
1

NSEC5: Provably Preventing DNSSEC Zone
Enumeration

Sharon Goldberg∗, Moni Naor†, Dimitrios Papadopoulos∗
Leonid Reyzin∗, Sachin Vasant∗, Asaf Ziv†

Abstract—This paper uses cryptographic techniques to study
the problem of zone enumeration in DNSSEC. DNSSEC is de-
signed to prevent network attackers from tampering with domain
name system (DNS) messages. The cryptographic machinery used
in DNSSEC, however, also creates a new vulnerability—-zone
enumeration, where an adversary launches a small number of
online DNSSEC queries and then uses offline dictionary attacks
to learn which domain names are present or absent in a DNS zone.
We explain why the current DNSSEC standard (with NSEC and
NSEC3) suffers from zone enumeration: we use cryptographic
lower bounds to prove that DNSSEC’s three design goals — high
performance, security against network attackers, and privacy
against zone enumeration — cannot be satisfied simultaneously.
We then introduce NSEC5, a new cryptographic construction that
solves the problem of DNSSEC zone enumeration while matching
our lower bounds and remaining faithful to the operational
realities of DNSSEC. NSEC5 can be thought of as a variant of
NSEC3, where the hash function is replaced with an RSA-based
keyed-hashing scheme.

I. INTRODUCTION

DNSSEC was introduced in the late 1990s to protect the
Domain Name System (DNS) from network attacks. With
DNSSEC, the response to a DNS query is authenticated with a
digital signature; in this way, the resolver that issues the DNS
query (“What is the IP address for www.example.com?”)
can be certain that the response (“155.41.24.251”) was sent by
an authoritative nameserver, rather than an arbitrary network
attacker. The road to DNSSEC deployment has been rocky,
and a variety of technical issues have forced the Internet
community to rewrite the DNSSEC standard multiple times.
One of the most interesting of these issues is the problem
of zone enumeration [Ber11], [BM10], [AL01]. Zone enu-
meration allows an adversary to learn the IP addresses of all
hosts in a zone (including routers and other devices), creating
a toehold from which it can launch more complex attacks.
While a number of standards (RFC 4470, RFC 5155) have tried
to fix the zone enumeration problem, a complete solution to
the problem has remained mysteriously elusive. In this paper,
we use cryptographic lower bounds to explain why previous
techniques based on hashing failed to solve the problem. Our
result strongly implies that achieving privacy guarantees in this
setting (while preserving the security property of DNSSEC)
necessitates the use of public key cryptographic operations
in the online phase of the protocol. Moreover, we provide a
new cryptographic construction that addresses the problem of

∗Boston University, Department of Computer Science. Email:
{golbe,dipapado,reyzin,sachinv}@cs.bu.edu.
†Weizmann Institute of Science, Department of Computer Science and

Applied Mathematics. Email:{moni.naor,asaf.ziv}@weizmann.
ac.il.

DNSSEC zone enumeration while remaining faithful to the
operational realities of DNSSEC.

A. DNSSEC.
For the purpose of understanding the zone enumeration

problem, we can partition the functionalities of DNSSEC into
two distinct parts. The first is to provide an authenticated
positive response to a DNS query; for example, from query:
“What is the IP address for www.example.com?” to answer:
“www.example.com is at 155.41.24.251”.

The second is to provide an authenticated denial of exis-
tence, when no response to the query is available. (Query:
“What is the IP address for aWa2j3.example.com?”
Answer: “aWa2j3.example.com is a non-existent do-
main”.) DNSSEC deals with these functionalities in different
ways.

For positive responses, the authoritative nameserver for the
zone (i.e., the nameserver that is authorized to answer DNS
queries for domains ending in example.com) keeps a finite
set R of signed resource records; each record contains a
mapping from one domain name to its IP address(es) and is
signed by the zone’s secret keys. Importantly, these signatures
need not be computed online in response to live DNS queries,
but instead are precomputed ahead of time and stored at the
nameserver. This has the twin advantages of (1) reducing the
computational load at the nameserver, and (2) eliminating the
need to trust the nameserver (since it need not store the signing
key). This second advantage is especially important because
most zones have more than one authoritative nameserver,
and some nameservers might even be operated by entirely
different organizations than the one that administers the zone1.
In what follows, we will use the term primary nameserver
(or simply primary) to describe nameservers that are trusted,
and secondary nameservers (or simply secondary) to describe
those that are not.

B. The DNSSEC Zone Enumeration Problem
The zone enumeration problem becomes an issue when

we consider DNSSEC negative responses. The trivial idea of
responding to every query for a non-existent domain with the
precomputed signed message “Non-existent domain” opens the
system up to replay attacks. The trivial idea of precomputing
signed responses of the form “ is a non-existent do-
main” also fails, since the number of possible queries that
deserves such a response is infinite, making precomputation
of signed responses infeasible. Instead, RFC4033 defined
NSEC, a precomputed denial-of-existence record technique,
as follows: A lexicographic ordering of the names present
in a zone is prepared, and every consecutive pair of names
is signed; each pair of names is an NSEC record. Then, to
prove the non-existence of a name (x.example.com), the
nameserver returns the precomputed NSEC record for the pair

1For example, the zone umich.edu has two authoritative name-
servers run by the University of Michigan (dns1.itd.umich.edu and
dns2.itd.umich.edu) and one run by the University of Wisconsin
(dns.cs.wisc.edu) [RS05].

2

of existent names lexicographically before and after the non-
existent name (w.example.com and z.example.com), as
well as its associated DNSSEC signatures. While this solution
elegantly eliminates the need to trust the nameserver, and
allows for precomputation, it unfortunately allows for trivial
zone enumeration attacks; namely, an adversary can use NSEC
records to enumerate all the domain names present in the zone.

Why is zone enumeration a problem? This question has
created some controversy, with many in the DNSSEC com-
munity initially arguing that it is actually not a problem (see
RFC 4033), before eventually arriving at consensus that it is a
problem from some zones (see RFC 5515). Zone enumeration
allows an adversary to learn the IP addresses of all hosts in
a zone (including routers and other devices); this information
can then be used to launch more complex attacks, some of
which are mentioned in RFC 5515:

Though the NSEC RR meets the requirements for
authenticated denial of existence, it introduces a side-
effect in that the contents of a zone can be enu-
merated. This property introduces undesired policy
issues. ... An enumerated zone can be used, for
example, as a source of probable e-mail addresses
for spam, or as a key for multiple WHOIS queries
to reveal registrant data that many registries may
have legal obligations to protect. Many registries
therefore prohibit the copying of their zone data;
however, the use of NSEC RRs renders these policies
unenforceable.

Indeed, some zones (e.g., .de, .uk) require protection against
zone enumeration in order to comply with European data
protection laws [San04], [Ait11, pg. 37].

Thus, in 2008, RFC 5155 suggested NSEC3, a precom-
puted denial of existence technique, designed to make zone
enumeration more difficult. With NSEC3, all domain names
present in a zone are first hashed, and then their hashes are
lexicographically ordered. Every consecutive pair of hashes is
an NSEC3 record, and is signed by the authority for the zone.
To prove the non-existence of name, the nameserver returns
the precomputed NSEC3 record (and the associated DNSSEC
signatures) for the pair of hashes lexicographically before and
after the hash of the non-existent name.2

Hashing the names (with a one-way function) makes trivial
enumeration of the zone much more difficult. However, the
savvy reader might have noticed that the NSEC3 design is
still vulnerable to zone enumeration using an offline dictionary
attack. Specifically, an adversary can issue several queries
for random non-existent names, obtain a number of NSEC3
records, and then use rainbow tables (or other dictionary
attacks for cracking hashes) to determine the names that are
present in the zone from the hashes in the NSEC3 records.
In fact, Bernstein’s nsec3walker tool [Ber11] does just that,
effectively checking up to 234 hash value guesses in one day,
using a standard laptop and existing cryptographic libraries.

