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Authors propose several approaches for increasing performance of multiplicative inversion 

algorithm in binary fields based on Extended Euclidean Algorithm (EEA). First approach is based on 

Extended Euclidean Algorithm specificity: either invariant polynomial v  remains intact or swaps 

with invariant polynomial u . It makes it possible to avoid necessity of polynomial v  degree 

computing. The second approach is based on searching the "next matching index" when calculating 

the degree of the polynomial, since degree polynomial invariant u  at least decreases by 1, then it is 

possible to use current value while further calculation the degree of the polynomial. 

When based on the second approach, only significant terms are used in computation during 

modification of invariants, taking into account current degree of polynomial pairs ),( vu  and ),( cb  

as authors proposed. These approaches can increase performance of software implementation of 

inversion for 32-bit platforms by 15-20%. 

Keywords: multiplicative inversion, Extended Euclidean Algorithm, binary field, polynomial. 

Introduction. The wide usage of information and telecommunication systems in modern 

society requires protection of information that circulates, is created, modified, stored and destroyed 

in these systems. For this purpose, information security subsystem is created in each such system. 

The core of information security subsystem is cryptographic subsystem. Among such cryptosystems, 

public key cryptosystems (directional encryption, secret sharing and digital signature) takes a special 

place. 

Among the widely used public key cryptosystems, can be emphasized: cryptosystems on elliptic 

(EC) and hyperelliptic curves (HEC), in the fields and rings. While implementation of these 

cryptosystems operations over field  pGF  and  m2GF  elements are widely used. It is known that 

fields  pGF  and  m2GF  are used in EC cryptosystems (ECC) in the international standards IEEE 

P1363-2000 [1], ISO/IEC 15946-2 [2] and in national standards DSTU 4145-2002 [3], ISO/IEC 

15946-2 [2]. 

According to [1-4], ECC can be represented as a hierarchy of operations with a particular 

significance of operations in field, see Fig. 1. 
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Fig. 1. Hierarchy of operations in ECC 

It is known [6-11] that the performance of symmetric cryptosystems substantially exceeds 

public key cryptosystems' performance, which makes it actual to increase public key cryptosystems' 

performance research. Among the areas for further improvements, the authors emphasized [6-11]: 

 Increase performance of group operations (EC points, the divisor in the Jacobian HEC, etc.). 

 Increase performance of operations over data structures used for group elements 

representation. 

 Increase performance of field operations. 

 Increase performance of operations over data structures used for field elements 

representation. 

 Optimization of operations over data structures for modern superscalar CPU [5]. 

At present, there are many publications in this field [6-11], that examines the algorithms of 

operations over polynomials, even in the context of libraries' software architecture [6-11]. It can 

significantly reduce the overhead cost of operations over polynomials implementation in general. 

There can be distinguished several operations over  m2GF  field elements [4]: addition, 

multiplication, squaring, multiplicative inversion and exponentiation. Researches show [4, 7] that 

execution time of inversion operation affects on ECC performance, in general. In order to reduce the 

inversion operation affect on performance [4] it is proposed to use projective representation of EC 

points. Similar arguments are applicable for divisors of HEC Jacobian. However, it is not possible to 

exclude inversion from operation over polynomials in public key cryptosystems implementation. 

Consequently, authors pay attention on performance increasing of inversion operation in binary 

field  m2GF . 

Description of algorithm-prototype of the Extended Euclidean Algorithm and its 

modification. Algorithm of multiplicative inversion allows inverse of non-zero field element 

 mGFa 2  computing, using Extended Euclidean Algorithm (EEA) for polynomials [4]. The 

algorithm [4] based on invariants udfba   and vefca   for some d  and e  which are 

implicitly computed. At each iteration, if    vu degdeg  , then a partial distribution of u  via v  is 

performed by subtracting vx j

 from u , where    vuj degdeg  . Hence, the degree of u  is 

remained constant or decreased at least by 1, or on average by 2. Adding cx j

 to b  preserves the 

invariant. The algorithm terminates when   0deg u . In this case 1u  and 1 dfba ; hence 

 xfab mod1 . 



Algorithm 1. Extended Euclidean Algorithm for multiplicative inverse in  m2GF . 

