
Kangaroos in Side-Channel Attacks

Tanja Lange1, Christine van Vredendaal1,2, and Marnix Wakker2

1 Department of Mathematics and Computer Science
Eindhoven University of Technology

P.O. Box 513, 5600 MB Eindhoven, The Netherlands
tanja@hyperelliptic.org, c.v.vredendaal@tue.nl

2 Brightsight B.V.
Delftechpark 1, 2628 XJ Delft, The Netherlands

wakker@brightsight.nl

Abstract. Side-channel attacks are a powerful tool to discover the cryptographic secrets
of a chip or other device but only too often do they require too many traces or leave too
many possible keys to explore. In this paper we show that for side channel attacks on
discrete-logarithm-based systems significantly more unknown bits can be handled by using
Pollard’s kangaroo method: if b bits are unknown then the attack runs in 2b/2 instead of
2b. If an attacker has many targets in the same group and thus has reasons to invest in
precomputation, the costs can even be brought down to 2b/3.
Usually the separation between known and unknown keybits is not this clear cut – they are
known with probabilities ranging between 100% and 0%. Enumeration and rank estimation
of cryptographic keys based on partial information derived from cryptanalysis have become
important tools for security evaluations. They make the line between a broken and secure
device more clear and thus help security evaluators determine how high the security of a
device is. For symmetric-key cryptography there has been some recent work on key enu-
meration and rank estimation, but for discrete-logarithm-based systems these algorithms
fail because the subkeys are not independent and the algorithms cannot take advantage of
the above-mentioned faster attacks. We present ε-enumeration as a new method to compute
the rank of a key by using the probabilities together with (variations of) Pollard’s kangaroo
algorithm and give experimental evidence.

Keywords: Side-channel attacks, template attacks, key enumeration, rank estimation, dis-
crete logarithms, Pollard-kangaroo method, precomputation

1 Introduction

In security evaluations it is important to investigate how well cryptographic implementations
fare against side-channel attacks (SCA’s). Numerous of these attacks are known: In this paper
we will be most interested in the Template Attacks introduced by Chari, Rao and Rohatgi [3].
These attacks are among the strongest possible attacks in the sense that they extract all possible
information of the samples S measured from a secret-key operation. They assume access to an
identical device as used by the target and use it to produce precise multivariate characterizations
of the noise of encryptions with different keys. By a process of iterative classification they then
attempt to derive the key used when measuring S.
In [3] iterative classification was performed until only a few candidates for the key were left. We
however accept being left with a larger number of possibilities of which we are 100% sure that they
are the likeliest keys according to our attack results and then continue to enumerate the remaining
keys. This might be faster than continuing to attack and hoping to get more significant results.
The motivation for this approach is the guy in the security evaluation lab. He starts his template
attack and if he were to spend a long enough time he might find the key. However if he is able

This work was supported by the Netherlands Organisation for Scientific Research (NWO) under grant
639.073.005. Permanent ID of this document: c1c4c98f98c7ca3cb1b1f4208b95e8b8. Date: July 21,
2014.

2 Tanja Lange, Christine van Vredendaal, Marnix Wakker

to enumerate 2b keys, then the lab guy might as well stop the measurements after reducing the
space of the remaining keys to an interval of size 2b. By pruning the space further he will only risk
throwing out the actual key even though he could have enumerated it. Another motivation for our
approach is that there are some implementations where it does not matter how long the guy stays
in the lab, the power traces will not give away more information. In this case we will still have a
(larger) space of possibilities we need to enumerate based on all the information we were able to
get.
When we have the results of such a SCA we can take two approaches. The first is the black-
box approach of key enumeration. A key enumeration algorithm takes the SCA results as input
and return keys k in order of likelihood. The position of a k in such an ordering is called its
rank r. For symmetric-key cryptography some research has been done on this subject. Pan, van
Woudenberg, den Hartog and Witteman [9] described a sub-optimal enumeration method with
low storage requirements and an optimal method that required more storage. Veyrat-Charvillon,
Gérard, Renauld, and Standaert [16] improved the optimal algorithm to require less storage and
be able to enumerate more keys faster.
The second way of looking at a SCA result is the white-box approach of rank estimation. This
method is particularly relevant for security evaluation labs. Using modern technology it is feasible
to enumerate 250 to 260 keys, but when a key is ranked higher, we can only say that its rank is higher
than ∼ 260 (the rank at which the memory is exceeded). For security evaluations of the encryption
algorithm however more accuracy is required. A rank estimation algorithm is able to extract
information about the rank r of k without enumerating all the keys. For symmetric cryptography
like AES such an algorithm was put forth by Veyrat-Charvillion, Gérard and Standaert in [17].

Our contribution in this paper is to extend these works to public-key cryptography, specifically
Elliptic-Curve Cryptology (ECC [8]). Using the (partial) information from a template attack on
the subkeys of a key k used in Diffie-Hellman Key Exchange, k might be recovered by enumerating
the most likely candidates. Contrary to the assumptions in the previously mentioned algorithms,
the information on the subkeys is not independent for ECC and therefore we cannot use the
existing algorithms. On the bright side, in ECC we are working with cyclic groups and we can use
this structure to speed up enumeration. This way, enumeration can be interpreted as finding the
solution to the Discrete Logarithm Problem (DLP) by using partial information on the subkeys. We
present our own algorithm which utilizes Pollard’s kangaroo methods (see [10], [11], [4], [13], [15])
to enumerate with an error margin ε. In trade for this error margin we are able to enumerate a
space of ` keys in O(

√
`) group operations.

