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Abstract

Enumeration algorithms are the best currently known methods to solve lattice problems,
both in theory (within the class of polynomial space algorithms), and in practice (where they
are routinely used to evaluate the concrete security of lattice cryptography). However, there
is an uncomfortable gap between our theoretical understanding and practical performance of
lattice point enumeration algorithms. The algorithms typically used in practice have worst-case
asymptotic running time 2O(n2), but perform extremely well in practice, at least for all values of
the lattice dimension for which experimentation is feasible. At the same time, theoretical algo-
rithms (Kannan, Mathematics of Operation Research 12(3):415-440, 1987) are asymptotically
superior (achieving 2O(n logn) running time), but they are never used in practice because they
incur a substantial overhead that makes them uncompetitive for all reasonable values of the
lattice dimension n. This gap is especially troublesome when algorithms are run in practice to
evaluate the concrete security of a cryptosystem, and then experimental results are extrapolated
to much larger dimension where solving lattice problems is computationally infeasible.

We introduce a new class of (polynomial space) lattice enumeration algorithms that simul-
taneously achieve asymptotic efficiency (meeting the theoretical nO(n) = 2O(n logn) time bound)
and practicality, matching or surpassing the performance of practical algorithms already in mod-
erately low dimension. Key technical contributions that allow us to achieve this result are a
new analysis technique that allows us to greatly reduce the number of recursive calls performed
during preprocessing (from super exponential in n to single exponential, or even polynomial
in n), a new enumeration technique that can be directly applied to projected lattice (basis)
vectors, without the need to remove linear dependencies, and a modified block basis reduction
method with fast (logarithmic) convergence properties. The last technique is used to obtain a
new SVP enumeration procedure with Õ(nn/2e) running time, matching (even in the constant in
the exponent) the optimal worst-case analysis (Hanrot and Stehlé, CRYPTO 2007) of Kannan’s
theoretical algorithm, but with far superior performance in practice.

We complement our theoretical analysis with a comprehensive set of experiments that not
only support our practicality claims, but also allow to estimate the cross-over point between
different versions of enumeration algorithms, as well as asymptotically faster (but not quite
practical) algorithms running in single exponential 2O(n) time and space.

1 Introduction

Enumeration algorithms are a fundamental tool used to solve many computational problems on
point lattices that arise in cryptanalysis, as well as in several other important areas of mathematics
and computer science, including Diophantine approximation, communication theory and combi-
natorial optimization. The usefulness of enumeration algorithms to solve lattice problems is well
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supported both by theoretical and practical considerations. A distinguishing feature of enumera-
tion algorithms is their small memory footprint: the space complexity of lattice point enumeration
algorithms is essentially linear in the input size. Moreover, they have good asymptotic runtime,
with the best theoretical algorithm (due to Kannan [16], and further analyzed in [15, 14]) achiev-
ing 2O(n logn) worst-case time complexity, where n is the dimension of the lattice. We remark
that asymptotically faster algorithms to solve lattice problems in single exponential time 2O(n) are
known (e.g., see [3, 6, 24, 23]), but they all require exponential space 2O(n) as well, and Kannan’s
algorithm currently achieves the best known asymptotic running time upper bound within the
important class of polynomial (or even subexponential) space algorithms. On the practical side,
due to their simplicity and low memory requirements, implementations of enumeration algorithms
perform extremely well in practice, allowing to run experiments in moderately large dimension,
despite their worst-case exponential complexity.

However, there is an uncomfortable gap between the theoretical versions of lattice enumeration
algorithms, and their practical counterparts. On the one hand, the asymptotic performance of the
enumeration algorithms typically used in practice1 [29, 8] is 2O(n2), much worse than the 2O(n logn)

running time of Kannan’s algorithm. On the other hand, Kannan’s algorithm has been often
reported (see e.g., [14]) not to be competitive in practice for all problem sizes where any algorithm
can be feasibly run, due to its substantial preprocessing overhead. As a result, the asymptotically
faster algorithm of Kannan is considered primarily of theoretical interest, and it is never used in
practice. This gap is not much of a concern when algorithms are used in cryptanalysis to show
that a proposed cryptosystem is not secure: a broken challenge is a broken challenge, regardless
of the algorithm used to break it. But the situation is quite different in the study of lattice
based cryptography [2, 26, 22], where cryptographic functions are supported by theoretical proofs
of security, and they are widely believed to be computationally hard to break, at least for large
enough values of the security parameter. In this setting, the complexity of the most efficient known
attacks against the underlying mathematical problem is estimated to choose appropriate values of
the security parameters and evaluate the concrete security level offered by the resulting functions.
In particular, one is interested in the performance of these algorithms on problem instances that are
just too big to be solved by the algorithms. Many of the most successful attacks employ enumeration
algorithms, be it for solving the problem directly or as subroutine for an approximation algorithm.
Clearly, extrapolating the running times of either algorithms with bad practical performance or bad
asymptotic behavior is problematic. In order to get realistic predictions, one needs algorithms that
simultaneously achieve good practical performance (for experimental evaluation in low dimension)
and good asymptotic behavior (for meaningful extrapolation).

In this paper we set to solve this problem, and introduce a new class of enumeration/preprocessing
strategies that allow to achieve 2O(n logn) running time (or even Õ(nn/2e) for the shortest vector
problem, SVP), matching the asymptotic worst-case time complexity of Kannan’s algorithm [16, 14],
without introducing any substantial overhead. Experimental evaluation shows that the resulting
algorithms are quite practical indeed: the preprocessing overhead can be made arbitrarily small,
making the algorithms competitive with (or even superior to) the traditional enumeration methods
already in small dimension.

1Stronger preprocessing using block reduction algorithms (as suggested in [8], and discussed later in the paper)
can be used to speed up enumeration, but not to the same level as Kannan’s algorithm.
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The preprocessing overhead of enumeration algorithms. Enumeration algorithms for the
solution of lattice problems, first proposed by Fincke and Pohst [9] and Kannan [16], are an instance
of the general algorithmic technique called branch and bound. In the following we assume some
minimal familiarity with enumeration algorithms, or at least lattice problems, and refer the reader
to the semi-tutorial paper [1] for more background. Given an instance of the Closest Vector Problem
(CVP), consisting of a lattice basis B = [b1, . . . ,bn] ∈ Rm×n, and a target vector t ∈ Rm, the
goal is to find a lattice point v =

∑
i bixi (where the xi’s are integer coefficients) such that the

Euclidean distance ‖t − v‖ is minimized. The solution space of the problem is described by the
integer variables x1, . . . , xn, and an optimal solution can be found as follows: (1) Pick one of the
variables xi, and determine the set of possible values of xi; and (2) Fix the value of the selected
variable xi, and recursively solve the problem (with target t− xibi) in the remaining variables.

In lattice enumeration algorithms, the variables are typically chosen starting from xn, and
working backward all the way to x1, and for each index i the number of possible values for the
variable xi depends on the quality of the input basis B. The set of possible values for each variable
xi is roughly proportional to the inverse length 1/‖b∗i ‖ of the component of bi orthogonal to
b1, . . . ,bi−1. If the basis is preprocessed using the LLL basis reduction algorithm [20] (or one of its
block variants, like BKZ, with block size typically fixed in the range 20-30) then each variable can
take up to 2O(n) possible values, resulting in 2O(n2) overall running time (with a constant in the
exponent dependent on the strength of the basis reduction). This is the method most commonly
used in practice, as polynomial time LLL or BKZ preprocessing is very cheap, and only takes a
negligible fraction of the total running time of enumeration.

In an ingenious paper [16] (see also [18, 17], as well as the recent analysis [14]), Kannan showed
that if the basis B satisfies a stronger notion of reducedness (namely, Hermite-Korkine-Zolotarev,
HKZ-reduction) the runtime of enumeration drops down to 2O(n logn). Moreover, HKZ-reduction
can also be computed in time 2O(n logn) by means of a polynomial number of recursive calls to
HKZ-reduction in dimension n − 1. This leads to a CVP algorithm with overall running time
2O(n logn), much better than a straightforward application of enumeration [9]. Unfortunately, the
runtime of the final CVP enumeration dominates the HKZ preprocessing only asymptotically: in
practice, for all reasonable values of the dimension n, the HKZ preprocessing is not only much
slower than the final enumeration (with an HKZ basis), but even slower than a straightforward
application of enumeration with a weakly reduced (e.g., LLL) basis, as commonly run in practice
[9, 29, 1, 8]. As a result, Kannan’s algorithm is not competitive, and it is never used, despite its
superior asymptotic performance.

