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Abstract. We propose the first practical attribute-based signature (ABS) scheme with attribute pri-
vacy without pairings in the random oracle model. Our strategy is in the Fiat-Shamir paradigm; we
first provide a concrete construction of a Σ-protocol of boolean proof, which is a generalization of the
well-known Σ-protocol of OR-proof, so that it can treat any monotone boolean formula instead of a
single OR-gate. Then, we apply the Fiat-Shamir transformation to our Σ-protocol of boolean proof
and obtain a non-interactive witness-indistinguishable proof of knowledge system (NIWIPoK) which
has a knowledge extractor in the random oracle model. Finally, by combining our NIWIPoK with a
credential bundle scheme of the Fiat-Shamir signature, we obtain an attribute-based signature scheme
(ABS) which possesses the property of attribute privacy. The series of constructions are obtained from
a given Σ-protocol and can be attained without pairings.
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1 Introduction

Since the invention of digital signature scheme by Diffie and Hellman in 1976, there have been
significant evolutions in the area and many functional variants have been proposed. A distinguished
variant is attribute-based signature (ABS), which has been developed since 2008 [16, 18, 19]. In ABS
scheme, a message is associated with an access policy that limits signers by their attributes which
the signers possess. The access policy is described with a boolean formula over those attributes. A
signer with a set of authorized attributes can make a legitimate signature on the message only when
his attributes satisfy the access policy. Then, a verifier can check whether the pair of the message
and the signature is valid or not concerning the access policy. If the access policy limits accepting
attributes to a single identity, ABS coincides with identity-based signature (IBS) [23]. In that sense,
ABS is a natural extension of IBS.

One remarkable property of ABS is attribute privacy for signers. In the case that a verifier knows
nothing about prover’s attributes except that the prover’s attributes satisfy the access policy of the
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signed message, the ABS scheme is called to have attribute privacy. Some ABS scheme ([16]) did
not care attribute privacy but it is considered desirable for ABS to possess it.

We will use in this paper the Fiat-Shamir transformation [13] to obtain such an ABS scheme.
The Fiat-Shamir transformation is now an established technique in interactive proof theory and
cryptography. It transforms a public-coin 3-move interactive proof system into a non-interactive
zero-knowledge proof system (NIZK) by replacing the second message with the hash value of the
first message. If the initial interactive proof system is an identification scheme, then the resulting
NIZK is a digital signature scheme.

One of such interactive proof systems is the Σ-protocol [9, 11]. It allows a prover, in a 3-move,
to convince a verifier that the prover knows a witness of a statement. That is, the Σ-protocol is a
public-coin 3-move interactive proof of knowledge system. When we apply the Fiat-Shamir trans-
formation to the Σ-protocol, we obtain a zero-knowledge proof of knowledge system (NIZKPoK)
whose extractor is in the random oracle model. An extended notion of the original Σ-protocol is
the OR-proof [10, 11]. It allows a prover to convince a verifier that the prover knows one (or both)
of witnesses of two statement hiding which witness he knows.

In this paper, we will provide an attribute-based signature scheme via the Fiat-Shamir paradigm.
First, we look into the protocol introduced by Cramer, Damg̊ard and Schoenmakers [10]4 in CRYPTO
’94. Given a boolean formula f , the protocol provides a witness hiding protocol [12]. That is, in f ,
a value ‘1’ (True) is substituted for boolean variables for which a prover has the corresponding
witnesses; a value ‘0’ (False) is substituted for the remaining boolean variables. Then the prover
in the protocol can show to a verifier that he knows a set of witnesses that satisfies the boolean
formula f , but even a cheating verifier will not learn enough to be able to compute the prover’s
witnesses. We call the notion a boolean proof. In [10], the OR-proof is deduced as a special case
of the boolean proof. For the boolean proof we will provide a concrete protocol, Σf , from a given
Σ-protocol Σ and provide a proof that Σf is also a Σ-protocol.

Then we will proceed into the Fiat-Shamir paradigm. We apply the Fiat-Shamir transformation
to our Σ-protocol Σf , which is a boolean proof, and obtain a NIZKPoK system and hence a non-
interactive witness-indistinguishable proof of knowledge system (NIWIPoK) which has a knowledge
extractor in the random oracle model. Finally, by combining our NIWIPoK with a credential bundle
scheme of the Fiat-Shamir signature, we obtain an attribute-based signature scheme (ABS) which
possesses the property of attribute privacy. The series of constructions are obtained from a given
Σ-protocol. Hence we find that our ABS scheme can be constructed without pairing maps ([8])
(pairings, for short) with the expense that its security proof is in the random oracle model. As a
result, our ABS scheme can be implemented with more efficiency than previous ABS schemes.

1.1 Our Construction Idea of a Concrete Boolean Proof

To construct the above concrete boolean proof from a given Σ-protocol and a boolean formula f ,
we will look into the technique employed in the OR-proof [10] and expand it so that it can treat
any monotone (that is, no negation) boolean formula, as follows.

First express the boolean formula f as a binary tree Tf . That is, we put leaf nodes each of which
corresponds to each term in f . We connect two leaf nodes by an ∧-node or an ∨-node according to
an AND-gate or an OR-gate that lies between corresponding terms. Then we connect the resulting
nodes by an ∧-node or an ∨-node in the same way, until we reach to the only ∧-node or ∨-node that
is called the root node. A verification equation of the Σ-protocol Σ is assigned to each leaf node.
Suppose that a challenge string Cha of Σ is given. Assign the string Cha to the root node. If the
root node is an AND-gate, assign the same string Cha to two children. Else if the root node is an

4 In the preliminary version [3] of this e-print the authors could not refer to this previous work.
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OR-gate, divide Cha into two random strings ChaL and ChaR which satisfy Cha = ChaL⊕ChaR,
and assign ChaL and ChaR to the left and right children, respectively. Here ⊕ means a bitwise
exclusive-OR operation. Then continue to apply this rule at each height, step by step, until we
reach to each leaf node. Then, basically, the OR-proof technique assures that we can either honestly
execute the Σ-protocol Σ or execute Σ in a simulated way. Only when a set of witnesses each
of which gives the value ‘1’ to satisfies the binary tree the above procedure succeeds in satisfying
verification equations for all leaf nodes.

1.2 Our Contributions

Our first contribution is to provide a concrete protocol of boolean proof, which is comparable with
the original protocol [10]. That is, given a (monotone) boolean formula f and a Σ-protocol Σ, we
construct a protocol Σf in a recursive form that is suitable for implementation. Then we show that
Σf is certainly a Σ-protocol. Especially we show that Σf is a protocol to prove knowledge of a
witness set that satisfies f .

And our second contribution is to provide an attribute-based signature scheme (ABS) without
pairings. More precisely, As a Σ-protocol Σ can be instantiated without pairings (for example, the
case of Schnorr scheme [22, 6]), our construction can produce a practical boolean proof Σf that
is a Σ-protocol, and hence, ABS without pairings. We note here that our ABS attains attribute
privacy. We also note, as negative points, that security of our ABS can be proved in the random
oracle model. Moreover, the reduction of advantages of adversaries is loose.

1.3 Related Work and Technical Comparison

The Σ-protocol is formalized in an abstract, present form by [9]. The Σ-protocol of OR-proof had
been developed in [10] (see also [11]). The Σ-protocol of boolean proof had also been given in [10],
but not been given as a concrete form.

At a high level, our ABS scheme is captured as a combination of a credential bundle scheme
[19] with our NIWIPoK, whose extractor is in the random oracle model. This construction can be
compared with the generic construction of the ABS scheme by Maji et al. [19]. They started with
a credential bundle scheme. Then they employed a NIWIPoK in the standard model by Groth and
Sahai [15] to prove the knowledge of a credential bundle which satisfies a given access formula. Hence
the difference between our construction and their construction becomes apparent. In our ABS, a
knowledge extractor is constructed in the random oracle model by using rewinding technique. In
contrast, in their ABS, a knowledge extractor is constructed in the standard model.

From a practical point of view, it is notable that attribute-based cryptographic primitives origi-
nated in [21, 14] and developed so far employ linear secret sharing schemes (LSSS) ([4]) and pairings
([8]) in non-interactive setting (except lattice constructions which are less efficient). In contrast, our
approach for ABS is via the interactive technique.

1.4 Efficiency Comparison

The most efficient, previously known ABS scheme is the one by Okamoto and Takashima (OT11)
[20] that is in the standard model. We compare efficiency of our ABS with their scheme in the length
of a signature as well as underlying assumption, in the discrete-logarithm setting as follows.

