
Simple AEAD Hardware Interface (SÆHI) in a SoC:
Implementing an On-Chip Keyak/WhirlBob Coprocessor

Markku-Juhani O. Saarinen
Norwegian University of Science and Technology

mjos@item.ntnu.no

ABSTRACT
Simple AEAD Hardware Interface (SÆHI) is a hardware
cryptographic interface aimed at CAESAR Authenticated
Encryption with Associated Data (AEAD) algorithms. Cryp-
tographic acceleration is typically achieved either with a
coprocessor or via instruction set extensions. ISA modi-
fications require re-engineering the CPU core, making the
approach inapplicable outside the realm of open source pro-
cessor cores. Our proposed hardware interface is a memory-
mapped cryptographic coprocessor, implementable even on
very low end FPGA evaluation platforms. Algorithms com-
plying to SÆHI must also include C language API drivers
that directly utilize the memory mapping in a “bare metal”
fashion. This can also be accommodated on MMU systems.

Extended battery life and bandwidth resulting from dedi-
cated cryptographic hardware is vital for currently domi-
nant computing and communication devices: mobile phones,
tablets, and Internet-of-Things (IoT) applications. We ar-
gue that these should be priority hardware optimization tar-
gets for AEAD algorithms with realistic payload profiles.

We demonstrate a fully integrated implementation of Whirl-
Bob and Keyak AEADs on the FPGA fabric of Xilinx Zynq
7010. This low-cost System-on-Chip (SoC) also houses a
dual-core Cortex-A9 CPU, closely matching the architec-
ture of many embedded devices. The on-chip coprocessor is
accessible from user space with a Linux kernel driver. An
integration path exists all the way to end-user applications.

Categories and Subject Descriptors
D.4.7 [Organization and Design]: Real-time systems and
embedded systems; D.4.6 [Security and Protection]: Cryp-
tographic Controls; E.3 [Data Encryption]: Standards

Keywords
Cryptographic coprocessor, System-on-Chip, Keccak, Keyak,
Whirlpool, WhirlBob, StriBob, CAESAR.

1. INTRODUCTION
An Authenticated Encryption with Associated Data (AEAD)
algorithm provides both confidentiality and integrity protec-
tion in a single processing pass. AEADs are more effective
alternatives to traditional encryption methods such as CBC
block cipher mode [10] or stream ciphers such as RC4 [22],
which had to be paired with suitable Message Authentica-
tion Codes (such as HMAC [17]) in transport protocols.

A typical AEAD algorithm C = Æ(K,N,A, P) produces an
authenticated ciphertext message C from following inputs:

K Secret key.

N Initialization vector, nonce, or message sequence num-
ber. Does not have to be secret. Integrity protected.

A Authenticated data, only integrity protection. Trans-
mitted in clear (or implicit to both parties).

P Plaintext. Confidentiality and integrity protection.

The inverse algorithm Æ−1(K,N,A,C) returns either the
original plaintext P or FAIL if the integrity of K,N,A,C is
violated.

Advanced Encryption Standard (AES) in the Galois / Counter
Mode (GCM) is an AEAD standardized and promoted by
U.S. NIST and NSA for governmental, military, and public
networks [7, 12, 15, 16, 28]. AES-GCM has rapidly replaced
older bulk encryption algorithms; the majority of https con-
nections to popular web services services such as facebook,
gmail, and twitter are protected by AES-GCM at the time
of writing (Q3/2014). In governmental and military use,
AES-GCM is approved up to Top Secret level when appro-
priately implemented and used [20]. However, the security
of AES-GCM is widely seen as brittle [5, 6, 21, 23, 29].

1.1 Motivation: CAESAR Hardware Testing
CAESAR (Competition for Authenticated Encryption: Se-
curity, Applicability, and Robustness) is a NIST - Sponsored
international effort to find one or more algorithms to replace
or complement AES-GCM [19].

The CAESAR competition runs from 2014 until 2017 and
consists of multiple stages or “elimination rounds.” By the
March 2014 deadline, 57 candidate algorithms had been sub-
mitted [8]. Cryptographic weaknesses forced some of these
to be withdrawn shortly thereafter. Selection for Round 2
must be made from almost 50 candidates.

An AEAD can be implemented in many ways:

1. AEAD Block Cipher Modes, like AES-GCM. About
half (28) of the CAESAR first round candidates are
based on block ciphers.

2. Sponge-based AEADs. There were eight proposals
based on unkeyed Sponge permutations and theory,
including Keyak [4], which is directly based on SHA3’s
Keccak-P sponge [18]. Another proposal derived from
a hash function was StriBob/WhirlBob1 [25, 26].

3. Custom and ad-hoc designs. There were various
AEAD proposals that are were either entirely new or
recycled some components from existing cipher designs
without relying on theoretical frameworks.

Each one of these approaches represents different challenges
and mechanisms for hardware implementation and perfor-
mance evaluation.