While the exact source of inefficiency in Kannan’s algorithm is not fully understood (beyond
the fact that it can be attributed to the preprocessing time), one possible way to make sense of the
overhead is to count the total number of recursive calls performed by the algorithm. In [15], Helfrich
gave an improved analysis of Kannan’s preprocessing showing that the top level HKZ reduction
performs at most O(log n) recursive calls to HKZ reduction in dimension n − 1. While better
than Kannan’s original polynomial bound, this still leads to a superpolynomial number of recursive
calls O(log n)n = 2O(n log logn). So, as a guiding principle in the search for better enumeration
algorithms (with good asymptotic running time, but more lightweight preprocessing) one may ask:
is it possible to design a preprocessing algorithm that only performs a single exponential 2O(n)

(or even polynomial nO(1)) total number of recursive calls, and still produces bases of quality
comparable to Kannan’s?
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Our results. We provide a positive answer to this question, showing that lattice point enumer-
ation can be performed in time 2O(n logn) while making only a polynomial (in fact, linear) in n
total number of recursive calls during the preprocessing of the basis. More generally, we describe a
new family of (polynomial space) enumeration algorithms (parametrized by two integers k, h), and
evaluate them both by means of theoretical worst-case asymptotic analysis, and by running exper-
iments in moderate dimension. Special cases of our algorithm include the Fincke-Pohst algorithm
(for k = n) and a lightweight variant of the algorithm of Kannan (for k = 1) described in the next
paragraph. Our analytical study shows that values up to k = O(log n) achieve asymptotic runtime
comparable to Kannan’s algorithm. One variant of our algorithm even achieves provable Õ(nn/2e)
worst-case running time for SVP, matching the optimal analysis of [14] also in the exponent, still
maintaining low overhead. Practical experimentation with our algorithm suggests that intermediate
values of k = Θ(log n) are best, leading to a new enumeration/preprocessing strategy with 2O(n logn)

asymptotic worst-case running time and minimal overhead. Beside being asymptotically fast, the
resulting algorithms are competitive in practice with traditional enumeration methods already in
moderately low dimension n < 30, and clearly outperform them as the dimension n gets higher.
Finally, we suggest an interesting variant of our algorithm that combines enumeration techniques
with the new Voronoi preprocessing method of [23], while keeping the overall space complexity of
the algorithm polynomial in the dimension n.

Techniques. Several main technical ideas are at the basis of our improved enumeration algorithm.
We recall that Kannan’s preprocessing algorithm is based on the following weaker form of HKZ
reduction: a basis B is quasi-HKZ reduced if B is LLL reduced, and the projection π1(B) of B
orthogonally to its first vector b1 is HKZ reduced. In [16], quasi-HKZ reduced bases are computed
by repeatedly applying the LLL algorithm to the whole basis B, and (recursively) HKZ-reduction
to π1(B). (Notice that after HKZ reducing π1(B), the basis B may not be LLL reduced anymore,
and one needs to repeatedly apply both algorithms up to O(log n) times [15].)

Our first technical contribution is to observe that after LLL reducing a basis B and recursively
HKZ reducing the projected basis π1(B), it is already possible to bound the running time of
enumeration by 2O(n logn), even if the basis may not be LLL reduced anymore (and therefore,
it may not be quasi-HKZ reduced.) So, repeatedly calling LLL and recursive HKZ reduction is
not needed, and an HKZ reduced basis can be obtained by a single enumeration (with 2O(n logn)

running time) and two recursive calls to HKZ reduction in dimension n−1 (one before, and one after
enumeration). This already leads to an algorithm with good asymptotic performance (2O(n logn),
including preprocessing) and total number of recursive calls equal to 2n, asymptotically smaller
than Kannan’s 2O(n log logn). We refer to this first algorithm as the lightweight Kannan algorithm.
We remark that, as reported in previous experimental studies, Kannan’s original algorithm often
makes only two (top level) recursive calls in practice, rather than the O(log n) worst-case bound. So,
the lightweight Kannan algorithm cannot be expected to be much faster than Kannan’s in practice.
However, the 2O(n logn) provable time bound of the lightweight Kannan algorithm provides a good
basis for our second improvement.

Our second technical idea is that instead of making recursive calls in dimension n − 1, one
can make recursive calls in dimension n − k. As long as k is reasonably small (e.g., for constant
k = O(1)), we can still prove that enumeration runs in time 2O(n logn), while the total number
of recursive calls is reduced to cn, where the base c < 2 can be made arbitrarily close to 1.
Theoretically, this generalized enumeration/preprocessing algorithm runs in time nO(n−k) · 2kn.
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Since enumeration algorithms have exponential complexity, making recursive calls in dimension n−k
rather than n − 1 can have a substantial impact on the practical performance of the algorithm,
and the total overhead introduced by preprocessing the basis. In fact, our experimental results
suggest that a moderately small value of k = Θ(log n) leads to the best performance in practice
(while maintaining good asymptotic runtime) already in relatively small dimension n ≈ 30. The
total number of recursive calls, for k = Θ(log n), is 2O(n/ logn) = 2o(n), slightly subexponential in n.

Our third algorithmic contribution is a new enumeration algorithm that allows to find the
shortest vector in a projected lattice π(B), without first removing the linear dependencies among
the projected basis vectors. We recall that the standard enumeration method, on input b1, . . . ,bn,
has running time inversely proportional to the length of the Gram-Schmidt projected vectors ‖b∗i ‖.
If the input vectors b1, . . . ,bn are linearly dependent, then some orthogonalized vector b∗i =
0 necessarily vanishes, and the standard enumeration algorithm does not even terminate! This
precludes the application of enumeration algorithms to solve lattice problems on projected bases,
as those that arise in HKZ computation, where after finding a shortest lattice vector v, one needs to
recursively HKZ reduce the projection of the lattice basis orthogonally to v. Linear dependencies
can be easily removed by running the LLL algorithm [7], but this forces a second recursive call to
HKZ, leading to a total number of recursive calls 2O(n/k), which is still close to exponential in n.
We present a new enumeration algorithm for projected lattices that works even in the presence of
linear dependencies, and allows to compute an HKZ basis purely by enumeration, after the initial
preprocessing performed before finding v. This new algorithm makes only a single (top level)
recursive call, leading to a total number of recursive calls linear in the dimension.

In [14] it is shown that Kannan’s algorithm for SVP has running time Õ(nn/2e). So, it is natural
to ask if our SVP algorithms obtained using the above techniques also achieve the same constant
1/2e ≈ 0.18 in the exponent.2 Not surprisingly, building on the results of [14], we prove that
for typical preprocessing results (e.g., bases with non increasing orthogonalized lengths ‖b∗i ‖) our
SVP algorithm also has Õ(nn/2e) worst-case running time. However, it is not clear how to adapt
the proof of [14] to atypical bases where the orthogonalized lengths ‖b∗i ‖ are arbitrary. Our last
technical contribution is a variant of our algorithms based on a modified block basis reduction
method that achieves the worst-case running time bound Õ(nn/2e), while maintaining similarly low
overhead, and comparable performance in practice. This algorithmic variant with optimal worst-
case exponent retains the idea of making recursive calls in dimension n−k substantially lower than
n, but makes multiple calls, resulting in a superpolynomial (but still subexponential 2o(n)) total
number of recursive calls.

Experiments While the main contribution of this paper is theoretical, we also implemented
our algorithms to assess their practical performance on random lattices, as typically encountered
in applications like block basis reduction. Our experiments were aimed primarily at producing
useful, quantitative information about the general behavior of different algorithms (like determining
cross-over points, and experimental validation of asymptotic analysis), rather than targeting single
cryptanalytic challenges or solving problems in record dimensions, which requires a substantial
low level optimization effort. For flexibility, all experiments were performed using a fast prototype
implementation, with no low level coding optimizations, and performance was measured by counting
the number of nodes explored during the (preprocessing and final) enumeration process, which

2 The experimental exponent achieved in practice on random lattices is far below 0.18, so this is a question of
primarily theoretical interest about worst-case performance.
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also has the advantage of making the experimental results largely independent from technological
details. Interestingly, even with such fast prototype implementation, we are able to make several
interesting experimental observations that both complement and support our theoretical analysis.
For example, the running time of our algorithms in practice is approximately 2cn logn, but with a
constant c ≈ 0.02 much smaller than the theoretical 1/2e ≈ 0.18 worst case, and the exact value
of c dependent on the strength of the basis reduction applied before running the algorithm. Also,
traditional enumeration algorithm have running time 2cn

2
both in theory and in practice, but for an

even smaller constant c < 0.01. Still, our asymptotically faster algorithm quickly catches up, and
becomes attractive already in dimension below 50 thanks to its reduced (and tunable) overhead.
For more details about our experimental results, see Section 4.

Related work. Block reduction algorithms [29, 28, 11] are an effective preprocessing method to
improve the running time of lattice enumeration in practice [14, 8]. Such preprocessing has running
time exponential in the block size k, so they are used for fixed values of k, typically in the range
20− 30. We observe that for any fixed value of the block size k, the running time of enumeration
after block reduction is still 2O(n2), though with a smaller constant in then exponent than LLL.
In the asymptotic setting, one may consider using block reduction with increasing values of k, but
this would inevitably require the recursive HKZ preprocessing of the blocks, and potentially very
large (superpolynomial) number of recursive calls. A rigorous analysis of this variant is left to a
separate work. We evaluated the effect of block reduction on different algorithms (including ours)
experimentally and the results demonstrate that our algorithm still compares favorably already in
moderately low dimensions.

Enumeration algorithms commonly used in practice often make use of various pruning heuristics
[27, 30, 10] that can considerably speed up execution. While a rigorous analysis of pruning methods
(both as a general technique, and as specifically applied to our algorithms) is outside of the scope
of this paper, we consider the effect of pruning based on the claims made in [10], asserting that
these techniques can speed up enumeration by a factor ranging from 2n/4 to 2n/2, depending on
the aggressiveness of pruning. Note that single exponential factors do not affect the asymptotical
behaviour of enumeration algorithms due to its superexponential runtime, but can have a big
impact in practice. Extrapolating our experimental results and comparing to the results from [10],
we expect our algorithms to outperform any enumeration algorithm currently employed in practice
in high (but tractable) dimensions.