A prime of bit length λ (the security parameter) is denoted by p and we fix a cyclic group Gp

of order p. We assume that an element of Gp is represented by 2λ bits. Let l denote the number
of leaf nodes in the binary tree Tf . DLIN and CR hash mean the Decisional Linear assumption for
pairing group [20] and the collision resistance of an employed hash function, respectively.
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Then the lengths of a signature of the scheme OT11 and our ABS are as in the Table 1. OT11
scheme has advantages in the security-proof model and boolean formula, whereas our ABS realizes
shorter length of signature.

Table 1. Efficiency Comparison.

Scheme OT11[20] Our ABS

Len. of Sig. (bit) (2λ)(9l + 11) (2λ)l + (λ)(4l − 1)
Sec.-Proof Model Standard Random Oracle
Assumption DLIN ∧ CR hash DLog ∧ CR hash
Boolean Formula Non-monotone Monotone
Adaptive Target Yes Yes
Attribute Privacy Yes Yes

1.5 Organization of this Paper

In Section 2, we prepare for the required tools and notions. In Section 3, we summarize a definition
of a boolean proof. In Section 4, we describe the concrete construction of our boolean proof, Σf .
In Section 5, we apply the Fiat-Shamir transformation to our Σf to obtain our NIWIPoK system
In Section 6, by combining the NIWIPoK system FS(Σf ) with a credential bundle scheme of the
Fiat-Shamir signature FS(Σ), we obtain our ABS scheme. In Section 7, we conclude our work in
this paper. In Appendix A, we show how concretely our ABS is instantiated in discrete-logarithm
setting and RSA setting. In Appendix B, we summarize the notion and definition of attribute-based
identification (ABID) scheme. In Appendix C, by combining our Σf with a credential bundle scheme
of the Fiat-Shamir signature FS(Σ), we obtain our ABID scheme.

2 Preliminaries

The security parameter is denoted by λ. Bit length of a string x is denoted as |x|. When an algorithm
A with input a outputs z, we denote it as z ← A(a), or, because of space limitation, A(a) → z.
When a probabilistic polynomial-time (PPT, for short) algorithm A with a random tape R and
input a outputs z, we denote it as z ← A(a;R) When A with input a and B with input b interact
with each other and B outputs z, we denote it as z ← 〈A(a), B(b)〉. When A has oracle-access to
O, we denote it as AO. When A has concurrent oracle-access to n oracles O1, . . . ,On, we denote it
as AOi|

n
i=1 . Here “concurrent” means that A accesses to oracles in arbitrarily interleaved order of

messages. We denote a concatenation of a string a with a string b as a ‖ b. The expression a
?
= b

returns a value 1 (True) when a = b and 0 (False) otherwise. The expression a
?
∈ S returns a value

1 when a ∈ S and 0 otherwise. A probability of an event E is denoted by Pr[E]. A probability of an
event E on condition that events E1, . . . ,Em occur in this order is denoted as Pr[E1, . . . ,Em; E].

2.1 Language and Proof of Knowledge [5, 10, 11]

Language Let R = {(x,w)} ⊂ {1, 0}∗×{1, 0}∗ be a binary relation. We say that R is polynomially
bounded if there exists a polynomial poly such that |w| ≤ poly(|x|) for all (x,w) ∈ R. We assume
that R is polynomially bounded. If (x,w) ∈ R then we call x a statement and w a witness for
x. We say that R is an NP relation if it is polynomially bounded and, in addition, there exists a
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polynomial-time algorithm for deciding membership in R. Then a language for a NP relation R is
defined as:

LR
def
= {x ∈ {1, 0}∗;∃w ∈ {1, 0}∗, (x,w) ∈ R}.

We introduce a relation-function R(·, ·) associated with the relation R by:

R(·, ·) : {1, 0}∗ × {1, 0}∗ → {1, 0},
(x,w) 7→ 1 if (x,w) ∈ R, 0 otherwise.

Proof of Knowledge A proof of knowledge system (PoK for short) Π = (P,V) for a language LR
is a protocol between interactive PPT algorithms P5 and V on initial input (x,w) ∈ R for P and x
for V, where V outputs 1 (accept) or 0 (reject) after finite rounds of interaction. P is called a prover
and V is called a verifier. Π must possess the following two properties.
Completeness. For any statement x ∈ LR and for any witness w such that (x,w) ∈ R, P with the
witness w can make V accept for the statement x with probability 1:

Pr[〈P(x,w),V(x)〉 = 1] = 1.

Knowledge Soundness. There are an algorithm KE called a knowledge extractor, a function κ :
{1, 0}∗ → [1, 0] called a knowledge error function and a constant c > 0 that satisfy the following:
If there exists a PPT algorithm A that satisfies p(x) := Pr[1← 〈A(x),V(x)〉] > κ(x), then KE(x),
employingA(x) as a subroutine that allows rewinding, outputs a witness w which satisfies (x,w) ∈ R
within an expected number of steps bounded by:

|x|c

p(x)− κ(x)
.

Non-interactive Witness-Indistinguishable Proof of Knowledge [15] A non-interactive
witness-indistinguishable proof of knowledge system (NIWIPoK, for short) Π = (K,P,V) for a
language LR is a protocol, where a PPT algorithm K, on input λ, outputs crs called a common
reference string ; a PPT algorithm P, on input (x,w) ∈ R, outputs π called a proof ; and a PPT
algorithm V , on input (x, π), outputs 1 (accept) or 0 (reject). Π must possess the following three
properties.
Completeness. For any statement x ∈ LR and for any witness w such that (x,w) ∈ R, P with the
witness w can make V accept on the statement x with probability 1:

Pr[π ← P(x,w) : V(x, π) = 1] = 1.

Knowledge Soundness. There are an algorithm KE called a knowledge extractor, a function κ :
{1, 0}∗ → [1, 0] called a knowledge error function and a constant c > 0 that satisfy the following:
If there exists a PPT algorithm A that satisfies p(x) := Pr[crs ← K(λ), π ← A(crs) : V(x, π) =
1] > κ(x), then KE(x), employing A(x) as a subroutine that allows rewinding, outputs a witness w
which satisfies (x,w) ∈ R within an expected number of steps bounded by: |x|c/(p(x)− κ(x)).
Witness-Indistinguishability. There is a polynomial-time algorithm S called a simulator, such that
for any non-uniform polynomial-time algorithm A we have

Pr[crs← K(λ) : A(crs) = 1] ≈Pr[crs← S(λ) : A(crs) = 1]

(computationally indistinguishable)

5 In the general theory of interactive proof a prover is assumed to have unbounded computational power, but in this
paper we assume that a prover is PPT.
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and for any unbounded algorithm B, we have

Pr[crs← S(λ), (x,w0, w1)← A(crs), π ← P(crs, x, w0) : A(π) = 1]

=Pr[crs← S(λ), (x,w0, w1)← A(crs), π ← P(crs, x, w1) : A(π) = 1]

where
(
(x,w0) ∈ R ∧ (x,w1) ∈ R

)
∨
(
(x,w0) /∈ R ∧ (x,w1) /∈ R

)
holds.

Σ-protocol [9, 11] A Σ-protocol on a relation R is a public coin 3-move protocol between interac-
tive PPT algorithms P and V on initial input (x,w) ∈ R for P and x for V. P sends the first message
called a commitment Cmt, then V sends a random bit string called a challenge Cha, and P answers
with a third message called a response Res. Then V applies a decision test on (x,Cmt,Cha,Res)
to return accept (1) or reject (0). If V accepts, then the triple (Cmt,Cha,Res) is said to be an
accepting conversation. Cha is chosen uniformly at random from ChaSp(λ) := {1, 0}l(λ) with l(·)
being a super-log function.

This protocol is written by a PPT algorithm Σ as follows. Cmt ← Σ1(x,w): the process of
selecting the first message Cmt according to the protocol Σ on input (x,w) ∈ R. Similarly we
denote Cha← Σ2(λ), Res← Σ3(x,w,Cmt,Cha) and b← Σvrfy(x,Cmt,Cha,Res).

Σ-protocol must possess the following three properties.

Completeness. A prover P with a witness w can make V accept with probability 1.

Special Soundness. Any PPT algorithm P∗ without any witness, a cheating prover, can only re-
spond for one possible challenge Cha. In other words, there is a PPT algorithm called a knowledge
extractor, ΣKE, which, given a statement x and using P∗ as a subroutine, can compute a witness w
satisfying (x,w) ∈ R with at most a negligible error probability, from two accepting conversations
of the form (Cmt,Cha,Res) and (Cmt,Cha′,Res′) with Cha 6= Cha′.

