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Abstract—In this paper we study a scan based side channel attack 

against the Grain family of stream ciphers. The attack works 

because scan chain test of circuits can be transformed into a 

powerful cryptographic attack due to the properties of scan 

based technique. So as a result the attack targets the test 

circuitry. We show how the attacker gains the knowledge about 

the locations of internal state bits of the NFSR and the LFSR and 
how he finds the secret key.  

Keywords- Scan-based side channel attack; Grain v1; LFSR; 
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I.  INTRODUCTION 

Grain Version 1 is a stream cipher which was designed and 
submitted to eSTREAM [1] project by Martin Hell, Thomas 
Johansson and Willi Meier in 2005 [2]. It is a synchronous bit 
oriented stream cipher which is designed primarily for 
restricted hardware environments i.e. it is designed so as to 
require low hardware complexity. A more descriptive 
explanation of Grain family of stream ciphers will be given in 
the next section. A number of potential weaknesses in this 
stream cipher have been discovered and, as a result, analysis of 
Grain has become an area of interest for cryptologists. For 
detailed information on cryptanalysis of Grain, one may go 
through [3-5, 8-17, 18]. 

 

Figure 1.  Design of a scan chain 

 

      Side channel attack is a class of cryptanalysis based on the 

information gained by the physical structure and 

implementation of a cryptosystem. Fault attacks, Timing 

attacks, Power monitoring attacks etc. are some general 
classes of side channel attacks. Scan based side channel attack 

can be very efficient in analysis of a cryptosystem because it 

can be performed in a very low cost and one can get the 

information about the internal state of the cryptosystem after 

getting the scan chain bits by scanning in the data through the 

scan-in pin into the system, running the system in normal 

mode and then scanning out the pattern chain. A simple scan 

chain is illustrated in Fig. 1. This method is generally used for 

testing purpose of a VLSI chip to find out the faulty registers 

inside the chip, if any. But one can see that this method is 

equally effective on the cryptanalysis point of view. Generally 
in IC’s, Flip-Flops are connected as a chain of registers and 

the states of those FFs can be scanned out easily through that 

chain. Proceeding in this way, one can find out which bit in 

the scanned out chain corresponds to the state of which 

internal register of the cryptosystem. Once correspondence 

between the scanned out bits in the scan chain and the internal 

registers of the system is determined, one can find out the 

initial state of the cryptosystem and hence also the secret key. 

Some examples of scan chain analysis on stream ciphers are 

given in [6, 7]. The organization of the paper is as follows: In 

section 2 we give a description of the Grain family of stream 

ciphers, section 3 describes the scan chain based analysis of 
Grain v1 where as section 4 concludes the paper. 

II. DESCRIPTION OF GRAIN FAMILY OF STREAM CIPHERS 

Grain consists of an 𝑛-bit Linear Feedback Shift Register or  

LFSR, an 𝑛-bit Non-linear Feedback Shift Register or NFSR 

and an output function. An exact structure of Grain is 

explained in Fig. 2. The internal state of the cipher consists of 

these 2𝑛 bits. Keystream is produced by taking certain bits of 

both the shift registers as the input to a combining Boolean 

function. The content of the LFSR is denoted by 𝐿 =
[𝑙0 , 𝑙1 , … , 𝑙𝑛−1]  and the content of the NFSR is denoted 

by𝑋 =  𝑥0 ,𝑥1 , … , 𝑥𝑛−1 . The update function of the LFSR is 

given by the equation  𝑙𝑛−1 = 𝑓(𝐿)  , where 𝑓  is a linear 

function on the LFSR state bits obtained from a primitive 

polynomial in 𝐺𝐹(2)  of degree𝑛 . The update function of 



 

NFSR is given as  𝑥𝑛−1 = 𝑙0 + 𝑔(𝑋), where 𝑔 is a non-linear 

function of the NFSR state bits.  