If we make use of a precomputation table like was proposed in [1] we can reduce the expense
per key to O(3

√
`) operations. This improvement of Pollard’s methods lends itself particularly

well to use in side-channel attacks. The creation of the precomputation table costs O(
3
√
`2) group

operations and a specific table can only be used to speed up solving of DLPs in one particular
group and interval length. So creating the table is only useful if we want to perform an attack a
lot of times on the same length interval of a certain subgroup, but this is a fairly common scenario
since many smart card vendors implement the NIST P-256 curve for which the curve equation
and the base point are standardized. This means that security evaluation labs can create the most
commonly needed tables beforehand and re-use them every time an attack is performed on an
implementation for this curve.
We end this introduction with noting that even though the results in this paper are posed in the
setting of elliptic curves, the techniques are applicable to solving a DLP in any cyclic group.

2 Background

This section gives a short description of methods to solve the Discrete Logarithm Problem (DLP)
in a group of prime order n. The “square-root methods” solve this problem on average in O(

√
n)

group operations. We will use additive notation since the main application is to is to solve the DLP
on an elliptic curve E over a finite field Fp but the methods work in any group. Let P,Q ∈ E(Fp)
be in a cyclic group; the goal is to find an integer k such that Q = kP .

Kangaroos in Side-Channel Attacks 3

2.1 A Short History of Discrete Logarithm Algorithms

A well known method is Shanks’ Baby-Step-Giant-Step (BSGS) method [12]. It uses a table to find
collisions between baby steps 0P, P, . . . , (m− 1)P and giant steps Q− 0P,Q−mP,Q− 2mP,Q−
3mP, . . . , where m ≈

√
n. This finds k = k0 + k1m as the collision of k0P and Q− k1mP in O(m)

steps. A drawback of this method it that it has a storage requirement of m elements, which is a
more serious limitation than O(m) computation. If the discrete logarithm k is known to lie in an
interval [a, b] of length ` then choosing m ≈

√
` gives a runtime of O(

√
`).

The Pollard-ρ method [10] gives a solution to the storage problem. It uses a deterministic
random walk on the group elements with the goal of ending up in a cycle (which can be detected
by Floyd’s cycle finding algorithm). The walk is defined in such a way that the next step in the
walk depends solely on the representation of the current point and that a collision on the walk
reveals the discrete logarithm k. Van Oorschot and Wiener [15] introduced a parallel version of
the Pollard-ρ method which gives a linear speed-up in the number of processors used. They use
distinguished points: a point is a distinguished point if its representation exhibits a certain bit
pattern, e.g., has the top 20 bits equal to zero. Whenever one of the parallel random walks reaches
such a point it is stored on a central processor. A collision between two of these distinguished
points almost surely reveals the value of the key. This method is an improvement over BSGS in
that the storage requirements are minimal, but the algorithm is probabilistic and it cannot be
adapted to search an interval efficiently.

Pollard’s kangaroo method solves the latter problem. It reduces the storage to a constant and is
devised to search for the solution of a DLP in an interval of length `. The mathematical ingredients,
the algorithm and improvements are the topic of the remainder of this section.

2.2 Mathematical Aspects of Kangaroos

To adequately explain Pollard’s kangaroo method we first have to dive into the notion of a math-
ematical kangaroo. We define a kangaroo by the sequence of its positions Xi ∈ 〈P 〉. Its starting
point is X0 = s0P for a certain starting value s0 and the elements that follow are a pseudo-random
walk. The steps (or rather jumps) of a kangaroo are additions with points from a finite set of group
elements S = {s1P, . . . , sLP}.

The step sizes si are taken such that their average is s = β
√
` for some scalar β. To select the

next step we use a hash function H : 〈P 〉 → {1, 2, . . . , L} and we compute the distance by defining
d0 = 0 and then updating it for every step as follows

di+1 = di + sH(Xi), i = 0, 1, 2, . . . ,

Xi+1 = Xi + sH(Xi)P, i = 0, 1, 2,

This results in a kangaroo which after i jumps has travelled a distance of di and has value
(s0 + di)P .

2.3 Pollard’s Kangaroo Method

The original algorithm that Pollard presented in [10] works as follows: Suppose we know that the
value k in Q = kP is in the interval [a, b] of length ` = b − a + 1. We introduce two kangaroos.
The first one is the tame kangaroo T and we set it down at the point bP . We tell him to take
N = O(

√
`) jumps and then stop. The point at which he stops and how far the kangaroo travelled

to get there are recorded. This information can be seen as a trap meant to catch the second
kangaroo. The trap consists of the endpoint XN = (b+dN)P and the travelled distance dN . Then
a second, wild, kangaroo W is let loose at the unknown starting point X ′0 = Q = kP following
the same instructions determining jumps. The crucial fact upon which this algorithm is based is
that if at any point the path of the wild kangaroo crosses with that of the tame one, meaning that
they land on the same point, their remaining paths are the same. So if the wild kangaroo starts

4 Tanja Lange, Christine van Vredendaal, Marnix Wakker

jumping and crosses the tame one’s path, then there is a jump M at which X ′M = XN . From this
we have (k + d′M)P = (b + dN)P and k = b + dN − d′M and we will detect this collision since
X ′M+j = XN+j , so the wild kangaroo will eventually meet the tame one.