Honest Verifier Zero-Knowledge. Given a statement x and a random challenge Cha ← Σ2(λ),
we can produce in polynomial-time, without knowing the witness w, an accepting conversation
(Cmt,Cha,Res) whose distribution is the same as the real accepting conversation. In other words,
there is a PPT algorithm called a simulator, Σsim, such that (Cmt,Res)← Σsim(x,Cha).

Any Σ-protocol is known to be a proof of knowledge system ([11]).

We will use in this paper a property called unique answer property [7] that for legitimately
produced commitment Cmt and challenge Cha, there is one and only one response w′ that is
accepted by a verifier. Known Σ-protocols such as the Schnorr protocol and the Guillou-Quisquater
protocol [22, 6] possess the unique answer property. Further, we will assume that for such a unique
response w′ there is one and only one statement x′ ∈ LR (that is, (x′, w′) ∈ R) and both a prover
and a verifier can compute, in polynomial-time, such an x′ from x, Cmt and Cha. We denote the
algorithm as ΣstmtRes:

x′ ← ΣstmtRes(x,Cmt,Cha)

s.t. ∃1w′, (Cmt,Cha, w′) is an accepting conversation, (x′, w′) ∈ R.

Known Σ-protocols [22, 6] also possess this unique statement property (see Appendix A).

The OR-proof [11] Suppose that a Σ-protocol Σ on a relation R is given. Consider the following
relation for a boolean formula f(X1, X2) = X1 ∨X2.

ROR ={(x = (x0, x1), w = (w0, w1)) ∈ {1, 0}∗ × {1, 0}∗;
R(x0, w0) ∨R(x1, w1) = 1}.
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Then we construct a new protocol, ΣOR, on a relation ROR as follows. For an explanation, sup-
pose (x0, w0) ∈ R holds. P computes Cmt0 ← Σ1(x0, w),Cha1 ← Σ2(λ), (Cmt1,Res1) ←
Σsim(x1,Cha1) and sends (Cmt0,Cmt1) to V. Then V sends Cha ← Σ2(λ) to P. Then, P com-
putes Cha0 := Cha⊕Cha1,Res0 ← Σ3(x0, w0,Cmt0,Cha0) answers to V with (Cha0,Cha1) and
(Res0,Res1). Here ⊕ denotes a bitwise exclusive-OR operation. Then both (Cmt0,Cha0,Res0)
and (Cmt1,Cha1,Res1) are accepting conversations and have the same distribution as real ac-
cepting conversations. This protocol ΣOR can also be proved to be a Σ-protocol, and is called the
OR-proof.

The Fiat-Shamir transformation [1] Employing a cryptographic hash function with colli-
sion resistance, Hashµ(·) : {1, 0}∗ → {1, 0}l(λ), a Σ-protocol Σ can be transformed into a non-
interactive zero-knowledge proof of knowledge system (NIZKPoK) and hence a non-interactive
witness-indistinguishable proof of knowledge system (NIWIPoK), with its knowledge extractor is in
the random oracle model. If a Σ-protocol Σ is an identification scheme, then the resulting scheme is
a digital signature scheme. The transformation is described as follows. (Here, a message m is taken
as an empty string in the case of a NIWIPoK.) Given a message m ∈ {1, 0}∗, execute: a← Σ1(x,w),
c ← Hashµ(a ‖ m), z ← Σ3(x,w, a, c). Then σ := (a, z) is a signature on m. We denote the above
signing algorithm as FS(Σ)sign(x,w,m)→ (a, z) =: σ. The verification algorithm FS(Σ)vrfy(x,m, σ)
is given as follows: c← Hashµ(a ‖ m), Return b← Σvrfy(x, a, c, z).

The signature scheme FS(Σ) = (R,FS(Σ)sign,FS(Σ)vrfy) can be proved, in the random oracle
model, to be secure in the game of existential unforgeability against chosen-message attacks if and
only if the underlying Σ-protocol Σ is secure against passive attacks [1]. More precisely, let qH
denote the maximum number of hash queries issued by the adversary on FS(Σ). Then, for any PPT
algorithm F , there exists a PPT algorithm B which satisfies the following inequality (neg(·) means
a negligible function).

Adveuf-cma
F ,FS(Σ)(λ) ≤ qHAdvpa

B,Σ(λ) + neg(λ).

2.2 Access Structure [14]

Let U = {1, . . . , u} be an attribute universe. We must distinguish two cases: the case that U is small
(that is, |U| = u is bounded by a polynomial in λ) and the case that U is large (that is, u is not
necessarily bounded). We assume the small case unless we state the large case explicitly.

Let f = f(Xi1 , . . . , Xia) be a boolean formula over boolean variables U = {X1, . . . , Xu}. That
is, variables Xi1 , . . . , Xia are connected by boolean connectives; AND-gate (∧) and OR-gate (∨).
For example, f = Xi1 ∧ ((Xi2 ∧Xi3) ∨Xi4) for some i1, i2, i3, i4, 1 ≤ i1 < i2 < i3 < i4 ≤ u. Note
that there is a bijective map between boolean variables and attributes:

ψ : U → U , ψ(Xi)
def
= i.

For f(Xi1 , . . . , Xia), we denote the set of indices (that is, attributes) {i1, . . . , ia} by Att(f). Hereafter
we use the symbol ij to mean the index of a boolean variable that is the j-th argument of f . We
note the arity of f as arity(f).

Suppose that we are given an access policy as a boolean formula f . For S ∈ 2U , we evaluate the
boolean value of f at S as follows:

f(S)
def
= f

(
Xij ← [ψ(Xij )

?
∈ S]; j = 1, . . . , a

)
∈ {1, 0}.
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Under this definition, a boolean formula f can be seen as a map: f : 2U → {1, 0}. We call a boolean
formula f with this map an access formula over U .

In this paper, we do not consider NOT-gate (¬). In other words, we only consider monotone
access formulas6.

Access Tree We consider in this paper a finite binary tree T , that is, a tree that has finite number
of nodes and each non-leaf node has two branches. For a tree T , let Nd(T ), rt(T ), Lf(T ), iNd(T ) and
tNd(T ) denote the set of all nodes, the root node, the set of all leaf nodes, the set of all inner nodes
(that is, all nodes excluding leaf nodes) and the set of all tree-nodes (that is, all nodes excluding
the root node) in T , respectively. An access formula f can be represented by a finite binary tree
Tf . Each inner node represents an operator, ∧-gate or ∨-gate, in f . Each leaf node corresponds to
a term Xi (not a variable Xi) in f in one-to-one way. An attribute map i(·) is defined as:

i(·) : Lf(T )→ U , i(lf) def
= (the attribute that corresponds to lf through ψ).

If T is of height greater than 0, T has two subtrees whose root nodes are two children of rt(T ).
We denote the two subtrees by Lsub(T ) and Rsub(T ), which mean the left subtree and the right
subtree, respectively.

2.3 Credential Bundle Scheme [19]

Credential bundle is an extended notion of digital signature. Suppose that we are given a digital sig-
nature scheme (KG,Sign,Vrfy). We construct a credential bundle scheme (CB.KG,CB.Sign,CB.Vrfy)
as follows. CB.KG takes as input the security parameter λ. CB.KG outputs a verification key PK
and a signing key SK. Then CB.Sign takes as input PK, SK, a string τ called a tag and a set of
messages (mi)i=1,...,n. The tag τ can be chosen as a publicly known string unique for each user such
as an e-mail address [19]. CB.Sign executes Sign on each tagged message (τ ‖ mi), i = 1, . . . , n and
outputs signatures (σi)i=1,...,n. CB.Vrfy takes as input PK, τ and (mi, σi)i=1,...,n. CB.Vrfy executes
Vrfy on each tagged message and signature ((τ ‖ mi), σi), i = 1, . . . , n. CB.Vrfy returns 1 (valid) if
and only if Vrfy returns 1 for all i, i = 1, . . . , n.

2.4 Pseudorandom Function Family [17]

A pseudorandom function family, {PRF k}k∈PRFkeysp(λ), is a function family in which each function
PRF k : {1, 0}∗ → {1, 0}∗ is an efficiently-computable function that looks random to any polynomial-
time distinguisher, where k is called a key and PRFkeysp(λ) is called a key space. (See more details
in [17].)

2.5 Attribute-Based Signature Scheme [20]

An attribute-based signature scheme, ABS, consists of four PPT algorithms: (Setup, KG, Sign, Vrfy).
Setup(λ,U) → (PK,MSK). Setup takes as input the security parameter λ and an attribute
universe U . It outputs a public key PK and a master secret key MSK.
KG(PK,MSK, τ, S) → SKS. A key-generation algorithm KG takes as input the public key PK,
the master secret key MSK, a tag τ , and an attribute set S ⊂ U . It outputs a signing key SKS

corresponding to S.