Measurements should be made with realistic usage profiles
that account for latency, key agility, concurrent streams, and
other real-life requirements (Section 4). For mobile devices
we propose the e = R

AW
metric (Section 2.3). For network

infrastructure and cloud data centers the focus is on terabits
per dollar (total cost of ownership). For smart cards the
focus is mostly in side channel resistance. RFID systems
have additional latency and power considerations [27].

1.2 Hardware Reality: SoC Coprocessors
Confidentiality and integrity of transmitted and stored data
is even more relevant to mobile devices than to “PC” sys-
tems. Mobile devices should be able to efficiently secure
speech, streaming media, browsing, remote access, emails,
and other messaging. There is an increased need to secure
the private storage of these devices as they are more at risk
of hostile examination after being seized or lost. We see mo-
bile devices as the priority target for hardware optimization
of bulk AEAD algorithms. Detailed profiling of hardware
bottlenecks is therefore needed.

System-on-Chip (SoC) designs integrate all the necessary
components of a computing application on a single chip.
SoCs are dominant in mobile electronics such as (smart)
phones and tablets, and are also found in mass-produced
electronic appliances such as modems, routers, home media,
and Internet-of-Things (IoT) applications.

Mobile devices are sensitive to power consumption and have
restricted general computational resources. In SoC designs
specific tasks are offloaded to coprocessors, primarily to min-
imize power consumption. Audio and video codecs, RF
processing, display rendering, and 3D acceleration are typi-
cal functions handled by coprocessors present in many mo-
bile architectures. SoC design flow typically employs use of
packaged IP components such as CPU Cores (often ARM
or MIPS ISA) and peripheral systems that are interfaced
through on-chip buses such as those specified by ARM Ad-
vanced Microcontroller Bus Architecture [1] (AMBA). Our
proposal fits into this industry-standard design model.
1WhirlBob is based on Whirlpool [2]. If StriBob is accepted
to the second round of the CAESAR competition, the Whirl-
Bob variant (used as an example in this paper) will be in-
cluded as a tweak. The designs are closely related.

1.3 ISA Extensions vs. Coprocessors
As almost half of the first round CAESAR proposals are
AES-based, we note that Intel (AES-NI) and ARM (ARMv8-
A) have published optional ISA extensions that offer di-
rect, specific support for the AES algorithm. These instruc-
tions compute either a single AES encryption or decryp-
tion round, or assist in computation of round keys. Generic
ISA extensions have also been proposed for various crypto-
graphic tasks [3].

Availability of these cryptographic instructions far from uni-
versal. Current mobile devices are based on 32/64-bit CPU
cores that generally do not offer AES instructions. Lower-
end embedded systems such as IoT appliances are unlikely
to ever employ 128-bit or even 64-bit register sets, making
such extensions unworkable. Non-AES proposals tend to
have state sizes of 512 bits or more. Implementations of full
rounds would be difficult on Sponge-based algorithms such
as SHA3 and Keyak. The state size of SHA3 is 25 × 64 =
1600 bits, with full mixing occurring rapidly.

An instruction set extension requires modifications to the
CPU core and compiler toolchains, while a coprocessor re-
quires only a driver. On operating systems such as Linux
(Android), the same hardware device drivers are commonly
used across different CPU and even bus architectures. A
coprocessor design is therefore vastly more portable.

Hardware acceleration should ideally be located where it is
used. We will probably eventually see integration of AEAD
cores within network interfaces and storage controllers.

2. INTERFACE
A simple C API was specified by the CAESAR secretariat
for reference software implementations of the first round
candidates [19]. The main emphasis was intended to be
in portability and readability – the code is used to generate
test vectors. Hardware implementation is required only for
second round candidates (tentatively by April 15, 2015).

N = npub[CRYPTO_NPUBBYTES], K = k[CRYPTO_KEYBYTES],
P = m[mlen], and A = ad[adlen]. *nsec is a pointer to a
“secret nonce” which was unused by most proposals.

int crypto_aead_encrypt(
uint8_t *c, uint64_t *clen,
const uint8_t *m, uint64_t mlen,
const uint8_t *ad, uint64_t adlen,
const uint8_t *nsec,
const uint8_t *npub,
const uint8_t *k

);

Decryption and integrity verification can be performed with
crypto_aead_decrypt(), which has an equivalent interface.

This API is not well suited for raw performance evaluation
as it lacks a context pointer that could hold state informa-
tion across calls. A context structure facilitates incremental
operations on long messages and storage of reusable tempo-
rary variables such as round keys, avoiding duplication of
effort. However, we assume that the two-function API will
remain as the baseline portable interface of candidates.