Input: )2( ma GF , 0a . 

Output: )(mod1 xfa . 

1. 1b , 0c , au  , fv  . 

2. While   0deg u  do 

2.1.    vuj degdeg  . 

2.2. if 0j  then: vu  , cb , jj  . 

2.3. vxuu j , cxbb j . 

3. Return  b . 

Analysis of Algorithm 1, allows selecting several aspects for further improvement of the EEA: 

At the steps 2.2 and 2.3, polynomial u is modified, while polynomial v  contains the previous value 

of the polynomial u . This allows refusing from polynomial v  degree computing in step 2.1. As for 

 vdeg  initial calculating at step 2.1, the degree is known as constant     mfv  degdeg . 

At step 2.1, degree of the polynomial u  is calculated. According to general logic of algorithm, the 

degree of the polynomial u  is permanently decreasing, at least by 1. This allows dismissing the 

 udeg  degree computing on each iteration in a general case, and only extends current. 

At step 2.3, polynomial v  shift and addition with u  are performed, but it should be noted, that 

degree of polynomials v  and u  is permanently decreasing while step 2 loop execution while the 

degree of polynomials b  and c  is growing. This allows to shift and addition not for all elements of 

field elements' representing array, but for significant only - which are certainly non-zero.  

Let’s estimate complexity of Algorithm 1, on average case. Lets polynomial a  degree 

  ka deg  and Hamming weight of polynomial a    2weight kah  . Then count of loop 

iterations will be k , and number of truthful statements 0j  will be 32k . In rest 3k  cases, the 

shift is not executed. The complexity of Algorithm 1 on average case is: 

     
swpshladdavr IkIIIkAI 232222 deg1  . (1) 

where degI  - complexity of algorithm for computing degree of polynomial; addI  - complexity of 

algorithm for adding two polynomials, shlI  - complexity of algorithm for shifting to an arbitrary 

number of bits (may to exceed the length of machine word); swpI  - complexity of two polynomials 

exchange algorithm (further, swpI  will be neglected, because pointers will be used). 

In simplified form, formulae (1) can be presented: 

   
shladdavr IIIkAI 222 deg1   (2) 

It is easy to see from (2) that a reducing complexity of algorithm in general, can be achieved by 

reducing the number of operations and degI , addI  and shlI  complexity. 



Algorithm for degree computing of an arbitrary polynomial a  requires detailed study. 

Polynomial basis is used for representation of  m2GF  field elements.  

Element  mb 2GF  in polynomial basis is represented as binary vector 
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required for polynomial of binary length m representation; ib - binary coefficients, 
 w

ja  - computer 

words of binary length w . 

The main idea of algorithm for polynomial degree computing is to find the index of the most 

significant array element  w

ja  (MSE), and find the index of most significant bit (MSB) in already 

found array elements  w

ja . Search of MSE element  w

ja  is sequential search in array starting at the 

end, as long as desired is found. There are many well-known algorithms [12] to determine the index 

of MSB in array element (machine word) that require sequential search. 

In order to increase performance computing MSB in machine word, authors proposed to use a 

variety of well-known "tricks" [12], based on bit operations over machine words. Developments 

proposed by authors are presented in Algorithm 2. 

Carry it out a more detailed consideration. At step 2, MSE (containing at least one non-zero bit) 

is searched in cycle. Search is performed from the end of array (highest machine word) to its 

beginning. 

At step 3, MSE and its index are fixed. Element index will be used in further polynomial degree 

calculation. 

Algorithm 2. Algorithm for polynomial degree calculation in  m2GF . 

Input:  ma 2GF ;  w
mn  , where n - number of machine words, that occupies a polynomial; w - 

width of machine word, usually 32w . 

Output:  adeg . 

1. 1 ni . 

2. While     0&&032  iai  

2.1. 1 ii . 

3.  32

iat  . 

4.  1|  ttt ,  2|  ttt ,  4|  ttt ,  8|  ttt ,  16|  ttt . 

5.   0x55555555&1 ttt ,     0x33333333&20x33333333&  ttt , 

    240x10101010xf0f0f0f&4  ttt . 

