

Scan Based Side Channel Attack on Grain v1

Sonu Kumar Jha

Applied Statistics Unit, Indian Statistical Institute

203 B. T. Road

Kolkata-700108, India

Email: jhasonu1987@yahoo.com

Abstract—In this paper we study a scan based side channel attack

against the Grain family of stream ciphers. The attack works

because scan chain test of circuits can be transformed into a

powerful cryptographic attack due to the properties of scan

based technique. So as a result the attack targets the test

circuitry. We show how the attacker gains the knowledge about

the locations of internal state bits of the NFSR and the LFSR and
how he finds the secret key.

Keywords- Scan-based side channel attack; Grain v1; LFSR;

NFSR; Stream ciphers.

I. INTRODUCTION

Grain Version 1 is a stream cipher which was designed and
submitted to eSTREAM [1] project by Martin Hell, Thomas
Johansson and Willi Meier in 2005 [2]. It is a synchronous bit
oriented stream cipher which is designed primarily for
restricted hardware environments i.e. it is designed so as to
require low hardware complexity. A more descriptive
explanation of Grain family of stream ciphers will be given in
the next section. A number of potential weaknesses in this
stream cipher have been discovered and, as a result, analysis of
Grain has become an area of interest for cryptologists. For
detailed information on cryptanalysis of Grain, one may go
through [3-5, 8-17, 18].

Figure 1. Design of a scan chain

 Side channel attack is a class of cryptanalysis based on the

information gained by the physical structure and

implementation of a cryptosystem. Fault attacks, Timing

attacks, Power monitoring attacks etc. are some general
classes of side channel attacks. Scan based side channel attack

can be very efficient in analysis of a cryptosystem because it

can be performed in a very low cost and one can get the

information about the internal state of the cryptosystem after

getting the scan chain bits by scanning in the data through the

scan-in pin into the system, running the system in normal

mode and then scanning out the pattern chain. A simple scan

chain is illustrated in Fig. 1. This method is generally used for

testing purpose of a VLSI chip to find out the faulty registers

inside the chip, if any. But one can see that this method is

equally effective on the cryptanalysis point of view. Generally
in IC’s, Flip-Flops are connected as a chain of registers and

the states of those FFs can be scanned out easily through that

chain. Proceeding in this way, one can find out which bit in

the scanned out chain corresponds to the state of which

internal register of the cryptosystem. Once correspondence

between the scanned out bits in the scan chain and the internal

registers of the system is determined, one can find out the

initial state of the cryptosystem and hence also the secret key.

Some examples of scan chain analysis on stream ciphers are

given in [6, 7]. The organization of the paper is as follows: In

section 2 we give a description of the Grain family of stream

ciphers, section 3 describes the scan chain based analysis of
Grain v1 where as section 4 concludes the paper.

II. DESCRIPTION OF GRAIN FAMILY OF STREAM CIPHERS

Grain consists of an 𝑛-bit Linear Feedback Shift Register or

LFSR, an 𝑛-bit Non-linear Feedback Shift Register or NFSR

and an output function. An exact structure of Grain is

explained in Fig. 2. The internal state of the cipher consists of

these 2𝑛 bits. Keystream is produced by taking certain bits of

both the shift registers as the input to a combining Boolean

function. The content of the LFSR is denoted by 𝐿 =
[𝑙0 , 𝑙1 , … , 𝑙𝑛−1] and the content of the NFSR is denoted

by𝑋 = 𝑥0 ,𝑥1 , … , 𝑥𝑛−1 . The update function of the LFSR is

given by the equation 𝑙𝑛−1 = 𝑓(𝐿) , where 𝑓 is a linear

function on the LFSR state bits obtained from a primitive

polynomial in 𝐺𝐹(2) of degree𝑛 . The update function of

NFSR is given as 𝑥𝑛−1 = 𝑙0 + 𝑔(𝑋), where 𝑔 is a non-linear

function of the NFSR state bits.