Outline. We will cover some preliminaries in Section 2, before introducing our techniques and
the new algorithms in Section 3. Finally, we present our experimental results in Section 4.

2 Preliminaries

Notation We use standard asymptotic notation O, o, ω,Ω, and Õ(f(n)) = f1+o(1)(n). Numbers
and reals are denoted by lower case letters and sets by upper case letters. For n ∈ Z+ we denote
the set {1, . . . , n} by [n]. For vectors we use bold lower case letters and the i-th entry of a vector v
is denoted by vi. Let 〈v,w〉 =

∑
i vi · wi be the scalar product of two vectors, and ‖v‖ =

√
〈v,v〉

the standard Euclidean norm. We define the projection of a vector b orthogonally to a vector v as
πv(b) = b− 〈b,v〉‖v‖2 v. Matrices are denoted by bold upper case letters. The j-th row of a matrix B

is denoted by Bj , its i-th column by B·,i or as bi, when no confusion can arise. Furthermore, we
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denote the submatrix comprising the columns from the i-th to the j-th column (inclusive) as B[i,j].
We extend the projection operator to matrices, where πV(B) is the matrix obtained by applying
πV to every column bi of B and πV(bi) = πvk(· · · (πv1(bi)) · · · ). In this work, the log function
always has base 2. When we assign the result of the log function to an integer variable, it is always
rounded to the smallest integer larger than or equal to the result.

Lattices A lattice Λ is a discrete subgroup of Rm and is generated by a matrix B ∈ Rm×n,
i.e. Λ = L(B) = {Bx : x ∈ Zn}. If B has full column rank, B is called a basis of Λ and
dim(Λ) = n is the dimension (or rank) of Λ. A lattice has infinitely many bases, which are related
to each other by right-multiplication with unimodular matrices. With each matrix B we associate
its Gram-Schmidt-Orthogonalization (GSO) B∗, where the i-th column b∗i of B∗ is defined as
b∗i = πB[1,i−1]

(bi) = πB∗
[1,i−1]

(bi) (and b∗1 = b1). For a fixed matrix B we extend the projection

operation to indices: πi(·) = πB∗
[1,i]

(·).
For every lattice Λ there are a few invariants associated to it. One of them is its determinant

det(L(B)) =
∏
i ‖b∗i ‖ for any basis B. Even though the basis of a lattice is not uniquely defined,

the determinant is and it is efficiently computable given a basis. Furthermore, for every lattice
Λ we denote the length of its shortest non-zero vector (also known as the first minimum) by
λ1(Λ), which is always well defined. We use the short-hand notations det(B) = det(L(B)) and
λ1(B) = λ1(L(B)). Minkowski’s theorem is a classic result that relates the first minimum to the
determinant of a lattice. It states that λ1(Λ) ≤ √γn det(Λ)1/n, for any Λ with dim(Λ) = n, where
Ω(n) ≤ γn ≤ n is Hermite’s constant. Finding a (even approximate) shortest nonzero vector in
a lattice, commonly known as the Shortest Vector Problem (SVP), is NP-hard under randomized
reductions [19, 21]. The Closest Vector Problem (CVP) is the inhomogeneous counterpart of SVP,
and it asks to find the lattice point closest to a given target. The SVP easily reduces to CVP [13],
so any algorithm for CVP can be used to solve SVP as well. In the case of enumeration algorithms,
SVP and CVP are almost equivalent. Standard enumeration can be used to solve SVP by setting
the target to 0 and removing it from the solution space.

Enumeration The high level idea of the standard enumeration procedure has already been ex-
plained in the introduction. For the sake of brevity we will not go further into detail here. For
our purposes it is sufficient to note that the overall number of nodes explored by the enumeration

procedure to find SVP/CVP given a basis B is bounded by
(∏

i

⌊
2r
‖b∗i ‖

⌋
+ 1
)

, where r is a valid

upper bound for the solution. This bound will be the starting point of our analysis. Note that it
can heavily depend on the basis B.

Basis Reduction Basis reduction algorithms deal with the problem of obtaining a “good” basis
from an arbitrary basis for some notion of a “good” basis. The LLL algorithm [20] is a polynomial
time basis reduction algorithm parameterized by a value 1/4 < δ < 1, which allows some trade-off
between output quality and running time. In this work, for simplicity, we only consider δ = 3/4,
but all results can easily be adapted to any δ. An LLL reduced basis B ∈ Zm×n (with δ = 3/4)
satisfies ‖b∗i ‖ ≤

√
2‖b∗i+1‖ for all i ∈ [n− 1]. A much stronger notion is HKZ reduction. A basis B

is HKZ reduced if ‖b1‖ = λ1(B) and π1(B) is HKZ reduced. In particular, for any HKZ reduced
basis we have ‖b∗i ‖ = λ1(πi−1(B)). Obviously, this notion inherently solves the SVP problem and,
in fact, Kannan’s algorithm solves SVP by producing an HKZ reduced basis.
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3 A New Asymptotically Fast Enumeration Algorithm

In this section we describe and analyze our new algorithm for lattice point enumeration.

3.1 Parameterizing the Preprocessing

In oder to analyze Kannan’s algorithm and our variants, we first introduce a new notion of basis
reduction that will facilitate the analysis later.

Definition 1 Let B ∈ Zm×n and ζ : [n]→ R+. We call B ζ-reduced, if for all i ∈ [n]

‖b∗i ‖ > ζ(i) det(B)1/n ⇒ λ1(πi−1(B)) > λ1(B)

and B[1,k] is ζ-reduced for all k ∈ [n− 1].

Note that the definition covers arbitrary generating systems for lattices, not only bases. The
quantification over the sublattices in Definition 1 might seem like a stringent condition at first sight
but the reduction algorithms that we consider, namely LLL, BKZ and HKZ reduction, naturally
meet this condition since all subbases of the form B[1,k] of a reduced bases B are also reduced. It is
easy to see that an HKZ reduced basis is ζ-reduced for any constant function ζ(i) ≥

√
n by applying

Minkowski’s bound. The following lemma shows that the LLL algorithm computes ζ-reduced bases
for an appropriate value of ζ.

Lemma 1 Let B ∈ Zm×n an LLL reduced basis. Then, B is ζ-reduced for ζ(i) = 2
n−1
4 .

Proof Let B an LLL reduced basis of a lattice Λ. For any i, we prove that if λ1(Λ) ≥ λ1(πi−1(Λ)),
then ‖b∗i ‖ ≤ 2(n−1)/4 det(Λ)1/n. Since B is LLL reduced, we have ‖b∗k‖ ≤

√
2‖b∗k+1‖ for all

k. In particular, ‖b∗i ‖ ≤ 2(k−i)/2‖b∗k‖ for all k ≥ i, and ‖b1‖ ≥ λ1(Λ) ≥ λ1(πi−1(Λ)) ≥
mink≥i ‖b∗k‖ ≥ ‖b∗i ‖2−(n−i)/2. So, we also have ‖b∗i ‖ ≤ 2(n−i+k)/2‖b∗k‖ for k < i. It follows that
‖b∗i ‖n ≤

∏
k 2((k−i) mod n)/2‖b∗k‖ = 2n(n−1)/4 det(Λ) and ‖b∗i ‖ ≤ 2(n−1)/4 det(Λ)1/n. 2

Next, we analyze the runtime of the standard enumeration procedure on a ζ-reduced basis.

Theorem 1 Let B ∈ Zm×n be a ζ-reduced basis with ζ(i) ≥
√
n for all i ∈ [n]. Then there is an

efficiently computable set M ⊂ Zn with |M | ≤ 3n
∏n
i=1 ζ(i) such that v = Bx with ‖v‖ = λ1(B)

and x ∈M .

Proof Let ∆ = det(B) and r =
√
n∆1/n be the Minkowski bound of L(B). We start out by noting

that we can assume w.l.o.g. that ‖b∗i ‖ ≤ ζ(i)∆1/n for all i ∈ [n], because if there is an i with
‖b∗i ‖ > ζ(i)∆1/n, we can ignore the entire sublattice L(B[i,n]) due to ζ-reducedness and apply the
result recursively to the reduced basis B[1,i−1]. Now we simply bound the number of steps in the
enumeration by

|M | ≤
n∏
i=1

⌊
2r

‖b∗i ‖
+ 1

⌋
. (1)

Observe that for any real α ≥ 0 we have b2α + 1c ≤ max{2, 3α}. This can easily seen to be true:
If α < 1, then 2α+ 1 < 3 and b2α+ 1c ≤ 2. Otherwise, α ≥ 1 and 2α+ 1 ≤ 2α+ α = 3α. Setting
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α = r/‖b∗i ‖, we can bound each term in Equation 1 by⌊
2r

‖b∗i ‖
+ 1

⌋
≤ max{2, 3r/‖b∗i ‖} =

r

‖b∗i ‖
max{2‖b∗i ‖/r, 3} ≤

3ζ(i)∆1/n

‖b∗i ‖

So, the size of M is at most |M | ≤
∏
i

3ζ(i)∆1/n

‖b∗i ‖
= 3n

∏
i ζ(i). 2

Intuitively, Theorem 1 states that when calling the enumeration procedure on a ζ-reduced
basis, the running time is bounded by the product of the ζ values for all basis vectors and a single
exponential factor. Recall that Fincke-Pohst enumerates on LLL reduced basis, so from Lemma 1
and Theorem 1 we immediately derive the well known 2O(n2) bound on its running time. In
contrast, Kannan’s algorithm produces a ζ-reduced basis before the enumeration with ζ(1) = 2

√
n

and ζ(i) =
√
n for all i > 1. This corresponds to the notion of quasi-HKZ-reducedness [14]. It

follows that the complexity of the enumeration procedure on such bases (and by induction also the
whole algorithm) is in Õ(nn/2).

