For example, in the aforementioned email routing example, the entropy of keywords may not be
very high. This makes people wonder the practicality of privacy properties for PKES, particularly the
function privacy property [10, 11] and the search pattern privacy property [3, 4].

Nevertheless, we would like to argue that it makes a lot of sense to investigate the maximal
level of security guarantees by PEKS. Theoretically, it is always interesting to study the strongest
security properties for a cryptographic primitive. This has been done for many other primitives, such as
encryption and signature schemes. Practically, it is not true that the keywords always have low entropy.
When a PEKS scheme is deployed, the underlying application can always enrich the keyword set with
some context information. For instance, instead of using the keyword “confidential”, the application
can use “confidential-project1457”. A more effective way to augment the entropy of keywords is using
pre-shared passwords between some message senders and the client. An extra advantage of this
approach is that there is no need to store passwords given they are memorable. It is worth noting
that augmenting the entropy of keywords may cause some efficiency issues (e.g. there may be several
augmented keywords for the same keyword “confidential”, so that the client needs to generate several
trapdoors to search for all confidential emails). We regard this as a natural tradeoff between security
and efficiency.

1.3 Our Contribution

Forward secrecy is a well-known property proposed for key agreement protocols [18, 20], and it ensures
that a session key remains secure even if one of the long-term secret keys is compromised in the
future. This concept has also been applied to other primitives, such as signature schemes [6]. Generally
speaking, it is a valuable concept for all cryptographic primitives that involve a long-term secret key.

Firstly, we introduce two new forward-secure properties for PEKS. One is forward-secure function
privacy, which aims at protecting the keywords in matched tags and trapdoors. The other is forward-
secure trapdoor unlinkability, which aims at protecting the keywords in those trapdoors which do
not match any tags. These two properties are augmented variants of those from [10, 11] and [3, 4]
respectively. The augmentation lies not only in allowing the attacker to compromise the long-term
secret key but also in giving it more flexibility to define the keyword distributions in the attack games.
We then analyse a PEKS scheme by Nishioka [25] and show that it achieves our properties for RO-non-
adaptive attackers which can not choose its distributions based on the random oracle.

Secondly, motivated by the fact that we can obtain a PEKS scheme from an anonymous IBE scheme
through a generic transformation [1, 8], we introduce two new forward-secure properties for IBE by
giving the master secret key the attacker in the attack games. It is worth noting that this is different from
the forward security concept given in [30], where the focus is on the key evolution and the attacker
is given secret keys corresponding to some identities. These properties directly lead to those forward-
secure properties for PEKS as a result of the generic transformation. Similar to the case of PEKS, both
properties are augmented variants of those from [10, 11] and [3, 4] respectively. We then analyse the
IBEDLIN2 scheme by Boneh, Raghunathan and Segev [10, 11], and show that it does not achieve the
forward secure function privacy property. We also analyse an IBE scheme by Arriaga, Tang and Ryan
[3, 4], and show that it achieves our properties for RO-non-adaptive attackers.
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Thirdly, we introduce the concept of deterministic scrambler, which takes correlated random vari-
ables as input and outputs independent random variables. By pre-processing the identities with a
deterministic scrambler scheme, an IBE scheme automatically achieves the forward-secure function
privacy property against adaptive attackers. In contrast to the “extract-augment-combine” approach
from [10, 11], we do not need to tweak the encryption and decryption algorithms of the underlying
IBE scheme. We then extend the Boyen-Waters anonymous IBE scheme [14] with composite order bi-
linear groups and a deterministic scrambler scheme, and show that the resulted scheme achieves our
forward-secure properties.

1.4 Organization

The rest of this paper is organized as follows. In Section 2, we present preliminaries on notation and
hardness assumptions. In Section 3, we present an enhanced security model for PEKS with a focus
on the forward security properties, and analyse the Nishioka scheme. In Section 4, we propose some
forward security properties for IBE. In Section 5, we analyse two IBE schemes by Boneh, Raghunathan
and Segev, and an IBE scheme by Arriaga, Tang and Ryan. In Section 6, we introduce the concept of
deterministic scrambler and extend the Boyen-Waters Scheme. In Section 7, we present some remarks.

2 Preliminary

2.1 Notation

– x||y means the concatenation of x and y, P.P.T. stands for probabilistic polynomial time.
– x $← AO1,O2,···(m1,m2, · · · ) means that x is the output of the algorithm A which runs with the input

m1,m2, · · · and has access to oracles O1,O2, · · · .
– When X is a set, x $← X means that x is chosen from X uniformly at random, and |X| means the

size of X. When D is a distribution on the set X, x D← X means that x is a value sampled from X
according toD.

– We use bold letter, such as X, to denote a vector or matrix. Given a vector X, we use X(i) to denote
the i-th element in the vector. When g is a group element, we use gX to denote a new vector or
matrix, whose elements are exponentiations of the corresponding elements in X. For two vectors
(or matrices) Y and Z whose elements are from a group, we use Y ⊗ Z to denote the new vector (or
matrix) after pairwise group operations.

– A function P(λ) : Z → R is said to be negligible with respect to λ if, for every polynomial f (λ),
there exists an integer N f such that P(λ) < 1

f (λ) for all λ ≥ N f . When P(λ) is negligible, then we say
1 − P(λ) is overwhelming.

– A random variable V has min-entropy λ, denoted as H∞(V) = λ, if maxv Pr[V = v] = 2−λ, or
equivalently λ = − log maxv Pr[V = v]. If V has min-entropy at least λ, then V is a λ source. Given
two random variables V and W, the conditional min-entropy of V with respect to W is defined to
be minw H∞(V|W = w), or equivalently − log maxv,w Pr[V = v|W = w].

2.2 Pairing over Prime-order Groups

A prime-order bilinear group generator is an algorithm GP that takes as input a security parameter λ
and outputs a description Γ = (p,G,GT, ê, g) where:

– G and GT are groups of prime-order p with efficiently-computable group laws.
– g is a randomly-chosen generator of G.
– ê is an efficiently-computable bilinear pairing ê : G × G→ GT, i.e., a map satisfying the following

properties:
• Bilinearity: ê(ga, gb) = ê(g, g)ab for all a, b ∈ Zp;
• Non-degeneracy: ê(g, g) , 1.

We say the DLIN (Decision Linear) assumption [7] holds if, for every P.P.T. attackerA, its advantage

|Pr[b′ = b] − 1
2 | is negligible in the game, defined in Fig. 1.
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1. Γ = (p,G,GT, ê, g) $← GP(λ)
2. z1, z2, z3, z4, r

$← Zp

3. X0 = (Γ, gz1 , gz2 , gz1z3 , gz2z4 , gz3+z4 )
X1 = (Γ, gz1 , gz2 , gz1z3 , gz2z4 , gr)

4. b ∈R {0, 1}
5. b′ $←A(Xb)

Fig. 1. DLIN Assumption

2.3 Pairing over Composite-order Groups

A composite-order bilinear group generator is an algorithmGC that takes as input a security parameter
λ and outputs a description Γ = (p, q,G,GT, ê, gp, gq) where:

– G and GT are groups of order n = pq, where p and q are primes, with efficiently computable group
laws.

– gp is a randomly-chosen generator of the subgroup Gp of order p, and gq is a randomly-chosen
generator of the subgroup Gq of order q.

– ê is an efficiently-computable bilinear pairing ê : G × G→ GT, i.e., a map satisfying the following
properties for g , 1 ∈ G:
• Bilinearity: ê(ga, gb) = ê(g, g)ab for all a, b ∈ Zpq;
• Non-degeneracy: ê(g, g) , 1.

It is worth noting that, instead of setting the order of G to be pq, we can require GC to set the order to
be the product of multiple prime numbers, e.g. [23–25].

Let Γ = (p, q,G,GT, ê, gp, gq) be the output by GC(λ), and Γ∗ = (pq,G,GT, ê, gp, gq). We say the
Composite-DDH assumption [3, 4] holds if, for every P.P.T. attackerA, its advantage |Pr[b′ = b] − 1

2 | is
negligible in the game, defined in Fig. 2.