6 This limitation can be removed by adding negation attributes to U for each attribute in the original U (but as a
result, the size |U| doubles).

8



Sign(PK,SKS , (m, f)) → σ. A signing algorithm Sign takes as input a public key PK, a private
secret key SKS corresponding to an attribute set S, a pair (m, f) of a message ∈ {1, 0}∗ and an
access formula. It outputs a signature σ.

Vrfy(PK, (m, f), σ). A verification algorithm Vrfy takes as input a public key PK, a pair (m, f)
of a message and an access formula, and a signature σ. It outputs a decision 1 or 0. When it is 1,
we say that ((m, f), σ) is valid. When it is 0, we say that ((m, f), σ) is invalid. We demand cor-
rectness of ABS that for any λ, any τ , and if f(S) = 1, then Pr[(PK,MSK)← Setup(λ,U),SKS ←
KG(PK,MSK, τ, S), σ ← Sign(PK,SKS , (m, f)), b← Vrfy(PK, (m, f), σ) : b = 1] = 1.

Chosen-Message Attack on ABS and Security An adversary F ’s objective is to make an
existential forgery. F tries to make a forgery ((m∗, f∗), σ∗) of a message, a target access policy
and a signature. The following experiment Exprmteuf-cma

F ,ABS (λ,U) of a forger F defines the game of
existential unforgeability against chosen-message attack on ABS.

Exprmteuf-cma
F ,ABS (λ,U) :

(PK,MSK)← Setup(λ,U)

((m∗, f∗), σ∗)← FKG(PK,MSK,·,·),SIGN (PK,SK·,(·,·))(PK)

If Vrfy(PK, (m∗, f∗), σ∗) = 1 then Return Win

else Return Lose

In the experiment, F issues key-extraction queries to its key-generation oracle KG and signing queries
to its signing oracle SIGN . Giving a tag τ and an attribute set Si, F queriesKG(PK,MSK, ·, ·) for the
secret key SKSi . In addition, giving an attribute set Sj and a pair (m, f) of a message and an access
formula, F queries SIGN (PK,SK·, (·, ·)) for a signature σ that satisfies Vrfy(PK, (m, f), σ) = 1
when f(Sj) = 1.

The access formula f∗ declared by F is called a target access formula. Here we consider the
adaptive target in the sense that F is allowed to choose f∗ after seeing PK and issuing some
key-extraction queries and signing queries. Two restrictions are imposed on F concerning f∗. In
key-extraction queries, Si that satisfies f∗(Si) = 1 was never queried. In signing queries, (m∗, f∗)
was never queried. The number of key-extraction queries and the number of signing queries are at
most qk and qs in total, respectively, which are bounded by a polynomial in λ.

The advantage of F over ABS in the game of existential unforgeability against chosen-message
attack is defined as

Adveuf-cma
F ,ABS (λ)

def
= Pr[Exprmteuf-cma

F ,ABS (λ,U) returns Win].

ABS is called secure in the game of existential unforgeability against chosen-message attacks if, for
any PPT F , Adveuf-cma

F ,ABS (λ) is negligible in λ.
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Attribute Privacy of ABS Consider the following experiment Exprmtatt-prvA,ABS (λ,U).

Exprmtatt-prvA,ABS (λ,U) :

(PK,MSK)← Setup(λ,U), (τ∗, S0, S1, f
∗)← A(PK)

s.t. (f∗(S0) = f∗(S1) = 1) ∨ ((f∗(S0) = f∗(S1) = 0)

SKS0 ← KG(PK,MSK, τ∗, S0), SKS1 ← KG(PK,MSK, τ∗, S1)

b← {1, 0}, b̂← ASIGN (PK,SKSb ,·,·)(PK,SKS0 , SKS1)

If b = b̂ Return Win else Return Lose

We say that ABS has attribute privacy if, for any unbounded algorithm A, the following advantage
of A is 0.

Advatt-prv
A,ABS (λ)

def
= |Pr[Exprmtatt-prvA,ABS (λ,U) returns Win]− 1/2|.

3 Definition of Boolean Proof

In this section, we revisit the notion of a public coin interactive proof of knowledge system for
the language LRf introduced by Cramer, Damg̊ard and Schoenmakers [10], which we call a boolean
proof. Then we restate the definitions for the sake of clarity.

Let R be a binary relation. Let f(Xi1 , . . . , Xia) be a boolean formula over boolean variables
U = {X1, . . . , Xu}.

Definition 1 ([10], Rewritten Form) Given R and f , we define a new relation Rf by:

Rf
def
= {(x = (xi1 , . . . , xia), w = (wi1 , . . . , wia) ∈ {1, 0}∗ × {1, 0}∗;

f(R(xi1 , wi1), . . . , R(xia , wia)) = 1},

where R(·, ·) denotes the relation-function associated with R, which returns 1 or 0.

Note that, if R is a NP relation, then Rf is a NP relation because we have assumed that a, the
arity of f , is bounded by a polynomial in λ. Note also that Rf is a generalization of the relation
ROR.

Then the corresponding language for the NP relation Rf is given as follows.

LRf = {x ∈ {1, 0}∗;∃w, (x,w) ∈ Rf}.

Finally, we achieves the following definition.

Definition 2 A boolean proof is a public coin interactive proof of knowledge system for the language
LRf .

We note that a knowledge extractor must be constructed.

4 Our Construction of Boolean Proof

In this section, we construct a proof system Σf from a given Σ-protocol Σ and a boolean formula
f . Our Σf is proved to be a Σ-protocol. Also, our Σf is proved to be a boolean proof for LRf .
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P(x := (xij )1≤j≤arity(f), w := (wij )1≤j≤arity(f), f) : V(x, f):
Initialize inner state Initialize inner state

Σeval
f (Tf , S)→ (vnd)nd∈Nd(Tf )

If vrt(Tf ) 6= 1, then abort

else Chart(Tf ) := ∗
Σ1
f (x,w, Tf , (vnd)nd∈Nd(Tf ),Chart(Tf ))

→ ((Cmtlf)lf∈Lf(Tf ), (Cmtlf)lf∈Lf(Tf )

(Chand)nd∈tNd(Tf ), −→
(Reslf)lf∈Lf(Tf ))

Chart(Tf ) := Cha Cha Cha← Σ2
f (λ)

Σ3
f (x,w, Tf , (vnd)nd∈Nd(Tf ),Chart(Tf ), ←−
(Cmtlf)lf∈Lf(Tf ),

(Chand)nd∈tNd(Tf ), Σvrfy
f (x, Tf ,Cha,

(Reslf)lf∈Lf(Tf )) (Cmtlf)lf∈Lf(Tf ),

→ ((Chand)nd∈tNd(Tf ), (Chand)nd∈tNd(Tf ), (Chand)nd∈tNd(Tf ),

(Reslf)lf∈Lf(Tf )) (Reslf)lf∈Lf(Tf ) (Reslf)lf∈Lf(Tf ))→ b

−→ Return b

Fig. 1. Our boolean proof Σf for the language LRf .

Fig. 1 shows our protocol Σf . Basically Σf is a 3-move protocol between interactive PPT
algorithms P and V on initial input (x := (xij )1≤j≤arity(f), w := (wij )1≤j≤arity(f)) ∈ Rf for P and x
for V.

In our prover-algorithm P, there are three PPT subroutines; Σeval
f , Σ1

f and Σ3
f . On the other

hand, in our verifier-algorithm V there are PPT subroutines; Σ2
f and Σvrfy

f . Σvrfy
f has two subrou-

tines; VrfyCha and VrfyRes.
Evaluation of Satisfiability. The prover P begins with evaluation concerning whether and how
S satisfies f . We label each node of T with a value v = 1 (True) or 0 (False). For each leaf node
lf, we label lf with vlf = 1 if i(lf) ∈ S and vlf = 0 otherwise. For each inner node nd, we label nd
with vnd = vndL ∧ vndR or vnd = vndL ∨ vndL according to AND/OR evaluation of two labels of its
two children ndL, ndR. The computation is executed for every node from the root node to each leaf
node, recursively, in the following way.

Σeval
f (T , S) :

TL := Lsub(T ), TR := Rsub(T )

If rt(T ) is an ∧ -node,

then Return vrt(T ) := (Σeval
f (TL, S) ∧Σeval

f (TR, S))

else if rt(T ) is an ∨ -node,

then Return vrt(T ) := ((Σeval
f (TL, S) ∨Σeval

f (TR, S))

else if rt(T ) is a leaf node,

then Return vrt(T ) := (i(rt(T ))
?
∈ S)

Commitment. Prover’s computation of a commitment value for each leaf node is described in Fig.
2. Basically, the algorithm Σ1

f runs for every node from the root node to each leaf node, recursively.