Proposals such as Keyak [4] and StriBob’s BLNK mode
[24, 26] support MAC-and-continue “sessions” and other
advanced protocol support features that are not available
through this interface. Furthermore, Keyak utilizes the same
sponge permutation as Keccak and therefore a hardware
module can be easily adopted to support SHA3 too. The
same is true for StriBob, which has the same fundamen-
tal transform as GOST R 34.11-2012 Streebog hash [11],
and WhirlBob which utilizes the transform ISO/IEC 10118-
3:2004 Whirlpool hash [2]. A hardware coprocessor can
make these hashing functionalities available as well.

2.1 Proposed Hardware-Software Interface
Our cryptographic coprocessor has a simple, almost univer-
sal memory-mapped interface. The module or hardware PIN
interface is the same as for generic single port RAM (with
optional interrupt request line). Minimally this contains the
following elements:

Signal Dir Purpose Diagram
ADDR In Address

ADDR

DI

WE

EN

CLK

AEAD

Core

DO

IRQ

DI In Data Write
WE In Write enable
EN In Enable/Select
CLK In Clock
DO Out Data Read
IRQ Out Interrupt Req.

HDL modules should be accompanied by baseline C API
software interfaces that take care of necessary initialization
and load/store operations. Peripheral’s address is passed
as an additional argument to crypto_aead_encrypt() and
crypto_aead_decrypt() functions, which will now have the
functionality of a “driver.” The memory block, when defined
the volatile keyword in C, will offer a simple and flexible
interface to the hardware. The output of the hardware-
assisted version must match with the reference software.
The reference software driver should be entirely platform-
independent and should not use any system calls.

Memory mapping mechanism depends on the target. On
bare metal embedded systems without MMU this is trivial
to do – one just assigns a physical address range for the
coprocessor and implements appropriate chip selection logic.
We first used this mechanism, but also interfaced our design
through a more elaborate Linux kernel interface (Sect. 3).

It is up to hardware designers to specify the coprocessors’ in-
ternal register layout, and to implement the necessary mech-
anisms of usage (for key and nonce set-up, padding, MAC
verification) in the C driver. Implementation should work
without IRQ – it is an entirely optional “look at me” flag.

It is possible to pipeline the operation so that data transfers
to and from the hardware module can occur concurrently
while a cryptographic operation is running. In continu-
ous operation, one reads the result of the preceding oper-
ation and writes next plain/ciphertext on the coprocessor
while a cryptographic transform is running. This requires
some additional logic to implement the particularities of the
Sponge/Block Cipher mode of operation in hardware.

Bus width (DI and DO sizes) should be 32, 64, or 128 bits.
We suggest using large data paths – multiplexing is easy.

k1600_1

k1600

clk

rnd[4:0]

in[1599:0]

out[1599:0]

keccak_rc_i

RTL_ROM

O[63:0]A[4:0]

tp[0]_i

RTL_XOR

O[63:0]
I0[63:0]

I1[63:0]

tp[0]0_i

RTL_XOR

O[63:0]
I0[63:0]

I1[63:0]

tp[0]1_i

RTL_XOR

O[63:0]
I0[63:0]

I1[63:0]

tp[0]2_i

RTL_XOR

O[63:0]
I0[63:0]

I1[63:0]

tp[1]_i

RTL_XOR

O[63:0]
I0[63:0]

I1[63:0]

tp[1]0_i

RTL_XOR

O[63:0]
I0[63:0]

I1[63:0]

tp[1]1_i

RTL_XOR

O[63:0]
I0[63:0]

I1[63:0]

tp[1]2_i

RTL_XOR

O[63:0]
I0[63:0]

I1[63:0]

tp[2]_i

RTL_XOR

O[63:0]
I0[63:0]

I1[63:0]

tp[2]0_i

RTL_XOR

O[63:0]
I0[63:0]

I1[63:0]

tp[2]1_i

RTL_XOR

O[63:0]
I0[63:0]

I1[63:0]

tp[2]2_i

RTL_XOR

O[63:0]
I0[63:0]

I1[63:0]

tp[3]_i

RTL_XOR

O[63:0]
I0[63:0]

I1[63:0]

tp[3]0_i

RTL_XOR

O[63:0]
I0[63:0]

I1[63:0]

tp[3]1_i

RTL_XOR

O[63:0]
I0[63:0]

I1[63:0]

tp[3]2_i

RTL_XOR

O[63:0]
I0[63:0]

I1[63:0]

tp[4]_i

RTL_XOR

O[63:0]
I0[63:0]

I1[63:0]

tp[4]0_i

RTL_XOR

O[63:0]
I0[63:0]

I1[63:0]

tp[4]1_i

RTL_XOR

O[63:0]
I0[63:0]

I1[63:0]

tp[4]2_i

RTL_XOR

O[63:0]
I0[63:0]

I1[63:0]

t1[0]_i

RTL_XOR

O[63:0]
I0[63:0]

I1[63:0]

t1[0]0_i

RTL_XOR

O[63:0]
I0[63:0]

I1[63:0]

t1[1]_i

RTL_XOR

O[63:0]
I0[63:0]