    The output keystream is produced by combining the LFSR 

and NFSR bits as 𝑘 = 𝑕′ 𝑋, 𝐿 =  𝑥𝑎𝑎∈𝐴 + 𝑕(𝑋 , 𝐿) where 𝐴 

is some fixed subset of  0,1,2, … , 𝑛 − 1 . 

A. Key Loading Phase 

The Grain family uses an 𝑛 -bit key 𝐾 , and an 𝑚 -bit 
initialization vector 𝐼𝑉, with 𝑚 < 𝑛. The key is loaded in the 

NFSR and the IV is loaded in the 0𝑡𝑕  to  𝑚 − 1 𝑡𝑕  bits of the 
LFSR. The remaining 𝑚𝑡𝑕  to  𝑛 − 1 𝑡𝑕  bits of the LFSR are 
loaded with some fixed pad 𝑃 ∈  0,1 𝑛−𝑚 . Hence at this stage, 
the 2𝑛 bit initial stage is of form 𝐾 ∥ 𝐼𝑉 ∥ 𝑃. 

B. Key Scheduling Phase 

After the key loading phase, for the first 2𝑛 clocks, the key 

stream produced at the output point of the function 𝑕′  is XOR-

ed to both the LFSR and NFSR update functions. The update 

equations are given as  𝑙𝑛−1 = 𝑘 + 𝑓 𝐿 , 𝑥𝑛−1 = 𝑙0 + 𝑘 +
𝑔(𝑋).  

C. Pseudo-Random keystream Generation Phase 

  After key scheduling is done, 𝑘 is no longer added to the 

LFSR and the NFSR but is used as the pseudo-random 

keystream bit. So in this phase, the LFSR and the NFSR are 

updated as 𝑙𝑛−1 = 𝑓 𝐿 , 𝑥𝑛−1 = 𝑙0 + 𝑔(𝑋). 

 

 

Figure 2.  Structure of stream cipher in Grain family 

 

 
      It is notable that given any arbitrary state and the 

information about the number of clocks in phase B and phase 

C, one can backtrack to the corresponding state, say 𝑆0
𝐾 , at the 

beginning of the phase B. This can happen because state 

update functions in both phases B and C are one-to-one and 

invertible. 

      In Grain v1, size of the key is 𝑛 = 80 bits and size of the 

IV is 𝑚 = 64 bits. The pad used in phase A is 𝑃 = 0𝑥𝐹𝐹𝐹𝐹. 

LFSR update rule is given as  𝑙79 = 𝑙62 + 𝑙51 + 𝑙38 + 𝑙23 +
𝑙13 + 𝑙0 . Update rule for NFSR is given as 𝑥79 = 𝑙0 +
𝑔 𝑥63 , 𝑥62 , 𝑥60 , 𝑥52 ,𝑥45 , 𝑥37 , 𝑥33 , 𝑥28 ,𝑥21 , 𝑥15 , 𝑥14 , 𝑥9, 𝑥0  

where, 

 𝑔 𝑥63 ,𝑥62 , 𝑥60 , 𝑥52 , 𝑥45 ,𝑥37 , 𝑥33 , 𝑥28 , 𝑥21 ,𝑥15 , 𝑥14 , 𝑥9, 𝑥0 =

𝑥62 + 𝑥60 + 𝑥52 + 𝑥45 + 𝑥37 + 𝑥33 + 𝑥28 + 𝑥21 + 𝑥14 + 𝑥9 +
𝑥0 + 𝑥63𝑥60 + 𝑥37𝑥33 + 𝑥15𝑥9 + 𝑥60𝑥52𝑥45 + 𝑥33𝑥28𝑥21 +
𝑥63𝑥45𝑥28𝑥9 + 𝑥60𝑥52𝑥37𝑥33 + 𝑥63𝑥60𝑥21𝑥15 +
𝑥63𝑥60𝑥52𝑥45𝑥37 + 𝑥33𝑥28𝑥21𝑥15𝑥9 + 𝑥52𝑥45𝑥37𝑥33𝑥28𝑥21  . 
 