6. Return   15  ti . 



At step 4, "trick" [12] are applied for creating a "mask", which allows filling all on-bits least 

significant bits from the most significant. Hereafter, counting a number of on-bits in a machine word 

is required, to determine the index of MSB.  

In step 5, it is applied "trick" [12], for counting of all on-bits in machine word. Given number is 

greater than MSB on 1. 

Polynomial degree is calculated at step 6, where  the total number of bits in each machine word, 

index of MSE and index of MSB in MSE are taken into account. 

Previously described results of Algorithm 1 analysis allows to make following modifications: 

 At each iteration of loop in step 2, polynomial v  is constant, or it can be swapped with u , so 

it is not necessary to calculate polynomial v  degree for each loop iteration: degree of 

polynomial v  is either constant or equals polynomial u  degree. Thus, it could be saved one 

operation of computing polynomial degree, at each iteration in step 2 loop. Number of loop 

iterations at step 2 is comparable to degree of polynomial  ma 2GF , which should be 

inverted. 

 At step  2.1, polynomial u degree is computed. At step 2.3, its degree is decreased at least by 

1. It means that it is not necessary to compute polynomial degree at each loop iteration, but 

only adjust: polynomial u  degree reduces at least by 1. That makes it possible to use "the 

next fit" approach to fix the position of current array element. This approach allows to start 

search not from the ending array element, but from array element found at previous loop 

iteration. The number of checks while searching MSE, at step 2 cycle is decreased in 2 

times. 

At step 2.3, polynomial v  shift and polynomial u addition operations are performed. Degree of 

v  and u decreases continuously throughout the step 2 loop, and degree of polynomials b  and c  is 

growing. Here it could be used "next fit" approach, to operate only with the significant elements of 

array. This allows shifting and adding not all elements of array, which represents field elements, but 

only significant. Note, number of additions and shifts of array elements at step 2 loop decreased 

almost in 2 times. 

Applies results of analysis conducted by authors, In Algorithm 1, and algorithm itself to 

compute the degree of polynomial Algorithm 2, Modified EEA (MEEA) Algorithm for 

multiplicative inversion in the field  m2GF  was proposed. It is presented as Algorithm 3. 

Algorithm 3. Modified Extended Euclidean Algorithm for multiplicative inverse in  m2GF . 

Input: )2( ma GF , 0a , 









w

m
n , where n  is number of machine words that occupies a 

polynomial; w  is width of machine word, usually 32w . 

Output:  xfa mod1 . 

1. 1b , 0c , au  , fv  . 

2. 1 ni . 

3. While     0&&032  iui  

3.1. 1 ii . 



4.  32

iut  . 

5.  1|  ttt ,  2|  ttt ,  4|  ttt ,  8|  ttt ,  16|  ttt . 

6.   0x55555555&1 ttt ,     0x33333333&20x33333333&  ttt , 

    240x10101010xf0f0f0f&4  ttt . 

7.    15deg  tiU . 

8. mV deg . 

9. While  0deg U  do 

9.1. if  VU degdeg   then UVk degdeg  , vu  . cb  . 

9.2. else VUk degdeg  . 

9.3. if  0k  then vxuu k  , cxbb k  . 

9.4. else vuu  , cbb  . 

9.5. if  VU degdeg   then UV degdeg  . 

9.6. While     0&&032  iui  

9.6.1. 1 ii . 

9.7.  32

iut  . 

9.8.  1|  ttt ,  2|  ttt ,  4|  ttt ,  8|  ttt ,  16|  ttt . 

9.9.   0x55555555&1 ttt ,     0x33333333&20x33333333&  ttt , 

    240x10101010xf0f0f0f&4  ttt . 

9.10.    15deg  tiU . 

10. Return  b . 

At step 1, initialization of polynomials b , c , u  and v , that will be modified during algorithm 

work, is performed. Then at step 2, an array MSE 
 32

iu  index i  of ending, non-zero of polynomial u  

machine word is determined. An index i  search starts from MSE. 

Desired array element 
 32

iu  uses at steps 4-6 for calculation of MSB index t  in word  32

iu , and 

at step 7, for polynomial u  degree calculation. The initial degree of polynomial v  is already known 

and equals m . The "trick" [12] is used for MSB selecting. All LSB sets to 1. For on-bits counting in 

word another "trick" [12] is used.  