Van Oorschot and Wiener [15] also presented a parallel version of this algorithm which even
for just two kangaroos gives an improvement. Here instead of one trap, multiple traps are set: a
fraction 1/w of the group elements which satisfy a certain distinguishing property D are defined
as the distinguished set. Here w is taken to be α

√
`, where α is some small constant (usually

smaller than 1). A central server then records the distance and location of any kangaroo reaching
a point in D. We again have a wild and a tame kangaroo. Instead of starting at the end of
the interval however, the tame kangaroo now starts in the middle at some point cP . Instead of
finishing their entire paths, the kangaroos now jump alternately. Whenever one of them jumps
to a distinguished point, their relevant information (position, distance, offset of starting point,
kangaroo type) = (Xi, di, ci, Y) is recorded in a hash table which hashes on the Xi. When two
kangaroos of different types have been recorded in the same entry of the hash table, we can derive
the answer to the DLP.
Let us analyze this algorithm. The distance between the two kangaroos at the starting position is
at most (a− b+ 1)/2 = `/2 and on average `/4. If we take s = β

√
`, then the average number of

jumps needed for the trailing kangaroo to catch up to the starting point of the front kangaroo is
`/4s. Now we use that the probability of missing the front kangaroo’s trail after passing its starting
point for i steps is (1−1/s)i ≈ e−i/s and get that it takes s steps on average to hit the trail. Lastly,
both kangaroos have to hop far enough to hit a distinguished point. If 1/w is the fraction of group
elements that are distinguished, then w steps are needed on average before hitting a distinguished
point. The total average number of steps is the 2(`/4s+ s+w) = 2(α+ β + 1/4β)

√
`, in which α

and β can be optimized experimentally.
This algorithm can be improved even further by using 3 or 4 kangaroos (see [4]), but in this paper
we consider the 2-kangaroo version.

2.4 Pollard’s kangaroo method with precomputation

Pollard’s kangaroo method can be sped up using precomputation. Bernstein and Lange [1] suggest
to first produce a table of T distinguished points. Selecting the distinguished-point property and
creating the table is then similar to setting a trap at every distinguished point in a desert, then
sending a bunch of kangaroos into said desert and recording in a table which traps are most
popular. Then when we are ready to send in the wild kangaroo we really want to trap we already
know where he is most likely to fall in.
The algorithm works as follows. In the precomputation phase we start a lot of walks from random
values yP and continue these walks until they reach a distinguished point at (y+ d)P . We record
(y + d, (y + d)P) in the precomputation table T . We keep starting new walks until T different
distinguished points are found (or sample for longer and keep the most popular ones). As [1] notes,
these walks should be independent from Q.
In the main computation phase we start random walks that are dependent on Q. We let a kangaroo
on X ′0 = Q hop until it reaches a distinguished point. If this point is in the table we have solved
our DLP. If not we start a new walk at Q+ xP for some small random x. For each new walk we
use a new randomization of Q and continue this way until a collision is found.

If enough DLPs in this group need to be solved so that precomputation is not an issue — or if a
real-time break of the DLP is required — they propose to use T ≈ 3

√
` precomputed distinguished

points, walk length w ≈ α
√
`/T , i.e., w ≈ α 3

√
`, with α an algorithm parameter to be optimized,

and a random step set S with mean s ≈ `/4w. This means that the precomputed table T takes

O(
3
√
`2) group operations to create but can be stored in ≈ 3

√
`. This reduces the number of group

operation required to solve a DLP to O(3
√
`) group operations, essentially a small number of walks.

Kangaroos in Side-Channel Attacks 5

3 ε-Enumeration

Now that we have the mathematical background covered, we continue to enumeration in side-
channel attacks. Our goal is to enumerate through SCA results and give a rank estimation for a key
similar to what was done in [16] and [17] for SCAs on implementations of symmetric cryptography.
To do this we first have to model the result of SCA on ECC.

3.1 The Attack Model

We will assume a template attack like Chari, Rao and Rohatgi performed in [3]. In this attack we
use our own device to make a multivariate model for each of the possibilities for the first bits of
the key. When we then get a power sample of the actual key, we compute the probability of getting
this shape of power sample given the template for each possible subkey. These probabilities will
be our SCA results.
We can iterate this process by taking a few bits more and creating new templates, but making
these requires a lot of storage and work. At the same time, they will either confirm earlier guesses
or show that the wrong choice was made. At each iteration we only include the most likely subset
of the subkeys from the previous iteration. Discarding the other possibilities creates a margin of
error that we want to keep as small as possible.
In Chari [3] the aim was to recover all the bits of the key with a high success rate. Our goal is to
minimize the overall attack time — the time for the measurements plus the time for testing (and
generating) key candidates. We do not require to only be left with a couple of options at the end
of the attack of which one is correct with a high probability. We accept ending the experiments
being left with a larger number of possibilities of which we are close to 100% sure that they are
the likeliest keys according to our attack results. After this we wish to enumerate them in the
order of their posterior probabilities. We show how this can be faster than continuing to measure
and hoping to get more significant results.
The results of the measurement and evaluation can be visualized as depicted in figure 1.

Fig. 1. The graphical representation the SCA result

6 Tanja Lange, Christine van Vredendaal, Marnix Wakker

We will call this visualization the enumeration tree. It consists of three sections. The first
section consists of the subkey bits that we consider recovered. After the iterations of the template
attack all options but one were discarded. Section II consists of the subkeys that we have partial
information on, but not enough to reduce the number of likely subkeys to one. The last section
consists of the subkeys that we have very little to no information on. It contains all possible
subkeys per layer.
The idea is that each node ni,j in the representation is located in the i’th level (starting with 1 at
the root) and corresponds to the j’th choice for subkeys ki,1, ki,2 . . . ,. For each node ni,j there is
an associated subkey ki,j and a posterior probability qi,j . This is the probability that subkey i is
equal to ki,j given that the path up to its parent node is correct. So if the nodes on the path to
ni,j are n1,x1

, n2,x2
, . . . , ni−1,xi−1

, ni,j , then the probability qi,j associated with this node is

qi,j = Pr[ki = ki,j |k1 = k1,x1
, k2 = k2,x2

, . . . , ki−1 = ki−1,xi−1
]. (1)

Then we can also associate with each node a probability pi,j that represents the posterior
probability of the key consisting of the subkeys represented by the nodes leading up to it (including
itself). This probability is then

pi,j = qi,j ·
i−1∏
h=1

q1,xh . (2)

In sections I and II the subkeys that were discarded during the attack and are not in the model
might have a combined small probability pε. We assume that these probabilities are negligible
(otherwise more nodes should be included in section II or the transition between section I and II
should have moved closer to the root) and thus assume that the sum of the probabilities pi,j of
each level of the tree is 1.