 The output keystream is produced by combining the LFSR

and NFSR bits as 𝑘 = 𝑕′ 𝑋, 𝐿 = 𝑥𝑎𝑎∈𝐴 + 𝑕(𝑋 , 𝐿) where 𝐴

is some fixed subset of 0,1,2, … , 𝑛 − 1 .

A. Key Loading Phase

The Grain family uses an 𝑛 -bit key 𝐾 , and an 𝑚 -bit
initialization vector 𝐼𝑉, with 𝑚 < 𝑛. The key is loaded in the

NFSR and the IV is loaded in the 0𝑡𝑕 to 𝑚 − 1 𝑡𝑕 bits of the
LFSR. The remaining 𝑚𝑡𝑕 to 𝑛 − 1 𝑡𝑕 bits of the LFSR are
loaded with some fixed pad 𝑃 ∈ 0,1 𝑛−𝑚 . Hence at this stage,
the 2𝑛 bit initial stage is of form 𝐾 ∥ 𝐼𝑉 ∥ 𝑃.

B. Key Scheduling Phase

After the key loading phase, for the first 2𝑛 clocks, the key

stream produced at the output point of the function 𝑕′ is XOR-

ed to both the LFSR and NFSR update functions. The update

equations are given as 𝑙𝑛−1 = 𝑘 + 𝑓 𝐿 , 𝑥𝑛−1 = 𝑙0 + 𝑘 +
𝑔(𝑋).

C. Pseudo-Random keystream Generation Phase

 After key scheduling is done, 𝑘 is no longer added to the

LFSR and the NFSR but is used as the pseudo-random

keystream bit. So in this phase, the LFSR and the NFSR are

updated as 𝑙𝑛−1 = 𝑓 𝐿 , 𝑥𝑛−1 = 𝑙0 + 𝑔(𝑋).

Figure 2. Structure of stream cipher in Grain family

 It is notable that given any arbitrary state and the

information about the number of clocks in phase B and phase

C, one can backtrack to the corresponding state, say 𝑆0
𝐾 , at the

beginning of the phase B. This can happen because state

update functions in both phases B and C are one-to-one and

invertible.

 In Grain v1, size of the key is 𝑛 = 80 bits and size of the

IV is 𝑚 = 64 bits. The pad used in phase A is 𝑃 = 0𝑥𝐹𝐹𝐹𝐹.

LFSR update rule is given as 𝑙79 = 𝑙62 + 𝑙51 + 𝑙38 + 𝑙23 +
𝑙13 + 𝑙0 . Update rule for NFSR is given as 𝑥79 = 𝑙0 +
𝑔 𝑥63 , 𝑥62 , 𝑥60 , 𝑥52 ,𝑥45 , 𝑥37 , 𝑥33 , 𝑥28 ,𝑥21 , 𝑥15 , 𝑥14 , 𝑥9, 𝑥0

where,

 𝑔 𝑥63 ,𝑥62 , 𝑥60 , 𝑥52 , 𝑥45 ,𝑥37 , 𝑥33 , 𝑥28 , 𝑥21 ,𝑥15 , 𝑥14 , 𝑥9, 𝑥0 =

𝑥62 + 𝑥60 + 𝑥52 + 𝑥45 + 𝑥37 + 𝑥33 + 𝑥28 + 𝑥21 + 𝑥14 + 𝑥9 +
𝑥0 + 𝑥63𝑥60 + 𝑥37𝑥33 + 𝑥15𝑥9 + 𝑥60𝑥52𝑥45 + 𝑥33𝑥28𝑥21 +
𝑥63𝑥45𝑥28𝑥9 + 𝑥60𝑥52𝑥37𝑥33 + 𝑥63𝑥60𝑥21𝑥15 +
𝑥63𝑥60𝑥52𝑥45𝑥37 + 𝑥33𝑥28𝑥21𝑥15𝑥9 + 𝑥52𝑥45𝑥37𝑥33𝑥28𝑥21 .