I1[63:0]

t1[1]0_i

RTL_XOR

O[63:0]
I0[63:0]

I1[63:0]

t1[2]_i

RTL_XOR

O[63:0]
I0[63:0]

I1[63:0]

t1[2]0_i

RTL_XOR

O[63:0]
I0[63:0]

I1[63:0]

t1[3]_i

RTL_XOR

O[63:0]
I0[63:0]

I1[63:0]

t1[3]0_i

RTL_XOR

O[63:0]
I0[63:0]

I1[63:0]

t1[4]_i

RTL_XOR

O[63:0]
I0[63:0]

I1[63:0]

t1[4]0_i

RTL_XOR

O[63:0]
I0[63:0]

I1[63:0]

t1[5]_i

RTL_XOR

O[63:0]
I0[63:0]

I1[63:0]

t1[5]0_i

RTL_XOR

O[63:0]
I0[63:0]

I1[63:0]

t1[6]_i

RTL_XOR

O[63:0]
I0[63:0]

I1[63:0]

t1[6]0_i

RTL_XOR

O[63:0]
I0[63:0]

I1[63:0]

t1[7]_i

RTL_XOR

O[63:0]
I0[63:0]

I1[63:0]

t1[7]0_i

RTL_XOR

O[63:0]
I0[63:0]

I1[63:0]

t1[8]_i

RTL_XOR

O[63:0]
I0[63:0]

I1[63:0]

t1[8]0_i

RTL_XOR

O[63:0]
I0[63:0]

I1[63:0]

t1[9]_i

RTL_XOR

O[63:0]
I0[63:0]

I1[63:0]

t1[9]0_i

RTL_XOR

O[63:0]
I0[63:0]

I1[63:0]

t1[10]_i

RTL_XOR

O[63:0]
I0[63:0]

I1[63:0]

t1[10]0_i

RTL_XOR

O[63:0]
I0[63:0]

I1[63:0]

t1[11]_i

RTL_XOR

O[63:0]
I0[63:0]

I1[63:0]

t1[11]0_i

RTL_XOR

O[63:0]
I0[63:0]

I1[63:0]

t1[12]_i

RTL_XOR

O[63:0]
I0[63:0]

I1[63:0]

t1[12]0_i

RTL_XOR

O[63:0]
I0[63:0]

I1[63:0]

t1[13]_i

RTL_XOR

O[63:0]
I0[63:0]

I1[63:0]

t1[13]0_i

RTL_XOR

O[63:0]
I0[63:0]

I1[63:0]

t1[14]_i

RTL_XOR

O[63:0]
I0[63:0]

I1[63:0]

t1[14]0_i

RTL_XOR

O[63:0]
I0[63:0]

I1[63:0]

t1[15]_i

RTL_XOR

O[63:0]
I0[63:0]

I1[63:0]

t1[15]0_i

RTL_XOR

O[63:0]
I0[63:0]

I1[63:0]

t1[16]_i

RTL_XOR

O[63:0]
I0[63:0]

I1[63:0]

t1[16]0_i

RTL_XOR

O[63:0]
I0[63:0]

I1[63:0]

t1[17]_i

RTL_XOR

O[63:0]
I0[63:0]

I1[63:0]

t1[17]0_i

RTL_XOR

O[63:0]
I0[63:0]

I1[63:0]

t1[18]_i

RTL_XOR

O[63:0]
I0[63:0]

I1[63:0]

t1[18]0_i

RTL_XOR

O[63:0]
I0[63:0]

I1[63:0]

t1[19]_i

RTL_XOR

O[63:0]
I0[63:0]

I1[63:0]

t1[19]0_i

RTL_XOR

O[63:0]
I0[63:0]

I1[63:0]

t1[20]_i

RTL_XOR

O[63:0]
I0[63:0]

I1[63:0]

t1[20]0_i

RTL_XOR

O[63:0]
I0[63:0]

I1[63:0]

t1[21]_i

RTL_XOR

O[63:0]
I0[63:0]

I1[63:0]
t1[21]0_i

RTL_XOR

O[63:0]
I0[63:0]

I1[63:0]

t1[22]_i

RTL_XOR

O[63:0]
I0[63:0]

I1[63:0]
t1[22]0_i

RTL_XOR

O[63:0]
I0[63:0]

I1[63:0] t1[23]_i

RTL_XOR

O[63:0]
I0[63:0]

I1[63:0]

t1[23]0_i

RTL_XOR

O[63:0]
I0[63:0]

I1[63:0] t1[24]_i

RTL_XOR

O[63:0]
I0[63:0]

I1[63:0]

t1[24]0_i

RTL_XOR

O[63:0]
I0[63:0]

I1[63:0]

t3[0]_i

RTL_XOR

O[63:0]
I0[63:0]

I1[63:0]

t3[0]0_i

RTL_XOR

O[63:0]
I0[63:0]

I1[63:0]

t3[0]0_i__0

RTL_AND

O[63:0]
I1[63:0]