1. Γ = (p, q,G,GT, ê, gp, gq) $← GC(λ)

2. a1, a2, b1, b2, b3, r
$← Zpq

3. Γ∗ = (pq,G,GT, ê, gp, gq)
4. X0 = (Γ∗, ga1

p · gb1
q , g

a2
p · gb2

q , g
a1a2
p · gb3

q )
X1 = (Γ∗, ga1

p · gb1
q , g

a2
p · gb2

q , gr
p · gb3

q )
5. b ∈R {0, 1}
6. b′ $←A(Xb)

Fig. 2. Composite-DDH assumption

1. Γ = (p, q,G,GT, ê, gp, gq) $← GC(λ)

2. a1, a2, a3, b1, b2, b3, b4, r
$← Zpq

3. Γ∗ = (pq,G,GT, ê, gp, gq)
4. X0 = (Γ∗, ga1

p · gb1
q , g

a2
p · gb2

q , g
a1a3
p · gb3

q , g
a2a3
p · gb4

q )
X1 = (Γ∗, ga1

p · gb1
q , g

a2
p · gb2

q , g
a1a3
p · gb3

q , gr
p · gb4

q )
5. b ∈R {0, 1}
6. b′ $←A(Xb)

Fig. 3. Weak Composite-DDH assumption

We say the Weak Composite-DDH assumption holds if, for every P.P.T. attacker A, its advantage

|Pr[b′ = b] − 1
2 | is negligible in the game, defined in Fig. 3. Both assumptions are strictly weaker than

the C3DH assumption by Boneh and Waters [13].

2.4 New Assumptions

In [15], Canetti proposed the DDH-II assumption which differs from the standard DDH assumption in
that one exponent is chosen from a wide spread distribution instead of a uniform one. Damgård, Hazay
and, Zottarel [17] showed that this assumption holds in the generic group model, and stated that it is a
useful tool in leakage resilient cryptography.

Next, we introduce an analog assumption for bilinear groups. The philosophy is similar to the
case of Composite-DDH: although it is trivial to solve DDH-II problem in bilinear groups, adding an
additional layer of randomization makes it difficult even with the help of the bilinear map. Formally, we
say the Composite-DDH-II assumption holds if, for every P.P.T. attackerA, its advantage |Pr[b′ = b]− 1

2 |
is negligible in the game, defined in Fig. 4. In the game, the distribution D from the attacker should
guarantee that a1 has min-entropy not smaller than λ, i.e. a1 is wide spread according to Canetti [15].
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1. Γ = (p, q,G,GT, ê, g, gp, gq) $← GC(λ)
2. Γ∗ = (pq,G,GT, ê, g, gp, gq)

3. D $←A(Γ∗)
4. a1

D← Zp

5. b1, s1, s2, s3, r
$← Zpq

6. X0 = (Γ∗, ga1
p · gs1

q , g
b1
p · gs2

q , g
a1b1
p · gs3

q )
X1 = (Γ∗, ga1

p · gs1
q , g

b1
p · gs2

q , gr
p · gs3

q )
7. b ∈R {0, 1}
8. b′ $←A(Xb,D)

Fig. 4. Composite-DDH-II assumption

1. Γ = (p, q,G,GT, ê, g, gp, gq) $← GC(λ)
2. Γ∗ = (pq,G,GT, ê, g, gp, gq)

3. D $←A(Γ∗)
4. (a1, · · · , aL) D← ZL

p

5. b1, · · · bL, r1, · · · , rL, s1, · · · , sL, t1, · · · , tL
$← Zpq

6. X0 = (Γ∗, gb1
p · gs1

q , g
a1b1
p · gt1

q , · · · , gbL
p · gsL

q , g
aLbL
p · gtL

q )
X1 = (Γ∗, gb1

p · gs1
q , g

r1
p · gt1

q , · · · , gbL
p · gtL

q , g
rL
p · gtL

q )
7. b ∈R {0, 1}
8. b′ $←A(Xb,D)

Fig. 5. Correlated Composite-DDH-II assumption

Further, we say the Correlated Composite-DDH-II assumption holds if, for every P.P.T. attackerA,

its advantage |Pr[b′ = b] − 1
2 | is negligible in the game, defined in Fig. 5. In the game, the distribution

D from the attacker should guarantee that ai for any 1 ≤ i ≤ L has min-entropy not smaller than λ.
Compared to the Composite-DDH-II assumption, on one hand the values ga1

p , · · · , gaL
p are not given to

the attacker (not even in the randomized form), but on the other hand the attacker is given multiple
incomplete DH pairs. As to these two new assumptions, it is not clear how to reduce one to the other.
Nevertheless, we have the following lemma. The proof is in Appendix I.

Lemma 1. Suppose any P.P.T. attacker has at most the advantage ϵ in the Composite-DDH-II assumption.
Then, any P.P.T. attacker has at most the advantage L · ϵ in the Correlated Composite-DDH-II assumption in the
following two scenarios.

1. a1, a2, · · · , aL are independent according toD.
2. a1 = a2 = · · · = aL according toD.

It is unclear how to reduce these two assumptions to existing standard assumptions. Nevertheless,
we can prove their security in the generic group model, as what have been done for the DDH-II
assumption in [17]. The proof will appear in the full version of this paper.

3 Forward Security Properties for PEKS

A PEKS scheme involves a client, a server, and senders which can be any entity (including the client
and the server). Let λ be the security parameter, a PEKS scheme consists of the following algorithms.

– KeyGen(λ): Run by the client, this probabilistic algorithm outputs a public/private key pair (PK,SK),
where PK should define a message spaceW.

– Encrypt(x,PK): Run by a sender, this probabilistic algorithm outputs a ciphertext (or, tag) Cx for a
message (or, keyword) x ∈ W.

– TrapGen(y,SK): Run by the client, this probabilistic algorithm generates a trapdoor Ty for the
message y ∈ W.

– Test(Cx,Ty,PK): Run by the server, this deterministic algorithm returns 1 if x = y and 0 otherwise.

Definition 1. A PEKS scheme achieves computational consistency [1], if any P.P.T. attacker A’s advantage
Pr[b = 1] is negligible in the attack game, shown in Fig. 6.

1. (PK, SK) $← KeyGen(λ)
2. (x, x′, state) $←A(PK)
3. Set b = 1 iff Test(Cx,Tx′ ,PK) = 1 and x , x′, where Tx′ = TrapGen(x′, SK), Cx = Encrypt(x,PK)

Fig. 6. Computational Consistency
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3.1 Security Properties for PEKS

The following ciphertext privacy property is the default property for PEKS from [8].

Definition 2. A PEKS scheme achieves ciphertext privacy if any P.P.T. attackerA’s advantage |Pr[b′ = b] − 1
2 |

is negligible in the attack game shown in Fig. 7. In the game,A is not allowed to query the TrapGen oracle with
the messages x0 and x1.

In Definition 3 and Definition 4, we follow the ”Real-or-Random” paradigm. This means thatD0 is
defined by the attacker at its will, but D1 always represents an independent uniform distribution for
every variable.

The following forward-secure trapdoor unlinkability says that any P.P.T. attacker cannot determine
the links among trapdoors as long as the underlying keywords are sampled according to distributions
with min-entropy not smaller thanλ. This property is an augmented variant of the strong search pattern
privacy property from [3, 4], where the augmentation lies in two aspects.

– One is that the attacker is given SK in Step 4 of the attack game, and this brings in the ”forward-
secure” flavor.

– The other is that the attacker is allowed to adaptively choose the keyword distributions based on
the public parameters, while the challenger samples the keywords uniformly from the keyword
space in [3, 4].

Definition 3. A PEKS scheme achieves forward-secure trapdoor unlinkability if any P.P.T. attackerA’s advan-
tage |Pr[b′ = b]− 1

2 | is negligible in the game shown in Fig. 8. In the game,D0 andD1 are the joint distributions
of L (dependent) λ-source random variables, which take values in the message space W. The integer L is a
polynomial in λ.

1. (PK,SK) $← KeyGen(λ)
2. (x0, x1, state) $←ATrapGen(PK)
3. b ∈R {0, 1}, Cxb = Encrypt(xb,PK)

4. b′ $←ATrapGen(state,Cxb )

Fig. 7. Ciphertext Privacy

1. (PK, SK) $← KeyGen(λ)
2. (D0,D1, L, state) $←ATrapGen(PK)
3. b ∈R {0, 1}, xb ← Db, Tb = TrapGen(xb, SK)
4. b′ $←A( SK , state,Tb)

Fig. 8. Forward-Secure Trapdoor unlinkability

For simplicity, we use TrapGen(xb,SK) to denote (TrapGen(x(1)
b ,SK), · · · ,TrapGen(x(L)

b ,SK)) in Fig. 8.
Such notation is also used in Fig. 9 and properties definitions for IBE.