3.2 Enumeration in an Interval

The brute-force approach an attacker could take to enumerate the keys is to sort the nodes of
the rightmost layer of section II by posterior probability pij and then for each choice brute-force
all the options in section III. However using the algorithms from Sections 2.3 and 2.4 we can
do better. Enumerating section III of a node is equivalent to computing the keys in an interval.
Therefore we can use the Pollard-kangaroo algorithms to speed up the enumeration. The downside
of this approach is that without searching the whole interval we can never say with 100% certainty
that the key is not in the interval. However, in return we are able to speed up enumeration in
an interval of size ` to O(

√
`) group operations or even to O(3

√
`) if we have the luxury of a

precomputation table. We do have to note that even though we will call this process of searching
the interval enumeration, it is a different kind than the enumeration in [16]. In that algorithm
each key enumerated had to be checked for correctness against the encryption in an exhaustive-
search manner. Using the kangaroo algorithms means that we search for a collision between group
elements and only after this happens we can compute and double-check correctness against the
public key of the cryptosystem attacked. This is much more sophisticated and much faster than
the brute-force approach of having to check every key. The rank r of k now reflects the number of
group operations required to find k after the end of the experimental session. It also means that
we have only O(

√
`) ranks and they are dependent on the parameters used in the algorithm. To

accurately reflect the uncertainty in this kind of enumeration, we introduce the following definition.

Definition 1. Let the key k̂ that we wish to find have rank r̂. In an ε-enumeration we check
keys in such a way that when we have enumerated up to rank r, then there is a (1− ε) probability
that r̂ > r .

If we want to perform such an ε-enumeration we have to have a stopping criterion. This criterion
dictates how many group operations we have to do in order to get the probability of having missed
our actual key below the ε bound. We have the following theorem.

Kangaroos in Side-Channel Attacks 7

Theorem 1. Assume that the private key k̂ lies in the interval of size `. Let the average step size
of the kangaroos be s = β

√
`. Let the probability of hitting a distinguished point be θ = c/

√
` and

assume the distinguished points are spread uniformly over the whole group. Lastly we assume that
the hash function H and the step set in the improved Pollard-kangaroo algorithm of Section 2.3 is
sufficiently random. Then for x > `/(4s) the average probability of not finding k̂ in 2x steps, i.e.
x hops per kangaroo, of that algorithm is

ε(x) = e−
x
s+

`
4s2 + (eθ(

`
4s+2−x) − e2θ−

1
s (x−

`
4s))/(s− se(θ−

1
s)). (3)

Proof. Recall that in this algorithm we had 2 kangaroos placed in the interval and they alternate
their jumps. In this proof we analyze the x steps of the back kangaroo and compute the average
probability that it does not collide with the front kangaroo even though they were both placed
in the same interval. First the back kangaroo needs to catch up to the front one. The number
of steps to do this is on average `/4s. Given that the back kangaroo takes x steps we now have
y = x − `/(4s) steps left on average. To avoid a recorded collision in these remaining y steps we
either have to avoid the trail of the front kangaroo, or hit it after i steps and avoid distinguished
points for the next y− i steps. We assumed the hash function H to be sufficiently random, so the
average probability of avoiding the trail is (1− 1/s) for each step taken and the chance of missing
a distinguished point is (1− θ) in each step. Thus we have the average approximate probability of
avoiding detected collisions as follows

(
1− 1

s

)x− `
4s

+

x− `
4s−1∑
i=0

(
1− 1

s

)i
1

s
(1− θ)x−

`
4s−i−2 .

We can approximate the second part of this equation as follows

x− `
4s−1∑
i=0

(
1− 1

s

)i
1

s
(1− θ)x−

`
4s−i−2 ≈ 1

s

x− `
4s−1∑
i=0

e
−i
s e−θ(x−

`
4s−i−2) =

eθ(
`
4s+2−x)

s

x− `
4s−1∑
i=0

e
−i
s eθi.

This in turn then evaluates to

eθ(
`
4s+2−x)

s

x− `
4s−1∑
i=0

(
eθ−

1
s

)i
=
eθ(

`
4s+2−x)

s
· 1− e(θ−

1
s)(x−

`
4s)

1− e(θ−
1
s)

=
eθ(

`
4s+2−x) − e2θ−

1
s (x−

`
4s)

s− se(θ−
1
s)

.

So indeed we have our average probability of

ε(x) =

(
1− 1

s

)x− `
4s

+
eθ(

`
4s+2−x) − e2θ−

1
s (x−

`
4s)

s− se(θ−
1
s)

≈ e−
x
s+

`
4s2 +

eθ(
`
4s+2−x) − e2θ−

1
s (x−

`
4s)

s− se(θ−
1
s)

.

ut

Note that this equation is only valid for values of x > `
4s , otherwise ε(x) = 1.