As a result, Σ1
f generates for each leaf node lf a value Cmtlf; If vlf = 1, then Cmtlf is computed

honestly according to Σ1. Else if vlf = 1, then Cmtlf is computed in the simulated way according
to Σsim. Other values, (Chand)nd∈tNd(Tf ) and (Reslf)lf∈Lf(Tf )), are needed for the simulation. Note
that a distinguished symbol ‘∗′ is used for those other values to indicate the honest computation.
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Σ1
f (x,w, T , (vnd)nd∈Nd(T ),Cha) :
TL := Lsub(T ), TR := Rsub(T )
If rt(T ) is ∧-node, then Chart(TL) := Cha,Chart(TR) := Cha

Return(Chart(TL),Σ
1
f (x,w, TL, (vnd)nd∈Nd(TL),Chart(TL)),

Chart(TR),Σ
1
f (x,w, TR, (vnd)nd∈Nd(TR),Chart(TR)))

else if rt(T ) is ∨-node, then
If vrt(TL) = 1 ∧ vrt(TR) = 1, then Chart(TL) := ∗, Chart(TR) := ∗
else if vrt(TL) = 1 ∧ vrt(TR) = 0, then Chart(TL) := ∗, Chart(TR) ← Σ2(λ)
else if vrt(TL) = 0 ∧ vrt(TR) = 1, then Chart(TL) ← Σ2(λ),Chart(TR) := ∗
else if vrt(TL) = 0 ∧ vrt(TR) = 0, then Chart(TL) ← Σ2(λ),Chart(TR) := Cha⊕Chart(TL)

Return(Chart(TL),Σ
1
f (x,w, TL, (vnd)nd∈Nd(TL),Chart(TL)),

Chart(TR),Σ
1
f (x,w, TR, (vnd)nd∈Nd(TR),Chart(TR)))

else if rt(T ) is a leaf-node, then
If vrt(T ) = 1, then Cmtrt(T ) ← Σ1(xi(rt(T )), wi(rt(T ))),Resrt(T ) := ∗
else if vrt(T ) = 0, then (Cmtrt(T ),Resrt(T ))← Σsim(xi(rt(T )),Cha)
Return(Cmtrt(T ),Resrt(T ))

Fig. 2. The subroutine Σ1
f of our Σf .

Challenge. Verifier picks up a challenge value by using Σ2.

Σ2
f (λ) :

Cha← Σ2(λ)

Return(Cha)

Response. Prover’s computation of a response value for each leaf node is described in Fig. 3.
Basically, the algorithm Σ3

f runs for every node from the root node to each leaf node, recursively.

As a result, Σ3
f generates values, (Chand)nd∈tNd(Tf ) and (Reslf)lf∈Lf(Tf )). Note that all challenge

values (Chand)nd∈tNd(Tf ) are completed according to the “division rule” described in Section 1.1.

Σ3
f (x,w, T , (vnd)nd∈Nd(T ),Cha, (Cmtlf)lf∈Lf(T ), (Chand)nd∈tNd(T ), (Reslf)lf∈Lf(T )) :
TL := Lsub(T ), TR := Rsub(T )
If rt(T ) is ∧-node, then Chart(TL) := Cha,Chart(TR) := Cha

Return(Chart(TL),Σ
3
f (x,w, TL, (vnd)nd∈Nd(TL), (Cmtlf)lf∈Lf(TL),Chart(TL), (Chand)nd∈tNd(TL), (Reslf)lf∈Lf(TL)),

Chart(TR),Σ
3
f (x,w, TR, (vnd)nd∈Nd(TR), (Cmtlf)lf∈Lf(TR),Chart(TR), (Chand)nd∈tNd(TR), (Reslf)lf∈Lf(TR)))

else if rt(T ) is ∨-node, then
If vrt(TL) = 1 ∧ vrt(TR) = 1, then Chart(TL) ← Σ2(λ), Chart(TR) := Cha⊕Chart(TL)

else if vrt(TL) = 1 ∧ vrt(TR) = 0, then Chart(TL) := Cha⊕Chart(TR),Chart(TR) := Chart(TR)

else if vrt(TL) = 0 ∧ vrt(TR) = 1, then Chart(TL) := Chart(TL), Chart(TR) := Cha⊕Chart(TL)

else if vrt(TL) = 0 ∧ vrt(TR) = 0, then Chart(TL) := Chart(TL), Chart(TR) := Chart(TR)

Return(Chart(TL),Σ
3
f (x,w, TL, (vnd)nd∈Nd(TL), (Cmtlf)lf∈Lf(TL),Chart(TL), (Chand)nd∈tNd(TL), (Reslf)lf∈Lf(TL)),

Chart(TR),Σ
3
f (x,w, TR, (vnd)nd∈Nd(TR), (Cmtlf)lf∈Lf(TR),Chart(TR), (Chand)nd∈tNd(TR), (Reslf)lf∈Lf(TR)))

else if rt(T ) is a leaf-node, then
If vrt(T ) = 1, then Resrt(T ) ← Σ3(xi(rt(T )), wi(rt(T )),Cmtrt(T ),Cha)
else if vrt(T ) = 0, then do nothing
Return(Resrt(T ))

Fig. 3. The subroutine Σ3
f of our Σf .
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Verification. Verifier’s computation is executed for each leaf node as follows.

Σvrfy
f (x, T ,Cha,

(Cmtlf)lf∈Lf(T ), (Chand)nd∈tNd(T ), (Reslf)lf∈Lf(T )) :

Return(VrfyCha(T ,Cha, (Chand)nd∈tNd(T ))

∧VrfyRes(x, T , (Cmt,Cha,Res)lf∈Lf(T )))

VrfyCha(T ,Cha, (Chand)nd∈tNd(T )) :

TL := Lsub(T ), TR := Rsub(T )

If rt(T ) is an ∧ -node,

then Return ((Cha
?
= Chart(TL)) ∧ (Cha

?
= Chart(TR))

∧VrfyCha(TL,Chart(TL), (Chand)nd∈tNd(TL))

∧VrfyCha(TR,Chart(TR), (Chand)nd∈tNd(TR)))

else if rt(T ) is an ∨ -node,

then Return ((Cha
?
= Chart(TL) ⊕Chart(TR))

∧VrfyCha(TL,Chart(TL), (Chand)nd∈tNd(TL))

∧VrfyCha(TR,Chart(TR), (Chand)nd∈tNd(TR)))

else if rt(T ) is a leaf node,

then Return (Cha
?
∈ ChaSp(λ))

VrfyRes(x, T , (Cmt,Cha,Res)lf∈Lf(T )) :

For lf ∈ Lf(T )

If Σvrfy(xi(lf),Cmtlf,Chalf,Reslf) = 0, then Return (0)

Return (1)

Now we have to check that Σf is certainly a Σ-protocol for the language LRf .

Proposition 1 (Completeness) Completeness holds for our Σf . More precisely, Suppose that
vrt(Tf ) = 1. Then, for every node in Nd(Tf ), either vnd = 1 or Chand 6= ∗ holds after executing Σ1

f .

Proof. Induction on the height of Tf . The case of height 0 follows from vrt(Tf ) = 1 and the com-
pleteness of Σ. Suppose that the case of height k holds and consider the case of height k + 1. The
construction of Σ1

f assures the case of height k + 1. �

Proposition 2 (Special Soundness) Special soundness holds for our Σf .
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We can construct a knowledge extractor ΣKE
f from a knowledge extractor ΣKE of the underlying

Σ-protocol Σ as follows.

ΣKE
f (x, (Cmtlf,Chalf,Reslf)lf∈Lf(Tf ), (Cmtlf,Cha′lf,Res′lf)lf∈Lf(Tf )) :

For 1 ≤ j ≤ arity(f) : w∗ij := ∗
For lf ∈ Lf(Tf )

If Chalf 6= Cha′lf, then w∗i(lf) ← ΣKE(xi(lf), (Cmtlf,Chalf,Reslf), (Cmtlf,Cha′lf,Res′lf))

else If w∗i(lf) = ∗, then w∗i(lf) ← {1, 0}
∗

Return (w∗ := (w∗ij )1≤j≤arity(f))

Then Lemma 1 assures the proposition.

Lemma 1 (Witness Extraction) The set w∗ output by ΣKE
f satisfies (x,w∗) ∈ Rf .