 The output keystream is produced by combining LFSR and

NFSR bits as 𝑘 = 𝑥𝑎𝑎∈𝐴 + 𝑕(𝑙3 , 𝑙25 , 𝑙46 , 𝑙64 , 𝑥63), where

 𝐴 = {1,2,4,10,31,46,56} and

𝑕 𝑠0 , 𝑠1 , 𝑠2 , 𝑠3 , 𝑠4 = 𝑠1 + 𝑠4 + 𝑠0𝑠3 + 𝑠2𝑠3 + 𝑠3𝑠4 + 𝑠0𝑠1𝑠2 +
𝑠0𝑠2𝑠3 + 𝑠0𝑠2𝑠4 + 𝑠1𝑠2𝑠4 + 𝑠2𝑠3𝑠4.

III. SCAN CHAIN BASED ANALYSIS OF GRAIN V1

In this section we will describe the scan based analysis on
Grain v1. Grain v1 consists of an 80-bit LFSR and an 80-bit
NFSR. The LFSR and the NFSR are updated by the feedback
functions 𝑓 and 𝑔 respectively and the output keystream bit at
each round is generated by an output function which is a
function of certain locations from both the LFSR and the
NFSR. Apart from this, the device representing the Grain v1
cryptosystem has an 8-bit counter for keeping track of the
rounds. So in total, the number of scanned out bits will
be 80 + 80 + 8 = 168.

We break down the attack description in two steps. In the
first step we show how the adversary obtains the knowledge of
actual locations of the counter bits, the NFSR bits and the
LFSR bits by observing the scanned out chain. Once the
attacker gains the knowledge about the correspondence
between the actual bits and the pattern he has scanned out, he
then tries to obtain the secret key.

A. Deducing the bit correspondence

At first, the attacker tries to find the location of counter bits
by looking at the scanned out pattern. In order to do so he
exploits the Key-IV input pattern. As per design specifications
of Grain and also the phase A discussed in section 2, the user
needs to load the input as 𝐾 ∥ 𝐼𝑉 ∥ 𝑃, where K is 80-bit key
loaded in the NFSR, 64-bit IV is loaded in the LFSR and the
rest of the bits are of the pad P. The attacker inputs the pattern
of all zeros, i.e. 0160 or sequence of 160 zeros. The attacker
now runs the system in normal mode for (27 − 1) cycles. As
the internal state of the cipher is set to all zeros, according to
the update rule of the LFSR and the NFSR of Grain v1
discussed in section 2, running the system in normal mode will
not bring any change in the internal state bits. The only thing
which will change is the 8-bit counter. Since the attacker has
run the system for (27 − 1) clocks, 7 bits of the counter will be
set to 1. The attacker then scans out the pattern and deduces
that the bits which are 1 are the locations of the 7 counter bits
in the chain. The attacker now resets the counter and scans in
again the sequence of 160 zeros and runs the system for 27
clock cycles. He then scans out the resulting pattern. This time
the MSB of the counter bits is set to 1 and hence the attacker
gains the information about the original location of all the
counter bits.

Now it is the time to gain the knowledge of original
locations of the internal 160 state bits. Performing this task is
straight forward. Observing the way in which the bits are
circulated around the registers by looking at the update
functions of Grain v1, we see that bits are shifted from right to

left after each cycle. We explain the general ideas used in the
attack with the help of the following lemma:

Lemma 1. Let 𝑥𝑚 be the linear tap of the function 𝑔 in the
NFSR state update equation. If 𝑥𝑚 = 1 and all other inputs to
𝑔 are 0, then the output of 𝑔 is 1.

Proof. Update rule for NFSR is given as 𝑥79 = 𝑙0 +
𝑔 𝑥63 , 𝑥62 , … , 𝑥0 , where the function 𝑔 is defined in section 2.