2Following this, there was also an Internet Draft [GM12] (that has since
expired without becoming an RFC) proposing NSEC4. NSEC4 combines
NSEC and NSEC3, allowing zones to opt-out from hashed names to unhashed
names. Like NSEC3, NSEC4 is vulnerable to zone enumeration via offline
dictionary attacks.

To blunt the impact of dictionary attacks, the RFCs do
introduce a salt value (using the NSEC3PARAM record);
however, in contrast to password-hashing applications that
mitigate against dictionary attacks by using a unique salt
for each user, NSEC3 requires salt to be common to the
entire zone. Since changing the salt requires re-computing
the signatures for the entire zone, RFC 6781 recommends
updating the salt only when key-rollover takes place (a very
infrequent –monthly, or even yearly– event), which makes the
salt a fairly weak defense against dictionary attacks. Moreover,
once an adversary has collected a number of NSEC3 records
and the salt for the zone, it can use offline dictionary attacks
to learn the records present in the zone. Indeed, RFC 5155
acknowledges this: “The NSEC3 RRs are still susceptible to
dictionary attacks (i.e., the attacker retrieves all the NSEC3
RRs, then calculates the hashes of all likely domain names,
comparing against the hashes found in the NSEC3 RRs, and
thus enumerating the zone).”

C. Our Model
Our story thus begins here. Today, DNSSEC deployments

support NSEC and/or NSEC3 and remain vulnerable to zone
enumeration attacks. In this paper, we use cryptographic lower
bounds to explain why zone enumeration attacks could not be
addressed by previous designs, and propose a new solution,
called NSEC5, that protects against them.

Our first contribution is the following cryptographic model:
Model. We have a trustworthy source, called a primary
nameserver, which is trusted to determine the set R of names
(www.example.com) present in the zone and their mapping
to corresponding values (“155.41.24.251”). Secondary name-
servers receive information from the primary nameserver, and
respond to DNS queries for the zone, made by resolvers.
Our goal is to design a denial-of-existence mechanism that
achieves the following:
(1) Soundness. The primary nameserver is trusted to
determine the set R of names in the zone, and to provide
correct responses to DNS queries. However, the secondary
nameservers and other network adversaries are not trusted
to provide correct responses to DNS queries. The soundness
property ensures that bogus responses by secondaries or net-
work adversaries will be detected by the resolver. This is the
traditional DNSSEC security requirement of “data integrity
and ... origin authentication” described in RFC 3833.
(2) Privacy. Both primary and secondary nameservers are
trusted to keep the contents of R private. (If they don’t,
there is nothing we can do, since they already know R.)
However, resolvers are not. The privacy property must ensure
that the response to a query by a resolver must only reveal
information about the queried domain name, and no other
names. Our main definitional contribution is the formalization
of this requirement to avoid zone enumeration, as was laid out
in RFC 5155 and the quote above.
(3) Performance. We would like to limit the online compu-
tation that must be done by a nameserver in response to each
query. This is discussed in e.g., RFC 4470.

.de
.uk

3

The formal cryptographic model and security definitions are
in Section II. We define Primary-Secondary-Resolvers (PSR)
systems for proving membership and non-membership in a set.

D. Cryptographic Lower Bound
The DNSSEC standard (with NSEC or NSEC3) has re-

solvers send queries for names in the clear, and limits the
computation of secondary nameservers to a few cryptographic
hashes. We demonstrate in Section IV that if the resolvers
send queries in the clear, then satisfying both the soundness
and privacy goals implies that nameservers must necessarily
compute a public-key cryptographic signature for each negative
response. Moreover, even if the resolvers pre-process the query
(rather than send it in the clear), then resolver-to-secondary-
nameserver protocol is necessarily a secure interactive message
authentication protocol, for which the best known solution
is a cryptographic signature anyway. In Section IV-E we
discuss the question of whether our privacy requirements
are “too strong” and argue that any system that prevents
zone enumeration implies public-key authentication. Thus we
conclude that preventing zone enumeration requires substantial
(“public-key”) online computation, rather than just private-key
computation such as evaluating a cryptographic hash function.

E. NSEC5: A Denial-of-existence Mechanism
Armed with the knowledge that privacy associates an on-

line signature computation with every negative response, we
present a new solution that requires two online hash com-
putations and a single online RSA computation for each
authenticated denial of existence. Our solution, called NSEC5,
provably achieves soundness and privacy.

In designing NSEC5, our key observation is that we can
“separate” our two security goals (soundness and privacy)
using two separate cryptographic keys. To achieve soundness,
we follow the traditional approach used in DNSSEC with
NSEC and NSEC3, and allow only the primary nameserver
to know the primary secret key SK for the zone; this primary
secret key is used to ensure the soundness of the zone.
However, we now make the crucial observation that, while the
soundness definition does not allow us to trust the secondary
nameserver, our privacy definition does. Thus, we achieve
privacy by introducing a secondary key SKS , that we provide
to both the primary and secondary namesevers. The secondary
key is only used to prevent zone enumeration by resolvers, and
will have no impact on the soundness of the zone. The public
keys PK,PKS corresponding to SK and SKS will, naturally,
be provided to the resolver, using the standard mechanisms
used to transmit public keys in DNSSEC.

We emphasize that privacy makes sense only when the
secondary nameserver can keep some information secret (else,
R is no longer private). Thus, the addition of SKS to the sec-
ondary nameserver does not introduce any additional security
vulnerability: if it is leaked, soundness is not compromised.
Construction. Our NSEC5 construction is extremely similar
to NSEC3: all we need to do is replace the unkeyed hash used
in NSEC3 with a new “keyed hash” F that uses the secondary
keys PKS , SKS . Our solution is as follows.

For each record x that is present in the zone R, the primary
resolver computes

S(x) = RSA−1SKS
(h1(x)) F (x) = h2(S(x))

where h1, h2 are hash functions and RSA−1SKS
is the RSA

signature (or decryption), keyed with the secondary key SKS .
The resulting F values are lexicographically ordered, and each
pair is signed by the primary nameserver using its key SK
(just like in NSEC and NSEC3). The resulting pair of F values
is an NSEC5 record.

To prove the non-existence of name q queried by the
resolver, the secondary nameserver computes S(q) and F (q)
using SKS , and responds to the resolver with (1) the value
S(q) and (2) the signed NSEC5 record for the hashes that are
lexicographically before and after F (q).

The resolver can then validate the response by first using
PKS to (1) check that S(q) is a valid RSA signature on h1(q),
(2) confirm that the NSEC5 record is validly signed by PK,
and (3) check that h2(S(q)) is lexicographically between the
hashes in the NSEC5 record. In other words, S(q) maintains
soundness by acting as a “proof” that the value F (q) is the
correct “keyed hash” of q.
Security and Privacy. In Section III we formally describe the
NSEC5 scheme and prove that our construction satisfies both
soundness and privacy as defined in Section II. Privacy follows
because the resolver does not know the secondary key SKS .
This eliminates zone enumeration via offline dictionary attacks,
since the resolver cannot compute the “keyed hash value” F (q)
on its own; the only way it can learn F (q) is by asking online
queries to the nameserver (or by breaking RSA!). Meanwhile,
integrity follows because only the primary nameserver can sign
NSEC5 records; the resolver can use the secondary public key
PKS to verify that the secondary nameserver computed S(q)
correctly, and responded with the right NSEC5 record.
Performance. Our solution, NSEC5, allows resolvers to verify
using the same technologies they always used: hashing and
validation of RSA signatures. NSEC5 does, however, require
a single online RSA computation at the secondary nameserver,
making it more computationally heavy than NSEC and NSEC3
(and NSEC4). However, our lower bounds do prove this
extra computation is necessary to eliminate zone enumeration.
Additionally, only the zone administrators that require our
strong privacy guarantees need to deploy NSEC5; others that
don’t can just use NSEC or NSEC3.