We now analyze the situation of using Pollard’s kangaroo algorithm with a precomputation
table. For this we make a hypothesis on the distribution of distinguished points and the number of
points covered by each walk: Let the precomputation table T consist of the first found T different
distinguished points Di = tiP . Let the average walk length be w = α

√
`/T and the average step

size of the kangaroos be s ≈ `/(4w) such that the average distance of a walk is ≈ `/4. Since the
points in T are different their paths are disjoint. They cover on average Tw points. Assume that
these points are uniformly distributed over {P, 2P, . . . , γ`P} for some value of γ. In Section 4 we
will present experiments showing that γ = max

1≤i≤T
ti/`− min

1≤i≤T
ti/` is a good fit.

8 Tanja Lange, Christine van Vredendaal, Marnix Wakker

Theorem 2. Let k̂ lie in an interval of size `. Let the average walk length be w = α
√
`/T and

the average step size of the kangaroos be s ≈ `/(4w). Under the hypothesis made above, T rep-
resents tW points distributed uniformly over {P, 2P, . . . , γ`P} for some value of γ. The average

probability that the Pollard-kangaroo algorithm with precomputation (Section 2.4) does not find k̂
in y independent walks of the algorithm is

ε(x) = e
−α2y
γ . (4)

Proof. Under the hypothesis the probability of the wild kangaroo hitting the trail of one of the
table points’ kangaroos is on average (Tw)/(γ`) = α2/(γw) at each step. Since the walk takes on
average w steps the probability of avoiding a collision is(

1− α2/(γw)
)w ≈ e−α2

γ .

We assume independent walks, so we have that the probability that after y walks we have not
found a collision is

y∏
i=1

e
−α2

γ = e
−α2y
γ .

which is the result we desired. ut

3.3 Further Considerations and Optimizations

Combining Intervals If we have adjacent intervals in the enumeration tree we might combine
these intervals to speed up the search. If they are of the same length then searching the intervals
separately simply means searching twice as long. Combining two intervals in the kangaroo method
reduces the search time by a factor

√
2. When we do this we do have to take the posterior proba-

bilities of the intervals into account. If we simply combine all adjacent intervals in the enumeration
tree and search them in the order of the subinterval with the highest posterior probability then it
might happen that an interval ranked high separately is not searched because it is not part of some
large combined interval. We therefore only combine intervals if they also have subsequent posterior
probabilities. For the precomputation case of the algorithm we also have to take the availability
of tables into account. We only combine intervals if we have a table and step set corresponding to
that newly created interval length.

Restarts We described the general kangaroo algorithm to have the kangaroos continue along
their paths after finding a distinguished point. For the standard rho method [2] show the benefits
of restarting walks after a distinguished point is found. If we do not use a precomputation table
then doing restarts means redoing the initial phase of the two kangaroos catching up to each other
and the error function will decrease at a slower rate. This is only advantageous if the kangaroos
ended up in a loop they cannot get out. If we detect such a loop, the kangaroo(s) can be restarted.
If ` � n the probability of ending in a loop is very small. On the other hand, we do not have
the problem of the initial catching up phase. Therefore we restarted walks if they exceeded 20w
steps. An advantage of using the improved Pollard-kangaroo algorithm without precomputation
tables is that there is a probability of finding the solution of a DLP in an adjacent interval because
the kangaroos naturally venture out in the direction of larger discrete logarithms. This is also an
argument against doing restarts. Even though the current interval was chosen for the good reason
of having the highest posterior probability among those not considered, yet, it is an added benefit
that one might accidentally find a solution in another interval. If the tame kangaroo is started in
interval I1 of size `, but the key was actually in adjacent interval I2, then after a longer initial
catch-up phase there is a probability of collisions. We could estimate this probability with an error
function like we did for I1 to reduce search time, but the longer the kangaroos jump the bigger the
variance gets and the less accurate the error function is going to be. Therefore we do not advise
to include this extra probability into the considerations.

Kangaroos in Side-Channel Attacks 9

Parallelization There are two levels at which the ε-enumeration method can be parallelized: One
level is the underlying kangaroo algorithm using distinguished points; the second level is dividing
the intervals over the processors used, i.e., we could simply place one interval search on each
processor, or we could have all processors search one of the intervals, or use a combination of the
two. Using multiple processors for a single interval only makes sense if the interval is sufficiently
large and many walks are needed (so rarely with precomputation) and if the posterior probability
is significantly higher. If a lot of intervals have a similar probability it might be better to search
them in parallel.

ε-Rank Estimation Now that we have a definition of ε-enumeration we can easily extend it to
estimating ranks of keys that we cannot ε-enumerate in feasible time. To do this we have to adapt
the attack on the device using the key k̂. When discarding keys of a too low probability from
future templates we do store the subkey in the enumeration tree with their probabilities. They are
however not included in new templates, so the corresponding branch of the enumeration tree will
not grow any more. After finishing the measurement we can determine with the error function for
each interval with a higher posterior probability than the one that contains k̂ how many steps we
would (on average) take in this interval. The sum of these quantities is then an estimated lower

bound for the rank of k̂. We can use a similar method to determine an estimated upper bound.

4 Experimental Results

This section presents representative examples of our implementations. We ran our experiments
on a Dell Optiplex 980 using one core of an Intel Core i5 Processor 650 / 3.20GHz. We re-used
parts of the Bernstein/Lange kangaroo C++ code used for [1]. Our adaptations will be posted
at http://www.scarecryptow.org/publications/sckangaroos. For ease of implementation we
used the group F∗p as was used in [1], which uses a “strong” 256-bit prime (strong meaning that
p−1
2 is also prime) and a generator g, which is a large square modulo p. Although in the previous

sections we focussed on elliptic curves, both those and F∗p are cyclic groups and thus these results
hold for both. We set the interval size to ` = 248 and at each run took a random h in the interval
for a new DLP.

