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Abstract

In this paper, we present new classes of public key cryptosystem over F28 based on Reed-Solomon codes,
referred to as K(XVII)SE(1)PKC and K(XVII)ΣΠPKC, a subclass of K(XVII)SE(1)PKC. We show that K(XV
II)SE(1)PKC over F28 can be secure against the various attacks. We also present K(XVII)ΣΠPKC over F28 ,
a subclass of K(XVII)SE(1)PKC. We show that any assertion of successfull attack on K(XVII)SE(1)PKC
including K(XVII)ΣΠPKC whose parameters are properly chosen is a coding theoretical contradiction. We
thus conclude that K(XVII)SE(1)PKC and K(XVII)ΣΠPKC would be secure against the various attacks
including LLL attack.

The schemes presented in this paper would yield brand-new techniques in the field of code-based PKC.
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1 Introduction

Various studies have been made of the Public-Key Cryptosystem(PKC). The security of PKC’s proposed so
far, in most cases, depends on the difficulty of discrete logarithm problem or factoring problem. For this
reason, it is desired to investigate another classes of PKC’s that do not rely on the difficulty of these two
problems. The multivariate PKC is one of the very promising candidates of the member of such classes.
However, most of the multivariate PKC’s are constructed by the simultaneous equations of degree larger
than or equal to 2 [1] ∼ [7]. Recently the author proposed a several classes of multivariate PKC’s that are
constructed by many sets of linear equations [8] ∼ [13] based on error-correcting code, in a sharp contrast
with the conventional multivariate PKC where a set of simultaneous equations of degree more than or equal
to 2 is used.

Let us refer to such PKC constructed based on error correcting code as code based PKC(CB·PKC). It
should be noted that McEliece PKC [14], a class of CB·PKC, can be regarded as a member of the linear
multivariate PKC.

In this paper, we present new classes of public key cryptosystem over F28 based on Reed-Solomon codes,
referred to as K(XVII)SE(1)PKC and K(XVII)ΣΠPKC, a subclass of K(XVII)SE(1)PKC. We show that any
assertion of successfull attack on K(XVII)SE(1)PKC including K(XVII)ΣΠPKC whose parameters are properly
chosen is a coding theoretical contradiction. We thus conclude that K(XVII)SE(1)PKC and K(XVII)ΣΠPKC
would be secure against the various attacks including LLL attack.
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K(XVII)SE(1)PKC and K(XVII)ΣΠPKC have the following advantages :
A1 : K(XVII)SE(1)PKC and K(XVII)ΣΠ PKC over F28 can be constructed based on the Reed-Solomon

code over F28 , which is extensively used for the various storage and transmission systems.
A2 : In encryption and decryption process for (XVII)SE(1)PKC and K(XVII)ΣΠPKC, the conventional

encoders and decoders for the Reed-Solomon code over F28 can be advantageously used.
Throughout this paper, the vector v = (v1, v2, · · · , vn) will be represented by the polynomial as

v(x) = v1 + v2x+ · · ·+ vnx
n−1. (1)

2 K(XVII)SE(1)PKC over F28

2.1 Preminaries

Let us define several symbols:

G(x) : generator polynomial of extended Reed-Solomon code*1 over F28 .
g : degree of G(x).
D : minimum distance of Reed-Solomon code generated with G(x), g + 1.

mη : first message, (m1,m2, · · · ,mη)
at : second message, (a1, a2, · · · , at)
ατ : third message, (α1, α2, · · · , ατ )

{ui} : set of first public key for mη

{si} : set of second public key for ατ

wµ : word for mη

wρ : word for ατ

C : Ciphertext, wµ +wρ

K : 28 − g.
w(v) : Hamming weight of v .

P : random column permutation matrix.
P−1 : inverse operation of P .

p : random permutation determined from P .

Throughout this paper, we assume that any message symbol over F28 takes on a non-zero value.

2.2 First word, wµ

Let µi(x) be

µi(x) = ei(1)x
(1) + ei(2)x

(2) + · · ·+ ei(η)x
(η); i = 1, 2, · · · , η, (2)

where the exponent (i) satisfies

0 ≤ (1) < (2) < · · · < (η) ≤ K − 1. (3)

The coefficients ei(j)’s are randomly chosen from F28 , under the following condition:
Let the matrix M be

M =


e1(1), e1(2), · · · , e1(η)
e2(1), e2(2), · · · , e2(η)
...