Finally, we note that online signing for denial of existence
was already proposed in RFC 4470 (and further discussed in
RFC 4471). RFC 4470 suggested that every nameserver (even
the secondary) be given the primary key for the zone, and
used it to produce online signatures to responses of the form
“q is a non-existent domain”. While some dismissed the RFC
4470 solution because it compromised soundness, our solution
has the same computational complexity and requires no com-
promise of soundness. Indeed, online signing in DNSSEC is
already a very real possibility; for example, the powerDNS
nameserver supports online DNSSEC signing [Pow13, Sec.
4] and the same is true for Dan Kaminsky’s Phreebird DNS
proxy [Kam11]. We therefore believe it presents an attractive

4

alternative to NSEC3 for those zone operators that require
strong privacy against zone enumeration. Moreover, because
NSEC5 is structurally very similar to NSEC3, it can incorpo-
rate the other performance and policy optimizations developed
for DNSSEC, including NSEC3 opt-in or the space-saving
techniques offered by NSEC4 [GM12].

F. Organization & Contributions
The organization of this paper follows the summary above.

Section II presents our model and security definitions; we
use a traditional DNSSEC notion of soundness, and our main
definitional contribution is in our notion of privacy. Our next
contribution is our NSEC5 construction; we present NSEC5
in Section III and prove it satisfies soundness and privacy.
Our final contribution is a number of cryptographic lower
bounds, which explain why NSEC5 requires online signing
at the secondary nameserver in order achieve simultaneous
soundness and privacy, which we present in Section IV. Our
results are supported by the standard cryptographic definitions
(signatures, random oracles) in Appendix A.

G. Related work
There are several tools and primitives in the cryptographic

literature that are related to our work. The first is zero-
knowledge sets, introduced by Micali, Rabin and Kilian (ZKS
for short) and its generalization to zero-knowledge elementary
databases [MRK03]. The latter is a primitive where a prover
can commit to a database, and later open and prove the value
in the database to a verifier in a zero knowledge fashion.
One can use ZKS in our setting, where the resolver is the
ZKS verifier, the primary nameserver is the ZKS prover that
creates the commitment to the set, the secondary namesever
is the online ZKS prover that provides online proofs to the
verifier. We can’t use the existing ZKS solutions as is, however,
because even the best known constructions of ZKS [CHL+05]
are too inefficient to be practical for DNSSEC3. On the other
hand, the requirements in a ZKS are very stringent, in that one
does not trust even the primary resolver (i.e., the commitment
to the database). In the DNSSEC setting, where the primary
nameserver is trusted, this property is not necessary and by
working in this less stringent setting, we are able to obtain
more efficient constructions.

Data structures that come with soundness guarantees are also
relevant (see e.g. [BEG+94], [NN00], [TT10], [MHKS14]).
These data structures return an answer along with a proof
that the answer is sound; “soundness” means that the answer
is consistent with some external information. We also need
soundness in our setting, but we augment this with the addi-
tional requirement of privacy against zone enumeration.

II. MODEL AND SECURITY DEFINITIONS

We define the new primitive, Primary-Secondary-Resolver
Membership Proof system, or PSR for short, with the goal of

3 [CHL+05] requires the verifier to verify log |U | mercurial commitments,
where U is the universe of elements and each verification involves a “public-
key operation”.

getting denial of existence with zone enumeration prevention.
A PSR is an interactive proof system consisting of three
parties. The primary, sets up the system by committing to
a “privileged” set R ⊆ U (existent domain names in the
zone) where U is the universe of elements (domain names)
and a corresponding value v(x) ∈ V for every x ∈ R (e.g.,
IP address). It then publishes a public key for the system
PK, which should be known to both the secondaries and the
resolvers in the system (via the usual DNSSEC mechanisms).
The secondaries also get some parameters IS . We divide IS
into two parts; the first is DS standing for data structures,
allowing quick search and certifications, which we can tolerate
if it leaks to resolvers, as this is information that will naturally
leak during execution of the protocol. The second part is SS
for which it is critical that it remains secret, e.g., cryptographic
keys. If a resolver happens to learn SS it could enumerate
over the set R independently without the help of secondaries,
but if the resolver only learns DS it will not help him get
any additional power in figuring out the set R. After the
setup phase is complete, the secondaries and resolvers get their
keys and parameters and function as a prover and verifier of
statements of the sort “x ∈ R and v(x) = y” or “x /∈ R”.

Following the design of DNSSEC, we only consider two
round protocols: where a query is sent from the resolver to
the secondary and a response is returned. More interactive
protocols are possible, but we do not consider them here.
DNSSEC standard has resolvers sending queries in the clear,
thus we avoid the case where a resolver uses secret coins in
his queries, meaning the case where a resolver issues a query
for x ∈ U using some randomness sq which it stores and
later uses to verify the response it gets from the secondary
is correct. We can still consider randomized queries, but not
ones which use the randomness for the verification procedure
as well, i.e., public coins.

A. PSR Systems
The system consists of four algorithms:

The Setup algorithm is used by the primary to generate
the public key PK, which it publishes to all parties in the
protocol and the information IS = (DS, SS), delivered to
the secondaries. The resolvers use the Query algorithm to
generate queries for elements in the universe which they send
to a secondary, who replies to the queries using the Answer
algorithm. The resolver finally uses Verify to validate the
response from the secondary.

Definition II.1. Let U be a universe of elements and V a
set of possible values. A Primary-Secondary-Resolver system
is specified by four probabilistic polynomial-time algorithms
(Setup,Query,Answer, V erify):
Setup(R, v(·), 1k)

On input k the security parameter, a privileged set
R ⊆ U , a value function v : R→ V 4, this algorithm
outputs two strings: PK, a public key and IS =
(DS, SS) the parameters given to the secondaries.

4This function will be used to map domain names to their corresponding
IP addresses.

5

IS contains two parts; the secret information SS
and DS the data structure information. It outputs
(PK, IS).

Query(x, PK)
On input x ∈ U and the public key PK this algo-
rithm outputs a query q from which one can deduce
efficiently the element x. The query generation may
either be deterministic or ‘public-coins’ where the
algorithm is randomized but does not output any
secret information about the query.

Answer(q, IS , PK)
The algorithm gets as input a query q for some
element x ∈ U , the public key and parameters. If
x ∈ R then the algorithm outputs a bit b = 1 and a
proof π for x ∈ R and v(x), else it outputs b = 0
and a proof π for x /∈ R.

V erify(x, q, b, π, PK)
The algorithm gets as input x ∈ U , a query q for
this element x, a bit b, a proof π and the public
key PK. If b = 1 then it checks that the proof π
validates that x ∈ R and the value is v(x) and if
b = 0 it checks to validate that x /∈ R. If the proof
is correct it returns 1 and otherwise 0.

For simplicity, when we defined the system above we only
consider the case where the set R is static. It is determined
when the primary sets up the system and we cannot change it
afterwards. There are methods for handling it that borrow from
the CRL world (e.g., we could use the Naor-Nissim certificate
update and revocation scheme [NN00]) but we chose not to
concentrate on this aspect in this work.

We will require the above four algorithms to satisfy three
properties.

B. Functionality and Soundness

The requirement that the system be functional is called, as
is traditional in interactive proof systems, completeness. When
the different parties are honest and follow the protocol, then
the system should work properly; that is, resolvers will learn
whether names are in the set R or not. We do allow a negligible
probability of failure.

Definition II.2. Completeness: For all R ⊆ U and for all
v : R→ V and ∀x ∈ U ,

Pr


(PK, IS)

R← Setup(R, v(·), 1k);
(q)

R← Query(x, PK);

(b, π)
R← Answer(q, IS , PK) :

V erify(x, q, b, π, PK) = 1

 ≥ 1− µ(k)

For a negligible function µ(k).