However, in order to achieve the Õ(nn/2) complexity, requiring ζ(1) to be this small seems to

be an overkill. In fact, after running LLL we obtain ζ(1) = 2
n−1
4 . So, after a recursive call on

the basis π1(B), which does not change ζ(1), we obtain a basis that is ζ-reduced for the function

ζ(1) = 2
n−1
4 , ζ(i > 1) =

√
n. Clearly, using this ζ function in Theorem 1 also exhibits a worst-

case complexity of Õ(nn/2). This lightweight Kannan algorithm reduces the number of recursive
calls before enumeration from log(n) to 1 and so the overall number of recursive calls to 2n, while
preserving the asymptotic runtime.

Furthermore, our analysis suggests a natural generalization. We can introduce a degree of
freedom by allowing a variable number κ(n) of basis vectors to have an exponential ζ-bound as
opposed to the sublinear bound obtained by the recursive call. This can be achieved by first LLL
reducing the basis B and recursing on the basis πκ(n)(B) before enumerating. This will result in

bounds of ζ(i ≤ κ(n)) = 2
n−1
4 , ζ(i > κ(n)) =

√
n, which, when plugged into Theorem 1, yield

an upper bound of Õ(2nκ(n)/4n(n−κ(n))/2). Note that for κ(n) = 1 this variant corresponds to the
lightweight Kannan algorithm, while for κ(n) = n it degenerates to the Fincke-Pohst algorithm.
Using intermediate values for κ(n) allows us to interpolate between these two algorithms and thus
this variant can be seen as a generalization of them. The new parameter can be used to balance
the preprocessing with the enumeration: for larger values of κ(n), the recursive call is cheaper, but
enumeration is harder, and vice versa. In order to maintain an asymptotic upper bound of nO(n) we
need to ensure that κ(n) = O(log(n)), which results in a runtime of Õ(n0.75n), only a little worse
than the one for the lightweight Kannan of Õ(nn/2), but with significantly lighter preprocessing.

We summarize the runtimes of the algorithms discussed in this section in Table 1.

3.2 Enumeration in Projected Lattices

Even though the methods from the previous section can be used to solve SVP with only 1 top
level recursive call to HKZ (in lower dimension), the total number of recursive calls to HKZ is still
exponential because a second top level recursive call is performed during postprocessing to extend
the shortest vector into a full HKZ basis. Here we will show that we can eliminate the recursive
call in the postprocessing (which will bring down the overall number of recursive calls to O(n)).
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Kannan General FinckePohst Lightweight Kannan Our

κ(n) 1 variable n 1 log n

ζ(i ≤ κ(n))
√

2n 2(n−1)/4 2(n−1)/4 2(n−1)/4 2(n−1)/4

ζ(i > κ(n))
√
n

√
n -

√
n

√
n

Bound
√

2nn/2 2nκ(n)/4n(n−κ(n))/2 2n
2/4 2n/4nn/2 n0.75n

# Recursive Calls 2n log logn 2n/κ(n) n 2n 2n/ logn

Table 1: Comparison of asymptotic runtime of different algorithms according to Theorem 1 where we ignore
the factor 3n, since it is the same across all algorithms. General refers to the generalized algorithm and Our
to the one where we set κ(n) = log n.

Dealing with Linear Dependencies Our goal in this paragraph is to HKZ reduce a basis B, in
which the shortest vector v has already been found. In order to do so, we note that after projecting
the basis orthogonally to v, the columns of B are not linearly independent anymore, so πv(B) is
not a basis. For each basis vector bi the enumeration procedure decides how many nodes to explore
depending on the value r/‖b∗i ‖ (where the bound r is part of the input). If ‖b∗i ‖ = 0, as is the case
for vectors bi of the generating system that are linearly dependent on previous vectors B[1,i−1], this
does not make sense anymore. Now let B∗ be the GSO of the projected basis πv(B). Let v = Bw
and note that ‖b∗i ‖ = 0 iff wi is the last non-zero entry of w. We can add arbitrary multiples of
w to any coefficient vector x without changing the length of πv(Bx). This means that for any
vector, and in particular any shortest non-zero vector, in L(πv(B)) there is a vector πv(Bx) of the
same length and with 0 ≤ xi < wi. The following lemma formalizes this idea and generalizes it to
projecting the basis to arbitrarily many vectors.

Lemma 2 Let B ∈ Zm×n be the basis of an n-dimensional lattice Λ and V = BW a basis of a
j-dimensional sublattice L(V) ⊂ Λ, i.e. W ∈ Zn×j. We assume the indices of the last non-zero
entries of each column in W are pairwise different. Let ti = max{t : Wt,i 6= 0} be the indices of
the last non-zero entry in each column of W and I = {t1, . . . , tj}. Then, for any vector y ∈ Zn
there exists a vector x ∈ Zn with 0 ≤ xti < |Wti,i| for all ti ∈ I such that ‖πV(Bx)‖ = ‖πV(By)‖.

Proof Observe, that given a vector y ∈ Zn we can add arbitrary multiples of any column W·,i to
y without changing the projected length ‖πV(By)‖, because V = BW. It follows that we can
iterate over the ti’s in I in decreasing order (w.r.t. ti) and reduce yti modulo Wti,i by adding the
correct multiple of W·,i to y. 2

Note that Lemma 2 immediately yields an enumeration procedure to find the shortest vector in
a projected lattice using the coefficient matrix W of the vectors we are projecting orthogonally to.
Specifically, the procedure needs to enumerate a number of cosets of the lattice for each vector in
V. We present pseudocode for the new procedure in Algorithm 1. The assumption that the indices
of the last nonzero entries in the columns of W are pairwise different is not a limitation, because
we can transform W into Hermite Normal Form (HNF) in polynomial time and linear space [25].
This transformation will not change the projected basis πV(B) since it does not change the lattice
L(V). Lemma 2 implies that we can introduce another degree of freedom, which we will call η, to
specify how many vectors of an HKZ reduced bases should be enumerated directly before making
a recursive call.
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Algorithm 1 Enumeration procedure for linearly dependent generating systems

procedure Enum (B, W, r)
Input: A lattice basis B ∈ Zm×n, a coefficient matrix W ∈ Zn×j in HNF, and an upper bound
r ∈ R
Output: All lattice vectors in πBW(L(B)) with Euclidean norm less than r

1 if n = 0 return {0}
2 V ′ = Enum(π1(B),W−1, r) \\W−1 denotes W without its first row
3 V = ∅
4 for all v ∈ V ′
5 if ‖πBW(b1)‖ > 0 then

6 V = V ∪ {v + xb1|x ∈ Z and ‖πBW(v + xb1)‖ ≤ r}
7 else

8 \\denote by w the unique entry in W1 s.t. w is the only non-zero entry in its column
9 V = V ∪ {v + xb1|x ∈ Z and 0 ≤ x < w}
10 return V

Technical comments about Algorithm 1 The vectors in V ′ are lattice vectors in the projected
lattice. Technically, they need to be lifted to the current dimension. The reader can just think of
the algorithm working on linear combinations of B and the addition in line 6 and 9 as prepending
a coordinate – then the lifting is implicit. The case in line 6 refers to the traditional enumeration,
the set of coordinates to enumerate is efficiently computable and inverse proportional to ‖b∗i ‖.

Runtime Analysis of the Enumeration With the change of the enumeration procedure we
have to revisit the proof of Theorem 1 to take projected lattices into account. The following theorem
relates the worst-case running time of the modified enumeration procedure to the ζ-reducedness of
the projected basis, which in turn will be analyzed in the next paragraph.

Theorem 2 Let B, V, W, and I as in Lemma 2. Additionally, let πV(B) be ζ-reduced for some
function ζ with ζ(i) ≥

√
n for all i ∈ [n]. Then there is an efficiently computable set M ⊂ Zn with

|M | ≤ 3n−j
∏
i/∈I ζ(i) such that v = Bx with ‖πV(v)‖ = λ1(πV(B)) and x ∈M .

Proof Let B̃ = πV(B) and r̃ =
√
n− j det(B̃)1/(n−j) the Minkowski bound for L(B̃). From the

discussion in the previous paragraph (cf. Algorithm 1) it is clear that the size of the search space
is now bounded by

|M | ≤

(
j∏
i=1

Wti,i

)(∏
i/∈I

⌊
2r̃

‖b̃∗i ‖
+ 1

⌋)
. (2)

We start by bounding the first term. For that let B′ = B\{bt : t ∈ I}, i.e. the basis with the same
basis vectors as B but without the vectors whose GSOs vanish after projecting orthogonally to
V. Furthermore, let B′′ be the basis with the same vectors as B but each vector in {bti : ti ∈ I}
replaced by vi respectively. Then we have det(V)

∏
i/∈I ‖b̃∗i ‖ = det(V) det(πV(B′) = det(V|B′) =

det(B′′) = det(B)
∏
ti∈I Wt,i and so

∏
ti∈I Wti,i =

det(V)
∏
i/∈I ‖b̃∗i ‖

det(B) =
∏
i/∈I ‖b̃∗i ‖/ det(B̃). Using the

ζ-reducedness of the projected lattice for the other terms as in Theorem 1, we obtain

|M | ≤
∏
i/∈I ‖b̃∗i ‖
det(B̃)

∏
i/∈I

3ζ(i) · det(B̃)1/(n−j)

‖b̃∗i ‖
= 3n−j

∏
i/∈I

ζ(i). 2
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Note that the bound given in Theorem 2 is independent of W. Intuitively, this is explained by
the following observation: while a large value Wti,i requires a large number of coefficients to be
enumerated for the respective dependent vector in the generating system, the cosets of the lattice
that have to be enumerated in the sequel are much sparser than the original lattice.