Proof. Induction on the number of all ∨-nodes in iNd(Tf ). First remark that Cha 6= Cha′.
Suppose that all nodes in iNd(Tf ) are ∧-nodes. Then the above claim follows immediately

because Chalf 6= Cha′lf holds for all leaf nodes.
Suppose that the case of k ∨-nodes holds and consider the case of k + 1 ∨-nodes. Look at one

of the lowest height ∨-node and name the height and the node as h∗ and nd∗, respectively. Then
Chand∗ 6= Cha′nd∗ because all nodes with height less than h∗ are ∧-nodes. So at least one of children
of nd∗, say nd∗L, satisfies Chand∗L

6= Cha′nd∗L
. Divide the tree Tf into two subtrees by cutting the

branch right above nd∗, and the induction hypothesis assures the claim. �

Proposition 3 (Honest Verifier Zero-Knowledge) Honest verifier zero-knowledge property holds
for our Σf .

Proof. This is the immediate consequence of honest verifier zero-knowledge property of Σ. That is, we
can construct a polynomial-time simulator Σsim

f which, on input (PK,Cha), outputs commitment
and response message of Σf . �

We can summarize the above results into the following theorem and corollary.

Theorem 1 Our protocol Σf obtained from a Σ-protocol Σ for the language LR and a boolean
formula f is a Σ-protocol for the language LRf .

Corollary 1 Our protocol Σf is a boolean proof for the language LRf .

5 Our Non-interactive Witness-Indistinguishable Proof of Knowledge System

In this section, we apply the Fiat-Shamir transformation FS(·) to our Σ-protocol Σf . The resulting
system FS(Σf ) is a non-interactive zero-knowledge proof of knowledge (NIZKPoK) system and
hence a non-interactive witness-indistinguishable proof of knowledge (NIWIPoK) system.

The Fiat-Shamir transformation FS(·) can be applied to any Σ-protocol Σ ([13, 1], see Section
2.1) to obtain a NIZKPoK system. As a NIZKPoK system is a NIWIPoK system, we obtain a
NIWIPoK system. Here the generator of common reference strings is becomes as follows.

K(λ) :

µ← Hashkeysp(λ), crs := µ

Return crs

Hence we obtain the following theorem.
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Theorem 2 FS(Σf ) is a non-interactive witness-indistinguishable proof of knowledge system for
the language LRf . A knowledge extractor can be constructed in the random oracle model.

6 Our Attribute-Based Signature Scheme

In this section, we propose an attribute-based signature scheme. By combining the NIWIPoK system
FS(Σf ) with a credential bundle scheme of the Fiat-Shamir signature FS(Σ), we obtain an attribute-
based signature scheme ABS, which has collusion resistance against collecting private secret keys.
Our ABS is secure in the random oracle model, possesses attribute privacy, and has a feature that
it can be constructed without pairings.

6.1 Our ABS

Our ABS = (Setup,KG,Sign,Vrfy) is described as follows. Fig. 4 shows our construction of ABS
scheme, ABS = (Setup,KG,Sign,Vrfy).

Setup computes a public key PK and a master secret key MSK by running InstanceR(λ) which
chooses a pair (xmst, wmst) at random from R = {(x,w)}, where |x| and |w| are bounded by a
polynomial in λ.

Setup(λ,U) :

(xmst, wmst)← InstanceR(λ), µ← Hashkeysp(λ)

PK := (xmst,U , µ),MSK := (wmst)

Return(PK,MSK)

KG first, on input PK,MSK, τ, S, obtains a hash function value k on input wmst ‖ τ , which
is used as a pseudorandom function key. Then KG applies the credential bundle technique [19] for
each message mi := (τ ‖ i), i ∈ S. Here we employ the Fiat-Shamir signing algorithm FS(Σ)sign

with a random tape PRF k(mi ‖ 0) for Σ and a hash key µ for Hash (see 2.1).

KG(PK,MSK, τ, S) :

k ← Hashµ(wmst ‖ τ)

For i ∈ S :

mi := (τ ‖ i), (ai, wi)← FS(Σ)sign(xmst, wmst,mi;PRF k(mi ‖ 0))

SKS := (τ, k, ((ai, wi))i∈S),Return SKS .

Sign uses a supplementary algorithm Supp and a statement-generator algorithm StmtGen.
Supp runs for j, 1 ≤ j ∈ arity(f) and generates simulated keys (aij , wij ) for ij /∈ S.

Supp(PK,SKS , f) :

For j = 1 to arity(f) :

If ij /∈ S, then

mij := (τ ‖ ij), cij ← PRF k(mij ‖ 1), (aij , wij )← Σsim(xmst, cij ;PRF k(mij ‖ 2))

Return ((aij , wij ))1≤j≤arity(f)

Note here that:

Pr[cij = Hashµ(aij ‖ mij )] = neg(λ) for ij /∈ S.
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StmtGen generates, for each j, 1 ≤ j ∈ arity(f), a statement xij . Note that we employ here the
algorithm ΣstmtRes which is associated with Σ, and whose existence is assured by our assumption
(see Section 2.1).

StmtGen(PK, τ, (aij )1≤j≤arity(f)) :

For j = 1 to arity(f) :

mij := (τ ‖ ij), cij ← Hashµ(aij ‖ mij ), xij ← ΣstmtRes(xmst, aij , cij )

Return (xij )1≤j≤arity(f)

Note that (xi, wi) ∈ R for i ∈ S but Pr[(xi, wi) ∈ R] = neg(λ) for i /∈ S.
Then Sign is obtained by adding the following procedures.

Supp(PK,SKS , f)→ ((aij , wij ))1≤j≤arity(f)

StmtGen(PK, τ, (aij )1≤j≤arity(f))

→ (xij )1≤j≤arity(f) =: x

w := (wij )1≤j≤arity(f).

The above procedures are needed to give a pair of statement and witness, (x,w), to Σ1
f . Note here

that (x = (xij )1≤j≤arity(f), w = (wij )1≤j≤arity(f)) and (xij , wij ) ∈ R for any ij ∈ S. On the other
hand, (xij , wij ) /∈ R for any ij /∈ S, without a negligible probability, neg(λ).

Hence the signature σ that should be output by Sign has to include the tag τ and elements
(ai)i∈Att(f) for the verifying algorithm Vrfy to be able to produce the same statement x by using
τ and (ai)i∈Att(f) as well as xmst in PK.

Finally, Vrfy utilizes StmtGen and Σvrfy
f to check validity of the message m and the signature

σ under the public key PK and the access formula f .

6.2 Security of Our ABS

Applying the standard technique in [1] shows that the security of our ABS is equivalent to the
security of an attribute-based identification scheme, ABID, against passive attacks, where our ABID

is obtained by combining our Σ-protocol Σf with the credential bundle scheme of the Fiat-Shamir
signature FS(Σ) in the same way as ABS (See Appendix C for our ABID).

Theorem 3 Our attribute-based signature scheme ABS is secure in the game of existential unforge-
ability against chosen-message attacks in the random oracle model, based on the passive security of
ABID. More precisely, let qH denote the maximum number of hash queries issued by a forger F on
ABS. Then, for any PPT algorithm F , there exists a PPT algorithm B which satisfies the following
inequality (neg(·) means a negligible function).

Adveuf-cma
F ,ABS (λ) ≤ qHAdvpa

B,ABID(λ) + neg(λ). (1)

Proof. First, our ABS is considered to be obtained by applying the Fiat-Shamir transformation to our
ABID. This is because, in the first message of our ABID, the tag τ and the elements (aij )1≤j≤arity(f)
are fixed even when the 3-move protocol is repeated between the prover P with a secret key SKS

and the verifier V with an access policy f . So ABS = FS(ABID).
As is discussed in Section 2.1, we can reduce the advantage Adveuf-cma

F ,ABS (λ) to the advantage
Advpa

B,ABID(λ) of passive security of the underlying ABID scheme, in the random oracle model, with
a loss factor qH . This is because B can simulate key-extraction queries of F perfectly with the aid
of the key-generation oracle of B. �
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Setup(λ,U): KG(PK,MSK, τ, S):
(xmst, wmst)← InstanceR(λ) k ← Hashµ(wmst ‖ τ)
µ← Hashkeysp(λ) For i ∈ S
PK := (xmst,U , µ),MSK := (wmst) mi := (τ ‖ i)
Return(PK,MSK) FS(Σ)sign(xmst, wmst,mi;PRF k(mi ‖ 0))

→ (ai, wi)
SKS := (τ, k, ((ai, wi))i∈S)
Return SKS

Sign(PK, SKS , (m, f)): Vrfy(PK, (m, f), σ := (τ, (aij )1≤j≤arity(f),
Initialize inner state (Cmtlf)lf∈Lf(Tf ),