As for security, or soundness, we want that even a malicious
secondary in the system would not be able to convince an
honest resolver of a false statement with more than a negligible
probability.

Definition II.3. Soundness: for all probabilistic polynomial
time adversaries A and for all x ∈ R we have

Pr

 (PK, IS)
R← Setup(R, v(·), 1k);

(q, π)
R← A(PK, IS) :

V erify(x, q, 0, π, PK)

 ≤ µ(k)
and for all x /∈ R we have

Pr

 (PK, IS)
R← Setup(R, v(·), 1k);

(q, π)
R← A(PK, IS) :

V erify(x, q, 1, π, PK)

 ≤ µ(k)
For a negligible function µ(k).

Even though we don’t require perfect completeness or
soundness, our NSEC5 system satisfies more stringent require-
ments; an adversary cannot find x violating either complete-
ness or soundness even after getting the public-key PK and
IS .

C. Privacy: Preventing Zone Enumeration
In our setting, privacy means preventing zone enumeration.

We want to make sure that resolvers do not learn too much
about the elements in the set R, apart from the responses
to their queries. We formulate this requirement with a strong
notion that we call f -zero-knowledge (f -zk for short), where
f(R) is some information about the set which we can tolerate
leaking to the resolvers. For example, our NSEC5 construction
has f(R) = |R| (the number of names in the set R). We
formulate f -zk by requiring a PSR system to have a simulator
with oracle access to the set R which receives f(R) and can
fool a resolver into believing it is communicating with a real
system. Later, in Section II-D we show that the f -zk notion
implies a more “intuitive” security definition.

The idea behind our f -zk notion is that a resolver learns
nothing from the responses it gets from the secondaries,
besides the response to his query and the information f(R),
which might leak during the protocol’s execution. We require
that the resolver cannot distinguish between: (1) a real system
which provides the original proofs, and (2) a simulator that
can only obtain the answer to each resolver’s query, but must
still be able to “forge” a satisfactory proof for that response.
The use of such a simulator allows us to deduce the resolver
has not learned much about R from the proofs; if he had, he
would be able to distinguish between an interaction with the
simulator and one with the real secondary (at least after he
gets R explicitly). The use of simulators in order to prove
that a protocol is zero knowledge is standard in cryptography
(see [Gol01] Chapter 4 for a more comprehensive treatment
of ZK and simulators).

More formally, we define a PSR Simulator. Let SIM be
a probabilistic polynomial time algorithm with limited oracle
access to R, meaning that SIM can ask on point x only when
the adversary explicitly queries on an element x. On its first
step SIM receives f(R) and outputs a fake public key PK∗, a
fake secret key SKSIM and the leaked informationf(R). On
the following steps SIM receives queries from the adversary

6

and needs to output a (simulated) proof of either x ∈ R plus
v(x) or x /∈ R; to do this, SIM is allowed to query the R-
oracle for the element x. The simulator’s output (public-key
and proofs) should be computationally indistinguishable from
the output generated by a real PSR system.

We divide this process into two phases. The first is an
interactive protocol where the adversary communicates with
the simulator or a PSR system. First the adversary gets the
public key, either from a PSR system setup algorithm or from
a simulator which gets f(R). Then the adversary starts issuing
queries qi (adaptively), based on the public key and previous
responses to queries it got. The simulator/PSR system responds
to the queries with the answers (bi, πi) which the adversary
can verify.

The second phase starts after the interactive protocol ends,
where a distinguisher tries to tell apart the two views generated
by the protocols. We say that the system is f -zk if for every
adversary there exists a simulator such that no distinguisher
who knows R can distinguish with more than a negligible
advantage between the two views containing the public key,
f(R), queries and responses which were generated by either
the system or the simulator.

The first step of the interactive protocol consists of the
generation of keys, either by a PSR system:

(PK, IS , f(R))
R← Setup(R, v(·), 1k)

or by the simulator that generates fake keys :

(PK∗, SKSIM , f(R))
R← SIMR(f(R), 1k)

the rest is the interactive protocol of queries and responses
described above, where the simulator uses the fake public key
PK∗ and the fake secret key SKSIM to answer queries and
the system uses the real keys (PK, IS).

Definition II.4. Let the leaked info f() be some function from
2U to some domain and let (Setup,Query,Answer, V erify)
be a PSR system. We say that it is f -zero knowledge (f -zk
for short) if it satisfies the following property for a negligible
function µ(k):

There exists a simulator SIM such that for every probabilis-
tic polynomial time algorithms Adv and distinguisher D a set
R ⊆ U and v : R→ V the distinguisher D cannot distinguish
between the following two views:

viewreal = {PK, f(R), q1, (b1, π1), q2, (b2, π2), ...}

and

viewSIM = {PK∗, f(R), q1, (b1, π∗1), q2, (b2, π∗2), ...}

with an advantage greater than µ(k), even for D that knows
R (the two views are generated by the protocols described
above).

Remark. Note that the requirement of the simulation is online:
there is no rewinding and the number of queries and nature
of the queries to the R-oracle are restricted by the calls the
resolver makes. This means our requirements for the simulator
are weak, in the sense that the simulator only has the oracle

access and f(R) to work with, but still manages to provide
indistinguishable proofs with overwhelming probability. The
more power the simulator has, the easier it is to construct a
valid simulator that can fool an adversary, making the f -zk
property easier to achieve, thus using this basic definition for
a simulator makes our ZK requirement stronger.

Also note that this concept of a simulator receiving some
f(R) may look similar to the definition of auxiliary input zero
knowledge (see [Gol01] Chapter 4), but they are different. In
the latter both the adversary and the simulator receive the same
auxiliary information and we wish that the adversary is still
unable to distinguish between the two views. In our case, the
construction itself leaks the information f(R) and we would
like to show that it doesn’t leak any additional information. The
auxiliary input property can be incorporated into this definition
as well in case we would like our resolvers to have some prior
information about the set R, but they would still not be able
to gain any additional information on R besides f(R) and the
prior knowledge they received.

Note that the adversary is given the value f(R) on its first
step. Also note that we choose to define f -zk for a 2-round
interactive PSR protocol. One can easily generalize the f -zk
property to include more rounds.

D. Zero-knowledge Implies Hardness of Finding an Additional
Element

We want to make sure that the zero-knowledge with respect
to the resolvers implies that they indeed cannot obtain informa-
tion about additional elements other than those that the resolver
has explicitly queried. Like the case of zone enumeration, we
wouldn’t like an adversary to be able to enumerate over the
zone without prior knowledge. Hence we consider an attack
where the adversarial resolver tries to determine which of two
a-priori known elements is in R, without querying for those
two elements. We prove that the f -zk for f(R) = |R| implies
this attack can succeed only with negligible advantage. We
call this selective membership security; it is defined by a game
where an adversary needs to guess correctly a bit with non-
negligible advantage in order to win.

Definition II.5. PSR security against selective membership.
A PSR protocol is said to be ε-secure against selective mem-
bership under an adaptive chosen message attack if every
probabilistic polynomial time algorithm A playing against a
challenger wins the following game with probability at most
1
2 + ε.

1) The adversary A starts by sending the challenger a set
S ⊆ U , two target elements x1, x2 /∈ S and a value
function v for the elements in S

⋃
{x0, x1}.

2) The challenger defines R = S
⋃
{x0} with probability 1

2
and R = S

⋃
{x1} otherwise. Next the challenger runs

algorithm Setup(R, v(·), 1k), sends the output PK to
the adversary A and keeps IS secret to himself.

3) Algorithm A mounts an adaptive chosen message attack
by sending queries to the elements y1, .., ym, where the
queries are qi = Query(yi, PK) and no yi ∈ {x0, x1}.
The challenger responds with proper answers to all the
queries: A1, .., Aq .