ζ-Reducedness of Projected Lattices To analyze the worst-case runtime of the enumeration
procedure in projected lattices, it remains to discuss the ζ-reducedness of projected bases. The
following theorem states the conditions for the original basis under which the projected basis is
reduced.

Theorem 3 Let B, V, W, and I as in Lemma 2. Additionally, let V generate the same lattice
as the first j vectors of some HKZ reduced basis for L(B). For an arbitrary k ∈ [n], if B is such
that πk(B) is HKZ reduced and ‖b∗i ‖ ≤ ζ̃(i) det(B)1/n for some ζ̃ : [k] → R+ and all i ≤ k, then

πV(B) is (γ
j/2(n−j)
n−j+1 · ζ)-reduced for ζ(i ≤ k) = ζ̃(i) and ζ(i > k) =

√
n.

For the proof of the theorem we need a few lemmas to facilitate the analysis. The first lemma
will help us bound the GSO vectors of the projected basis. Specifically, it states that the GSO
vectors can only get shorter when projecting the basis.

Lemma 3 Let B ∈ Zm×n be an arbitrary matrix and let v be an arbitrary vector. Furthermore,
let B̃ = πv(B). Then ‖b∗i ‖ ≥ ‖b̃∗i ‖ for all i.

Proof It is tempting to assume that b̃∗i = πv(b∗i ), from which the lemma would follow trivially.
However, a simple counter example shows that this is not true:

B =

 0 1 0
1 2 0
1 1 1


and v = b3. Then it can be easily verified that (1, 0, 0)T = b̃∗2 6= πv(b∗2) = (1, 1/2, 0)T .

The lemma can still easily be seen to be true by considering the length of b∗i as the shortest
distance between the endpoint of bi and the linear subspace spanned by [b1, · · · ,bi−1]. Now con-
sider the (unique) line segment of length ‖b∗i ‖ between the endpoint of bi and span(b1, · · · ,bi−1).
Under orthogonal projection this line segment has length exactly ‖πv(b∗i )‖ and is connecting the
endpoint of b̃i and span(b̃1, · · · , b̃i−1). Furthermore, we know that ‖b̃∗i ‖ is the shortest distance
between the endpoint of b̃i and span(b̃1, · · · , b̃i−1) and so obviously ‖b̃∗i ‖ ≤ ‖πv(b∗i )‖ ≤ ‖b∗i ‖. 2

We also need the following lemma on the Rankin factor achieved by an HKZ reduced basis.

Lemma 4 Let B ∈ Zm×n be an HKZ reduced basis, and Bk = B[1,k]. Then

det(Bk) ≤
√
γkn−k+1 · det(B)k/n.
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Proof By induction on k. First let k = 1. Then we have det(B1) = λ1(B) ≤ √γn det(B)1/n.
Now assume the lemma is true for k and observe that det(πk(B)) = det(B)/ det(Bk). Then we
have:

det(Bk+1)/ det(B)(k+1)/n =
det(Bk)

det(B)k/n
· λ1(πk(B))

det(B)1/n

≤ det(Bk)

det(B)k/n
·
√
γn−k det(πk(B))1/(n−k)

det(B)1/n

=
det(Bk)

det(B)k/n
·

(
det(B)k/n

det(Bk)

)1/(n−k)
√
γn−k

=

(
det(Bk)

det(B)k/n

)(n−k−1)/(n−k)√
γn−k

≤
√
γ

1/(n−k)
n−k+1

k(n−k−1)√
γn−k (Mordell’s Inequality)

≤
√
γ

1/(n−k−1)
n−k

k(n−k−1)√
γn−k =

√
γk+1
n−k

2

Notice that the previous lemma does not require B to be fully HKZ reduced. The bounds apply
as long as the first k vectors are reduced, and, even more, for any basis V such that L(V) = L(Bk).

Now we are ready to prove Theorem 3.

Proof [of Theorem 3 ] From the assumptions it follows that B is ζ-reduced. For the reducedness
of the projected lattice, let B̃ = πV(B) and t = max(I). We consider two cases:

For i = max(k, t) we know that πi(B̃) = πi(B) is HKZ reduced, so πi(B̃) is ζ-reduced and since

γ
j/(n−j)
n−j+1 > 1 also (γ

j/(n−j)
n−j+1 · ζ)-reduced.

For all i ≤ max(k, t) we know from Lemma 3 that ‖b̃∗i ‖ ≤ ‖b∗i ‖ ≤ ζ̃(i) det(B)1/n. From Lemma
4 we get

det(B)1/n/ det(B̃)1/(n−j) = det B1/n ·
(

det(V)

det(B)

)1/(n−j)
=

(
det(V)

det(B)(j/n)

)1/(n−j)
≤
√
γ
j/(n−j)
n−j+1

and so ‖b̃∗i ‖ ≤ γ
j/2(n−j)
n−j+1 ζ̃(i) det(B̃)1/(n−j). The theorem follows. 2

We remark that Theorem 3 uses a stronger assumption on the initial basis B than mere ζ-
reduction for a certain function. It requires for the first k vectors to have an absolute bound.

3.3 The New Enumeration Algorithm

In this section we present our new algorithm. The design is mainly driven by the results in of the
previous sections. We introduce two parameters: κ(n) allows to adjust the preprocessing, and η(n)
allows to adjust the number of vectors to enumerate before making a recursive call to achieve full
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HKZ reduction. The new algorithm is described in Algorithm 2. As most other lattice algorithms,
it makes extensive use of orthogonal projection. As a notational convention, for any orthogonal
projection π and algorithm A, we write π−1(A(π(B))) to describe the application of algorithm A to
the projected lattice π(B), while performing the same (linear) operations on the original lattice basis
B. More formally, if A is an algorithm that on input a lattice basis B outputs one or more lattice
vectors, the modified algorithm π−1(A(π(B))) applies A on the projected lattice π(B), expresses
the result of running A as a linear combination π(B)x of the basis vectors, and outputs the same
linear combination of the original basis Bx. In practice, this is most commonly implemented by
manipulating linear combinations of the original basis vectors B during the execution of A on π(B).

We remark that the algorithm requires the basis B to be integral, but Line 5 and 11 contain
recursive calls on projected bases, which might not be integral. However, it is folklore that integral-
ity can always be achieved for projections of integral bases by scaling. The enumeration procedure
called by the algorithm in line 4 and 10 is the one described in Section 3.2 (cf. Algorithm 1). As
the bound for enumeration it uses the Minkowski bound of the lattice.

Lemma 5 Algorithm 2 is correct and terminates in Õ(2nκ(n)/4n(n−κ(n))/2) steps.

Proof Correctness will follow inductively if the enumeration calls in Line 4 and 10 behave correctly,
i.e. indeed return the shortest vector in the respective lattice. The correctness of the call in Line 4

follows directly from Lemma 1. Similarly, correctness of the call in Line 10 follows from Lemma 2.
Now we turn to the complexity. We note that all steps in the algorithm are polynomial, with

the exception of the enumerations in Line 4 and 10 (and thus the recursive calls). The runtime of
the first call to the enumeration procedure can easily be seen to be 2O(κ(n)2/4) = 2O(nκ(n)/4) since
the basis is LLL reduced.

In order to analyze the complexity of the enumeration calls in Line 10, we use Theorem 3 to
derive the ζ-reducedness of πV(B). It is plain to see that after the recursive call in Line 6, B meets
the condition ‖b∗i ‖ ≤ ζ(i) det(B)1/n for all i ≤ κ(n) and πκ(n)(B) is HKZ reduced. Additionally,
we note that V always consists of the first vectors of an HKZ reduced basis for L(B). This means
that we can apply Theorem 3 to see that in the j-th iteration of the loop πV(B) is ζ-reduced with

ζ(i ≤ κ(n)) = γ
j/2(n−j)
n−j+1 · 2

n−1
4 and ζ(i > κ(n)) = γ

j/2(n−j)
n−j+1 ·

√
n. Plugging this into Theorem 2, we

obtain an upper bound on the runtime of each enumeration of

3n−jγ
j/2
n−j+12nκ(n)/4n(n−κ(n)−j)/2 = 3n2nκ(n)/4n(n−κ(n))/2

(√
γn−j+1

3
√
n

)j
= 2O(n)2nκ(n)/4n(n−κ(n))/2

(3)
The number of recursive calls is bounded by 2O(n) for any κ and η, proving the theorem. 2

In Appendix A we prove a tighter bound for the algorithm in the typical case, where the norms
of the GSO vectors are non-increasing, which achieves the best currently known worst-case bound
of Õ(nn/2e) obtained in [14].
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Algorithm 2 Our HKZ Reduction Algorithm

procedure reduce (B, κ, η)
Input: A lattice basis B ∈ Zm×n, two func-
tions κ, η : [n]→ [n]
Output: An HKZ reduced basis of L(B)