For example 𝑥45 is a linear tap of the function 𝑔. If we set
𝑥45 = 1 and rest of the inputs of 𝑔 to zero, then we
have 𝑔 0,0,0,0,1,0,0,0,0,0,0,0,0 = 1. Similar argument holds
for all linear taps.

Similar lemma holds for the update function 𝑓 of the LFSR
state update equation.

1. Correspondence of the NFSR state bits

 Let 𝑥𝑚 denote the NFSR state bit. Consider the following
cases:

a. 𝑥𝑚 is a linear tap of the function 𝑔

If we look at the state update equation of the NFSR for Grain

v1 in section 2, we observe that the function 𝑔 has certain

linear taps. For example 𝑥0,𝑥9, 𝑥14, 𝑥21,𝑥62 etc. are the linear

taps of the function 𝑔. We also know that a left shift of bits

occurs after each cycle in Grain v1. So in general, if 𝑥𝑚 is the

linear tap of the function 𝑔, and the attacker sets 𝑥𝑚 to 1 and

rest of the 159 bits to zero in the input pattern, then according

to lemma 1, 𝑥79 will be set to 1 and due to the left shift

operation after each cycle, 𝑥𝑚−1 will also be set to 1. In case

when 𝑥0 = 1 is set by the attacker, only 𝑥79 is set to 1 after
running the system for 1 cycle. Hence the attacker gets the bit

correspondence of 𝑥79 after observing the scanned out pattern.

So having the bit correspondence of 𝑥79 in hand, in cases of

all other 𝑥𝑚 set to 1 by him, where 𝑚 ≠ 0 , he knows the

correspondence of 𝑥𝑚−1 after observing the scanned out

pattern.

b. 𝑥𝑚 is not a linear tap of the function 𝑔

This case is fairly straight forward. The attacker sets 𝑥𝑚 = 1

and rest of the bits of the internal state registers to zero in his

input pattern. He runs the system in normal mode for 1 clock

cycle and then scans out the bit pattern and due to the left shift

operation of the shift registers, 𝑥𝑚−1 is set to 1 in the scanned

out pattern. Hence he knows the bit correspondence of 𝑥𝑚−1.

2. Correspondence of the LFSR state bits

 Let 𝑙𝑚 denote the LFSR state bit. Consider the following

cases:

a. 𝑙0 is a linear tap of the functions 𝑔 and 𝑓

Note that 𝑙0 is the linear tap of both the functions 𝑓 and 𝑔 of

the LFSR and the NFSR state update equations. If the attacker

sets 𝑙0 = 1 and rest of the bits to zero in his input pattern, then

according to Lemma 1, after running the system for 1 clock

cycle will set 𝑙79 and 𝑥79 to 1. The attacker knows the position

of 𝑥79 already, hence he also finds out the bit correspondence

of 𝑙79 after observing the scanned out pattern.

b. 𝑙𝑚 is a linear tap of function 𝑓 (where 𝑚 ≠ 0)

In this case, when the attacker sets 𝑙𝑚 = 1 and rest of the bits

to zero in the input pattern, then according to Lemma 1, 𝑙79

will be set to 1 after running the system for a clock cycle. Due

to the left shift operation of the internal state registers after

each clock cycle, 𝑙𝑚−1 will also be set to 1. Since the attacker

already knows the bit correspondence of 𝑙79, he ascertains the

bit correspondence of 𝑙𝑚−1 too, after observing the scanned

out pattern.

c. 𝑙𝑚 is not a linear tap of the function 𝑓

Since 𝑙𝑚 is not a linear tap in 𝑓, setting 𝑙𝑚 = 1 and rest of the

bits to zero in the input pattern, will set 𝑙𝑚−1 = 1 after running

the system for 1 clock cycle. So in this case attacker gets the

bit correspondence of 𝑙𝑚−1 after observing the scanned out

pattern.

 Following all the above cases, the attacker now has the

knowledge of the bit correspondence of every state bit of the

NFSR and the LFSR.