7

4) Finally A outputs one bit b, b = 0 if A believes that
x0 ∈ R and b = 1 if it believes x1 ∈ R.

We say that A won the game if it guessed the bit b correctly.

We show that a PSR that is f -zk for f(R) = |R| is also
secure against selective membership attacks for a negligible ε.

Theorem II.6. Suppose that we have an f -zk PSR system
(Setup,Query,Answer, V erify) for f(R) = |R| and µf
as the bound on the advantage of the distinguisher in f -zk,
then it is also ε-secure against selective membership under an
adaptive chosen message attack, where ε = 2 · µf

Proof: We will show that the two possible views the
adversary can witness in the security game, the one where
R = S

⋃
{x0} and the other where R = S

⋃
{x1}, are

computationally indistinguishable.
For any choice of (S, v : R → V, x1, x2) we define four

views. We will show that all four views are indistinguishable
from one another and that two of them correspond to the two
views of the adversary in the security game (either x0 ∈ R or
x1 ∈ R). Thus we can conclude that an adversary cannot find
the additional element xb ∈ R, if it can find it with a non-
negligible advantage then the adversary could also distinguish
between the two views.

For j ∈ {1, 2} denote the view of an adversary in the
security game when xj ∈ R as viewrealj (S, v(·), x0, x1) and
denote the view when we switch from a secondary to the
simulator as viewsimj (S, v(·), x0, x1).

First let us see that the views viewrealj (S, v(·), x0, x1) and
viewsimj (S, v(·), x0, x1) are indistinguishable for j ∈ {0, 1}.
According to the f -zk assumption for every choice of (R, v(·))
the view of any adversary communicating with the simulator
is indistinguishable from that of the same adversary communi-
cating with the real system, when both are given f(R) = |R|.
The adversary chooses S and knows that |R| = |S| + 1 and
the simulator and real system also know the size of R by
that same logic. So an adversary playing the security game
cannot distinguish between cases where it is communicating
with the simulator and ones where it communicates with the
real system with advantage greater than µf (k), according to
the definition of the f -zk property, which makes those views
indistinguishable.

Now we notice that the views viewsim0 (S, v(·), x0, x1) and
viewsim1 (S, v(·), x0, x1) are not only indistinguishable, but
identical. This is true as the simulator SIM doesn’t know
the set R, it knows just its cardinality and it has an oracle to
the set R which it uses whenever it is queried on some element
and is not allowed to query any other elements. Thus during
the key generation part both views are identically distributed
as in both cases SIM gets the same f(R) and cannot query
its oracle. Note that the adversary is not allowed to query
for x0, x1 because it is his target challenge, so the adversary
can issue the same set of queries to the simulator and get the
same answers to all of them. Thus both views are identically
distributed and cannot be distinguished.

Combining it all, we get that viewreal0 (S, v(·), x0, x1) and
viewreal1 (S, v(·), x0, x1) cannot be distinguished with proba-
bility greater than 2 ·µf (k). This means that any probabilistic

Srsa, RSA,RSA
−1 RSA algorithms

PKrsa, SKrsa RSA keys
Ssig, Sig, V er Signature scheme algorithms
PKsig, SKsig Signature scheme keys

h1 Random oracle from U to [N]
h2 Random oracle from [N] to {0, 1}n

F : U → {0, 1} The function h2(RSA−1SKrsa
(h1()))

S : U → [N] The function RSA−1SKrsa
(h1())

R = {x1, .., xr} Set of existent domain names
U Universe of domain names
V Universe of IP addresses

v : R→ V Function mapping domain names
to IP addresses

Fig. 1. Table of notation.

polynomial time adversary can win the selective security game
with only a negligible advantage of 2 · µf .

III. NSEC5 CONSTRUCTION AND PROOF

We show a construction of an efficient PSR system based on
RSA and a signature scheme and proved secure in the random
oracle model. Table 1 summarizes our notation.

The three algorithms (Srsa, RSA,RSA
−1) the setup, for-

ward (encrypting or verifying) and backward (decrypting
or signing) computation of the RSA trapdoor permutation
for modulo N (see Appendix C). The corresponding keys
PKrsa, SKrsa are the secondary keys of the scheme. Like-
wise, the three algorithms (Ssig, Sig, V er) are the setup, sig-
nature and verification algorithms of an existentially unforge-
able signature scheme (see Appendix B) and PKsig, SKsig

are the corresponding keys, which are the primary keys of the
scheme. We can consider the BLS signature scheme [BLS04]
as it has very short signatures which are proven existentially
secure and are efficient in the random oracle model (see Ap-
pendix B for the description of signature schemes). Functions
h1, h2 are modeled as random oracles (See Appendix A). For
h2, the value of n is chosen to prevent birthday attacks. Finally,
function F will in practice, look random for any observer not
knowing the secret RSA key, and function S will be used to
show that F (x) was computed correctly.

As explained in the introduction, we compute F over the en-
tire set R, sort the values lexicographically and sign every ad-
jacent pair of values (yj , yj+1) with signature Sign(yj , yj+1).
These {yj}rj=0 and {Sign(yj , yj+1)}rj=0 are given to the
secondary. In order to respond to negative queries x /∈ R,
the secondary computes F (x) and its proof S(x) and sends
S(x) together with the pair (yj , yj+1) and the signature
Sign(yj , yj+1) such that F (x) is between yj and yj+1. The
resolver can compute F (x) by applying h2 on S(x), thus
validating the response. Responses to positive queries are as
in DNSSEC: we prove x ∈ R by sending (x, v(x)) signed by
the primary.

The four algorithms for the PSR system are:
Setup: the setup algorithm Setup(R, v(·), 1k) gets the set
R and the values v associated with it as well as a security
parameter. It uses the Setup algorithm Srsa(1

k) to obtain

8

(PKrsa, SKrsa) for the RSA scheme and uses the setup
algorithm for the signature scheme Ssig(1k) in order to obtain
(PKsig, SKsig). Choose the two random oracles h1 and h2
as specified before where n is chosen to be large enough
such that |R|2n is negligible. The public key is defined to be
PK = (PKrsa, PKsig, h1, h2).

Now for every xj ∈ R calculate

yj = F (xj) = h2(RSA
−1
SKrsa

(h1(xj)))

For convenience of notation we assume wlog that the xj’s
are ordered lexicographically by the values of F over them,
thus y1, .., yr are lexicographically ordered and then we add
y0 = 0n and yr+1 = 1n. Now for each j ∈ {0, .., r} use the
signature scheme to create a signature:

Sign(yj , yj+1) = SigSKsig (yj , yj+1)

Use the same signature scheme to compute for every xj ∈
R:

Sign(xj , v(xj)) = SigSKsig
(xj , v(xj))

Define DS = ({Sign(yj , yj+1)}rj=0, {yj}rj=1) and the secret
information SS = (SKrsa, {Sign(xj , v(xj))}rj=1). The pa-
rameters given to the secondaries are IS = (DS,SS).
Query generation: algorithm Query(x, PK) is a simple as it
can be: output q = x as a query for element x ∈ U . Note that
the query doesn’t contain any secret or random information.
Answering a query: Answer(q, IS , PK) is performed by
first calculating (F (q), S(q)) = (y, πy) (recall that q = x). As
the values {yj}rj=1 are ordered lexicographically we check if
there exists an index j for which y = yj .

If we find an index j for which y = yj , then we know
x ∈ R and find the signature Sign(xj , v(xj)) 5 which opens to
(x, v(x)) and we return (′yes′, Sign(xj , v(xj)), (xj , v(xj))).