...
...

eη(1), eη(2), · · · , eη(η)

 . (4)

*1We assume the using of extended Reed-Solomon code. It is possible to extend by two symbols with double-tail construction
due to Kasahara et.al. [15]
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where ei(j)’s are randomly chosen so that M may be non-singular.
We see that the Hamming weight of µi, w(µi), is η or less. Let µi(x) be transformed to

µi(x)x
g ≡ ri(x) mod G(x),

= ri1 + ri2x+ · · ·+ rigx
g−1; i = 1, 2, · · · , η.

(5)

The code word is then

vi(x) = µi(x)x
g + ri(x) ≡ 0 mod G(x); i = 1, 2, · · · , η. (6)

Let R and R · P be

R =


r11, r12, · · · , r1g
r21, r22, · · · , r2g
...

...
...

rη1, rη2, · · · , rηg

 . (7)

R · P =


u11, u12, · · · , u1g

u21, u22, · · · , u2g

...
...

...
uη1, uη2, · · · , uηg

 =


u1

u2

...
uη

 (8)

where P is an η × g random column permutation matrix.
According to the random column permutation P , the row vector ri is permuted to ui. We shall denote

such permutation:

ri · p = ui; i = 1, 2, · · · , η. (9)

Let us suppose that the elements of ui’s are ordered as u1,u2, · · · ,uη. We shall refer to subscript j as
location j.

Let the second message at(x) be transformed to aT (x):

at(x) 7→ aT (x) = a1x
[1] + a2x

[2] + · · ·+ atx
[t]; 0 ≤ [i] ≤ g − 1, (10)

where the exponents [1], [2], · · · , [t] are randomly chosen by a sender Bob.
These exponents satisfy

0 ≤ [1] < [2] < · · · < [t− 1] < [t] ≤ g − 1. (11)

Given the first message mη = (m1,m2, · · · ,mη), the first word wµ is

wµ = m1u1 +m2u2 + · · ·+mηuη. (12)

The first ciphertext Cµ is

Cµ = wµ + aT . (13)

From the Eqs.(9) and (12) we see that the randomly permuted version, Sµ · p, of the following syndrome
Sµ proves to be

Sµ = m1r1 +m2r2 + · · ·+mηrη. (14)

In the polynomial form, let Sµ · p be denoted Sµ(x)p.
We have the following straightforward theorem :

Theorem 1 : The syndrome Sµp(x) is

m1u1(x) +m2u2(x) + · · ·+mηuη(x) ≡
[ η∑
i=1

µi(x)x
g mod G(x)

]
p. (15)
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2.3 Second word wρ

Let ρi(x) be

ρi(x) = εix
i−1 + βi1x

τ1 + βi2x
τ2 + · · ·+ βiπx

τπ; i = 1, 2, · · · , 256. (16)

where τi’s satisfy

0 ≦ τ1 < τ2 < · · · < τπ ≦ 255. (17)

Let ϵ be

ϵi = (00 · · · 010 · · · 0); i = 1, 2, · · · , 256, (18)

where only one nonzero element, 1, is located at the i-th cordinate.
In Fig.1, we show an example of {ρi} over F28 .
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Figure 1: An example of {ρi} over F28 .

For the third message ατ = (α1, α2, · · · , ατ ), the sender Bob randomly selects locations (1), (2), · · · , (τ)
from the set {i}. The random errorsEr and the erasure errorsEe are represented by the following polynomial
form:

Er(x) =
τ∑

i=1

α(i)ε(i)x
(i)−1 (19)

Ee(x) =

τ∑
i=1

π∑
j=1

α(i)β(i)jx
τj (20)

Let εi(x) and βi(x) be

εi(x) = εix
i−1; i = 1, 2, · · · , 256,

βi(x) = βi1x
τ1 + βi2x

τ2 + · · ·+ βiπx
τπ; i = 1, 2, · · · , 256.