For the experiments without precomputation we made use of distinguished points to find the
collision, which were recorded in a vector table that was searched each time a new distinguished

point was found. We chose the probability of landing in a distinguished point to be 2−19 = 25√
`

by

defining a point as distinguished if the least-significant 19 bits in its representation were zero, i.e.,
if the value modulo w = 219 was zero. The step function selected the next step based on the value
modulo 128, the 128 step sizes were taken randomly around

√
`.

Step sets The goal of this paper is not to find the optimal parameters for the kangaroo algorithm.
The choice of step set is however relevant for usability of the error function of Theorem 3. As can
be seen equation 3 only uses the mean of the step set and not its actual values, so it is possible to
create one that will not adhere to the error function at all. Even if we choose the step set randomly
it can contain dependencies and this makes the error function less accurate. We can see this in
the top graph of figure 2.

We did 8192 experiments and saw that the error function in blue is a rather good approxi-
mation for the fraction of unsolved DLPs in red for the first 10 million steps of step set S1 of
the wild kangaroo and from 25 million onward. In between these values we see some unexpected
behavior. It might be that our step set contains some dependencies, e.g., it might be that the
step set contains too many steps in a certain equivalence class; meaning that the probability of
missing the trail is larger than (1− 1/s) per step. We were not able to visually identify what the
problem was. By trying a different seed for the random step set we found S2 which behaved nicely
according to our expectations as can be observed in the bottom graph of figure 2. For concrete
attacks it is advisable to run a few tests to check the quality of the step function.

http://www.scarecryptow.org/publications/sckangaroos

10 Tanja Lange, Christine van Vredendaal, Marnix Wakker

Fig. 2. The theoretic function ε(x) for the kangaroo method without precomputations and the experimen-
tal results using two random step sets S1 and S2 with β ≈ 1. Top: β = 0.978. Bottom: β = 0.971

Kangaroos in Side-Channel Attacks 11

Combining intervals We were able to find similar results for intervals where we combined two
adjacent intervals of length 248 to one of size 249. We saw the same problem of good and bad step
sets. With trying three step sets, we got a step set that had the error function as an upper bound
for the experiments. These graphs confirm that by combining the intervals we can search twice
the keyspace in approximately

√
2 times the steps.

Using precomputation We again searched for DLPs in an interval of length 248. Our 128
step sizes however were now uniformly chosen between 0 and `/4w instead of around β

√
` for

some β. Each DLP h = gy was chosen randomly and each walk starting from it was randomized
in the interval between y − 240 and y + 240. For the precomputation we used a table of size
N = T = 3

√
` = 216. We used the first T distinguished points found as table points and computed

γ = 1.923 as max
1≤i≤T

ti/`− min
1≤i≤T

ti/`, for the T table elements of the form gti . We used an average

walklength of w = 215 such that α = 0.5. Using 2097152 experiments we got the results on the
top of figure 3.

We see that the error function is a good upper bound for the experimental results. We continued
with the same experiment for an interval of length ` = 250. We used a table of T = 104032 ≈ 3

√
`

table points and found γ = 1.853. We used an average step set of w = 216 such that α ≈ 0.630.
Using 2097152 experiments we got the results on the bottom of figure 3. We again see that the
error function is a good approximation for the experiments.
Other parameters than α and γ can influence the performance of the algorithm. The error function
does not reflect information on the step set other than its mean, nor on how often distinguished
points were found but it relies on the hypothesis that the table covers about wT points and these
are uniformly distributed over {P, 2P, . . . , γP}.

Considerations about the step set are even more relevant when preparing the precomputation
table by making N > T walks and selecting for T the T points with the largest number of ancestors
(longest walks leading up to them, distinguished points found with multiplicity).

For the ε-enumeration we suggest to include a parameter σ in the exponent of the error function
ε(y) = eσα

2y/γ that is determined experimentally. After determining the step set and table we can
run the algorithm on different randomly chosen DLPs, much like we did in our experiments, and
determine a value for σ. After this the error function is ready to be used in a security evaluation.

ε-Enumeration The result is that according to our best found results we can ε-enumerate in an
interval of length ` in the steps displayed in table 1.

ε 1.0 · 10−1 1.0 · 10−3 1.0 · 10−5 1.0 · 10−7 1.0 · 10−9

N = T = 0, σ = 1 4.2 ·
√
` 10.8 ·

√
` 17.6 ·

√
` 24.3 ·

√
` 31.0 ·

√
`

N = T = 3
√
`, σ = 1 18 · 3

√
` 54 · 3

√
` 89 · 3

√
` 124 · 3

√
` 160 · 3

√
`

N = T = 3
√
`, σ = 1.12 16 · 3

√
` 48 · 3

√
` 79 · 3

√
` 111 · 3

√
` 142 · 3

√
`

N = 2T = 2 · 3
√
`, σ = 1 5 · 3

√
` 14 · 3

√
` 23 · 3

√
` 32 · 3

√
` 41 · 3

√
`

N = 2T = 2 · 3
√
`, σ = 1.28 4 · 3

√
` 11 · 3

√
` 18 · 3

√
` 25 · 3

√
` 32 · 3

√
`

N = 8T = 8 · 3
√
`, σ = 1 5 · 3

√
` 14 · 3

√
` 23 · 3

√
` 31 · 3

√
` 40 · 3

√
`

N = 8T = 8 · 3
√
`, σ = 1.40 4 · 3

√
` 10 · 3

√
` 16 · 3

√
` 23 · 3

√
` 29 · 3

√
`

Table 1. Required group operations for ε-enumeration

There are a couple of remarks to be made. We took only semi-optimized parameters. What we
mean by this is that we did some experiments to find a reasonable step set, but as the purpose
of our research was not to find the best parameters for Pollard-kangaroo algorithms, we did not
fully optimize the step set. The results might thus be improved with optimal parameters. We
observe that the higher N is relative to T , the fewer group operations are necessary to drop below
the margin of error. Increasing the value of N improves the functionality of the algorithm more

12 Tanja Lange, Christine van Vredendaal, Marnix Wakker

Fig. 3. The theoretic function ε(y) for the kangaroo method with precomputation and the experimental
results using a step set with s ≈ `

4w
. Top: ` = 248. Bottom: ` = 250.