The loop at step 9 is basal for whole algorithm and it is performed while polynomial u  degree 

not equals 0. The average count of iterations is   ka deg . At step 9.1 of loop, it degree Udeg  and 

Vdeg  checks of the polynomials u  and v , respectively are performed. In case  VU degdeg  , it is 

necessary to swap contents of polynomials u , v  and b , c  respectively. At the average, number of 

events  VU degdeg   is 3k . The diminution  VU degdeg   is used for polynomials v  and c  

shifts. At steps 9.3 and 9.4, MSB of polynomial u  is cleared and the corresponding bits of 

polynomial b  are set. Note, steps 9.3 and 9.4 operate only with significant array elements, i.e. 



elements that contain  bits that are lower then  bdeg  and  vdeg . The polynomial b  degree is 

increasing, the degree of u  is decreasing, where     mub  degdeg . 

Polynomial v  degree calculation is performed at step 9.5, and degree of v  changes if condition 

 VU degdeg   of exchange u  and v  polynomials is true. Next, at steps 9.6 and 9.7 MSE 
 32

iu  

index i  of u  is determined. Desired array element 
 32

iu  is used on steps 9.8-9.9 for calculation of 

MSB index t  in word 
 32

iu  and at step 9.10 while the degree Udeg  of polynomial u  calculation. 

Upon completion of loop, the algorithm returns polynomial  xfab mod1 . 

Lets estimate complexity of Algorithm 3, on average. Lets degree   ka deg  of polynomial a  

and Hamming weight   2weight kah  . Then count of loop iterations will be k , and number of 

truth statements 0j  will be 32k . Complexity of Algorithm 3, on average case is: 

      
swpshladdavr IkIIIkAI 23222

2
1

deg3  , (3) 

Further, complexity swpI  can be neglected. In simplified form, formulae (3) can be presented: 

   
shladdavr IIIkAI  deg3 . (4) 

Software implementation notes. It is necessary to implement in software well-known EEA and 

proposed MEEA for confirmation of theoretical estimations of MEEA efficiency in comparison with 

well-known algorithms. Software implementations of MEEA and well-known EEA should be tested 

on polynomials of different length [13] and average time estimations (timings) should be compared. 

In software implementation, authors use polynomial presentation of  m2GF  elements. 

Polynomial represents as array of fixed length for given m . 

While writing program, tailored the superscalar architecture of 32-bit CPU and the possibilities 

of modern compilers on branch prediction, parallel commands execution, loop unrolling, etc., in 

accordance with [5]. 

Software implementation was performed on high-level language C++ in Microsoft Visual 

Studio, in Release configuration with a compiler Microsoft Visual C++ 2010 (/O3, with SSE2 

support) and Intel C++ Compiler XE2013 (/O3, with SSE4.2 support) on 32-bit platforms. For 

convenience, acronym of MCC and ICC, will be used respectively. 

Comparison of well-known and proposed algorithms. In accordance of convenience 

mentioned in previous section, authors in software implemented both Algorithms 1 and 3 for 

estimation efficiency of proposed approaches for modification of multiplicative inversion algorithm 

in  m2GF  field. In software implementation averaged on runtime of 1 million inversion operations, 

and timings presented in Table 1. Experiments have taken into account that the degree of inverted 

polynomial, can affect on number of main loop iterations, so polynomials of degree near to 

maximum were used for fields that are used in cryptosystems DSTU 4145-2002 [3] and FIPS-186- 3 

[13]. 

Experiments were performed for various degrees of binary fields extension [3, 13], on wide 

used mobile CPU Intel Core i3 M350 and desktop CPU 3th generation Intel Core i5-3570 and 4th 

generation Intel Core i5-4670 running on Windows 7 SP 1 x86-64. 



Software implementations timing of inversion operation for different fields are presented in 

Table 1. 