B. Finding the secret key

 After the locations corresponding to all the NFSR and

the LFSR bits are known, the attacker now attempts to find the

secret key. He lets the cipher initialize with an unknown Key-

IV. After 160 clocks he stops the normal mode of operation

and scans out the contents of the device. Since the attacker
already knows what position of the scanned out vector

corresponds to which locations of the NFSR and the LFSR, he

can perfectly reconstruct the internal state of the cipher after

160 rounds of the key scheduling phase (Phase B, section 2).

Now all that remains to be done is to find the secret key from

the knowledge of the internal state. He can do this by using the

𝐾𝑆𝑃−1 routine as described below.

 Given the primitive polynomial of the Grain LFSR, the

feedback function 𝑓 is of the form 𝑓 𝐿 = 𝑙0 + 𝑓′(𝐿′), where

𝐿′ = [𝑙1 , … , 𝑙𝑛−1] is an (𝑛 − 1)-bit vector obtained from 𝐿 by

removing the first term 𝑙0. Similarly the update function 𝑔 is

of the form 𝑔 𝑋 = 𝑥0 + 𝑔′(𝑋′) where 𝑋′ = [𝑥1 ,… , 𝑥𝑛−1] is

an (𝑛 − 1)-bit vector obtained from 𝑋 by removing the first

term 𝑥0. This implies that the non-linear function 𝑔′ does not

depend on the term 𝑥0. Similarly the linear function 𝑓′ does

not depend on the term 𝑙0 . This is necessary and sufficient

condition for the state update functions of the NFSR and the

LFSR to be one-to-one [19]. Due to this, the state update maps

of the Grain family of ciphers during both the phase B and C
described in section-2, are one-to-one and invertible, i.e. given

any particular state, during any iteration of the phase B or C of

section-2, it is possible to determine the previous state.

 Given the NFSR and the LFSR state after the completion

of phase B of section-2, Algorithm-1 will determine the NFSR

and the LFSR state at the beginning of the phase B.

a. Algorithm-1: 𝐾𝑆𝑃−1

Input: State 𝑆0 = 𝑥0 , … , 𝑥𝑛−1 , 𝑙0 , … , 𝑙𝑛−1

Output: State 𝑆0
𝐾 = 𝑥0 , … , 𝑥𝑛−1 , 𝑙0 , … , 𝐿𝑛−1

for 2𝑛 𝑐𝑙𝑜𝑐𝑘𝑠 do

 𝑦𝑗 = 𝑙𝑛−1 and 𝑛𝑗 = 𝑥𝑛−1

 𝑙𝑖 = 𝑙𝑖−1 and 𝑥𝑖 = 𝑥𝑖−1 for 𝑖 = 𝑛 − 1, 𝑛 − 2, … ,1

 𝑘 = 𝑥𝑎𝑎∈𝐴 + 𝑕(𝑥0 , … , 𝑥𝑛−1 , 𝑙0 , … , 𝑙𝑛−1)

 𝑙0 = 𝑧 + 𝑦𝑗 + 𝑓′(𝑙1 , … , 𝑙𝑛−1)

 𝑥0 = 𝑧 + 𝑛𝑗 + 𝑙0 + 𝑔′(𝑥1 , … , 𝑥𝑛−1)

end

 Following the above algorithm, the attacker gets in

possession with the secret key in case of Grain v1. Hence the

attack on Grain v1 is successfully established.

IV. CONCLUSION

In this paper, we have shown that hardware designs of
stream ciphers can be attacked when testing using scan chains.
We have demonstrated such an attack on Grain v1 stream
cipher which is in the hardware profile of the eSTREAM
portfolio. We demonstrated the attack in two parts of which
first part showed the methods of ascertaining the locations of
the internal state bits of the cipher and the second part showed
the algorithms to get in the possession of the secret key.

REFERENCES

[1] The ECRYPT stream cipher project. eSTREAM portfolio of stream

ciphers. Revised on September 8, 2008.