The following forward-secure function privacy property says that a P.P.T. attacker cannot determine
the links among (tag, trapdoor) pairs, as long as the underlying keywords are sampled according to
distributions with min-entropy not smaller than λ and they are not equal to each other. This property
is an augmented variant of the enhanced function privacy property from [11], where the augmentation
lies in two aspects. It is worth noting that the property for PEKS is not explicitly defined in [11], but it
is implied by their discussions (in fact, they use it to motivate the property for IBE).

– One is that the attacker is given SK in Step 4 of the attack game, and this brings in the ”forward-
secure” flavor.

– The other is that, in the enhanced function privacy property definition in [11], the conditional
min-entropy of x(i)

0 given x(1)
0 , · · · , x

(i−1)
0 is required to be at least λ, for all 2 ≤ i ≤ L. While, in our

definition, we relax this requirement by asking the sampled identities not equal to each other. Based
on the fact that the keywords in trapdoors may highly correlated, our requirement is more realistic
in practice.

Definition 4. A PEKS scheme achieves forward-secure function privacy if any P.P.T. attacker A’s advantage

|Pr[b′ = b] − 1
2 | is negligible in the game shown in Fig. 9. In the game, D0 and D1 are defined in the same way

as in Definition 3, but with the following restriction: for (x(1)
0 , x

(2)
0 , · · · , x

(L)
0 )

D0←WL and any 1 ≤ i , j ≤ L, the
probability Pr[x(i)

0 = x( j)
0 ] is negligible.
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1. (PK,SK) $← KeyGen(λ)
2. (D0,D1, L, state) $←ATrapGen(PK)
3. b ∈R {0, 1}, xb ← Db, Tb = TrapGen(xb, SK), Cb = Encrypt(xb,PK)
4. b′ $←ATrapGen,Encrypt( SK , state,Tb,Cb)

Fig. 9. Forward-Secure Function Privacy

In Step 4 of the above game, in a TrapGen oracle query, the attacker has an index 1 ≤ i ≤ L as input
and receives TrapGen(x(i)

b ,SK). In an Encrypt oracle query, the attacker has an index 1 ≤ j ≤ L as input

and receives Encrypt(x( j)
b ,PK). Note that the sampled identities x(1)

0 , · · · , x
(L)
0 are not allowed to be equal

in the attack game. Hence, both oracles are necessary even if the attacker possesses SK, because the
attacker may not be able to generate a new trapdoor or tag by re-randomizing an existing one. These
two oracles faithfully reflect the fact that, in practice, the attacker (i.e. the server) may receive many
tags and trapdoors for the same keyword.

Remark 1. Similar to the argument in [3], the forward-secure trapdoor unlinkability property and the
forward-secure function privacy property do not imply each other. We skip the details in this paper.

3.2 Analysis of Nishioka Scheme

In [25], Nishioka modeled trapdoor unlinkability for a very restricted setting: the attacker is non-
adaptive, the unlinkability is only for two trapdoors, and the model seems to be selective since the
challenge keywords are chosen before the generation of other parameters (in the SPP experiment).
Relying on bilinear groups of composite-order pqw, Nishioka constructed the following scheme (referred
to as Instance 3 in [25]) and proved the ciphertext privacy and trapdoor unlinkability properties under
some “non-standard” assumptions (as stated by Nishioka). In the following, we show that the scheme
actually achieves more than what Nishioka has expected.

KeyGen(λ) TrapGen(y,SK)

(p, q,w,G,GT, ê, gp, gq, gw) $← GC∗(λ) r1
$← Zpqw

g†q
$← Gq, g = gp · g†q g′w, g′′w

$← Gw

W = {0, 1}∗, H : {0, 1}∗ → Gp T1 = gr1
p · g′w

PK = (pqw,G,GT, ê, gq, gw, g,W,H) T2 = H(y)r1 · g′′w
SK = (PK, gp) Ty = (T1,T2)

Encrypt(x,PK) Test(Cx,Ty,PK)

r2
$← Zpqw, g′q, g′′q

$← Gq if ê(T1,C2) = ê(T2,C1), output 1
C1 = gr2 · g′q,C2 = H(x)r2 · g′′q otherwise, output 0
Cx = (C1,C2)

Note that we use the notation GC∗ to emphasize the fact that this algorithm generates bilinear groups
of order pqw, in contrast to the definition of GC in Section 2.3. A minor remark is that r1 is defined to be
r1

$← Zp for the TrapGen algorithm in [25], but it is clear that r1
$← Zpqw makes the scheme work in the

same way.
In Definition 3 and 4, we assume the attacker to be fully adaptive in the sense that it can choose

the distribution D0 based on everything. An immediate relaxation on these definitions is to make
the attacker RO-non-adaptive, which means that the attacker can choose the distribution D0 based on
everything except for the random oracle (i.e. the hash function). In practice, the keywords in search
queries might be related to the system parameters in some manner, but it is hard to imagine a scenario
where the keywords would depend on the behavior of a random function. We argue that the relaxation
is minimal and reasonable.

Next, we prove that the scheme achieves forward-secure properties for RO-non-adaptive attackers
in the random oracle model. The proofs appear in Appendix II. It is worth mentioning that Theorem 1
is implied by the discussion in [11].
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Theorem 1. The scheme achieves RO-non-adaptive forward-secure function privacy property in the random
oracle model.

Theorem 2. The scheme achieves RO-non-adaptive forward-secure trapdoor unlinkability property based on the
Weak Composite-DDH assumption in the random oracle model.

A natural following-up question is whether or not the scheme is (adaptively) forward-secure in the
random oracle model. Referring to the forward-secure trapdoor unlinkability attack game, as shown
in Fig. 8, the attacker is required to distinguish the same pairs as in the the proof of Theorem 2, with
the exception that the distribution D0 is defined by the attacker based on the knowledge of H. It is
straightforward to verify that the attacker’s advantage is negligible based on the correlated Composite-
DDH-II assumption, defined in Section 2.4. However, it is very tricky for the forward-secure function
privacy property. Referring to the attack game, as shown in Fig. 9, the attacker’s mission is to distinguish
the following two pairs.

b=0 : ((g
r(1)

1
p · g′(1)

w , H(x(1)
0 )r(1)

1 · g′′(1)
w , gr(1)

2
p · g′(1)

q ,H(x(1)
0 )r(1)

2 · g′′(1)
q ), · · · ,

(g
r(L)

1
p · g′(L)

w , H(x(L)
0 )r(L)

1 · g′′(L)
w ), gr(L)

2
p · g′(L)

q , H(x(L)
0 )r(L)

2 · g′′(L)
q ))

b=1 : ((g
r(1)

1
p · g′(1)

w , H(x(1)
1 )r(1)

1 · g′′(1)
w , gr(1)

2
p · g′(1)

q , H(x(1)
1 )r(1)

2 · g′′(1)
q ), · · · ,

(g
r(L)

1
p · g′(L)

w , H(x(L)
1 )r(L)

1 · g′′(L)
w , gr(L)

2
p · g′(L)

q , H(x(L)
1 )r(L)

2 · g′′(L)
q ))

We are not able to reduce this assumption to the correlated Composite-DDH-II assumption or any other
assumption, even though we might be able to prove that distinguishing the two pairs is hard in the
generic group model. We leave a further investigation of this as a future work.

4 IBE and its Security Properties

An IBE scheme is specified by four algorithms (Setup,Extract,Enc,Dec), defined as follows.

– Setup(λ): On input the security parameter λ, this probabilistic algorithm returns a master secret
key Msk and public parameters params, which should define a message spaceM and identity space
I.

– Extract(Msk, id): On input a master secret key Msk and a public key id ∈ I, this probabilistic
algorithm outputs a secret key skid.

– Enc(m, id): On input a message m ∈ M and a public key id ∈ I, this probabilistic algorithm outputs
a ciphertext C.

– Dec(C, skid): On input a ciphertext C and a secret key skid, this deterministic algorithm outputs a
message m or an error symbol ⊥.

4.1 Generic Transformation from IBE to PEKS

Given an IBE scheme (Setup,Extract,Enc,Dec), the generic transformation works as follows [1]. Note
that the message spaceW of the resulted PEKS scheme is the public-key space I of the original IBE
scheme.