I0[63:0]

t3[1]_i

RTL_XOR

O[63:0]
I0[63:0]

I1[63:0]
t3[1]0_i

RTL_AND

O[63:0]
I1[63:0]

I0[63:0]

t3[2]_i

RTL_XOR

O[63:0]
I0[63:0]

I1[63:0]
t3[2]0_i

RTL_AND

O[63:0]
I1[63:0]

I0[63:0]

t3[3]_i

RTL_XOR

O[63:0]
I0[63:0]

I1[63:0]
t3[3]0_i

RTL_AND

O[63:0]
I1[63:0]

I0[63:0]

t3[4]_i

RTL_XOR

O[63:0]
I0[63:0]

I1[63:0]
t3[4]0_i

RTL_AND

O[63:0]
I1[63:0]

I0[63:0]

t3[5]_i

RTL_XOR

O[63:0]
I0[63:0]

I1[63:0]

t3[5]0_i

RTL_AND

O[63:0]
I1[63:0]

I0[63:0]

t3[6]_i

RTL_XOR

O[63:0]
I0[63:0]

I1[63:0]

t3[6]0_i

RTL_AND

O[63:0]
I1[63:0]

I0[63:0]

t3[7]_i

RTL_XOR

O[63:0]
I0[63:0]

I1[63:0]

t3[7]0_i

RTL_AND

O[63:0]
I1[63:0]

I0[63:0]

t3[8]_i

RTL_XOR

O[63:0]
I0[63:0]

I1[63:0]

t3[8]0_i

RTL_AND

O[63:0]
I1[63:0]

I0[63:0]

t3[9]_i

RTL_XOR

O[63:0]
I0[63:0]

I1[63:0]

t3[9]0_i

RTL_AND

O[63:0]
I1[63:0]

I0[63:0]

t3[10]_i

RTL_XOR

O[63:0]
I0[63:0]

I1[63:0]
t3[10]0_i

RTL_AND

O[63:0]
I1[63:0]

I0[63:0]

t3[11]_i

RTL_XOR

O[63:0]
I0[63:0]

I1[63:0]t3[11]0_i

RTL_AND

O[63:0]
I1[63:0]

I0[63:0]

t3[12]_i

RTL_XOR

O[63:0]
I0[63:0]

I1[63:0]t3[12]0_i

RTL_AND

O[63:0]
I1[63:0]

I0[63:0]

t3[13]_i

RTL_XOR

O[63:0]
I0[63:0]

I1[63:0]t3[13]0_i

RTL_AND

O[63:0]
I1[63:0]

I0[63:0]

t3[14]_i

RTL_XOR

O[63:0]
I0[63:0]

I1[63:0]t3[14]0_i

RTL_AND

O[63:0]
I1[63:0]

I0[63:0]

t3[15]_i

RTL_XOR

O[63:0]
I0[63:0]

I1[63:0]t3[15]0_i

RTL_AND

O[63:0]
I1[63:0]

I0[63:0]

t3[16]_i

RTL_XOR

O[63:0]
I0[63:0]

I1[63:0]

t3[16]0_i

RTL_AND

O[63:0]
I1[63:0]

I0[63:0]

t3[17]_i

RTL_XOR

O[63:0]
I0[63:0]

I1[63:0]t3[17]0_i

RTL_AND

O[63:0]
I1[63:0]

I0[63:0]

t3[18]_i

RTL_XOR

O[63:0]
I0[63:0]

I1[63:0]t3[18]0_i

RTL_AND

O[63:0]
I1[63:0]

I0[63:0]

t3[19]_i

RTL_XOR

O[63:0]
I0[63:0]

I1[63:0]t3[19]0_i

RTL_AND

O[63:0]
I1[63:0]

I0[63:0]

t3[20]_i

RTL_XOR

O[63:0]
I0[63:0]

I1[63:0]t3[20]0_i

RTL_AND

O[63:0]
I1[63:0]

I0[63:0]

t3[21]_i

RTL_XOR

O[63:0]
I0[63:0]

I1[63:0]

t3[21]0_i

RTL_AND

O[63:0]
I1[63:0]

I0[63:0] t3[22]_i

RTL_XOR

O[63:0]
I0[63:0]

I1[63:0]

t3[22]0_i

RTL_AND

O[63:0]
I1[63:0]

I0[63:0]
t3[23]_i

RTL_XOR

O[63:0]
I0[63:0]

I1[63:0]

t3[23]0_i

RTL_AND

O[63:0]
I1[63:0]

I0[63:0]

t3[24]_i

RTL_XOR

O[63:0]
I0[63:0]

I1[63:0]t3[24]0_i

RTL_AND

O[63:0]
I1[63:0]

I0[63:0]

63
:0

Figure 1: k1600.v, Keccak SHA3 and Keyak round
and round constant generator (with 64-bit XORs).
We suggest implementing individual rounds as state-
less modules that only have combinatorial logic.