Σeval
f (Tf , S)→ (vnd)nd∈Nd(Tf ) (Chand)nd∈tNd(Tf ),

If vrt(Tf ) 6= 1, then abort (Reslf)lf∈Lf(Tf )))) :

else Chart(Tf ) := ∗ Initialize inner state

Cha← Hashµ((Cmtlf)lf∈Lf(Tf) ‖ m)

Supp(PK,SKS , f)→ ((aij , wij ))1≤j≤arity(f)

StmtGen(PK, τ, (aij )1≤j≤arity(f)) StmtGen(PK, τ, (aij )1≤j≤arity(f))
→ (xij )1≤j≤arity(f) =: x → (xij )1≤j≤arity(f) =: x
w := (wij )1≤j≤arity(f)

Σvrfy
f (x, Tf ,

Σ1
f (x,w, Tf , (vnd)nd∈Nd(Tf ),Chart(Tf )) (Cmtlf)lf∈Lf(Tf ),

→ ((Cmtlf)lf∈Lf(Tf ), Cha, (Chand)nd∈tNd(Tf ),

(Chand)nd∈tNd(Tf ), (Reslf)lf∈Lf(Tf ))

(Reslf)lf∈Lf(Tf )) → b

Return b
Cha← Hashµ((Cmtlf)lf∈Lf(Tf) ‖ m)

Chart(Tf ) := Cha

Σ3
f (x,w, Tf , (vnd)nd∈Nd(Tf ),Chart(Tf ),

(Cmtlf)lf∈Lf(Tf ),

(Chand)nd∈tNd(Tf ),

(Reslf)lf∈Lf(Tf ))

→ ((Chand)nd∈tNd(Tf ),

(Reslf)lf∈Lf(Tf ))

Return σ := (τ, (aij )1≤j≤arity(f),
(Cmtlf)lf∈Lf(Tf ),

(Chand)nd∈tNd(Tf ),

(Reslf)lf∈Lf(Tf )))

Fig. 4. Our ABS scheme.
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6.3 Discussion

Attribute Privacy of our ABS. As opposed to the case of our ABID, our ABS has attribute
privacy defined in Section 2.5. Actually, more strongly, attribute privacy holds for A that has
unbounded computational ability because, for a fixed access policy f , the distribution of messages
and signatures (m,σ) does not depend on secret keys SKS where f(S) = 1.

Security Reduction. Let qH denote the maximum number of hash queries issued by a forger F
on ABS and a forger F ′ on FS(Σ). Combining the inequality (1) with the inequalities (2) and (3) in
Appendix B and C, we obtain the following security reduction of advantages.

Adveuf-cma
F ,ABS (λ) ≤ q3/2H (Advnum.prob.

S,Grp (λ))1/4 + neg(λ).

7 Conclusions

We proposed the first practical attribute-based signature scheme with attribute privacy without
pairings in the random oracle model. We first provide a concrete construction of a Σ-protocol
of boolean proof. Then, we apply the Fiat-Shamir transformation to our Σ-protocol of boolean
proof and obtain a non-interactive witness-indistinguishable proof of knowledge system (NIWIPoK).
Finally, by combining our NIWIPoK with a credential bundle scheme of the Fiat-Shamir signature,
we obtain an attribute-based signature scheme which possesses attribute privacy. The series of
constructions are obtained from a given Σ-protocol and can be constructed without pairings.

Our concrete construction of boolean proof is limited to monotone formulas and to extend the
construction to any formula that includes NOT-gate is an open problem [10].
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A Instantiations

In this section, we provide two instantiations of our Σf and ABS (and our ABID); that is, in the
discrete-logarithm setting and the RSA setting.

A.1 Discrete-Logarithm Setting

A prime of bit length λ is denoted by p. A multiplicative cyclic group of order p is denoted by Gp.
We fix a base g ∈ Gp, 〈g〉 = Gp. The ring of the exponent domain of Gp, which consists of integers
from 0 to p− 1 with modulo p operation, is denoted by Zp.

Setup takes as input (λ,U). Let Rλ := {(β, α) ∈ Gp × Zp;β = gα}. Then InstanceR(λ) chooses
an element (β, α) ∈ Rλ at random. Setup outputs a public key and a master secret key: PK =
((g, β),U , µ),MSK = α.

KG outputs SKS with signatures, for i ∈ S, σi = (ai = gri , wi = ri + ciα). Here we use a key
k obtained by k ← Hashµ(α ‖ τ), put mi = τ ‖ i, and ri ∈ Zp is chosen at random according
to a random tape: PRF k(mi), and ci is obtained by ci ← Hashµ(ai ‖ mi). ΣstmtRes(β, ai, ci) is an
algorithm that computes xi := aiβ

ci ∈ Gp.

The rest of protocol is executed according to Σf on input (x,w) and with the following setting.

Cmtlf = grlf ,Reslf = rlf + Chalf wi(lf),

Verification Equation : gRes
lf

?
= Cmtlf (xi(lf))

Chalf .
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A.2 RSA Setting

An RSA modulus of bit length λ is denoted by N . An RSA exponent of odd prime is denoted by e.
Setup takes as input (λ,U). Let Rλ := {(β, α) ∈ ZN × ZN ;β = αe}. Then InstanceR(λ)

chooses an element (β, α) ∈ Rλ at random. Setup outputs a public key and a master secret key:
PK = ((N, e, β),U , µ),MSK = α.

KG outputs SKS with signatures, for i ∈ S, σ = (ai = rei , wi = riα
ci). Here we use a key

k obtained by k ← Hashµ(α ‖ τ), put mi = τ ‖ i, and ri ∈ ZN is chosen at random according
to a random tape: PRF k(mi), and ci is obtained by ci ← Hashµ(ai ‖ mi). ΣstmtRes(β, ai, ci) is an
algorithm that computes xi := aiβ

ci ∈ ZN .
The rest of protocol is executed according to Σf on input (x,w) and with the following setting.

Cmtlf = rlf
e,Res

lf
= rlf(wi(lf))

Chalf ,

Verification Equation : Res
lf

e ?
= Cmtlf (xi(lf))

Chalf .

B Attribute-Based Identification Scheme [2]

An attribute-based identification scheme consists of four PPT algorithms: (Setup,KG,P,V) [2].
Setup(λ,U) → (PK,MSK). Setup takes as input the security parameter λ and an attribute
universe U . It outputs a public key PK and a master secret key MSK.
KG(PK,MSK, τ, S) → SKS. A key-generation algorithm KG takes as input the public key PK,
the master secret key MSK, a tag τ7, and an attribute set S ⊂ U . It outputs a signing key SKS

corresponding to S.
P(PK,SKS) and V(PK, f). P and V are interactive algorithms called a prover and a verifier,
respectively. P takes as input the public key PK and the secret key SKS . Here the secret key SKS is
given to P by an authority that runs KG(PK,MSK, τ, S). V takes as input the public key PK and
an access formula f . P is provided V’s access formula f by the first move. P and V interact with
each other for at most constant rounds. Then, V returns its decision 1 or 0. When it is 1, we say
that V accepts P for f . When it is 0, we say that V rejects P for f . We demand correctness of ABID
that for any λ, and if f(S) = 1, then Pr[(PK,MSK)← Setup(λ,U),SKS ← KG(PK,MSK, S), b←
〈P(PK, SKS),V(PK, f)〉 : b = 1] = 1.

Attacks on ABID and Security An adversary A’s objective is impersonation. A tries to make
a verifier V accept with an access formula f∗. The following experiment ExprmtcaA,ABID(λ,U) of an
adversary A defines the game of concurrent attack on ABID.

ExprmtcaA,ABID(λ,U) :

(PK,MSK)← Setup(λ,U)

(f∗, st)← AKG(PK,MSK,·),Pj(PK,SK·)|
qp
j=1(PK,U)

b← 〈A(st),V(PK, f∗)〉
If b = 1 then Return Win else Return Lose

In the experiment, A issues key-extraction queries to its key-generation oracle KG. Giving an at-
tribute set Si, A queries KG(PK,MSK, ·) for the secret key SKSi . In addition, A invokes provers

7 Our key-generation algorithm KG is a tag-version compared with the one in [2].
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Pj(PK, SK·), j = 1, . . . , q′p, . . . , qp, by giving a pair (Sj , fj) of an attribute set and an access formula.
Acting as a verifier with an access formula fj , A interacts with each Pj(PK,SKSj ) concurrently.