1. (Msk, params) = Setup(λ)

2. skid = Extract(Msk, id)

3. C = Enc(m, id)

4. Dec(C, skid) = m or ⊥

Fig. 10. Original IBE

1. KeyGen(λ) = Setup(λ)

2. Encrypt(x,PK) = (m, Enc(m, x)), where m ∈R M

3. TrapGen(y,SK) = Extract(Msk, y)

4. Test(Cx,Ty,PK) = 1 iffm = Dec(Enc(m, x),Ty)

Fig. 11. Resulted PEKS

8



4.2 Security Properties of IBE

In this subsection, we present four IBE security properties, which respectively lead to the four de-
sirable properties for the resulted PEKS through the generic transformation. Their correspondence is
summarized in the following table.

PEKS Properties IBE Properties
computational consistency IND-CPA
ciphertext privacy anonymity
forward-secure trapdoor unlinkability forward-secure key unlinkability
forward-secure function privacy forward-secure function privacy

In Definition 6 and Definition 7, we follow the ”Real-or-Random” paradigm in all relevant attack games.
This means that D0 is defined by the attacker at its will, but D1 always represents an independent
uniform distribution for every variable.

Definition 5. An IBE scheme achieves IND-CPA security if any P.P.T. attackerA’s advantage |Pr[b′ = b]− 1
2 | is

negligible in the attack game shown in Fig. 12. In the game, the attacker is not allowed to query the Extract oracle
with id∗. An IBE scheme achieves anonymity if any P.P.T. attackerA’s advantage |Pr[b′ = b]− 1

2 | is negligible in
the game shown in Fig. 13. In the game, the attacker is not allowed to query the Extract oracle with id0 and id1.

1. (Msk, params) $← Setup(λ)
2. (m0,m1, id∗, state) $←AExtract(params)
3. b ∈R {0, 1}, Cb = Enc(mb, id∗)
4. b′ $←AExtract(state,Cb)

Fig. 12. IND-CPA

1. (Msk, params) $← Setup(λ)
2. (m, id0, id1, state) $←AExtract(params)
3. b ∈R {0, 1}, Cb = Enc(m, idb)
4. b′ $←AExtract(state,Cb)

Fig. 13. Anonymity

The following forward-secure key unlinkability property says that any P.P.T. attacker cannot de-
termine the links among private keys as long as the underlying identities are sampled according to
distributions with min-entropy not smaller than λ. This property is an augmented variant of the strong
key unlinkability property from [3, 4], where the augmentation lies in two aspects.

– One is that the attacker is given Msk in Step 4 of the attack game, and this brings in the ”forward-
secure” flavor.

– The other is that the attacker is allowed to adaptively choose the identity distributionD0 based on
the public parameters, while the challenger samples the identities uniformly at random (according
to certain patterns defined by the attacker) from the identity space in [3, 4].

Definition 6. An IBE scheme achieves forward-secure key unlinkability if any P.P.T. attacker A’s advantage
|Pr[b′ = b]− 1

2 | is negligible in the game shown in Fig. 14. In the game,D0 andD1 are the joint distribution of L
(dependent) λ-source random variables, which take values in the identity space I. The integer L is a polynomial
in λ.

1. (Msk, params) $← Setup(λ)
2. (D0,D1,L, state) $←AExtract(params)
3. b ∈R {0, 1}, idb ← Db, skb = Extract(idb,Msk)
4. b′ $←A( Msk , state, skb)

Fig. 14. Forward-Secure Key Unlinkability

The following forward-secure function privacy property says that any P.P.T. attacker cannot deter-
mine the links among (private key, ciphertext) pairs, as long as the underlying identities are sampled
according to distributions with min-entropy not smaller than λ and they are not equal to each other.
This property is an augmented variant of the enhanced function privacy property from [11], where the
augmentation lies in two aspects.
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– One is that the attacker is given Msk in Step 4 of the attack game, and this brings in the ”forward-
secure” flavor.

– The other is that, in the enhanced function privacy property definition from [11], the conditional
min-entropy of id(i)

0 given id(1)
0 , · · · , id

(i−1)
0 is required to be at least λ, for all 2 ≤ i ≤ L. In our

definition, we relax this requirement by only asking the sampled identities not equal to each other.

Definition 7. An IBE scheme achieves forward-secure function privacy if any P.P.T. attacker A’s advantage

|Pr[b′ = b] − 1
2 | is negligible in the game shown in Fig. 15. In the game,D0 andD1 are defined in the same way

as in Definition 6, but with the following restriction: for (id(1)
0 , id

(2)
0 , · · · , id

(L)
0 )

D0← IL and any 1 ≤ i , j ≤ L, the
probability Pr[id(i)

0 = id( j)
0 ] is negligible.

1. (PK,SK) $← Setup(λ)
2. (D0,D1,L, state) $←AExtract(params)
3. b ∈R {0, 1}, idb ← Db, skb = Extract(idb,Msk), mb

$←ML, Cb = Enc(mb, idb)
4. b′ $←AExtract,Enc( Msk , state, skb,Cb)

Fig. 15. Forward-Secure Function Privacy

For simplicity, we use Enc(mb, idb) to denote (Enc(m(1)
b , id

(1)
b ), · · · ,Enc(m(L)

b , idb)(L)) in Fig. 15.
In Step 4 of the above game, in an Extract oracle query, the attacker has an index 1 ≤ i ≤ L as input

and receives Extract(Msk, id(i)
b ). In an Enc oracle the attacker has an index 1 ≤ j ≤ L as input and receives

Enc(m, id( j)
b ). It is obvious that both oracles are necessary even if the attacker possesses Msk, because

the attacker may not be able to generate a new secret key or a ciphertext by re-randomizing an existing
one.

5 Existing Function-Private IBE Schemes

In this section, we first show that the fully-secure IBE scheme by Boneh, Raghunathan, and Segev [10,
11] does not achieve the forward-secure function privacy. We then prove that a scheme by Arriaga,
Tang, and Ryan [3, 4] achieves RO-non-adaptive forward-secure function privacy and forward-secure
key unlinkability in the random oracle model.

5.1 Boneh-Raghunathan-Segev IBEDLIN2 Scheme

The following scheme is referred to as IBEDLIN2 in [11]. It has been proven fully-secure with respect to
enhanced function privacy (under the definition in [11]) based on the DLIN assumption in the standard
model.

Setup(λ) Extract(Msk, id)

Γ = (G,GT, ê, g, p) = GP(λ) id = (id1, id2, · · · , idn) ∈ {0, 1}n
A0,B,A1, · · · ,An

$← Z2×m
p S $← Zm×2

p

u $← Z2
p,M = GT, I = {0, 1}n Fid,S = [A0|BS + (

∑
1≤ j≤n

id jA j)S]

Msk = (A0,B,A1, · · · ,An,u) v $← {x | Fid,S · x = u (mod p)}
params = (Γ, gA0 ,B, gA1 , · · · , gAn , gu,M,I) z = gv ∈ Gm+2, skid = (S, z)

Enc(m, id) Dec(C, skid)

id = (id1, id2, · · · , idn) ∈ {0, 1}n, m ∈ GT dT = [c0
T |(c1

T)S] = grTFid,S

D(id) =
∑

1≤ j≤n

id jA j, r $← Z2
p ê(d, z) = ê(g, g)rT (Fid,S·v) = ê(g, g)rT u

c0
T = grTA0 , c1

T = grT[B+D(id)], c2 = m · ê(g, g)rTu m = c2 · ê(d, z)−1

C = (c0, c1, c2)
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We show that this scheme does not achieve forward-secure function privacy, namely an attacker
wins the attack game in Fig. 15 with overwhelming probability. The following attack makes use of the
fact that, with Msk, the attacker can transform a ciphertext under an identity id into a ciphertext under
another identity id′, for some carefully chosen id and id′.

To mount an attack, in step 2 and 4 of the game, the attacker performs as follows.