2.2 Discussion
We only specified a basic interface that should be useable
even with the simplest FPGA development kits and low-end
embedded SoCs. Actual data transfer speeds will not reach
the numbers attainable via AMBA High-performance Bus
[1] or other Direct Memory Access (DMA) mechanisms.

Our first generation AEAD modules utilize 0x400 bytes of
address space, with one address pin simply assigned as a
STAT/CMD indicator. Reading from STAT/CMD address range
returns the status (and revision) of the coprocessor. Writing
a word to this range is interpreted as a GO (start operation)
instruction, a RST reset pulse, etc., depending on bits. 16 or
24 address pins should be sufficient for all implementations.

We urge implementors to separate the core cryptographic
transform (round or subround function) as a separate HDL
module (Figure 1). Such an module should be stateless and
contain only combinatorial logic. This way double-steping
and pipelining become easier to implement. For our algo-
rithms, it was sufficient to interface the Sponge permutation
rounds with BLK_IN (512/1600 wires), 4/5-bit round number
input RND, and BLK_OUT (512/1600 wires) as the sole output.

2.3 On Measurements for Mobile Devices
We hope to interface multiple CAESAR candidates with
various implementation testbenches for measurement of:

A Area. FPGA Slices or ASIC Gate Equivalents.

W Power. Power consumption (Watts).

R Speed. Ideal throughput (Bits / Second).

One key goal is to maximize e = R
AW

in realistic usage. We
note that doubling A for factor 2 parallelism will approxi-
mately double both R and W while e remains constant. The
same is true for doubling the clock frequency since power
consumption is almost linearly dependent on clock frequency
for most low-power (CMOS) circuits.

Figure 2: Left: A homemade VGA test module is driving the WhirlBob core directly in FPGA, while the
CPU is inactive. Right: The Zynq CPU Cores are running a Linux kernel, with WhirlBob π, Keccak-f[1600]
and other peripherals (display, networking, etc) in the FPGA Logic Fabric. The cryptographic module has
been memory mapped with a Linux device file system driver at /dev/xbob and is accessible from user space.

3. EXPERIMENTAL IMPLEMENTATION
All hardware components were written in Verilog. We first
implemented the basic WhirlBob π and Keccak-P functions
and debugged those directly with a homemade 40 × 30 -
character VGA test module (Figure 2, left). In this “test and
demo” set-up the display module drives the cryptographic
module directly and is controlled via switches on the board.
CPU is unused; SÆHI also works in pure hardware projects.

We then wrote a Xillybus-lite based interface which allows
the cryptographic module to be memory-mapped to Linux
user space, emulating bare metal environment [30]. Xillinux
is a full-featured single-chip port of Ubuntu Linux for Xilinx
Zynq (Figure 2, right). The basic kernel device driver simply
maps the peripheral address space to the device file system
(we used /dev/xbob), from where it can be mapped to user
process address space with mmap(2) system call.

Executing π can be as simple as (error handling omitted):

int fd, i;
volatile uint64_t *xbob; // *volatile*

fd = open("/dev/xbob"); // devfs
xbob = mmap(NULL, 0x400, PROT_READ |

PROT_WRITE , MAP_SHARED , fd, 0);

for (i = 0; i < 8; i++) { // Input vec
xbob[i] = 0x0706050403020100 +

i * 0x0808080808080808;
}
xbob[0x40] = 1; // GO pulse!
while (xbob[0x40] != 0) // Wait

;

for (i = 0; i < 8; i++) { // Result
printf("%d␣%016lX\n", i, xbob[i]);

}

3.1 Implementation Metrics
Code lines in our rudimentary WhirlBob (StriBob) and Keyak
reference implementations:

Component WhirlBob Keyak
Interface Verilog 99 114
Round Verilog 228 129
Driver C 60 60
API Interace C 261 w.i.p.

Post synthesis and route utilization within Artix-7 FPGA
fabric of Xilinx Zynq 7010:

Logic WhirlBob Keyak
LUTs 3,795 4,574
Flip-Flops 1,060 3,237
MUXs 90 159
Other 1 2
Total logic 4,946 7,972

With one “extra” reloading cycle per block, the maximum
throughput of these implementations is:

Parameter WhirlBob Keyak
Rounds 12 12
Cycles 13 13
Rate (bits) 256 1344
Speed (bit/clk) 19.7 103.4

Processing speeds are significantly slower when the Keccak
core is used in SHA3 hashing mode [18]. Speed ranges from
23.0 (SHA3-512) to 47.5 (SHA3-224) bits/cycle as SHA3
uses 24 rounds of the round transform.

The 10-round Whirlpool hash standard [2] would be slightly
faster than WhirlBob with this core, but would require roughly
double the amount of logic due to its two-track design.