1 B← LLL(B)
2 ∆← det(B), k ← κ(n)

3 if ∃i ≤ k : ‖b∗i ‖ > 2
n−1
2 ∆

1
n then

4 v← enum(B[1,i−1])
5 return [v|π−1

v (reduce(πv(B), κ, η))]
6 B← [B[1,k]|π−1

k (reduce(πk(B), κ, η))]
7 h← η(n)
8 V = [ ]
9 for j ∈ [1, · · · ,min(h, n)]
10 V← [V|π−1

V (enum(πVB))]
11 return [V|π−1

V (reduce(πV(B)), κ, η)]

Algorithm 3 Variant of our HKZ Reduction
Algorithm

procedure reduce (B, κ)
Input: A lattice basis B ∈ Zm×n, a function
κ : [n]→ [n]
Output: An HKZ reduced basis of L(B)

1 B← LLL(B)
2 do

3 B← [B[1,k]|π−1
k (reduce(πk(B), κ))]

4 V← reduce(B[1,k−1], κ)
5 if ‖v1‖ ≤ ‖b∗k‖
6 return [v1|π−1

v1
(reduce(πv1(B), κ))]

7 B← [dualHKZ(B[1,k])|B[k+1,n]]
8 while change occurred
9 v← enum(B)
10 return [v|π−1

v (reduce(πv(B), κ))]

Parameter Selection The algorithm allows two degrees of freedom, κ and η. From Lemma 5 it
follows that all values up to κ(n) = O(log n) exhibit a worst-case time complexity of nO(n). From
a theoretical point of view, κ(n) = 1 seems best, but in practice larger values might be better
to reduce the number of recursive calls, as we will see in the next section. The parameter η is a
little more tricky since it does not have an impact on the dominating factors of the worst-case time
complexity. From a theoretical perspective, there are two valid arguments leading to conflicting
choices of η. On the one hand, setting η(n) = Θ(n) reduces the number of recursive calls to
a minimum. As the expensive recursive calls are the main drawback of Kannan’s algorithm, this
seems to be a good choice. Furthermore, in Equation 3 we see that the enumeration in the (j+1)-th
iteration is easier than the first enumeration by a factor of (

√
γn−j+1/3

√
n)j < 1. In contrast, after

the shortest vector has been found, one can enumerate again to find the second vector of the HKZ
reduced basis, which according to Theorem 5 will take again nO(n). However, a recursive call in
dimension n−1 has complexity of only (n−1)O(n−1). Peeking ahead, we note that our experiments
indicate that this strategy is superior to the former at least up to moderate dimensions.

3.4 A Variant Based on Dual HKZ Reduction

As mentioned, in [14] the authors were able to improve the analysis of Kannan’s algorithm to obtain
a worst case bound on the asymptotic running time of Õ(nn/2e) instead of Helfrich’s Õ(nn/2) [15].
It is unclear if and how the techniques from [14] can be applied to our algorithm to achieve a similar
bound. Here we present a variant of our algorithm, for which we can rigorously prove the same
complexity bound as in [14]. In Section 4 we will present experimental results, which show that in
practice this variant has efficiency comparable to the previous algorithm.

This variant maintains the idea of restricting recursive calls to dimension n− k, but potentially
makes logarithmically (in n) many of them interleaved with calls to a k dimensional dual HKZ
reduction. The dual HKZ reduction can be realized by calling the algorithm on the dual basis.
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We first bound the enumeration step and then the number of loop iterations during the prepro-
cessing in Algorithm 3 .

Lemma 6 Let B ∈ Zm×n be such that B[1,k] is dual HKZ reduced and πk−1(B) is HKZ reduced for
some k ∈ [n]. The shortest vector vector in L(B) can be computed by enumeration while exploring
at most kO(n)n(n−k)/2e+o(n) nodes.

Proof Let rk =
√
k det(L(B[1,k]))

1/k. Note that by Minkowski’s theorem rk ≥ λ1(L(B[1,κ(n)])) ≥
λ1(L(B)), so L(B) contains a vector of length at most rk. Furthermore, note that the shortest
vector can be found by enumerating all vectors of length rk in πk(L(B)), followed by a CVP
computation for each of them. We first bound the number of nodes explored during the first step.
Note that due to the dual HKZ reducedness of B[1,k] we have 1/‖b∗k‖ ≤

√
k/det(L(B[1,k]))

1/k, and
so rk ≤ k‖b∗k‖. By Theorem 3 in [14], the number of nodes explored during the first step can be
bounded by kn−kn(n−k)/2e+o(n). For each vector found, the CVP problem can be solved exploring
at most k! = kO(k) nodes due to the dual HKZ reducedness of B[1,k] [5]. Multiplying the two bounds
gives the result. 2

Lemma 7 Let B ∈ Zm×n be LLL reduced. Then the number of iterations between Line 3 and 7 is
at most logarithmic in k · n with base α = k/(k − 1).

Proof The proof is a generalization of Helfrich’s proof of the number of loop iterations performed
by Kannan’s algorithm ([15], Lemma 3.3). Let λ1 = λ1(L(B)) and B̄ be such that it solves the
densest (k − 1)-sublattice problem and B̄[1,k−1] is LLL reduced. We need the following facts:

1. If B ∈ Zm×k is dual HKZ reduced, then det(L(B[1,k−1])) ≤
√
γk det(L(B))(k−1)/k

• Can easily be shown by applying Minkowski’s theorem to the dual of B.

2. When executing Line 7, ‖b∗k‖ ≤ λ1 holds

• Let v ∈ L(B) with ‖v‖ = λ1. If πk−1(v) > 0, the fact follows from the HKZ reduction
step. Otherwise, v ∈ L(B[1,k−1]) and the fact easily follows from the check in Line 5.

3. If B is LLL reduced, then det(L(B[1,k−1]))/det(L(B̄[1,k−1])) ≤ 2O(kn)

• W.l.o.g. we can assume that ‖b∗i ‖ ≤ 2(n−i)/2‖b1‖ ≤ 2nλ1, because otherwise λ1(πi−1(L(B))) >
‖b1‖ (for brevity we ignored an explicit check in the presentation of Algorithm 3). It
follows that det(L(B[1,k−1])) ≤ 2knλk−1

1 . From the properties of LLL reduction we

get λ1 ≤ b̄1 ≤ 2(k−2)/4 det(L(B̄[1,k−1]))
1/(k−1) and so det(L(B̄[1,k−1])) ≥ λk−1

1 /2(kn)/4.
Putting the two inequalities together proves the fact.

We define r(B) = det(B[1,k−1])/ det(B̄[1,k−1]). Note that the HKZ reduction step in Line 3 does
not change the value of r(B). Now let B be the matrix during some iteration of the loop before
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the dual HKZ reduction step (Line 7) and B′ its result. Then we have

r(B′) =
det(B′[1,k−1])

det(B̄[1,k−1])

≤ √γk
det(B′[1,k])

(k−1)/k

det(B̄[1,k−1])
Fact 1

≤ √γk
det(B[1,k])

(k−1)/k

det(B̄[1,k−1])

≤ √γkr(B)(k−1)/k ‖b∗k‖(k−1)/k

det(B̄[1,k−1])1/k

≤ √γkr(B)(k−1)/k λ
(k−1)/k
1

det(B̄[1,k−1])1/k
Fact 2

≤ √γkr(B)(k−1)/kλ1(L(B̄))(k−1)/k

det(B̄[1,k−1])1/k

≤ √γkr(B)(k−1)/k√γk−1
(k−1)/k

≤ γkr(B)1/α

Now denote the value of r(B) after the i-th iteration by ri. We have just shown that ri+1 ≤ γkr
1/α
i

and it follows that ri ≤ γikr
1/αi

1 ≤ γik2
O(kn)/αi by Fact 3. So after i = logαO(kn) iterations

ri ≤ 2 · O(kn)logα γk . Introducing a slack δ > 1 for the dual HKZ reduction step (which does not
affect the bound given in Lemma 6), there are at most logα(γk) logδ(O(kn)) more iterations. 2

4 Experimental Results

In this section we present our initial experimental evaluation of our new enumeration algorithm,
and compare its practical performance to the algorithms of Fincke and Pohst [9] and lightweight
Kannan (cf. Section 3). Our implementation of the basic enumeration procedure closely follows the
algorithm of Schnorr and Euchner [29], and includes the following standard optimizations: (1) we
update the search radius dynamically each time a shorter vector is found during the enumeration;
(2) we enumerate the values on each level in increasing order of the distance of the resulting
lattice point to the target; (3) we use the symmetry of the lattice to reduce the search space by
a factor 2 when solving SVP; and (4) we preprocess the lattice using the LLL algorithm with
parameter δ = 0.99, rather than the δ = 3/4 factor assumed in the theoretical analysis. We also
consider preprocessing with the BKZ block basis reduction algorithm with various block sizes. We
remark that the asymptotic analysis presented in Section 3 applies also to this optimized version
of the algorithm, but does not lead to substantially better theoretical bounds. However, these
optimizations result in better practical performance, allowing us to collect more experimental data
in a given amount of time. Of course, for fairness, the same optimizations have been applied also
to our implementation of the algorithms of Fincke and Pohst and Kannan we compare against.
In order to achieve flexibility in our experimental framework, and present the results in a less
technology-dependent way, we chose not to perform any code-level optimization, and carried out
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our experiments with a fast prototyped implementation of the algorithm, whose performance is
measured by counting the number of nodes explored during all enumerations. The same approach
is commonly used in the analysis of enumeration algorithms [14, 15, 31].