     The output keystream is produced by combining LFSR and 

NFSR bits as 𝑘 =  𝑥𝑎𝑎∈𝐴 + 𝑕(𝑙3 , 𝑙25 , 𝑙46 , 𝑙64 , 𝑥63 ), where 

 𝐴 = {1,2,4,10,31,46,56} and  

𝑕 𝑠0 , 𝑠1 , 𝑠2 , 𝑠3 , 𝑠4 = 𝑠1 + 𝑠4 + 𝑠0𝑠3 + 𝑠2𝑠3 + 𝑠3𝑠4 + 𝑠0𝑠1𝑠2 +
𝑠0𝑠2𝑠3 + 𝑠0𝑠2𝑠4 + 𝑠1𝑠2𝑠4 + 𝑠2𝑠3𝑠4. 

III. SCAN CHAIN BASED ANALYSIS OF GRAIN V1 

In this section we will describe the scan based analysis on 
Grain v1. Grain v1 consists of an 80-bit LFSR and an 80-bit 
NFSR. The LFSR and the NFSR are updated by the feedback 
functions 𝑓 and  𝑔 respectively and the output keystream bit at 
each round is generated by an output function which is a 
function of certain locations from both the LFSR and the 
NFSR. Apart from this, the device representing the Grain v1 
cryptosystem has an 8-bit counter for keeping track of the 
rounds. So in total, the number of scanned out bits will 
be 80 + 80 + 8 = 168. 

We break down the attack description in two steps. In the 
first step we show how the adversary obtains the knowledge of 
actual locations of the counter bits, the NFSR bits and the 
LFSR bits by observing the scanned out chain. Once the 
attacker gains the knowledge about the correspondence 
between the actual bits and the pattern he has scanned out, he 
then tries to obtain the secret key. 

A. Deducing the bit correspondence 

At first, the attacker tries to find the location of counter bits 
by looking at the scanned out pattern. In order to do so he 
exploits the Key-IV input pattern. As per design specifications 
of Grain and also the phase A discussed in section 2, the user 
needs to load the input as 𝐾 ∥ 𝐼𝑉 ∥ 𝑃, where K is 80-bit key 
loaded in the NFSR, 64-bit IV is loaded in the LFSR and the 
rest of the bits are of the pad P. The attacker inputs the pattern 
of all zeros, i.e. 0160  or sequence of 160 zeros. The attacker 
now runs the system in normal mode for (27 − 1) cycles. As 
the internal state of the cipher is set to all zeros, according to 
the update rule of the LFSR and the NFSR of Grain v1 
discussed in section 2, running the system in normal mode will 
not bring any change in the internal state bits. The only thing 
which will change is the 8-bit counter. Since the attacker has 
run the system for (27 − 1) clocks, 7 bits of the counter will be 
set to 1. The attacker then scans out the pattern and deduces 
that the bits which are 1 are the locations of the 7 counter bits 
in the chain. The attacker now resets the counter and scans in 
again the sequence of 160 zeros and runs the system for 27 
clock cycles. He then scans out the resulting pattern. This time 
the MSB of the counter bits is set to 1 and hence the attacker 
gains the information about the original location of all the 
counter bits. 

Now it is the time to gain the knowledge of original 
locations of the internal 160 state bits. Performing this task is 
straight forward. Observing the way in which the bits are 
circulated around the registers by looking at the update 
functions of Grain v1, we see that bits are shifted from right to 



left after each cycle. We explain the general ideas used in the 
attack with the help of the following lemma: 

Lemma 1. Let 𝑥𝑚  be the linear tap of the function 𝑔 in the 
NFSR state update equation. If 𝑥𝑚 = 1 and all other inputs to 
𝑔 are 0, then the output of  𝑔 is 1. 

Proof. Update rule for NFSR is given as 𝑥79 = 𝑙0 +
𝑔 𝑥63 , 𝑥62 , … , 𝑥0 , where the function 𝑔 is defined in section 2.  