3.2 Implementation Resources
We used Digilent’s Zybo Zynq 7010 board and Vivado 14.1
and 14.2 design tools with Ubuntu Linux 14.04. We used
the free arm-linux-gnueabi toolchain for cross-compiling
the Linux Kernel, drivers, and test applications to the target
ARM7 / Cortex-A9 platform.

For testing, we adopted Xillinux kernel patches and FPGA
Display and connectivity firmware from Xillybus Ltd [31]
for the target device. These are open source and free for
non-commercial use. However the final packaged, portable
IP Cores and drivers are not dependent on any external
(potentially proprietary or non-free) intellectual property.

The development environment – Vivado Design Edition for
Linux academic license, hardware development kit, and ca-
bling but excluding the generic PC components used – cost
under $150 in June 2014.

The project took about one calendar month to complete
by the author. The main tasks were installation of hard-
ware and software (including kernel customization to tar-
get), writing the Verilog modules and rudimentary C drivers,
testing, and writing this report.

libcrypto.so

OpenSSL Crypto API

AEAD Plugin “engine”

libmyaead.so

TLS API

libssl.so

SSH API

libssh.so

Browser

application

SSH

application

utilities

cmd tools

ciphers

protocols

apps

user space processes

SÆHI daemon
not available

interprocess
communication

Cipher

Software SÆHI

Daemons

CPU Core KERNEL

SÆHI

AEAD 1

SÆHI

AEAD 2
System-on-Chip

Figure 3: Integrating the cryptographic coproces-
sors with algorithm APIs, protocol libraries and ap-
plications via SÆHI daemon processes.

4. OPERATING SYSTEM INTEGRATION
Beyond the basic API, there is a path for integrating the
cryptographic coprocessors with the Linux (Android) oper-
ating system and applications. For encrypted communica-
tions, protocol extensions will be required to accommodate
new cipher suites. The most straightforward way to do this
is to adopt the AES-GCM AEAD keying methods from TLS
[9, 28], SSH [13], and IPSec [14] with appropriate experimen-
tal algorithm identifiers and key/nonce sizes.

A real-life generic SoC coprocessor architecture will have m
CPU cores and m cryptographic coprocessors that may or
may not have DMA capability. Furthermore some copro-
cessors may be outside the realm of CPU, being directly
controlled by and contained within network interfaces or
storage controllers (“acceleration where it is used”).

Such a cryptographic resource can be managed by a dedi-
cated scheduler system process (daemon). This process han-
dles AEAD requests essentially in FIFO fashion. One may
also integrate key management functions with this process.

Figure 3 shows how to integrate a new cipher to various
levels of standard Linux (Android) cryptographic architec-
ture via an engine plug-in for OpenSSL’s libcrypto (or its
derivatives).

5. CONCLUSIONS
We have described SÆHI, a simple memory-mapped testing
interface primarily for hardware reference implementations
of AEAD Algorithms in the CAESAR competition.

SÆHI HDL modules should be accompanied by C “driver
software” that utilizes the cryptographic module as it is a
bare metal coprocessor. Ideally the driver should be able to
work on any CPU architecture with suitable datapath size.
The external software API interface of this basic driver is
almost equivalent to the API interface of first round software
reference implementations to facilitate easy verification.

There are about 50 first round CAESAR candidates and
hardware reference implementations are required for the sec-
ond round. As expect about a dozen proposals in the sec-
ond round, an uniform hardware testing interface is needed.
We suggest that hardware evaluation should have special
focus on most common computing and communication de-
vices: mobile devices (cost and power efficiency), followed
by smart cards (cost and side channel security), RFID (cost,
power, area, latency, side channels), embedded Internet-of-
Things devices (cost), network infrastructure and cloud data
centers (terabits per dollar – total cost of ownership).

We have implemented WhirlBob and Keccak AEAD trans-
forms in Verilog and proven them with Artix-7 FPGA Logic
Fabric that is available on the Xilinx Zynq 7000-series System-
on-Chip. This SoC also houses a dual-core Cortex-A9 and is
able to run Linux (with Android), making it a realistic pro-
filing tool for mobile devices, embedded, and IoT targets.
The implementations utilize the SÆHI interface.

We described kernel and user space drivers that utilize the
hardware. We also discussed integration of the coprocessors
in the kernel, operating system, and application level.

Acknowledgments
This work was carried out during the tenure of an ERCIM
“Alain Bensoussan” Fellowship Programme.

6. REFERENCES
[1] ARM. AMBA Open Specifications.

www.arm.com/products/system-ip/amba, 2014.
[2] P. S. L. M. Barreto and V. Rijmen. The Whirlpool

hashing function. NESSIE Algorithm
www.larc.usp.br/~pbarreto/WhirlpoolPage.html,
2000, Revised May 2003.

[3] S. Bartolini, R. Giorgi, and E. Martinelli. Instruction
set extensions for cryptographic applications. In Ç. K.
Koç, editor, Cryptographic Engineering, pages
191–233. Springer, 2009.