– In step 2, the attacker sets L = 2, which meansD0 andD1 are the joint distribution of two identities
(id(1), id(2)). ForD0, the attacker sets id(1) = (id1, id2, · · · , idn) as follows: (id1, id2, · · · , idn−1) $← {0, 1}n−1

and idn = 0. The attacker sets id(2) = id(1) except that idn = 1.
– In step 4, the attacker firstly obtains Msk = (A0,B,A1, · · · ,An,u). Then, the attacker computes

X ∈ Zm×m
p such that An = A0X. Recall that the challenge is (skb,Cb). Suppose that the first ciphertext

in Cb is C = (c0, c1, c2), which is in the following form:

c0
T = grTA0 , c1

T = grT[B+D(id(1))], c2 = m · ê(g, g)rTu.

The attacker now generates a new ciphertext C′ = (c0, c′1, c2), where

c′
1

T = c1
T ⊗ (c0

T)X

= grT[B+D(id(1))] ⊗ grTA0X

= grT[B+D(id(1))] ⊗ grTAn

Let the secret keys in the challenge skb be denoted as (skid(1) , skid(2) ). The attacker outputs 0 if
Dec(C′, skid(2) ) = Dec(C, skid(1) ), and outputs 1 otherwise.

Recall that, ⊗ is an operator for pairwise group operations between two the new vectors or matrices.
It is clear that c′

1
T = grT[B+D(id(2))] if (id(1), id(2)) is sampled according to D0, then C′ is a ciphertext

for Dec(C, skid(1) ) under the identity id(2). But, this equality holds with a negligible probability if the
identities are sampled according toD1. The attack works.

5.2 Arriaga-Tang-Ryan IBE Scheme

The following scheme was proposed by Arriaga, Tang, and Ryan in [3, 4], based on an anonymous IBE
scheme by Boyen and Waters [14]. This scheme has been proven secure with respect to the strong key
unlinkability property (under the definition in [3, 4]) in the random oracle model. Compared with our
forward-secure key unlinkability property, the definition from [3, 4] is weaker in three aspects: (1) the
attacker is not allowed to adaptively choose the identity distribution D0 and it can only specify the
identity patterns (i.e. which identities are equal); (2) according to the patterns, the challenger samples
the identities uniformly at random from the identity space; (3) there is no forward security.

Setup(λ) Extract(Msk, id)

Γ = (p, q,G,GT, ê, g, gp, gq) = GC(λ) r $← Zn

Γ∗ = (n = pq,G,GT, ê, g, gp, gq) x0, x1, x2
$← Gq

x, t1, t2
$← Zn d0 = x0 · grt1t2

p

Ω = ê(gp, gp)xt1t2 , v1 = gt1
p , v2 = gt2

p d1 = x1 · g−xt2
p · H(id)−rt2

M = GT, I = {0, 1}∗, H : {0, 1}∗ → Gp d2 = x2 · g−xt1
p · H(id)−rt1

Msk = (x, t1, t2), params = (Γ∗,Ω, v1, v2,M,I,H) skid = (d0, d1, d2)
Enc(m, id) Dec(C, skid)

s, s1 ∈R Zn e0 = ê(c0, d0), e1 = ê(c1, d1)
ĉ = Ωsm, c0 = H(id)s, c1 = vs−s1

1 , and c2 = vs1
2 e2 = ê(c2, d2),

C = (ĉ, c0, c1, c2) m = ĉ · e0 · e1 · e2

Similar to the discussions in Section 3.2, an immediate relaxation on Definition 6 and 7 is to make
the attacker RO-non-adaptive, which means that the attacker can choose the distribution D0 based on
everything except for the random oracle (i.e. the hash function). Next, we prove that the above scheme
is secure under Definition 6 and 7 for a RO-non-adaptive attacker. This result is much stronger that
what has been proven in [3, 4].
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Theorem 3. The scheme achieves RO-non-adaptive forward-secure function privacy property in the random
oracle model.

The proof of Theorem 3 is exactly the same as that for Theorem 1, and it is implied by Theorem 6.1
from [11]. Next, we prove the RO-non-adaptive forward-secure key unlinkability property. This result
is an improvement to Lemma 3 from [3], and it relies on Weak Composite-DDH assumption instead of
Composite-DDH assumption. The proof appears in Appendix III.

Theorem 4. The scheme achieves RO-non-adaptive forward-secure key unlinkability property based on the Weak
Composite-DDH assumption in the random oracle model.

With these results, a following-up question is whether or not the scheme is (adaptively) forward-
secure. Referring to the forward-secure key unlinkability attack game, as shown in Fig. 14, it is straight-
forward to verify that the attacker’s advantage is negligible based on the correlated Composite-DDH-II
assumption, similar to the proof of Theorem 6 in next section. However, it is very tricky for the forward-
secure function privacy property. Referring to the attack game, as shown in Fig. 15, the attacker’s mission
is to distinguish the following two pairs.

b=0 : ((g
r(1)

1
p , H(id(1)

0 )r(1)
1 ), (g

r(2)
1

p , H(id(2)
0 )r(2)

1 ), · · · , (g
r(L)

1
p , H(id(L)

0 )r(L)
1 ))

b=1 : ((g
r(1)

1
p , H(id(1)

1 )r(1)
1 ), (g

r(2)
1

p , H(id(2)
1 )r(2)

1 ), · · · , (g
r(L)

1
p , H(id(L)

1 )r(L)
1 ))

This seems to be strictly easier for the attacker than in the case of correlated Composite-DDH-II
assumption, because these pairs are not randomized by anything from Gq.

6 Forward-Secure IBE Construction

In [10, 11], Boneh, Raghunathan and Segev indicated that function privacy against non-adaptive attack-
ers is almost trivial to achieve in the random oracle model. In Section 5.2, we showed that forward-secure
function privacy can be achieved against RO-non-adaptive attackers in the random oracle model. But,
it becomes very tricky in the presence of adaptive attackers. If an attacker defines the distributions
based on the behavior of random oracle (i.e. hash function), then we cannot easily reduce the security
to standard hardness assumptions, as shown in the end of last section. In Section ?? and 5.1, our attacks
show that the elegant “extract-combine-augment” approach from [10, 11] falls short of achieving our
forward-secure function privacy property, intuitively because it introduces “good” algebraic structures
into the ciphertexts and allows the attacker to mount an attack accordingly.

In its implementation, the “extract-combine-augment” approach requires specific modifications to
both encryption and decryption algorithms in the underlying IBE scheme. This may not be an easy task
to achieve, in particularly to achieve our forward security properties. In the following, we introduce the
concept of deterministic scrambler, which serves as a building block to pre-process identities for any
IBE scheme. Similar to the “extract” step in the “extract-combine-augment” approach, a deterministic
scrambler scheme eliminates the dependency relationships among correlated random variables while
it does not require any further change to the underlying IBE scheme. As an example application, we
extend the Boyen-Waters anonymous IBE scheme and prove its security properties.

6.1 Deterministic Scrambler

A deterministic scrambler scheme is a cryptographic primitive to map inputs from a set X to outputs
from another setY. Formally, it consists of two algorithms.

– DS.init(λ): this probabilistic algorithm returns the public parameter param.
– DS.enc(x, param): this deterministic algorithm returns a scrambled output y ∈ Y.

A deterministic scrambler scheme is sound if it is injective with overwhelming probability. Formally,
the probability that, an attacker can find x1 , x2 ∈ X such that DS.enc(x1, param) = DS.enc(x2, param),
is negligible.
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Definition 8. A deterministic scrambler scheme is secure if the attacker’s advantage |Pr[b′ = b]− 1
2 | is negligible

in the attack game, shown in Fig. 16. In the game,D0 andD1 are the joint distributions of L (dependent) λ-source

random variables, which take values in the space X. It is required that, for (x(1)
0 , x

(2)
0 , · · · , x

(L)
0 )

D0← XL and any
1 ≤ i , j ≤ L, the probability Pr[x(i)

0 = x( j)
0 ] is negligible. The integer L is a polynomial in λ.

1. param← DS.init(λ)
2. (D0,D1, L, state) $←A(param)

3. b ∈R {0, 1}, xb
Db← XL, yb = DS.enc(xb, param)

4. b′ $←A(state, yb)

Fig. 16. Deterministic Scrambler Security

Note that, we follow the ”Real-or-Random” paradigm, which means that D0 is defined by the
attacker at its will, butD1 represents an independent uniform distribution for every variable.