For example  𝑥45 is a linear tap of the function 𝑔. If we set 
𝑥45 = 1  and rest of the inputs of 𝑔  to zero, then we 
have 𝑔 0,0,0,0,1,0,0,0,0,0,0,0,0 = 1. Similar argument holds 
for all linear taps. 

Similar lemma holds for the update function 𝑓 of the LFSR 
state update equation. 

1. Correspondence of the NFSR state bits 
 

       Let 𝑥𝑚  denote the NFSR state bit. Consider the following 
cases: 

a. 𝑥𝑚  is a linear tap of the function 𝑔 

If we look at the state update equation of the NFSR for Grain 

v1 in section 2, we observe that the function 𝑔  has certain 

linear taps. For example 𝑥0,𝑥9, 𝑥14, 𝑥21,𝑥62 etc. are the linear 

taps of the function 𝑔. We also know that a left shift of bits 

occurs after each cycle in Grain v1. So in general, if 𝑥𝑚  is the 

linear tap of the function 𝑔, and the attacker sets 𝑥𝑚  to 1 and 

rest of the 159 bits to zero in the input pattern, then according 

to lemma 1, 𝑥79  will be set to 1 and due to the left shift 

operation after each cycle, 𝑥𝑚−1 will also be set to 1. In case 

when 𝑥0 = 1 is set by the attacker, only 𝑥79 is set to 1 after 
running the system for 1 cycle. Hence the attacker gets the bit 

correspondence of 𝑥79 after observing the scanned out pattern. 

So having the bit correspondence of 𝑥79 in hand, in cases of 

all other 𝑥𝑚  set to 1 by him, where  𝑚 ≠ 0 , he knows the 

correspondence of  𝑥𝑚−1  after observing the scanned out 

pattern. 

 

b. 𝑥𝑚  is not a linear tap of the function 𝑔 

This case is fairly straight forward. The attacker sets 𝑥𝑚 = 1 

and rest of the bits of the internal state registers to zero in his 

input pattern. He runs the system in normal mode for 1 clock 

cycle and then scans out the bit pattern and due to the left shift 

operation of the shift registers, 𝑥𝑚−1 is set to 1 in the scanned 

out pattern. Hence he knows the bit correspondence of 𝑥𝑚−1. 

 

2. Correspondence of the LFSR state bits 
       

     Let 𝑙𝑚  denote the LFSR state bit. Consider the following 

cases: 

a. 𝑙0 is a linear tap of the functions 𝑔 and 𝑓 

Note that 𝑙0 is the linear tap of both the functions 𝑓 and 𝑔 of 

the LFSR and the NFSR state update equations. If the attacker 

sets 𝑙0 = 1 and rest of the bits to zero in his input pattern, then 

according to Lemma 1, after running the system for 1 clock 

cycle will set 𝑙79 and 𝑥79 to 1. The attacker knows the position 

of 𝑥79 already, hence he also finds out the bit correspondence 

of 𝑙79 after observing the scanned out pattern. 

b. 𝑙𝑚  is a linear tap of function 𝑓 (where 𝑚 ≠ 0) 

In this case, when the attacker sets 𝑙𝑚 = 1 and rest of the bits 

to zero in the input pattern, then according to Lemma 1, 𝑙79 

will be set to 1 after running the system for a clock cycle. Due 

to the left shift operation of the internal state registers after 

each clock cycle, 𝑙𝑚−1 will also be set to 1. Since the attacker 

already knows the bit correspondence of 𝑙79, he ascertains the 

bit correspondence of 𝑙𝑚−1  too, after observing the scanned 

out pattern. 

c. 𝑙𝑚  is not a linear tap of the function 𝑓 

Since 𝑙𝑚  is not a linear tap in 𝑓, setting 𝑙𝑚 = 1 and rest of the 

bits to zero in the input pattern, will set 𝑙𝑚−1 = 1 after running 

the system for 1 clock cycle. So in this case attacker gets the 

bit correspondence of 𝑙𝑚−1  after observing the scanned out 

pattern. 

     Following all the above cases, the attacker now has the 

knowledge of the bit correspondence of every state bit of the 

NFSR and the LFSR. 