If we can’t find such a match that means that x /∈ R so
we find the index j for which yj < y < yj+1. We return
(′no′, (πy, Sign(yj , yj+1), (yj , yj+1))).
Verification of answer: V erify(x, q, b, π, PK): If b =′

yes′ then parse π as a signature coupled with its con-
tent (σ, x, v) and verify that it is valid by checking that
V erPKsig

(σ, (x, v)) = 1. If that is the case return 1, else return
0. If b =′ no′ then parse π as (πy, σ, y1, y2) and verify that
V erPKsig

(σ, (y1, y2)) = 1. If the signature is valid then check
that y1 < h2(πy) < y2 and that RSAPKrsa

(πy) = h1(x). If
this is the case return 1, else return 0.

Remark III.1. Note that if a resolver learns DS it only
knows the values of F over the set R, which it could also
learn by sending random queries to a secondary until he gets
all signatures {Sign(yj , yj+1)}rj=0. On the other hand if a
resolver learns SS it could exploit it to enumerate over R
by validating all the signatures {Sign(xj , v(xj))}rj=1, or use
SKrsa to perform a dictionary attack like the ones attributed
to NSEC3. Below is an illustration of IS .

5In order to find the correct signature we can either sort the signatures
{Sign(xj , v(xj))}rj=1 by their values F (xj) = yj and then know which
signature matches each yj or by adding to every signature the element xj

explicitly and have the appropriate lookup table.

Fig. 2. Illustration of IS .

A. Computational Requirements of NSEC5
The real computation cost of NSEC5 comes at the sec-

ondary, who needs to perform a single RSA signing compu-
tation plus two hash functions; however such “online signing”
was already proposed in RFC 4470. The resolver needs to
verify an RSA computation (forward) and verify a signature
plus hash computation; is very similar to work needed for
NSEC3, except that now two signatures must be verified
instead of one, and recall that RSA signature verification is
very fast. The setup algorithm by the primary requires r = |R|
computations of backward RSA and 2r + 1 signatures; again
this is not all that different than the requirements of NSEC3.

B. NSEC5 is a Good PSR
Theorem III.2. The four algorithms described above consti-
tute an f -zk PSR for the function f(R) = |R|.

Proof: We start by proving a few useful properties of the
function F . First we notice that for every x ∈ U there exists
exactly one pair (y, π) for which it holds that F (x) = y,
h1(x) = RSAPKrsa

(π) and h2(π) = y. This is true as h1, h2
and the RSA permutation are all deterministic algorithms and
RSA is also a permutation.

The second property is verifiable pseudorandomness:

Lemma III.3. For every x ∈ U the value F (x) is pseudoran-
dom over {0, 1}n in the following sense: no adversary who
gets x and can ask for F (xi) and S(xi) on any sequence of
points x1, x2 . . . not equal to x can distinguish F (x) from a
random value in {0, 1}n. 6

Proof: Assume to the contrary that there exists an ad-
versary A which gets x ∈ U and after the sequence of
queries described, manages to distinguish F (x) and a random
value with a non-negligible advantage. We show that using
A we can invert the RSA permutation with the same non-
negligible probability, violating the RSA hardness assumption
as in Appendix C. Assume wlog that for every xi 6= x that A
asks to evaluate h1(xi) it also asks to see (F (xi), S(xi)) and
that the upper bound on the number of queries is q. Given a
public key (N, e) and challenge z that we wish to invert, before
A’s first query we draw uniformly at random c1, .., cq ∈ [N]

6Note that this means that the function F () combined with S() constitutes a
VRF, as defined by Micali et al. [MRV99]. This is a very simple and efficient
implementation of the primitive (albeit, proved only in the random oracle
model).

9

(where [N] is the domain/range of the RSA permutation). We
compute zi = RSAPKrsa

(ci) = cei mod N . Now every time
A issues a new query xi (on an element that wasn’t queried
before) we set h1(xi) = zi and that determines that S(xi) = ci
and F (xi) = h2(ci). When h1 is queried on x we return z.
When h2 is queried we answer with a random and consistent
(with previous answers) manner. When A queries h2 on a point
p we check whether RSAPKrsa

(p) = z. If it is equal, we are
successful in the inversion.

The distribution A witnesses is identical to the real distri-
bution. There are two possible cases: If A didn’t query h2 on
S(x) = RSA−1SKrsa

(z), then it cannot distinguish between the
two random values with greater than 0 advantage. If A queried
h2 on S(x) = RSA−1SKrsa

(z) then we successfully managed
to invert the RSA permutation over z. Thus, A’s advantage in
distinguishing the two values is the probability of successfully
inverting.

The proof generalizes naturally from distinguishing the true
value of F on a single element from a random value to
distinguishing the true values of a whole set R ⊂ U from
a set of random values, (recall that the hardness assumption
on inverting any of a set of r values is as hard as a single
element C7). This helps us construct a simulator which can
draw at random values in the range of F to represent the
values of F on the set R, while keeping the two sets of values
indistinguishable from one another.

In order to show that NSEC5 constitutes a PSR system we
need to prove the following three properties (Definitions II.2,
II.3 and II.4):
Completeness. For every R ⊆ U , v : R → V and x ∈ U ,
when we run Setup(R, v(·), 1k) = (PK, IS) and then run
Query(x, PK) = q we need to show that

Pr[V erify(x, q, Answer(q, IS , PK), PK) = 1] = 1− µ(k)

where µ(k) is a negligible function.
If x ∈ R, then by the way we defined the Setup algorithm

there exists an index j ∈ [r] for which xj = x and we
generated

Sign(xj , v(xj)) = SigSKsig
(xj , v(xj))

so the Answer algorithm will find the signature
Sign(xj , v(xj)) and it will be validated correctly by
the verification algorithm with probability 1.

If x /∈ R, then we claim that with overwhelming probability
F (x) 6= yj for every j ∈ [r]. Otherwise, we could guess
F (x) with non-negligible probability without querying for
F (x) and this violates the pseudorandomness of F , proved in
Lemma III.3, as long as |R|/2n is negligible. Furthermore an
adversary could not even find an element x /∈ R to violate
the completeness property with non-negligible probability,
otherwise it will again contradict the lemma.
Soundness. First note that as we showed earlier, for every
x ∈ U there exists only one pair (y, π) for which it holds

7This is one place where the specific properties of RSA are used, rather
than a generic trapdoor permutation, where we would have to loose a factor
r in the advantage due to hybrid argument

that F (x) = y, h1(x) = RSAPKrsa
(π) and h2(π) = y.

Assume for contradiction that there exists some polynomial
time adversary A that using (PK, IS) can provide for some
x ∈ R a proof that x /∈ R with non-negligible probability.
This means that this adversary A can forge a signature with
non-negligible probability for a pair of fake values (y1, y2)
where for at least one of them it holds that yi 6= yj for every
j ∈ [r], as the original signatures {Sign(yj , yj+1)}rj=0 cannot
provide the false proof for (F (x), S(x)). According to the
security assumption of the signature scheme one cannot forge
signatures on any message not signed by the signer with non-
negligible probability.

In case A can provide a valid proof for some x /∈ R that
proves that x ∈ R with non-negligible probability, then it
means A can forge signatures for (x, v) with non-negligible
probability, again, violating the security property of the signa-
ture scheme.

Note that it holds that an adversary cannot even find an
element x ∈ U to violate the soundness property with a non-
negligible probability as this means it can forge a signature of
his choosing, violating the security property of the signature
scheme.
Privacy. In order to show that for f(R) = |R| the system
NSEC5 is f -zk we need to show a suitable simulator SIM,
where no probabilistic polynomial time adversary can distin-
guish an interaction with the real system and SIM.

On its first step of the computation SIMR(1k, 1|R|) runs
the RSA setup algorithm and obtains (PKRSA, SKRSA)
and also runs the setup algorithm of the signature scheme
and obtains (PKsig, SKsig). SIM then chooses the random
oracles h1, h2 as in the setup algorithm of the PSR. SIM
randomly selects |R| values out of F ’s range and sorts them
lexicographically, y1, ..., yr∈{0, 1}n and creates the signatures
{Sign(yj , yj+1) = SigSKsig

(yj , yj+1)} where we add the end
points y0 = 0n and yr+1 = 1n as the Setup algorithm does.