Kangaroos in Side-Channel Attacks 13

than the variables α and γ reflect. This is seen in the experimental values of σ. It increases as N
increases. We also see that increasing N from T to 2T makes a big difference in the required group
operations. The effect of increasing N even further to 8T does not have the same magnitude.

Although even small speed-ups are always nice, we also have to take the time it takes to create
the tables into account. For N = T it took us just over 9 billion group operations and under 19
minutes to create the table. This is equal to 1.4

3
√
`2 multiplications. When we increased N to 2T

it took about 50 minutes and 3.8
3
√
`2 group operations. Finally, when we took N up to 8T it took

approximately 9 hours and 2.5 million walks of in total 161544244922 ≈ 37.6
3
√
`2 group operations.

This is doable for evaluation companies, even if they have to make a lot of tables, but doing many
more might not have enough yield for the time it takes.

We see that we can determine how many group operations we have to do on average for different
degrees of confidence. If we increase the confidence by a factor 100 the constant c in c

√
` or c 3

√
`

increases linearly. This means that if we use the N = 8T precomputation table and we do 170 3
√
`

steps in an interval of length 248 we can 2−128-enumerate it in less than 223.5 group operations.
This is a massive improvement over brute-force enumerating all 248 keys in an interval. The new
ranking method that is induced by such an enumeration is also a much more accurate measure of
the security of a device. Security evaluation labs could more confidently estimate how secure an
implementation is.

5 Comparison and Conclusion

This is the first paper studying key enumeration and rank estimates for public key cryptosystems.
Gopalakrishnan, Thériault, and Yao [7] studied key recovery for ECC if a side-channel attack only
provided some bits of the key. In contrast to our model they assume that the known bits are
absolutely correct and do not discuss the possibility that we might have partial information on a
subkey. If we were to make an enumeration tree of such a result it would solely consist of sections
I and III. Although their assumption makes enumeration a lot easier it is not very realistic. Often
there are too few bits fully recovered to make searching the remaining key space feasible. Using
not only fully recovered bits but also the partial information we can search an interval smartly
and possibly recover the solution to the DLP where [7] could not. Finally, they do not consider
enumeration and rank computation.

5.1 Comparison

One important assumption of the model covered in this paper so far is that we have not only
information about specific subkeys, but also that these keys are adjacent and start from the most
significant bits. This is true for the very common case of implementations using windowing methods
(including signed and sliding) starting from the most significant bits. However, we can adjust our
method to the scenarios considered in [7] as we will now discuss.

The first scenario in their paper is that contiguous bits of the key are revealed. These bits can
be the most significant bits, the least significant bits or be somewhere in the middle. So far we
considered the first case but our model can be easily adapted to the others:

– If the least significant bits are revealed, then our tree would get inverted. Searching section
III would then require a slight adaptation of the algorithms used on it. Searching it with for
instance Pollard kangaroo would require searching in equivalence classes instead of an interval.
This adaptation means the probability of finding our solution ‘accidentally’ in a neighboring
interval becomes zero. Creating tables in the Bernstein/Lange precomputation is still possible;
we would shift each instance of the DLP to the same equivalence class.

– If bits somewhere in the middle are revealed the model would become more complicated. We
would get a bow-shaped model with 2 sections II and III. There are 5 sections; the third
contains known bits, on the second and fourth we have partial information and we have no
information on the remaining sections. Enumerating through the sections III would become
more complicated, though not impossible.

14 Tanja Lange, Christine van Vredendaal, Marnix Wakker

The second scenario [7] poses is that the information is not on any specific bits, but on the square-
and-multiply chain. This is actually no problem for our model. If we suppose the most reliable
information on the chain is on the most significant bits, then the enumeration tree of figure 1 would
become a binary tree. Searching the sections is the same as before. If the most reliable information
on the square and multiply chain is on the middle part of the key or the least significant part the
adaptations are similar to the contiguous bits scenario.

We now present an application that is not mentioned in [7] but is realistic for an ECC scenario.
A common speed up for scalar multiplication using the base point P is to include P ′ = 2mP in the
system parameters, where the group order n is of length 2m, and compute kP as (k0 + 2mk1)P =
k0P + k1P

′. This halves the number of doublings required to compute kP (see Straus [14]) and
reduces the overhead of dummy instructions introduced to perform one addition per doubling.
When such an implementation is attacked, we will know the MSBs of k0 and k1 with much higher
probability than their lower bits. This results in an enumeration tree of six sections: sections I
and IV contain known bits, for sections II and V we have partial information, and we have little
to no information on sections III and VI. Enumeration in such a structure is not straightforward
with the methods we presented so far. If section III is small enough, we can brute-force it and use
ε-enumeration in section VI, but realistically sections III and VI have equal size. To compute the
key we have to adapt the kangaroo algorithms to simultaneously hop intervals and equivalence
classes. This is achieved by algorithms for multidimensional DLPs which have been studied by
Gaudry and Schost in [6]. The running time is O(

√
`1`2) if the section III and VI are intervals of

length `1 and `2. An improved version of this algorithm was presented by Galbraith and Ruprai
in [5]. We have not devised an error function for these algorithms, but expect results similar to
Theorems 1 and 2.