B. Finding the secret key 

        After the locations corresponding to all the NFSR and 

the LFSR bits are known, the attacker now attempts to find the 

secret key. He lets the cipher initialize with an unknown Key-

IV. After 160 clocks he stops the normal mode of operation 

and scans out the contents of the device. Since the attacker 
already knows what position of the scanned out vector 

corresponds to which locations of the NFSR and the LFSR, he 

can perfectly reconstruct the internal state of the cipher after 

160 rounds of the key scheduling phase (Phase B, section 2). 

Now all that remains to be done is to find the secret key from 

the knowledge of the internal state. He can do this by using the 

𝐾𝑆𝑃−1 routine as described below. 

      Given the primitive polynomial of the Grain LFSR, the 

feedback function 𝑓 is of the form 𝑓 𝐿 = 𝑙0 + 𝑓′(𝐿′), where 

𝐿′ = [𝑙1 , … , 𝑙𝑛−1] is an (𝑛 − 1)-bit vector obtained from 𝐿 by 

removing the first term 𝑙0. Similarly the update function 𝑔 is 

of the form 𝑔 𝑋 = 𝑥0 + 𝑔′(𝑋′) where 𝑋′ = [𝑥1 ,… , 𝑥𝑛−1] is 

an (𝑛 − 1)-bit vector obtained from 𝑋 by removing the first 

term 𝑥0. This implies that the non-linear function 𝑔′  does not 

depend on the term 𝑥0. Similarly the linear function 𝑓′  does 

not depend on the term 𝑙0 . This is necessary and sufficient 

condition for the state update functions of the NFSR and the 

LFSR to be one-to-one [19]. Due to this, the state update maps 

of the Grain family of ciphers during both the phase B and C 
described in section-2, are one-to-one and invertible, i.e. given 

any particular state, during any iteration of the phase B or C of 

section-2, it is possible to determine the previous state. 

      Given the NFSR and the LFSR state after the completion 

of phase B of section-2, Algorithm-1 will determine the NFSR 

and the LFSR state at the beginning of the phase B. 

 

 

 



a. Algorithm-1: 𝐾𝑆𝑃−1 

 

Input: State 𝑆0 = 𝑥0 , … , 𝑥𝑛−1 , 𝑙0 , … , 𝑙𝑛−1 

Output: State 𝑆0
𝐾 = 𝑥0 , … , 𝑥𝑛−1 , 𝑙0 , … , 𝐿𝑛−1 

for 2𝑛 𝑐𝑙𝑜𝑐𝑘𝑠 do  

      𝑦𝑗 = 𝑙𝑛−1 and 𝑛𝑗 = 𝑥𝑛−1 

      𝑙𝑖 = 𝑙𝑖−1  and 𝑥𝑖 = 𝑥𝑖−1 for 𝑖 = 𝑛 − 1, 𝑛 − 2, … ,1 

      𝑘 =  𝑥𝑎𝑎∈𝐴 + 𝑕(𝑥0 , … , 𝑥𝑛−1 , 𝑙0 , … , 𝑙𝑛−1)  

      𝑙0 = 𝑧 + 𝑦𝑗 + 𝑓′(𝑙1 , … , 𝑙𝑛−1) 

      𝑥0 = 𝑧 + 𝑛𝑗 + 𝑙0 + 𝑔′(𝑥1 , … , 𝑥𝑛−1) 

end 

 

       Following the above algorithm, the attacker gets in 

possession with the secret key in case of Grain v1. Hence the 

attack on Grain v1 is successfully established. 

 

IV. CONCLUSION 

In this paper, we have shown that hardware designs of 
stream ciphers can be attacked when testing using scan chains. 
We have demonstrated such an attack on Grain v1 stream 
cipher which is in the hardware profile of the eSTREAM 
portfolio. We demonstrated the attack in two parts of which 
first part showed the methods of ascertaining the locations of 
the internal state bits of the cipher and the second part showed 
the algorithms to get in the possession of the secret key.   
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