The simulator then outputs PK∗ = (PKrsa, PKsig, h1, h2)
and a fake simulator key

SK∗SIM = (SKrsa, SKsig, {Sign(yj , yj+1)}rj=0, {yj}rj=1),

which we can see is very similar to the original parameters IS
that the secondary usually gets but it is missing the signatures
{Sign(xj , v(xj))}rj=1 and has the secret key for the signature
scheme instead.

On its next rounds the simulator does the following: for each
query it receives qi, SIM uses his oracle access to the set R
to check if xi /∈ R or xi ∈ R and its value vi (remember
qi = xi). If xi ∈ R then SIM generates a new signature sxi

=
SigSKsig

(xi, vi) and returns (′yes′, sxi
, (xi, vi)). Because the

signer produces consistent signatures on the same query we
will always get the same signature on the same message, i.e.
sxi = Sign(xi, v(xi)). If xi /∈ R the simulator computes
(F (xi), S(xi)) = (yxi , πxi) and searches in SK∗SIM for a j
for which yj < yxi < yj+1. If we find such a j we return
(′no′, πxi , Sign(yj , yj+1), (yj , yj+1))). If we don’t find such
a j, i.e., a collision has occurred, we abort as we fail to produce
an indistinguishable view.

Now we need to show that the view of the adversary
communicating with the simulator is indistinguishable from

10

that of the adversary communicating with the real system.
The public key PK∗ is generated by the same algorithms
the real system uses. Proofs regarding x ∈ R are signatures
SigSKsig (x, v(x)), generated the same way the original proofs
are created in the system, the only difference is that they
are generated online instead of before hand during the setup
phase, but this yields the same distribution. The only difference
the adversary witnesses is that instead of real values of F
on points of R it gets random values. However, we argued
in Lemma III.3, that a polynomial time adversary cannot
distinguish between {F (xi)|xi ∈ R} and a collection of
|R| random values in {0, 1}n with more than a negligible
advantage. Thus, it cannot distinguish the simulation from a
real execution.

IV. CRYPTOGRAPHIC LOWER BOUNDS

The point of this section is to show that the secondary in
a PSR system must perform a somewhat non-trivial compu-
tational task (public key computation) rather then hashing on
each query. This is done by showing how to obtain public-key
authentication (PKA) and identification protocols from PSR
Systems where the complexity of the prover or authenticator
is similar to that of the secondary. Thus if we can construct
public key authentication and identification protocols using
PSR systems then the task of constructing such protocols
cannot be harder than that of constructing PSR systems. Those
protocols are not known to have any implementations which
are much more efficient than signature schemes, which is
why we can conclude that a non-trivial computational task
is required to construct PSR systems.

Public-key authentication can be seen as a relaxation of sig-
nature schemes where we give up the transferability property,
i.e., that the receiver of the signature can convince a third party
that the signature is valid rather than just convince himself.
In a public-key authentication system (see [DDN00] Section
3.5) the prover is the owner of the public-key and can engage
in an interactive protocol (rather than a single message as in
signatures) with the verifier and convince the latter that the
owner of the public-key is indeed approving the message.

In identification protocols there isn’t even a message; instead
the prover convinces the verifier that he is alive. For example
we could use a public-key identification protocol in key cards,
where each card opens the doors which that specific employee
is allowed to open. The door should not know the secret key of
the key card, just its public-key, so that if it is broken into the
damage would be limited. The card will be a prover and the
door a verifier for the identity of the card holder. Identification
protocols can be constructed from any zero-knowledge proof of
knowledge [FFS87] for a computationally hard problem, but in
practice no protocol where the efficiency of the prover is better
than that of the signer in a signature scheme is known. Public-
key authentication is generally harder than identification, since
the verifier can challenge the prover with a random message
and ask to authenticate it.

A. Public-key Authentication Security
We define the relevant selective and existential security

notions for public key authentication protocols.

Definition IV.1. Public key authentication security against
selective forgery. A public key authentication protocol
(Setup, Prove, V erify) is said to be ε-secure against selec-
tive forgery under an adaptive chosen message attack if every
polynomial time probabilistic algorithm A playing against a
challenger wins the game that will be described next with
probability at most ε.

1) The forger A starts by picking a target message M .
2) The challenger runs the setup algorithm for the PKA,

sends PK to the forger A and keeps SK secret.
3) Algorithm A mounts an adaptive chosen message attack

by sending messages to be authenticated by the chal-
lenger, M1, ..,Mm, where ∀i : Mi 6= M and for each
one they engage in an authentication session.

4) At some point of A’s choosing it attempts to authenti-
cate the message M to a verifier where A plays the role
of the prover. Note that the sessions of authentication
of the Mi’s may be running concurrently.

We say that A wins the game if the verifier accepts the
authentication on M .

Definition IV.2. Public key authentication security against
existential forgery. A Public key authentication protocol
(Setup, Prove, V erify) is said to be ε-secure against exis-
tential forgery under an adaptive chosen message attack if A
wins the game where it selects M only after the attack with
probability at most ε.

B. PKA from PSR
We show how we can use a PSR system

(PSR Setup,Q,A, V) which is selectively secure against
polynomial time adversaries (as in Definition II.5) and
construct a Public key authentication protocol

(PKA Setup, Prove, V erify)

which is selectively secure against polynomial time adver-
saries.
• PKA Setup(1k): Select uniformly at random a mes-

sage MR ∈ U , define R = {MR} and denote v(·) as the
function that returns 1 on MR and ⊥ otherwise. Run the
setup algorithm for the PSR; PSR Setup(R, v(·), 1k)
and obtain (PK, IS) which will be our public and secret
keys.

• Prove(Mi, IS , PK): The prover will act as the sec-
ondary in the PSR system proving that Mi 6∈ R.

• V erify(Mi, PK): The verifier acts as the resolver in
the PSR system and accepts if the resolver accepts the
proof of non-membership.

Remark IV.3. Note that the way we have defined the authen-
ticator does not satisfy perfect completeness (if the verifier
happens to choose MR we cannot authenticate that message).
We can get back perfect completeness by adding a bit to
each element in the universe indicating whether it is ‘real’ or
‘dummy’, where we authenticate only the real elements. The
set R should contain a single random dummy element and this
way we can authenticate all real elements.

11

Theorem IV.4. Suppose we have a PSR system
(PSR Setup,Q,A, V) that is ε-secure against selective
membership under an adaptive chosen message attack then the
derived Public key authentication protocol described above is
ε′-secure against selective forgery under an adaptive chosen
message attack, where ε′ = 4ε + µs and µs is the soundness
parameter of the PSR.

Proof: Suppose that there exists a polynomial time forger
B which manages to win the selective forgery security game
for the derived PKA game with non-negligible probability
ε′. We describe an adversary A that uses the forger B as
a subroutine to win the selective membership security game
against the PSR in polynomial time with a non-negligible
advantage ε = ε′

4 −
µs(k)

4 .
• The adversary A starts by obtaining the message M

which B selects to forge. A draws at random a message
M∗, sets the target set to be empty, S = φ, denotes v(·)
as the function that returns v(M) = v(M∗) = 1 and ⊥
otherwise and sends (S, v(·),M,M∗) to the challenger.

• The challenger defines R = {M} with probability 1
2

and R = {M∗} otherwise. Next the challenger runs
PSR Setup(R, v(·), 1k) and sends PK to A.

• After algorithm A receives the public key PK from the
challenger it emulates B by acting as an intermediary
between the challenger and B by relaying their authen-
tication messages to each other.

• Finally B plays the role of a prover and tries to forge
an authentication for M , where A plays the role of the
verifier. If the verifier A accepts the authentication, then
A returns 1 (which means A believes R = {M∗}), else
A chooses a bit uniformly at random and returns it.