(21)

The ρi(x) is

ρi(x) = εi(x) + βi(x); i = 1, 2, · · · , 256. (22)

We see that ρi can be represented by

ρi = ϵi + βi; i = 1, 2, · · · , 256. (23)
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Let ρi(x) be transformed to

ρi(x) · xg ≡ ti(x) mod G(x)

= ti1 + ti2 + · · ·+ tigx
g−1; i = 1, 2, · · · , 256.

(24)

Let At and At · P be

At =


t1,1, t1,2, · · · , t1,g
t2,1, t2,2, · · · , t2,g
...

...
...

t256,1, t256,2, · · · , t256,g

 =


t1
t2
...

t256

 , (25)

At · P =


s1,1, s1,2, · · · , s1,g
s2,1, s2,2, · · · , s2,g
...

...
...

s256,1, s256,2, · · · , s256,g

 =


s1
s2
...

s256

 . (26)

The word wτ , for the third message ατ = (α1, α2, · · · , ατ ), is

wρ = α1s(1) + α2s(2) + · · ·+ ατs(τ), (27)

where s(1), s(2), · · · , s(τ) are randomly selected public key from the set of public keys, {si}.
We let the following relation hold:

π + 2(τ + t) + 1 = D. (28)

2.4 Ciphertext C for mη, at and ατ

The ciphertext C is

C = wµ + aT +wρ. (29)

Set of keys are :

Public key : {ui}, {si}
Secret key : {µi}, {ρi}, {ri}, {ti}, P, p

2.5 Encryption and decryption

Brief description of the encryption process
The encryption can be performed by the following steps :
S1 : Given the first messge mη = (m1,m2, · · · ,mη), Bob calculates the word wµ.
S2 : Given the second message at = (a1, a2, · · · , at), Bob randomly select locations [1], [2], · · · , [t] and

calculates aT .
S3 : Given the third message ατ = (α1, α2, · · · , ατ ), Bob randomly selects public keys, s(1), s(2), · · · , s(τ)

from the set of public keys, {si}, and calculates wρ.
S4 : Bob calculates the ciphertext C :

C = wµ + aT +wρ.
Brief description of the decryption process

The decryption process can be performed by the following steps :
S1 : Alice calculates

CP−1 = sµ + sρ + aTP
−1,

where sµ is the syndrome due to the first message mη = (m1,m2, · · · ,mη) and sρ, the syndrome
due to the third message ατ = (α1, α2, · · · , ατ ).

S2 : Based on the syndromes sµ + sρ + aTP
−1, Alice decodes mη, ατ , and aTP

−1 using erasure and
errors decoding for Reed-Solomon code [16]. Alice calculate aTP

−1P = aT , yielding at,.
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2.6 Security considerations

In this subsection we assume the following parameters are chosen:
m = 8, g = 128,K = 128, η = 56, t = 32, π = 8.

Attack 1 : Exhaustive attack on vector µi

The probability that the vector µi is estimated correctly, Pc[µ̂i] is

Pc[µ̂i] =

(
K
η

)−1

(2m − 1)−η < 1.93× 10−172. (30)

We conclude that K(XVII)SE(1)PKC is secure against Attack 1.
Attack 2 : Exhaustive attack on permutation matrix, P

The probability that the matrix P is estimated correctly is

Pc[P̂ ] = (g!)−1 < 2.60× 10−216, (31)

yielding an extremely small value.
We conclude that K(XIV)SE(1)PKC is secure against Attack 2.

Attack 3 : Exhaustive attack on vector ρi.
The probability that the vector ρi is estimated correctly is

Pc[ρ̂i] =

(
K
1

)−1

2−m

(
K
π

)−1

2−mπ = 1.15× 10−36, (32)

a sufficiently small value.
We conclude that K(XVII)SE(1)PKC is secure against Attack 3.

Attack 4 : Exhaustive attack on the selected locations, (1), (2),· · · , (t).
The probability that t locations among 256 locations are estimated correctly, Pc[ ˆ{(i)}] is

Pc[ ˆ{(i)}] =
(

256
t

)−1

< 1.71× 10−41, (33)

a sufficiently small value.
Attack 5 : Attack on ciphertext C = wµ +wρ.