Experimental results reported in this section are averaged over 20 random lattices, where we
use the same lattices for each parameter set. We use the same distribution on random lattices
as was used in [14], i.e. subset sum lattices with numbers of bit length 100 · n, where n is the
lattice dimension, but we expect the results to hold for a wide range of probability distributions.
To circumvent numerical issues, we ran NTL’s floating point version of LLL with δ = 0.5 on the
lattices before feeding them to our algorithm. We remark that our experiments are limited to
dimension 50, which is much smaller than current records for SVP challenges. This is because
running full enumeration without further heuristic improvements is very costly. It was already
noted in [12] that full enumeration beyond dimension 70 is problematic in practice and results of
experiments with traditional Fincke-Pohst in [14] did not exceed dimension 52. Without any further
low level optimizations it turned out that n = 50 was the largest dimension for which we could
obtain statistically meaningful results within the available time frame. We will present estimates
for larger dimension based on extrapolation of our experimental results.
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Figure 1: Runtime of the algorithm for n = dim(Λ) ≤ 30

Parameter Optimization for Low Dimensions We recall that our algorithm is parametrized
by two functions κ, η that are used to pick the values of k = κ(n) and h = η(n). The first question
we set to answer is what values of k, h lead to the best performance in practice. To this end, we
performed an extensive set of experiments in low dimension (up to n ≤ 30) for all possible values
of 1 ≤ k, h ≤ n, using dynamic programming to optimize the functions κ and η: for increasing
dimension n, we explore the entire parameter space (κ(n), η(n)) ∈ [n]2, using previously obtained
values for κ and η for the recursive calls.

For η, we observed that η(n) = 1 (i.e. projecting and recursing immediately after one enumera-
tion) is always optimal or at least close to optimal, independently of the value chosen for κ(n). So,
in the rest of the paper we always assume h = 1. For κ, the results of our experiments are shown
in Figure 1a, which depicts the normalized runtime of the algorithm as a function of k = κ(n) for
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Figure 2: Average running times of Fincke-Pohst(κ1), our parameter selection(κ2), and lightweight
Kannan(κ3) for 30 ≤ n = dim(Λ) ≤ 45
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Figure 4: Runtime of Fincke-Pohst (κ1) and our algorithm (κ2) with BKZ preprocessing (logarithmic scale)

several lattice dimensions n. We see that for small n the graphs are monotonically decreasing, sup-
porting previous claims that Kannan’s algorithm (corresponding to κ(n) = 1) is not competitive in
practice, and the common practice of running the (asymptotically inferior) Fincke-Pohst algorithm
(corresponding to κ(n) = n). However, it is also evident that as n increases, most of the improve-
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Figure 5: Experimental data and fitted curves (logarithmic scale). Parameters of f1 and f2 as in Table 3

ment over Kannan’s algorithm is achieved by increasing k from 1 to a value only slightly larger
than 1, after which the curves become rather flat. Moreover, for n = 30 we see that the parameter
κ(n) = 5 = dlog(n)e already gives slightly better performance than Fincke-Pohst, and increasing
k beyond that value makes the algorithm slower. This is supported by Figure 1b, which shows
the ratio between the running times of the algorithm (as a function of the lattice dimension n),
when κ(n) = log(n) or κ(n) = n. The figure shows that Fincke-Pohst is slightly better than setting
k = log(n) in low dimension n < 30, but n = 30 is the cross-over point, where using κ(n) = log(n)
becomes faster.

Results in Moderate Dimensions For dimensions n > 30 the dynamic programming approach
to optimize k, h is rather slow. So in our preliminary experimentation we focused on the most
promising candidate values for the parameters, as predicted by the analytical arguments described
in Section 3.3. Specifically, we compare the performance of the algorithm when k = log n to two
standard benchmarks corresponding to the Fincke-Pohst (k = n) and the lightweight version of
Kannan’s algorithm (k = 1). More formally, our tests correspond to the execution of our algorithm
with three possible functions κi defined as κi(n ≤ 30) = n, and κ1(n > 30) = n (Fincke-Pohst),
κ2(n > 30) = log n (our candidate), κ3(n > 30) = 1 (lightweight Kannan). Our results for
30 ≤ n ≤ 36 are shown in Figure 2a. After obtaining these results we discarded the lightweight
Kannan algorithm (κ3), which is clearly inferior, and continued the experiments for the remaining
two algorithms. Figure 2b shows the results and demonstrates that n = 30 is the cross-over point
between our new algorithm and the traditional method of Fincke-Pohst. The new algorithm with
k = log n clearly outperforms Fincke-Pohst for all n ≤ 45 with exponentially growing speedup
factor, which is already larger than 7 in dimension 45.

Figure 3a combines the results from Figure 2a and 2b for κ1 and κ2 on a logarithmic scale,
where we extended the results for Fincke-Pohst (κ1) with the results from the previous section.
Furthermore, the results are extended for κ2 up to dimension n = 50, which we were able to obtain
due to its superior performance. It shows that the running time of Fincke-Pohst starts to increase
more rapidly beyond dimension 30 and there seems to be a qualitative difference between the run-
ning times of the algorithms, with the Fincke-Pohst algorithm exhibiting a clear superexponential
slowdown, and the graph for our new algorithm much closer to a straight line (corresponding to an
almost linear exponent in the running time, i.e. 2O(n logn)).

Finally, we also ran experiments with our variant based on dual HKZ reduction, presented in
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Section 3.4, with the same parameter κ2. Throughout the experiments, we observed that similar
to Kannan’s algorithm this variant rarely executes the preprocessing loop more than once. As the
dual HKZ reduction in these experiments was done on very low dimensional lattices, its effect on
the runtime can be ignored and thus the preprocessing effort of our algorithm and the variant are
essentially the same in practice. Figure 3b compares the runtime of the top level enumeration
of both algorithms and demonstrates that this is also essentially the same. This reinforces our
theoretical result in Appendix A that at least in the typical case our algorithm behaves optimally
in the sense of [14].

Effect of BKZ It is common practice to use Fincke-Pohst in conjunction with BKZ preprocessing
instead of mere LLL reduction. To evaluate the effect of BKZ on Fincke-Pohst and our algorithm,
we ran similar experiments as described above. We used NTL’s BKZ routine with blocksize β ∈
{10, 20, 30} as preprocessing and called Fincke-Pohst (κ1) and our algorithm (κ2) on the resulting
basis. The results are shown in Figure 4. It is evident that the BKZ preprocessing increases the
cross-over point from previously n = 30 to n = 42, 46, 48 for β = 10, 20, 30, respectively, but the
improvement decays drastically with increasing blocksize. Further evidence based on the same data
to support this claim is given in the next section.

Extrapolation and Comparison to other Algorithms We used standard statistical methods
to fit curves to the data collected in our experiments. To determine the practical complexity of
the enumeration on reduced bases, we selected a model based on our theoretical analysis, f(n) =
2c1n

2 · nc2n · 2c3n, and fitted it to the data collected only during the top level enumeration, i.e.
ignoring pre- and postprocessing. The resulting constants for Fincke-Pohst and our algorithm are
shown in Table 2. For Fincke-Pohst, the running time (in low dimension) is dominated by the single
exponential component 2c3n, but there is also a quadratic term 2c1n

2
which becomes dominant in

sufficiently high dimension. (Notice also the complete absence of a quasilinear exponent 2c2n logn.)
So, the runtime of Fincke-Pohst is clearly 2O(n2) also in practice when the dimension is sufficiently
large. On the other hand, for our algorithm the dominating factor is the quasilinear exponent
associated to c2. Apart from the small constant c1 in the case of our algorithm, which we attribute
to noise, this is consistent with the theoretical analysis. For further exploration, we selected the

Algorithm c1 c2 c3

Fincke-Pohst 0.0068 0.0000 0.3195
Ours 0.0009 0.0839 0.0508

Table 2: Parameters of model 2c1n
2 · nc2n · 2c3n

after curve fitting to top level enumeration

f1(n) = 2a1n
2+a2n f2(n) = nb1n · 2b2n

Preprocessing a1 a2 b1 b2

LLL 0.0045 0.4469 0.0280 0.5469
BKZ-10 0.0024 0.4830 0.0245 0.4504
BKZ-20 0.0019 0.4962 0.0237 0.4518
BKZ-30 0.0016 0.5028 0.0222 0.4592

Table 3: Parameters of models f1 (for Fincke-Pohst) and f2
(for our algorithm) after curve fitting

model f1(n) = 2a1n
2+a2n for the Fincke-Pohst algorithm and f2(n) = nb1n · 2b2n for our algorithm

and fitted them to the entire runtimes, i.e. including pre- and postprocessing, including the variants
using BKZ. The result is shown in Table 3 and visualized in Figure 5 (for LLL preprocessing). The
table demonstrates again, that the improvement due to BKZ decreases with increasing blocksize.
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In [10] the authors claim that enumeration can be sped up heuristically by a factor of 2n/2

with extreme pruning. Recall that the basic idea of extreme pruning is to heavily cut down on
the enumeration and compensate the sacrificed success probability by a large number of repetitions
with randomized inputs. Fincke-Pohst is an ideal candidate for extreme pruning due to the cheap
preprocessing, which has to be applied in each iteration. After introducing the corresponding speed-
up into f1 we can estimate the dimension n at which our algorithm becomes more efficient than
Fincke-Pohst with extreme pruning by computing the cross-over point between (the modified) f1

and f2. This point is reached for n = 155, which seems already very close to practically tractable
dimensions. It is not immediately clear if extreme pruning can be applied to our algorithm due to
its heavier preprocessing. However, in the same work the authors of [10] show that a speed-up of
2n/4 can be achieved by non-extreme pruning, where the enumeration is pruned but only sacrificing
very little success probability. This non-extreme form of pruning can readily be applied to our
algorithm and we expect it to result in similar speed-ups. If this is indeed the case the cross-over
point at which our algorithm becomes more efficient than Fincke-Pohst with extreme pruning would
drop to n = 95 – well below the limit of today’s tractability.