The access formula f∗ declared by A is called a target access formula. Here we consider the
adaptive target in the sense that A is allowed to choose f∗ after seeing PK, issuing key-extraction
queries and interacting with of provers. Two restrictions are imposed on A concerning f∗. In key-
extraction queries, each attribute set Si must satisfy f∗(Si) = 0. In interactions with each prover,
f∗(Sj) = 0. The number of key-extraction queries and the number of invoked provers are at most
qk and qp in total, respectively, which are bounded by a polynomial in λ.

The advantage of A over ABID in the game of concurrent attack is defined as

Advca
A,ABID(λ)

def
= Pr[ExprmtcaA,ABID(λ,U) returns Win].

ABID is called secure against concurrent attacks if, for any PPT A, Advca
A,ABID(λ) is negligible in λ.

The game of passive attack on ABID is obtained by replacing concurrent provers Pj(PK,SK·)|
qp
j=1

with transcript oracle Transc in ExprmtcaA,ABID(λ,U). The following experiment ExprmtpaA,ABID(λ,U)
of an adversary A defines the game of passive attack on ABID.

ExprmtpaA,ABID(λ,U) :

(PK,MSK)← Setup(λ,U)

(f∗, st)← AKG(PK,MSK,·),Transc(P(PK,SK·),V(PK,·))(PK,U)

b← 〈A(st),V(PK, f∗)〉
If b = 1 then Return Win else Return Lose

In the experiment, A issues key-extraction queries to its key-generation oracle KG and transcript
queries to its transcript oracle Transc. In a transcript query, giving a pair (Sj , f) of an attribute set
and an access formula, A queries Transc(P(PK, SK·),V(PK, ·)) for a whole transcript of messages
interacted between P(PK, SKSj ) and V(PK, fj).

The advantage Advpa
A,ABID(λ) and security are defined in the same way as the concurrent case.

Concurrent security means passive security; for any PPT A, there exists a PPT B that satisfies the
following inequality.

Advpa
A,ABID(λ) ≤ Advca

B,ABID(λ). (2)

Attribute Privacy of ABID Consider the following experiment Exprmtatt-prvA,ABID(λ,U). (In the
experiment, an adversary A interacts with P(PK, SKSb) as a verifier with f∗.)

Exprmtatt-prvA,ABID(λ,U) :

(PK,MSK)← Setup(λ,U), (S0, S1, f
∗)← A(PK)

s.t. (f∗(S0) = f∗(S1) = 1) ∨ (f∗(S0) = f∗(S1) = 0)

SKS0 ← KG(PK,MSK, S0), SKS1 ← KG(PK,MSK, S1)

b← {1, 0}, b̂← AP(PK,SKSb )(PK, SKS0 ,SKS1)

If b = b̂ Return Win else Return Lose

We say that ABID has attribute privacy if, for any PPT A, the following advantage is negligible in
λ.

Advatt-prv
A,ABID(λ)

def
= |Pr[Exprmtatt-prvA,ABID(λ,U) returns Win]− 1/2|.
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C Our Attribute-Based Identification Scheme

In this section, we will describe (verifier-policy) attribute-based identification schemes.

C.1 Our ABID

By combining our Σ-protocol of boolean proof, Σf , with a credential bundle scheme of the Fiat-
Shamir signature FS(Σ), we obtain an attribute-based identification scheme ABID of proof of knowl-
edge, which has collusion resistance against collecting private secret keys. ABID has a feature that
it can be constructed without pairings.

Fig. 5 shows our construction of ABID scheme, ABID = (Setup,KG,P,V).

Setup(λ,U): KG(PK,MSK, τ, S):
(xmst, wmst)← InstanceR(λ) k ← Hashµ(wi ‖ τ)
µ← Hashkeysp(λ) For i ∈ S
PK := (xmst,U , µ),MSK := (wmst) mi := (τ ‖ i)
Return(PK,MSK) FS(Σ)sign(xmst, wmst,mi;PRF k(mi ‖ 0))

→ (ai, wi)
SKS := (τ, k, ((ai, wi))i∈S)
Return SKS

P(PK, SKS): V(PK, f):
Initialize inner state f Initialize inner state

←−
Σeval
f (Tf , S)→ (vnd)nd∈Nd(Tf )

If vrt(Tf ) 6= 1, then abort

else Chart(Tf ) := ∗
Supp(PK, SKS , f)→ ((aij , wij ))1≤j≤arity(f)

StmtGen(PK, τ, (aij )1≤j≤arity(f))
→ (xij )1≤j≤arity(f) =: x
w := (wij )1≤j≤arity(f)

Σ1
f (x,w, Tf , (vnd)nd∈Nd(Tf ),Chart(Tf )) τ, (aij )1≤j≤arity(f)

→ ((Cmtlf)lf∈Lf(Tf ), (Cmtlf)lf∈Lf(Tf )

(Chand)nd∈tNd(Tf ), −→
(Reslf)lf∈Lf(Tf ))

Chart(Tf ) := Cha Cha Cha← Σ2
f (λ)

Σ3
f (x,w, Tf , (vnd)nd∈Nd(Tf ), ←− StmtGen(PK, τ, (aij )1≤j≤arity(f))

(Cmtlf)lf∈Lf(Tf ), → (xij )1≤j≤arity(f) =: x

Chart(Tf ), (Chand)nd∈tNd(Tf ), Σvrfy
f (x, Tf ,

(Reslf)lf∈Lf(Tf )) (Cmtlf)lf∈Lf(Tf ),

→ ((Chand)nd∈tNd(Tf ), (Chand)nd∈tNd(Tf ), Cha, (Chand)nd∈tNd(Tf ),

(Reslf)lf∈Lf(Tf )) (Reslf)lf∈Lf(Tf ) (Reslf)lf∈Lf(Tf ))→ b

−→ Return b

Fig. 5. Our ABID scheme.

C.2 Security of Our ABID

Theorem 4 If the employed signature scheme FS(Σ) is secure in the game of existential unforge-
ability against chosen-message attacks, then our ABID is secure against concurrent attacks. More
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precisely, for any PPT algorithm A, there exists a PPT algorithm F which satisfies the following
inequality (neg(·) means a negligible function).

Advca
A,ABID(λ) ≤ (Adveuf-cma

F ,FS(Σ)(λ))1/2 + neg(λ).

Note that FS(Σ) is only known to be secure in the random oracle model.
Proof. Employing any given adversary A as subroutine, we construct a signature forger F as follows.
F can answer to A’s key-extraction queries for a secret key SKS because F can query his signing
oracle about (τ ‖ i; i ∈ S), where F choose τ at random. F can simulate any concurrent prover
with SKS which A invokes because F can generate SKS in the above way. After the learning phase
above, F simulates a verifier with which A begins to interact as a prover. There F rewinds A once
and F can obtain a witness set w∗ by running ΣKE

f , as well as the set of attributes S∗ where the
rewinding works. We use here the Reset Lemma [6], which reduces the advantage Advca

A,ABID(λ) to

Adveuf-cma
F ,FS(Σ)(λ) with a loss of exponent by 1/2. Finally F converts (w∗, S∗) into SKS∗ . �

C.3 Discussion

Attribute-Based Proof of Knowledge Our ABID is a proof of knowledge system. That is, for a
fixed access policy f , a PPT knowledge extractor can be constructed, which extracts a secret key
SKS∗ for some attribute set S∗ with f(S∗) = 1.

Attribute Privacy of our ABID. For the case of an honest verifier, that is, if an adversary A
chooses a challenge Cha uniformly at random from ChaSp(λ) in the attribute privacy game in
Section B , attribute privacy follows from the honest verifier zero-knowledge property. However, in
general, attribute privacy is not obvious. It seems an open problem to the best of authors’ knowledge.

Security Reduction. We mean a number theoretic problem here as the discrete-logarithm problem
or the RSA-inverse problem ([6]).

There exists the following security reduction to a number theoretic problem.

Advca
A,ABID(λ) ≤ q1/2H (Advnum.prob.

S,Grp (λ))1/4 + neg(λ). (3)

Here we denote qH as the maximum number of hash queries issued by forger F on FS(Σ) in the
random oracle model.
Proof. As is discussed in Section 2.1, we can reduce the advantage Adveuf-cma

F ,FS(Σ)(λ) to the advan-

tage Advpa
B,Σ(λ) of passive security of the underlying Σ-protocol, in the random oracle model,

with a loss factor qH . Applying the Reset Lemma [6], we can reduce Advpa
B,Σ(λ) to the advantage

Advnum.prob.
S,Grp (λ) of a PPT solver S of a number theoretic problem, with a loss of exponent by 1/2.

�
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