Suppose that wµ only is given as a ciphertext and consider the following Only wµ Attack: Namely we
suppose that the ciphertext C is C = wµ.
Only wµ Attack :

We see that {µi} spans a vector space of dimension η. As a result any η error-free symbols (efs),
w(1), w(2), · · · , w(η) of word wµ is able to disclose the message mη by solving the equation:

m1u1 +m2u2 + · · ·+mηuη = (w(1), w(2), · · · , w(η)). (34)

The probability that η efs’s are estimated correctly, for m = 8, is

Pc[êfs] =

(
g − t
η

)
(

g
η

) = 1.24× 10−11. (35)

.
We conclude that K(XVII)SE(1)PKC is not secure against Only wµ Attack
Suppose also that wρ only is given and consider the following Only wρ Attack. Namely we let the

ciphertext C be C = wρ.
Only wρ Attack
Theorem 1: In order to correct random error Er(x) and erasure error Ee(x), the syndrome Sρ(x) is required
to be correctly given.
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Proof: The following straightforward relation holds:

(Er(x) + Ee(x))x
g ≡ Sρ(x) mod G(x), (36)

for correctly given syndrome Sρ(x). Suppose that the following relation holds for S′
ρ(x) ̸= Sρ(x):

(Er(x) + Ee(x))x
g ≡ S′

ρ(x) mod G(x), (37)

for incorrectly given S′
ρ(x).

From Eqs.(36) and (37), the relation:

0 ≡ Sρ(x) + S′
ρ(x) mod G(x), (38)

which is contradictory, yielding the proof. 2

Theorem 2: For Only wρ Attack, even if the syndrome is correctly given, with no knowledge of locations of
erasure errors, τ1, τ2, · · · , τπ, the assertion that random errors Er and erasure errors Ee can be successfully
corrected is a coding theoretical contradiction.
Proof: In K(XVII)SE(1)PKC, the relation π + 2(t+ τ) + 1 = D holds (Eq.(28)). In order to correct erasure
errors as random errors, the following relation is asked to hold:

2π + 2(t+ τ) + 1 = D, (39)

which is contradictory to Eq.(28), yielding the proof. 2

We have seen that K(XVII)SE(1)PKC is secure against Only wρ Attack. Besides wµ is added to wρ as
an entirely independent noisy vector. It should be noted that the word wµ is constructed independently of
the word wρ.

We conclude that K(XVII)SE(1)PKC is secure against Attack 5.

3 Product sum type PKC, K(XVII)ΣΠPKC

We have seen that K(XVII)SE(1)PKC is secure against Only wρ Attack, which implies that a particular
member of the class of K(XVII)SE(1)PKC can be an independent class of PKC that uses only si as a public
key. As this class of PKC is proved to be a product sum type PKC, often referred to as knapsack type
PKC, we shall refer to this PKC as K(XVII)ΣΠ PKC. In K(XVII)ΣΠPKC, let us consider only third messege
α = (α1, α2, · · · , ατ ). The ciphertext Cρ = wρ is

Cρ = α1s(1) + α2s(2) + · · ·+ ατs(τ), (40)

where s(i) is a public key randomly chosen from the set of public keys {s(i)}.
In Fig.2, we show a schematic illustration of encryption.
We have seen that K(XVII)ΣΠPKC can be secure against Attack 2, Attack 3 and Only wρ Attack.
We conclude that K(XII)ΣΠPKC would be secure against the possible attacks including the LLL attack.
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Figure 2: Schematic illustration of encryption.

4 Conclusion

We have presented a new class of public key cryptsystem, referred to as K(XVII)SE(1)PKC and K(XVI
I)ΣΠPKC based on the Reed-Solomon code over F28 that are extensively used for the various storage and
transmission systems.

We have shown that any assertion that K(XVII)SE(1)PKC and K(XVII)ΣΠPKC can be broken is con-
tradictory from the coding theoretical point of view, provided that the parameters π, τ and t are properly
chosen.

We thus conclude that K(XVI)SE(1)PKC and K(XVII)SE(1)PKC over F28 can be secure against the
various attacks.

This work is partly supported by the NICT’s project:Research and development for public key cryptosys-
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