Applying the same approach to variants that use BKZ and extreme pruning is a little prob-
lematic, as extreme pruning is likely to suffer from heavy preprocessing. The precise impact of
BKZ on the practical complexity of extreme pruning has to the best of our knowledge not been
investigated in detail. However, the authors of [10] give a prediction for the number of nodes that
have to be enumerated by extreme pruning in dimension n = 110 using BKZ-32 preprocessing,
which is 2.5 · 1013. Using our model, we expect the number of nodes to be enumerated by our al-
gorithm with BKZ-30 and (non-extreme) pruning to be about 7.9 · 1011. This already corresponds
to a speed-up of more than 30 even without considering the overhead incurred by the repeated
application of BKZ-32 necessary for extreme pruning. We expect this speed-up factor to increase
rapidly in larger dimensions due to the superior asymptotics of our algorithm.

We can use our model to estimate at which point the asymptotically superior sieving becomes
more efficient. Even though sieving algorithms have the drawback of exponential memory require-
ments, we will ignore this fact and focus on the runtime. In [24] the running time of Gauss Sieve,
to the best of our knowledge the most efficient sieving algorithm in practice to date, was estimated
to be 20.48n seconds in dimension n. In order to compare our algorithm meaningfully to this esti-
mate, we need to convert the number of nodes calculated by f2 to computing time on a comparable
computer that was used in [24]. For this we use the observation made in [10] that an efficient
implementation of enumeration can process a node in approximately 200 clock cycles. Computing
the intersection of f2 with the estimate for sieving of 20.48n suggests that sieving is more efficient
than our algorithm starting in dimension n = 146. However, if introducing the potential speed-up
of 2n/4 to f2 due to pruning, this cross-over point rises to n = 1839. Alternatively, using for f2

the parameters resulting from the application of BKZ-30 to the basis before running our algorithm
(cf. Table 3) and without considering pruning, we expect our algorithm to be more efficient up to
dimension n = 5100. Both values for n are by far out of reach for today’s state of the art.

Remark about Fincke-Pohst and Sieving Although not directly relevant to the algorithm
proposed in this work, we can use the model for Fincke-Pohst and compare it to sieving. Without
pruning, Fincke-Pohst is more efficient than sieving up to dimension n = 76, with non-extreme
pruning up to n = 110 and with extreme pruning up to n = 152. This is consistent with results
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of the SVP challenge3, which gives us confidence in our model. With BKZ-30 and non-extreme
pruning we expect Fincke-Pohst to be more efficient than sieving up to n = 210. Combined with the
results of the previous paragraph we conclude that without any drastic improvements to sieving,
enumeration techniques will be more efficient than sieving in practice for a while.

5 Future Work
Much work remains to be done to evaluate the theoretical and practical impact of known heuristics
(most notably, block reduction [28, 29, 11] and pruning [27, 30, 10]) to the new enumeration method.
Still, we believe our new algorithm offers a better starting point for realistic experimentation and
meaningful extrapolation, than previously known enumeration algorithms.

We conclude the paper by noting that the parameter setting κ(n) = log(n) and η(n) = 1 used in
our experiments also suggests a possible variant that combines classic enumeration techniques with
recent theoretical advances on CVP algorithms [23]. Notice that the last k level of the enumeration
tree with basis B = [b1, . . . ,bn] correspond precisely to a CVP computation on the lattice B[1,k].
So, we can replace the last k levels of the enumeration tree with any other CVP algorithm. We
recall that [23] gives a CVP algorithm that after computing the Voronoi cell of the lattice (in
time 2O(n),) allows to quickly solve CVP. The algorithm is considered primarily of theoretical
interest because storing the Voronoi cell takes exponential space. However, when applied to B[1,k]

for k = O(log n), both the time and space complexity 2O(k) = nO(1) of the algorithm of [23] is
polynomial in the original lattice dimension n. Moreover, the Voronoi cell of B[1,k] only needs to
be computed once, and can then be reused for all CVP instances corresponding to the leaves of
the truncated enumeration tree for πk(B). So, the algorithm can be usefully employed to possibly
speed up the enumeration procedure, while keeping the overall space complexity of the algorithm
polynomial in n. The high level structure of the hybrid algorithm would be the following: (1) apply
LLL or other block basis reduction algorithm to B, (2) recursively HKZ-reduce the projected lattice
πk(B), (3) compute the Voronoi cell of B[1,k], (4) find the shortest vector v ∈ L(B) by enumeration
in πk(B) and using the Voronoi cell to solve CVP in B[1,k], (5) recursively HKZ-reduce πv(B).
Exploring the theoretical and practical significance of this hybrid algorithm is left to future work.
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A Better Asymptotics for Non-Increasing Bases

In this section we will show that we can proof a tighter bound on the enumeration after preprocessing
if the GSO norms of the input basis are non-increasing, which is typically the case. What follows is
an adaptation of the proof of Theorem 3 in [14], which can be found more explicitly in the extended
version4. We show the result for k = 1, which yields the best asymptotic runtime in our previous
analysis. The proof can easily be adapted to larger k and yields the expected runtime.

We use the same starting point as the authors of [14], where it is proved that the number of
nodes processed during a SVP enumeration with arbitrary bound r on an arbitrary basis B can be
bounded by

2O(n) max
I⊂[n]

(
r|I|

√
n
|I|∏

i∈I ‖b∗i ‖

)
up to polynomial factors. Since our enumeration uses the bound r =

√
n det(B)1/n, this is equivalent

to

2O(n)
∏
I

det(B)1/n

‖b∗i ‖

where I = {i : ‖b∗i ‖ < det(B)1/n}. Note that in the case of non-increasing bases, I is of the form
I = [k, . . . , n] for some k ∈ [n]. The following lemma shows the result:

Lemma 8 Let B ∈ Zm×n with ‖b1‖ ≤ 2(n−1)/4 det(B)1/n, π1(B) be HKZ reduced, and ‖b1‖ ≥
‖b∗2‖ ≥ · · · ≥ ‖b∗n‖. Then for all k ∈ [n]

n∏
i=k

det(B)1/n

‖b∗i ‖
≤ 2nnn/2e.

Proof Let
Γ̃n(k) = 2 · Γn−1(k − 1)

where Γn(k) =
∏n−1
i=n−k(γi+1)1/2i from Definition 2 of [14] and Γn(0) = 1. From Lemma 2 in [14]

we immediately obtain Γ̃n(k) ≤ 2
√
n

log( n
n−k ). Akin to the proof in the extended version of [14], we

let π[k,n] =
∏n
i=k ‖b∗i ‖1/(n−k+1) and first proof the inequality

π[1,k] ≤ Γ̃n(k)n/kπ[k+1,n] (4)

for all k by induction on k. For k = 1 the inequality follows from the assumption ‖b1‖ ≤
2(n−1)/4 det(B)1/n. The rest of the proof is identical to the one of Hanrot and Stehlé and shamelessly
copied for completeness. Assume that the inequality holds for k ≥ 1 and rewrite it as

π
k+1
k

[1,k+1] · ‖b
∗
k+1‖−

1
k ≤ Γ̃n(k)

n
k · π

n−k−1
n−k

[k+2,n] · ‖b
∗
k+1‖

1
n−k

which is equivalent to

π
k+1
k

[1,k+1] ≤ Γ̃n(k)
n
k · π

n−k−1
n−k

[k+2,n] · ‖b
∗
k+1‖

n
k(n−k)

4http://perso.ens-lyon.fr/damien.stehle/KANNAN_EXTENDED.html
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From the HKZ reducedness assumption it follows that ‖b∗k+1‖ ≤
√
γn−k

n−k
n−k−1 ·π[k+2,n], which gives

π
k+1
k

[1,k+1] ≤ Γ̃n(k)
n
k
√
γn−k

n
k(n−k−1) · π

k+1
k

[k+2,n] = Γ̃n(k + 1)
n
k · π

k+1
k

[k+2,n]

which yields the induction step after raising to the power k/(k + 1).
From Inequality 4 we obtain the inequality

π[k+1,n] ≥
det(B)1/n

Γ̃n(k)
(5)

by raising 4 to the power of k/n, multiplying it with π
(n−k)/n
[k+1,n] , and using the identity det(B) =

πk[1,k] · π
n−k
[k+1,n]. From 5 we get

(
det(B)1/n

π[k+1,n]

)n−k
≤ Γ̃n(k)n−k ≤ 2n−k

√
n

(n−k)·log( n
n−k ) ≤ 2n

√
n
n/e

2
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