The concept of deterministic scrambler is closely related to that of correlated-input secure hash
functions by Goyal, O’Neill and Rao [19]. Its soundness property is indeed the standard collision
resistance property of hash function, and its security property is related to the correlated-input pseudo-
randomness property. Unfortunately, only selective security properties have been considered in [19]
and the constructions assume certain specific correlations among the inputs. The concept of determin-
istic scrambler is also related to that of unseeded deterministic extractors [28]. But, they have subtle
differences: deterministic scrambler generates indistinguishable outputs for correlated inputs and ran-
dom inputs, while unseeded deterministic extractor generates outputs which are indistinguishable
from random strings. It may seem straightforward to instantiate a deterministic scrambler scheme
from an unseeded deterministic extractor scheme. However, the existing constructions for unseeded
deterministic extractors usually put strict constraints on the sources (or, inputs), hence it is unclear how
to instantiate a deterministic scrambler scheme from them.

Yet another related concept is deterministic encryption [5] since both primitives aim at hiding the
dependent relationships of their inputs. With respect to their functionalities, deterministic scrambler is
simpler because it does not need a decryption function. With respect to security, deterministic scrambler
is stronger in the sense that it assumes adaptive attackers while the security definitions in [5] and most
following-ups assume non-adaptive attackers. Very recently, Raghunathan, Segev and Vadhan have
considered adaptive security for deterministic encryption schemes [26]. Based on their scheme, we can
instantiate a deterministic scrambler scheme in a straightforward manner: set param to be the public
key and set the function DS.enc be the encryption function. In the instantiation, there may be a need to
align the ciphertext space with the output space of the deterministic scrambler, in which case a standard
collision-resistant hash function can be used.

6.2 Extended Boyen-Waters Scheme

Given a sound and secure deterministic scrambler scheme (DS.init,DS.enc), the following scheme is
achieved by extending Boyen-Waters scheme [14] in two steps. The first step is to replace the identity
id in all algorithms with DS.enc(id, param). This step guarantees the forward-secure function privacy
property, without affecting the IND-CPA and anonymity properties. The second step is to employ
composite-order bilinear groups, similar to the Arriaga-Tang-Ryan IBE Scheme described in Section
5.2. This step guarantees that the elements in the secret key can be randomized by randomly-chosen
elements from a subgroup.
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Setup(λ) Extract(Msk, id)

Γ = (p, q,G,GT, ê, gp, gq) = GC(λ) r1, r2
$← Zn,

Γ∗ = (n = pq,G,GT, ê, gp, gq) x0, x1, x2, x3, x4
$← Gq

x, t1, t2, t3, t4
$← Zn d0 = x0 · gr1t1t2+r2t3t4

p

Ω = ê(gp, gp)xt1t2 , g0, g1
$← Gp d1 = x1 · g−xt2

p · (g0gDS.enc(id,param)
1 )−r1t2

v1 = gt1
p , v2 = gt2

p , v3 = gt3
p , v4 = gt4

p d2 = x2 · g−xt1
p · (g0gDS.enc(id,param)

1 )−r1t1

M = GT, I = Zn, param $← DS.init(λ) d3 = x3 · (g0gDS.enc(id,param)
1 )−r2t4

Msk = (x, t1, t2, t3, t4) d4 = x4 · (g0gDS.enc(id,param)
1 )−r2t3

params = (Γ∗, g0, g1,Ω, v1, v2, v3, v4,M,I, param) skid = (d0, d1, d2, d3, d4)
Enc(m, id) Dec(C, skid)

s, s1, s2
$← Zn e0 = ê(c0, d0), e1 = ê(c1, d1)

ĉ = Ωsm, c0 = (g0gDS.enc(id,param)
1 )s, c1 = vs−s1

1 e2 = ê(c2, d2),e3 = ê(c3, d3)
c2 = vs1

2 , c3 = vs−s2
3 , c4 = vs2

4 e4 = ê(c4, d4)
C = (ĉ, c0, c1, c2, c3, c4) m = ĉ · e0 · e1 · e2 · e3 · e4

Based on the fact that Boyen-Waters IBE is both IND-CPA and anonymous based on the DLIN
assumption, it is clear that the extended scheme achieves the same security properties given the
deterministic scrambler scheme is sound. Next, we show that the scheme achieves the other two
properties. The proofs appear in Appendix IV.

Theorem 5. The extended scheme achieves the forward-secure function privacy property, if the employed deter-
ministic scrambler scheme is secure.

Theorem 6. The extended scheme achieves the forward-secure key unlinkability property, if the employed deter-
ministic scrambler scheme is secure.

7 Concluding Remarks

In this paper, we have defined two forward-secure properties for PEKS and IBE respectively. Moreover,
we have analysed several existing PEKS and IBE schemes, and extended the Boyen-Waters anonymous
IBE scheme by using a new building block (i.e. deterministic scrambler). Our analysis shows that it is
relatively easy to achieve our properties against RO-non-adaptive attackers. However, it is not an easy
task to construct secure schemes against adaptive attackers. In fact, the task seems to be very difficult
if we want to use standard hardness assumptions and get rid of random oracle model. Our work has
motivated many interesting future directions, and some of them are listed below.

– The “extract-combine-augment” approach from [10, 11] is a very elegant approach to achieve func-
tion privacy without forward security. It remains open whether the schemes from [10, 11] achieve
key unlinkability or even forward-secure key unlinkability. Moreover, as pointed out earlier, this ap-
proach introduces some algebraic structure into ciphertexts, which makes the schemes not forward-
secure with respect to function privacy. It is an interesting task to augment these schemes and
enhance the approach to achieve our forward-secure properties.

– As to the concept of deterministic scrambler, we only know one method to instantiate it, i.e. using
the adaptive secure deterministic encryption scheme by Raghunathan, Segev and Vadhan [26].
Unfortunately, the scheme is only secure in the random oracle model, and it seems difficult to have
a secure scheme in the standard model as pointed by Wichs [29]. It is a very interesting task to see
how to instantiate a deterministic scrambler scheme in the standard model.

– Both PEKS and IBE are special types of functional encryption [12]. Hence, the concept of forward
security is also valuable for other functional encryption schemes, including other PEKS variants
and searchable encryption schemes in the symmetric-key setting. As shown in [2, 12], proposing
appropriate security definitions for these schemes may be very tricky due to the more complex
functionalities and the inequality of indistinguishability and simulation based approaches. This is
a big open research area for the future.

– The forward-secure properties for IBE have been motivated by constructing forward-secure PEKS
schemes. It is interesting to investigate their implications in other applications of IBE, and study
their relationships with other special properties such as those from [16, 30].
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Appendix I:

Proof of Lemma 1. Let Y0,Y1 be defined as follows.

Y0 = (Γ∗, gb1
p · gs2

q , ga1b1
p · gs3

q ), Y1 = (Γ∗, gb1
p · gs2

q , gr
p · gs3

q )

It is clear that, given Yb, the attacker’s advantage in telling b is not larger than ϵ. Based on the standard
hybrid argument, it is clear the lemma holds for the first scenario.

For the second scenario, we carry out the proof by an induction on L. Referring to the X0,X1 in Fig.
4, let α0 = Pr[A(Γ∗,X0)] = 1 and α1 = Pr[A(Γ∗,X1)] = 1. It is clear that |α0 − α1| = 2ϵ. First, we consider
the case when L = 2.

α(2)
1 = Pr[A(Γ∗, gb1

p · gs1
q , ga1b1

p · gt1
q , gb2

p · gs2
q , g

a1b2
p · gt2

q ) = 1]

α(2)
2 = Pr[A(Γ∗, gb1

p · gs1
q , gr1

p · gt1
q , g

b2
p · gs2

q , gr2
p · gt2

q ) = 1]

Let β(2) be defined as follows.

β(2) = Pr[A(Γ∗, gb1
p · gs1

q , ga1b1
p · gt1

q , gb2
p · gs2

q , gr
p · gt2

q ) = 1]

It is straightforward to verify that |α(2)
1 − β(2)| ≤ 2ϵ and |α(2)

2 − β(2)| ≤ 2ϵ based on the Composite-DDH-II
assumption. Therefore, we have |α(2)

1 − α
(2)
2 | ≤ 4 · ϵ.

Suppose that |α(n)
1 − α

(n)
2 | ≤ 2n · ϵ, we prove that |α(n+1)

1 − α(n+1)
2 | ≤ 2(n + 1) · ϵ.