[2] M. Hell, T. Johansson and W. Meier. Grain - A Stream Cipher for
Constrained Environments. ECRYPT Stream Cipher Project Report

2005/001, 2005. Availableat http://www.ecrypt.eu.org/stream.

[3] J. P. Aumasson, I. Dinur, L. Henzen, W. Meier, and A. Shamir. E_cient
FPGA Implementations of High-Dimensional Cube Testers on the

Stream Cipher Grain-128.In SHARCS - Special-purpose Hardware for
Attacking Cryptographic Systems,2009.

[4] C. Berbain, H. Gilbert and A. Maximov. Cryptanalysis of Grain. In FSE

2006,LNCS, Vol. 4047, pp. 15-29, 2006.

[5] A. Berzati et-al. Fault analysis of Grain-128 in: IEEE Workshop on

Hardware Oriented Security and Trust, pp. 7-14, 2009.

[6] D.R. Chowdhury, A. Rijmen and A.das. Scan Based Side Channel
Attacks on Stream Ciphers and Their Counter-Measure. In Indocrypt

2008,LNCS 5365, pp. 226-238, 2008.

[7] B.yang, K. Wu, R. Karri: Scan based side channel attack on dedicated
hardwarre implementations of data encryption standard. In: ITC 2004:

Proceedings of the International Test Conference,Washington. DC,
USA, PP. 339-344. IEEE Computer Society,Los Alamitos (2004).

[8] Subhadeep Banik, Subhamoy Maitra, Santanu Sarkar: A Diffrential

Fault Attack on Grain family of Stream Ciphers. In CHES 2012: 122-
139.

[9] Subhadeep Banik, Subhamoy Maitra, Santanu Sarkar: A differential

Fault Attack on Grain family under Reasonable Assumptions. In
INDOCRYPT 2012: 191-208.

[10] Subhadeep Banik, Subhamoy Maitra, Santanu Sarkar: Some Results on

Related Key-IV Pairs of Grain. SPACE 2012: 94-110.

[11] Subhadeep Banik, Subhamoy Maitra, Santanu Sarkar: A Diffrential

Fault Attack on Grain-128a using MACs. SPACE 2012: 111-125.

[12] T.E. Bjorstad. Cryptanalisis of Grain using time/memory/data tradeoffs
(v 1.0/2008-02-25). Available at http://www.ecrypt.eu.org/stream.

[13] C. De Canniere, O. Kucuk and B. Preneel. Analysis of Grain

initialization algorithm. In AFRICACRYPT 2008,LNCS vol 7073,pp.
276-289,2008.

[14] I. Dinur, T. Guneysu,C. Paar, A. Shamir,R. Zimmerman. An

experimentally verified attack of full Grain-128 using dedicated
reconfigurable hardware.In ASICRYPT 2011, LNCS vol. 7073, pp. 327-

343,2011.

[15] I. Dinur , A. Shamir. Breaking Grain-128 with dynamic cube attacks. In
FSE2011, LNCS,Vol. 6733,pp.167-187,2011.

[16] H. Englund, T. Johansson and M S Turan. A framework for chosen IV

statistical analysis of stream ciphers. In INDOCRYPT
2007,LNCS,VOl.4859,pp. 268-281,2007.

[17] S. Fischer, S. Khazaei and W. Meier. Chosen IV statistical analysis for
key recovery attacks on stream ciphers. In AFRICACRYPT

2008,LNCS, Vol. 5023, pp. 236-245,2008.

[18] S. Knellwolf, W.Meier and M. Naya-Plasencia. Conditional differential
cryptanalysis of NLFSR- Based cryptosystems. In ASIACRYPT 2010,

LNCS,Vol. 6477,pp.130-145,2010.

[19] H. Fredricksen.A survey of full length non-linear shift register cycle
algorithms, SIAM Rev.,24(1982),pp.195-221, 1982.

http://www.ecrypt.eu.org/stream