5.2 Conclusion

In summary, we showed that kangaroos can be very useful in making SCA on ECC more efficient:

– Once section III is below 80 bits and section II not too wide there is no point in letting the lab
guy do further measurements since a standard PC can casually do the 240 group operations
to break the DLP.

– In cases where measurements cannot be pushed further by physical limitations (restricted
number of measurements, limits on what templates can be measured) our improvements allow
retrieving the key in some situations in which previous methods could not.

– Theoretical kangaroos can be used to estimate the rank of the key in white-box scenarios
to determine whether a sufficiently motivated attacker could mount the attack to break the
system and we present error functions to use in ε-enumeration.

References

1. Daniel J. Bernstein and Tanja Lange. Computing small discrete logarithms faster. In Steven D.
Galbraith and Mridul Nandi, editors, INDOCRYPT, volume 7668 of Lecture Notes in Computer
Science, pages 317–338. Springer, 2012.

2. Daniel J. Bernstein, Tanja Lange, and Peter Schwabe. On the correct use of the negation map in
the pollard rho method. In Dario Catalano, Nelly Fazio, Rosario Gennaro, and Antonio Nicolosi,
editors, Public Key Cryptography, volume 6571 of Lecture Notes in Computer Science, pages 128–146.
Springer, 2011.

3. Suresh Chari, Josyula R. Rao, and Pankaj Rohatgi. Template attacks. In Burton S. Kaliski Jr., Çetin
Kaya Koç, and Christof Paar, editors, CHES, volume 2523 of Lecture Notes in Computer Science,
pages 13–28. Springer, 2002.

4. Steven D. Galbraith, John M. Pollard, and Raminder S. Ruprai. Computing discrete logarithms in
an interval. Math. Comput., 82(282), 2013.

5. Steven D. Galbraith and Raminder S. Ruprai. An improvement to the Gaudry-Schost algorithm for
multidimensional discrete logarithm problems. In Matthew G. Parker, editor, IMA Int. Conf., volume
5921 of Lecture Notes in Computer Science, pages 368–382. Springer, 2009.

Kangaroos in Side-Channel Attacks 15

6. Pierrick Gaudry and Éric Schost. A low-memory parallel version of Matsuo, Chao, and Tsujii’s
algorithm. In Duncan A. Buell, editor, ANTS, volume 3076 of Lecture Notes in Computer Science,
pages 208–222. Springer, 2004.

7. K. Gopalakrishnan, Nicolas Thériault, and Chui Zhi Yao. Solving discrete logarithms from partial
knowledge of the key. In K. Srinathan, C. Pandu Rangan, and Moti Yung, editors, INDOCRYPT,
volume 4859 of Lecture Notes in Computer Science, pages 224–237. Springer, 2007.

8. Darrel Hankerson, Alfred J. Menezes, and Scott Vanstone. Guide to Elliptic Curve Cryptography.
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2003.

9. Jing Pan, Jasper G. J. van Woudenberg, Jerry den Hartog, and Marc F. Witteman. Improving DPA by
peak distribution analysis. In Alex Biryukov, Guang Gong, and Douglas R. Stinson, editors, Selected
Areas in Cryptography, volume 6544 of Lecture Notes in Computer Science, pages 241–261. Springer,
2010.

10. John M. Pollard. Monte Carlo methods for index computation (mod p). Mathematics of Computation,
32:918–924, 1978.

11. John M. Pollard. Kangaroos, monopoly and discrete logarithms. J. Cryptology, 13(4):437–447, 2000.
12. Daniel Shanks. Class number, a theory of factorization, and genera. In Donald J. Lewis, editor, 1969

Number Theory Institute, volume 20 of Proceedings of Symposia in Pure Mathematics, pages 415–440,
Providence, Rhode Island, 1971. American Mathematical Society.

13. Andreas Stein and Edlyn Teske. The parallelized Pollard kangaroo method in real quadratic function
fields. Math. Comput., 71(238):793–814, 2002.

14. Ernst G. Straus. Addition chains of vectors (problem 5125). American Mathematical Monthly, 70:806–
808, 1964. URL: http://cr.yp.to/bib/entries.html#1964/straus.

15. Paul C. van Oorschot and Michael J. Wiener. Parallel collision search with cryptanalytic applications.
J. Cryptology, 12(1):1–28, 1999.

16. Nicolas Veyrat-Charvillon, Benôıt Gérard, Mathieu Renauld, and François-Xavier Standaert. An
optimal key enumeration algorithm and its application to side-channel attacks. In Lars R. Knudsen
and Huapeng Wu, editors, Selected Areas in Cryptography, volume 7707 of Lecture Notes in Computer
Science, pages 390–406. Springer, 2012.

17. Nicolas Veyrat-Charvillon, Benôıt Gérard, and François-Xavier Standaert. Security evaluations be-
yond computing power. In Thomas Johansson and Phong Q. Nguyen, editors, EUROCRYPT, volume
7881 of Lecture Notes in Computer Science, pages 126–141. Springer, 2013.

	Kangaroos in Side-Channel Attacks
	Introduction
	Background
	A Short History of Discrete Logarithm Algorithms
	Mathematical Aspects of Kangaroos
	Pollard's Kangaroo Method
	Pollard's kangaroo method with precomputation

	-Enumeration
	The Attack Model
	Enumeration in an Interval
	Further Considerations and Optimizations
	Combining Intervals
	Restarts
	Parallelization
	-Rank Estimation

	Experimental Results
	Step sets
	Combining intervals
	Using precomputation
	-Enumeration

	Comparison and Conclusion
	Comparison
	Conclusion