α(n+1)
1 = Pr[A(Γ∗, gb1

p · gs1
q , g

a1b1
p · gt1

q , · · · , gbn
p · gsn

q , g
a1bn
p · gtn

q , g
bn+1
p · gsn+1

q , g
a1bn+1
p · gtn+1

q ) = 1]

α(n+1)
2 = Pr[A(Γ∗, gb1

p · gs1
q , g

r1
p · gt1

q , · · · , gbn
p · gtn

q , g
rn
p · gtn

q , g
bn+1
p · gtn+1

q , g
rn+1
p · gtn+1

q ) = 1]

Let β(n+1) be defined as follows.

β(n+1) = Pr[A(Γ∗, gb1
p · gs1

q , g
r1
p · gt1

q , · · · , gbn
p · gtn

q , g
rn
p · gtn

q , g
bn·r
p · gtn+1

q , g
rn·r
p · gtn+1

q ) = 1]

It is straightforward to verify that |α(n+1)
2 − β(n+1)| ≤ 2ϵ based on the Composite-DDH-II assumption.

With respect to α(n+1)
1 and β(n+1), we observe that the last the last two terms (gbn+1

p · gsn+1
q , g

a1bn+1
p · gtn+1

q )
and (gbn·r

p · gtn+1
q , g

rn·r
p · gtn+1

q ) can be unanimously generated by their previous terms. Therefore, we have
|α(n+1)

1 − β(n+1)| = |α(n)
1 − α

(n)
2 | based on the fact that α(n)

2 is identical to β(n+1) without (gbn·r
p · gtn+1

q , g
rn·r
p · gtn+1

q ).
Now, we have |α(n+1)

1 − α(n+1)
2 | ≤ 2ϵ + |α(n)

1 − α
(n)
2 | ≤ 2(n + 1) · ϵ.
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To sum up, we have |α(L)
1 − α

(L)
2 | ≤ 2L · ϵ, so that |Pr[b′ = b] − 1

2 | ≤ L · ϵ in the attack game defined in
Fig. 5. The lemma now follows. ⊓⊔

Appendix II:

Proof of Theorem 1. Referring to the attack game for forward-secure function privacy, as shown
in Fig. 9, the attacker is given the trapdoor and ciphertext vectors Tb,Cb to guess b. In addition, the
attacker can query more trapdoors and ciphertexts for the keywords behind Tb,Cb.

To simplify the proof, we assume that the challenger sets the challenges to the following form:

b=0 : (H(x(1)
0 ),H(x(2)

0 ), · · · ,H(x(L)
0 ))

b=1 : (H(x(1)
1 ),H(x(2)

1 ), · · · ,H(x(L)
1 ))

It is easy to see that, with the challenge, the attacker can simulate all the information it is allowed to
receive. In fact, the attacker receives more information than in a faithful attack game. With respect to
the simplified challenges, it is clear that they are indistinguishable unless the attacker has queried x( j)

b
for some 1 ≤ j ≤ L to the random oracle H. Suppose the attacker issues t queries to the random oracle,
this event occurs with the probability t·L

2λ .
As a result, the attacker’s advantage is bounded by t·L

2λ in the faithful attack game, and the theorem
follows. ⊓⊔

Proof of Theorem 2. Referring to the attack game for forward-secure trapdoor unlinkability, as
shown in Fig. 8, the attacker is given the trapdoor vector Tb to guess b. The TrapGen oracle is not
helpful to the attacker, since it is trivial to rerandomize any give trapdoor to obtain a new trapdoor
for the same keyword. The received challenges by the attacker are in the following form. Let x0 =

(x(1)
0 , x

(2)
0 , · · · , x

(L)
0 )

D0←WL and x1 = (x(1)
1 , x

(2)
1 , · · · , x

(L)
1 )

D1←WL.

b=0 : ((g
r(1)

1
p · g′(1)

w ,H(x(1)
0 )r(1)

1 · g′′(1)
w ), · · · , (g

r(L)
1

p · g′(L)
w ,H(x(L)

0 )r(L)
1 · g′′(L)

w ))

b=1 : ((g
r(1)

1
p · g′(1)

w ,H(x(1)
1 )r(1)

1 · g′′(1)
w ), · · · , (g

r(L)
1

p · g′(L)
w ,H(x(L)

1 )r(L)
1 · g′′(L)

w ))

The rest of the proof is identical to the proof of Theorem 4, where we show that |Pr[b′ = b] − 1
2 | is

negligible based on the Weak Composite-DDH assumption in the random oracle model. The theorem
follows. ⊓⊔

Appendix III:

Proof of Theorem 4. Recall that in the attack game, shown in Fig. 14, the attacker is given Msk in
Step 4. In our proof, we simply give Msk to the attacker in Step 2, so that there is no need for the attacker
to submit any oracle queries (except for the random oracle H) to the challenger anymore. To further
simplify our description, we assume the secret key for an identity id in the challenge is in the following
form.

x, y $← Gq, skid = (d0, d1), d0 = x · gr
p, d1 = y · H(id)r

It is straightforward to verify that the attacker can extend the simplified secret key to its original form,
and we skip the details here. The attack game can be simplified as follows.

1. (Msk, params) $← Setup(λ)

2. (D0,D1,L, state) $←A(params,Msk)

3. b ∈R {0, 1}, idb ← Db, skb = Extract(idb,Msk)

4. b′ $←A(state, skb)

After the simplification, the received challenges by the attacker are in the following form.

b=0 : ((x1 · gr1
p , y1 · H(id(1)

0 )r1 ), · · · , (xL · grL
p , yL · H(id(L)

0 )rL ))
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b=1 : ((x1 · gr1
p , y1 · H(id(1)

1 )r1 ), · · · , (xL · grL
p , yL · H(id(L)

1 )rL ))

Next, we carry out the proof by an induction on L.
Case L = 1. In the faithful game, the challenge is skidb = skid(1)

b
, where

id0 = id(1)
0

D0←− I, skid(1)
0
= (x1 · gr1

p , y1 · H(id(1)
0 )r1 )

id1 = id(1)
1

D1←− I, skid(1)
1
= (x1 · gr1

p , y1 · H(id(1)
1 )r1 )

Let the attacker’s advantage be ϵ1. Consider a new game, where the challenge skidb is generated as
follows.

α
$← Gp, skid(1)

0
= (x1 · gr1

p , y1 · αr1 )

α
$← Gp, skid(1)

1
= (x1 · gr1

p , y1 · αr1 )

Suppose the attacker issues h queries to the random oracle H in the game. The new game is identical to
the original one with the probability 1− h

2λ , where h
2λ is the probability that the attacker has queried one

of the identities in id0 and id1 to the random oracle. It is clear that the attacker’s advantage is 0 when
the games are identical. As a result, ϵ1 ≤ h

2λ .
Case L = 2. In the faithful game, the challenge is skidb = (skid(1)

b
, skid(2)

b
), where

id0 = (id(1)
0 , id

(2)
0 )

D0←− (I,I), skid(1)
0
= (x1 · gr1

p , y1 · H(id(1)
0 )r1 ), skid(2)

0
= (x2 · gr2

p , y2 · H(id(2)
0 )r2 )

id1 = (id(1)
1 , id

(2)
1 )

D1←− (I,I), skid(1)
1
= (x1 · gr1

p , y1 · H(id(1)
1 )r1 ), skid(2)

1
= (x2 · gr2

p , y2 · H(id(2)
1 )r2 )

Let the attacker’s advantage be ϵ2. Consider a new game, which is faithful except for the challenge
generation.

– If id(1)
0 , id(2)

0 , the challenge skid0 is generated as follows.

α, β
$← Gp, skid(1)

0
= (x1 · gr1

p , y1 · αr1 ), skid(2)
0
= (x2 · gr2

p , y2 · βr2 )

Otherwise, the challenge skid0 is generated as follows.

α
$← Gp, skid(1)

0
= (x1 · gr1

p , y1 · αr1 ), skid(2)
0
= (x2 · gr2

p , y2 · αr2 )

– The challenge skid1 is always generated as follows.

α, β
$← Gp, skid(1)

1
= (x1 · gr1

p , y1 · αr1 ), skid(2)
1
= (x2 · gr2

p , y2 · βr2 )

Suppose the attacker issues h queries to the random oracle H in the game. The new game is identical
to the original one with the probability 1 − 2h

2λ , where 2h
2λ is the probability that the attacker has queried

one of the identities in id0 and id1 to the random oracle. When the games are identical, we can compute
the attacker’s advantage by considering two cases.