[4] G. Bertoni, J. Daemen, M. Peeters, G. V. Assche, and
R. V. Keer. CAESAR submission: Keyak v1.
competitions.cr.yp.to/round1/keyakv1.pdf, March
2014.

[5] A. Biryukov, D. Khovratovich, and I. Nikolić.
Distinguisher and related-key attack on the full
AES-256. In S. Halevi, editor, CRYPTO ’09, volume
5677 of LNCS, pages 231–249. Springer, 2009.

[6] A. Bogdanov, D. Khovratovich, and C. Rechberger.
Biclique cryptanalysis of the full AES. In D. Lee and
X. Wang, editors, ASIACRYPT ’11, volume 7073 of
LNCS, pages 344–371. Springer, 2011.

[7] K. Burgin and M. Peck. Suite B Profile for Internet
Protocol Security (IPsec). IETF RFC 6380, October
2011.

[8] CAESAR. CAESAR submissions.
competitions.cr.yp.to/caesar-submissions.html,
March 2014.

[9] T. Dierks and E. Rescorla. The Transport Layer
Security (TLS) Protocol Version 1.2. IETF RFC 5246,
August 2008.

[10] M. Dworkin. Recommendation for block cipher modes
of operation. NIST Special Publication 800-38A,
December 2001.

[11] GOST. Information Technology. Cryptographic
Protection of Information, Hash Function. Number R
34.11-2012 in GOST. Gosudarstvennyi Standard of
Russian Federation, 2012. (In Russian).

[12] K. Igoe. Suite B Cryptographic Suites for Secure Shell
(SSH). IETF RFC 6239, May 2011.

[13] K. Igoe and J. Solinas. AES Galois Counter Mode for
the Secure Shell Transport Layer Protocol. IETF RFC
5647, August 2009.

[14] D. McGrew and J. Viega. The Use of Galois Message
Authentication Code (GMAC) in IPsec ESP and AH.
IETF RFC 4543, May 2006.

[15] NIST. Advanced Encryption Standard (AES). FIPS
197, 2001.

[16] NIST. Recommendation for block cipher modes of
operation: Galois/counter mode (GCM) and GMAC.
NIST Special Publication 800-38D, 2007.

[17] NIST. The keyed-hash message authentication code
(HMAC). FIPS 198-1, July 2008.

[18] NIST. DRAFT SHA-3 standard: Permutation-based
hash and extendable-output functions. DRAFT FIPS
202, May 2014.

[19] NIST and D. Bernstein. CAESAR call for submissions.
competitions.cr.yp.to/caesar-call.html, January
2014.

[20] NSA. Suite B Cryptography.
www.nsa.gov/ia/programs/suiteb_cryptography,
June 2014.

[21] G. Procter and C. Cid. On weak keys and forgery
attacks against polynomial-based MAC schemes. In
S. Moriai, editor, FSE ’13, volume 8424 of LNCS,
pages 287–304. Springer, 2013.

[22] R. Rivest. The RC4 encryption algorithm. Proprietary
Specification, March 1992.

[23] M.-J. O. Saarinen. Cycling attacks on GCM, GHASH
and other polynomial MACs and hashes. In
A. Canteaut, editor, FSE 2012, volume 7549 of LNCS,
pages 216–225. Springer, 2012.

[24] M.-J. O. Saarinen. Beyond modes: Building a secure
record protocol from a cryptographic sponge
permutation. In J. Benaloh, editor, CT-RSA 2014,
volume 8366 of LNCS, pages 270–285. Springer, 2014.

[25] M.-J. O. Saarinen. Lighter, Faster, and
Constant-Time: WHIRLBOB, the Whirlpool variant
of STRIBOB. IACR ePrint 2014/501,
eprint.iacr.org/2014/501, June 2014.

[26] M.-J. O. Saarinen. The STRIBOBr1 authenticated
encryption algorithm. CAESAR First Round
Candidate, www.stribob.com, March 2014.

[27] M.-J. O. Saarinen and D. Engels. A Do-It-All-Cipher
for RFID: Design Requirements (Extended Abstract).
DIAC 2012, 05-06 July 2012, Stockholm SE. IACR
ePrint 2012/317, eprint.iacr.org/2012/317, June
2012.

[28] M. Salter and R. Housley. Suite B Profile for
Transport Layer Security (TLS). IETF RFC 6460,
January 2012.

[29] VCAT and NIST. NIST Cryptographic Standards and
Guidelines Development Process: Report and
Recommendations of the Visiting Committee on
Advanced Technology of the National Institute of
Standards and Technology, July 2014.

[30] Xillybus. The guide to xillybus lite, version 2.0.
xillybus.com/downloads/doc/xillybus_lite.pdf,
March 2014.

[31] Xillybus. Xillinux: A Linux distribution for Zedboard,
ZyBo, MicroZed and SocKit. xillybus.com/xillinux,
2014.

Version 20140724141500.