Timing for software implementations of inversion operation for different algorithms Table 1 

m  

Time, us 

Intel Core i3-350M Intel Core i5-3570 Intel Core i5-4670 

ICC XE2013 MCC2010 ICC XE2013 MCC2010 ICC XE2013 MCC2010 

Inv Inv* Inv Inv* Inv Inv* Inv Inv* Inv Inv* Inv Inv* 

89 6,71 5,44 6,27 5,10 2,53 1,95 2,76 1,84 2,53 1,95 2,37 1,84 

163 16,08 11,34 14,38 11,96 6,85 4,05 6,33 4,65 6,85 3,95 6,13 4,05 

191 18,17 14,52 17,38 14,71 7,73 5,46 7,85 5,48 7,73 5,26 7,65 5,48 

233 27,13 22,12 24,57 19,39 11,80 7,04 11,59 7,65 11,80 7,02 11,02 6,90 

257 31,56 25,18 27,93 24,54 13,21 7,99 13,33 8,56 12,17 7,81 12,33 7,60 

307 37,72 30,45 34,24 26,11 17,98 11,11 17,64 12,41 17,68 9,58 17,54 11,41 

367 53,18 42,17 46,05 33,81 23,35 14,78 21,84 16,63 22,35 13,18 21,64 14,63 

409 61,31 40,18 54,48 47,76 26,41 16,97 26,81 18,51 25,97 14,93 26,41 17,51 

431 67,75 54,24 59,10 44,03 28,99 17,86 29,29 19,25 28,27 17,00 28,99 18,25 

571 103,44 64,86 94,42 70,26 46,46 25,47 44,87 26,98 43,39 24,64 44,67 26,83 

* - modified algorithm with proposed optimization approaches. 

Experimental results show that the degree of polynomial does not affect on time using EEA, 

while MEEA shows a linear decrease of time with degree decreasing. Experimental results for the 

field elements  m2GF  with less work degrees are given. 

CPU Intel Core i3-350M, MEEA shows gain in 18-21% (ICC) and 16-18% (MCC). At the same 

time, implementation of MCC is better on 2.2% then ICC. CPU Intel Core i5-3570, MEEA shows 

gain in 19-22% (ICC) and 17-22% (MCC). At the same time, implementation of ICC is better on 

4.9% than MCC. CPU Intel Core i5-4670, implementation of MEEA shows gain in 18-25% (ICC) 

and 14-22% (MCC). At the same time, implementation of ICC is better on 14.7% than MCC. 

The resulting timings are fully consistent with theoretical estimations of computational 

complexity in (2) and (4). Software implementation of proposed MEEA shows better performance 

by 20-50% (for mobile CPU Intel Core i3-350M with a lower clock frequency and desktop CPU 

Intel Pentium 4 530J with a twice-lower clock speed) than in [7], for corresponding fields. 

MEEA software appliance for digital signature generation and verification in accordance with 

DSTU 4145-2002 [3] (with "left-to-right" scalar multiplication algorithm) [4]: 

 in affine points representation this has made it possible to increase performance by 16-20%, 

with field size rising; 

 in Lopez-Dahab projective points representation [4] this has made it possible to increase 

performance by 2-4%, with field size rising. 

These comparisons are applicable to results obtained with the Intel C++ Compiler XE2013 and 

Visual C++ 2010 for architecture x86. 

Conclusion. On given results of research, there are following conclusions: 

1. Optimization techniques proposed of authors for multiplicative inversion algorithm in 

 m2GF  field, have reduced computational complexity MEEA in two times. It is confirmed by the 

experimental estimations. 



2. MEEA software implementation has higher performance by 15-20% than algorithm-

prototype, on average. 

3. Applying of modified inversion algorithm for digital signature generation and verification 

based on DSTU 4145-2002, has increased performance by 16-20% in affine point representation and 

by 2-4% in Lopez-Dahab projective representation, respectively. 

4. Proposed implementation of MEEA inversion algorithm have not adjusted for multi-threaded 

execution. It does not allow realizing full potential of modern multicore CPU. 

5. Modern CPU developments is focused on increasing of number of commands execution 

threads. This requires development of valuable algorithms for efficient software implementation on 

perspective CPU. At this rate, NVIDIA company already offers GPU with more than 512 cores, and 

user-friendly framework CUDA [14-18] for creation multithreading applications. Further direction of 

researches will be focused on study and effective parallelizing of arithmetic algorithms in  m2GF  

field. 
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