– One case is id(1)
0 , id(2)

0 . Let p1 = Pr[id(1)
0 , id(2)

0 ] according to D0. In this case, the attacker’s
advantage is 0.

– The other case is id(1)
0 = id(2)

0 . Let p2 = Pr[id(1)
0 = id(2)

0 ] according to D0. In this case, the attacker’s
advantage is exactly Advwcddh, which is the attacker’s advantage in the Weak Composite-DDH
assumption.

Combining the two cases, the attacker’s overall advantage is p2 ·Advwcddh when the new game is identical
to the original one. As a result, ϵ2 ≤ 2h

2λ + Advwcddh.
Case L = 3. In the faithful game, the challenge is skidb = (skid(1)

b
, skid(2)

b
, skid(3)

b
), where

id0 = (id(1)
0 , id

(2)
0 , id

(3)
0 )

D0←− (I,I,I), skid(1)
0
= (x1 · gr1

p , y1 · H(id(1)
0 )r1 )
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skid(2)
0
= (x2 · gr2

p , y2 · H(id(2)
0 )r2 ), skid(3)

0
= (x3 · gr3

p , y3 · H(id(3)
0 )r3 )

id1 = (id(1)
1 , id

(2)
1 , id

(3)
1 )

D1←− (I,I,I), skid(1)
1
= (x1 · gr1

p , y1 · H(id(1)
1 )r1 )

skid(2)
1
= (x2 · gr2

p , y2 · H(id(2)
1 )r2 ), skid(3)

1
= (x3 · gr3

p , y3 · H(id(3)
1 )r3 )

Let the attacker’s advantage be ϵ3. Consider a new game, which is faithful except for the challenge
generation.

– For skid0 , sample α1
$← Gp. If id(1)

0 = id(2)
0 , set α2 = α1, otherwise sample α2

$← Gp. If id(3)
0 = id(i)

0 for

some i ∈ {1, 2}, set α3 = αi, otherwise sample α3
$← Gp. skid0 is computed as follows.

skid(1)
1
= (x1 · gr1

p , y1 · αr1
1 ), skid(2)

1
= (x2 · gr2

p , y2 · αr2
2 ), skid(3)

1
= (x3 · gr3

p , y3 · αr3
3 ) (1)

– The challenge skid1 is generated as follows.

α, β, γ
$← Gp,

skid(1)
1
= (x1 · gr1

p , y1 · αr1 ), skid(2)
1
= (x2 · gr2

p , y2 · βr2 ), skid(3)
1
= (x3 · gr3

p , y3 · γr3 ) (2)

Suppose the attacker issues h queries to the random oracle H in the game. It is clear that this new game
is identical to the original one with the probability 1 − 3h

2λ , where 3h
2λ is the probability that the attacker

has queried one of the identities in id0 and id1 to the random oracle. When the games are identical, we
can compute the attacker’s advantage by considering two cases.

– One case is id(1)
0 , id(2)

0 , id(3)
0 . Let p1 be the probability of this case according toD0. In this case, the

attacker’s advantage is 0.
– The other case is id(i)

0 = id( j)
0 for some 1 ≤ i , j ≤ 3. Let p2 be the probability of this case according

to D0. Let skid(z)
0

be the left element in skid0 . Next, we need to compute the probability q1, which is
the probability that the attacker outputs 0 given {skid(i)

0
, skid( j)

0
, skid(z)

0
} in the form of Equation (1).

• Let q2 be the probability that the attacker outputs 0 given {sk∗
id(i)

0

, skid( j)
0
, skid(z)

0
}, where sk∗

id(i)
0

gener-

ated by by replacing the αi with β $← Gp in the generation of skid(i)
0

. we have | q1+1−q2

2 − 1
2 | ≤ Advwcddh

for two reasons: (1) | q1+1−q2

2 − 1
2 | is the attacker’s advantage in distinguishing these two key vec-

tors; (2) Given either {skid(i)
0
, skid( j)

0
} or {sk∗

id(i)
0

, skid( j)
0
} the attacker can simulate skid(z)

0
. This means the

attacker’s advantage is Advwcddh.
• Let q3 be the probability that the attacker outputs 0 given skid1 in the form of Equation (2). We

have | q2+1−q3

2 − 1
2 | ≤ |ϵ2 − 2h

2λ | ≤ Advwcddh.
In summary, the attacker’s advantage in this case is | q1+1−q3

2 − 1
2 | ≤ 2Advwcddh.

Combining both cases, the attacker’s advantage is 2Advwcddh when the new game is identical to the
original one. As a result, the attacker’s advantage in the original game is

ϵ3 ≤
3h
2λ
+ 2Advwcddh. (3)

Reduction from L = n to L = n + 1. Suppose when L = n, the attacker has the advantage ϵn. Next,
we compute the attacker’s advantage ϵn+1 when L = n + 1. Based on the faithful game, consider a new
game, where the hash values of identities in the challenge are replaced with randomly chosen elements
from G in the same manner as in the case of L = 3 (basically, if two identities for id0 are the same
then they use the same random value). This will make the new game be identical with the original
one with the probability 1 − (n+1)·h

2λ , where (n+1)·h
2λ is the probability that the attacker has queried one of

the identities in id0 and id1 to the random oracle. Next, we can compute the attacker’s advantage by
considering two cases.

– One case is id(1)
0 , id(2)

0 , · · · , id(n+1)
0 . Let p1 be the probability of this case according toD0. In this

case, the attacker’s advantage is 0.
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– The other case is id(i)
0 = id( j)

0 for some 1 ≤ i , j ≤ n+1. Let p2 be the probability of this case according
toD0. In this case, the attacker’s advantage is |ϵn− nh

2λ |+Advwcddh for the same reason as in computing
q1 in the case of L = 3.

Combining both cases, the attacker’s advantage is p2(|ϵn − nh
2λ |+Advwcddh) ≤ |ϵn − nh

2λ |+Advwcddh when the
new game is identical to the original one. As a result, the attacker’s advantage in the original game is

ϵn+1 ≤ |ϵn −
nh
2λ
| + Advwcddh +

(n + 1) · h
2λ

. (4)

Conclusion. Based on the inequalities (3) and (4), we have ϵL ≤ +(L− 1) ·Advwcddh +
L·h
2λ . The theorem

is proven. ⊓⊔
Appendix IV:

Proof of Theorem 5. Note the fact that the requirements on the distributionsD0,D1 in the forward-
secure function privacy attack game (Fig. 15) and deterministic scrambler attack game (Fig. 16) are the
same. Given an attacker for the forward-secure function privacy property, we can construct an attacker
for the deterministic scrambler’s security property with the same advantage. As a result, the theorem
naturally follows. ⊓⊔

Proof of Theorem 6. For simplicity, suppose Msk is public. Then, the private key skid for an identity
id can be simplified to the following form.

x, y $← Gq, r $← Zn, skid = (α, β), α = x · gr
p, β = y · (g0gDS.enc(id)

1 )r.

It is straightforward to verify that, given a key in the above form, an attacker can patch it to a key
defined in the original form.

With this simplification, referring to the attack game in Fig. 14, the challenge is in the following
form, where x1, · · · , xL, y1, · · · , yL

$← Gq and s1, · · · , sL, r1, · · · , rL
$← Zn.

b=0 : (x1 · gr1
p , y1 · (g0g

DS.enc(id(1)
0 ,param)

1 )r1 ; · · · ; xL · grL
p , yL · (g0g

DS.enc(id(L)
0 ,param)

1 )rL )

b=1 : (x1 · gr1
p , y1 · (g0gDS.enc(s1,param)

1 )r1 ; · · · ; xL · grL
p , yL · (g0gDS.enc(sL,param)

1 )rL )

Due to the soundness property of the deterministic scrambler scheme, the DS.enc algorithm is an
injective function with overwhelming probability. Hence, it does not change the min-entropy of the

input identities. As a result, we can conclude that g0g
DS.enc(id(i)

0 ,param)
1 for every 1 ≤ i ≤ L has min-entropy

λ. On the other hand, g0gDS.enc(si,param)
1 for every 1 ≤ i ≤ L is uniformly distributed. Based on these

facts, |Pr[b′ = b] − 1
2 | is negligible if the correlated Composite-DDH-II assumption holds. The theorem

follows. ⊓⊔
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