If R = {M∗}, then B witnesses exactly the same view as
in a real execution: the PSR Setup algorithm is defined as in
the PKA protocol as well as the remaining parts. In this case
B wins his game with probability at least ε′, and A identifies
the success of the forgery attempt. So the probability A wins
in this case is at least ε′+ 1−ε′

2 , as either B succeeds in forging
the authentication (probability ε′) or A guesses the bit correctly
(probability 1−ε′

2). If R = {M}, then it is no longer true that
B sees the same view as in a real execution, however, due
to the PSR’s soundness property the probability that B can
generate a proof for a false statement (and M /∈ R is false in
that case) is at most µs(k) (which should be negligible). So
the probability A wins in this case is at least 1−µs(k)

2 . Since
these two cases are equally likely, this means that A wins the
game with probability at least

1

2
(ε′ +

1− ε′

2
) +

1

2
(
1− µs(k)

2
) =

1

2
+
ε′

4
− µs(k)

4

which is a non-negligible advantage in winning the security
game (ε = ε′

4 −
µs(k)

4), in contradiction to the security
assumption on the PSR system.

C. Existential Security
Next we prove that in the random oracle model using a PKA

which is selectively secure (Definition IV.1) we can construct

a PKA scheme which is existentially secure (Definition IV.2).
We do that because we want our lower bound to be as tight as
possible and as existential security is a stronger requirement
then selective security it reduce PSR systems to a harder
problem, which as we will see next we can get for free in
the random oracle model. To do that we simply use a random
oracle to hash the message we want to authenticate before
authenticating it and modify the algorithms appropriately.

Theorem IV.5. Suppose that we have a Public key authen-
tication protocol (Setup, Prove, V erify) which is ε′-secure
against selective forgery under an adaptive chosen message
attack then in the random oracle model the derived scheme
above is ε-secure against existential forgery under an adaptive
chosen message attack, where ε′ = ε/q(k) and q is some
polynomial in k.

Proof: Suppose that there is an adversary B which wins
the existential security game for public key authentication in
the random oracle model with non negligible probability ε.
We use this adversary B to win the selective security game,
contradicting our assumption.

Note that as we are in the random oracle model (see
Appendix A) we control the random oracle and every time B
wants to compute some h(M) it gets the value. As adversary
B runs in polynomial time, we know B can make at most a
polynomial number of queries to the random oracle, assume an
upper bound on that number is q(k). We describe adversary A
which uses adversary B in order to win the selective security
game:

• Our adversary A chooses uniformly at random a message
M from the message space and declares M as the
message it intends to forge. A also draws at random
j ∈ [q(k)].

• The challenger simply runs the setup algorithm for the
authentication protocol and sends A the public key PK.

• A starts by emulating B, by functioning as an interme-
diary between the challenger and B and relaying their
authentication messages to each other. When B queries
the random oracle h, answer with random values at
all steps except the jth one. At the jth step, when B
queries h for message m′, then set h(m′) to be M . If
at some point before the forgery attempt by B, it asks
to authenticate the message m′, A stops and declares
failure.

• Finally B tries to forge an authentication for some
message M∗, if h(M∗) = M then A uses this forged
authentication to try and authenticate M , else it fails.

We may assume that B accesses h on the message it tries
to forge (otherwise its probability of success is negligible).
Therefore with probability 1

q(k) adversary A sets the value of
the random oracle over the message B tries to forge; h(M∗),
to be the message M that A tries to forge as well. This means
that A wins the security game in the case that both B managed
to successfully forge an authentication for his target message
and the right j was picked, which happens with probability
ε′ = ε

q(k) .

12

D. On Signatures and Transferability

We have seen that PSR systems can be used to construct
both public key authentication schemes and identification
schemes. Our goal in this section is to point out that for many
PSR systems we can actually get a signature scheme. This
benefits us as signature schemes are obviously a much stronger
primitive than identification and authentication schemes as a
signature scheme implements both primitives naturally. Thus
we show a strong relation between PSR systems and signature
schemes, which are used in our NSEC5 protocol, thus proving
that signatures are essential to constructing PSR systems.

We divide PSR systems into two types by the way their
Query algorithms work:

Deterministic:
Doesn’t use any random coins. Our NSEC5 con-
struction has this property since Query(x, PK) =
q = x. Also as mentioned before, in DNSSEC
queries are sent in the clear which achieves higher
performance by avoiding precomputation of any
sort.

Randomized in the public coins model:
an algorithm which uses randomness, but doesn’t
generate any secret information. Given the answer,
a resolver doesn’t need any prior knowledge on the
query issued to validate the response, it is clear
whether it is accepted or not.

Note that in all cases, by definition, x can be deduced
efficiently from the query Query(x, PK).

We claim that, in the random oracle model, a PSR system
with either type of queries can be used to construct an exis-
tentially secure signature scheme. This is done using the Fiat
and Shamir [FS86] transformation which constructs signature
schemes from identification schemes. If we use the public
key authentication protocol which is constructed using a PSR
system in Section IV then we can get a selectively secure
public key authentication protocol using Theorem IV.4. In the
random oracle model we also proved that we can use this
protocol to make it existentially secure as in Theorem IV.5.

We now show that we can get a signature scheme from the
two different variants of PSR systems described above. If we
are in the deterministic case (the DNSSEC case as well) then
a user who wishes to validate the signature

Answer(Query(x, PK), IS , PK) = (b, π)

only needs the public key PK and to use the Query algorithm
to calculate Query(x, PK) = q and then the user can check
that V erify(x, q, b, π, PK) = 1 which validates the signature.
It is obviously transferable as there is no secret information in
generating the query as it is a deterministic algorithm. In the
public coins model we can simply do the following. Define
a random oracle h which may be part of the public-key. The
random bits for the algorithm Query(x, PK) will be h(x),
thus making this algorithm also deterministic and we get a
signature scheme again.

E. Discussion
We have shown that we can use a PSR system satisfying

the zero-knowledge requirement (Definition II.4) and hence the
selective membership requirement (Definition II.5) in order to
build signatures, PKA and identification schemes. We therefore
want to claim that we demonstrated that the work involved in
this task must be non-trivial, unlike the NSEC3 protocol which
only uses hashing but does not prevent zone enumeration. One
could protest and argue that our zero-knowledge requirement
or even the selective membership requirement are too strong
and it may be possible to have a more relaxed notion of privacy
that still prevents zone enumeration. We now argue that this
is not the case.

Suppose we modify the privacy notion and protect against an
adversary that produces an element it did not explicitly query
on (the essence of zone enumeration). A little more formally,
suppose that there is some distribution on the set R. We require
that for every probabilistic polynomial time adversary A there
exists a simulator with oracle access to the set R, such that if
A interacts with a PSR system as a resolver and outputs, at
the end of the interaction, an element he believes to be in the
set R which he has not explicitly queried (this is ‘success’),
there is a simulator that interacts with an oracle to the set
R, which is successful as well with similar probability, where
similar means that the difference is negligible. We can show
that under this requirement we get a notion related to selective
membership, where instead of two elements chosen by the
adversary, the two elements of the challenge are chosen at
random, under a similar reduction to Theorem II.6. We can also
show that the latter implies public-key identification, under a
similar reduction to Section IV-B. Therefore we claim that we
have demonstrated that preventing zone enumeration requires
non-trivial computation.

V. FURTHER WORK

In a companion paper we generalize the constructions of
this paper and show how to obtain PSR systems without
random oracles. We suggest a general construction based on
VRFs [MRV99] and in particular relatively efficient incarna-
tions of it [DY05], [HW10]. We also provide a construction
based on hierarchical identity based encryption and in par-
ticular the one by Boneh, Boyen and Goh [BBG05] which
does not reveal any information about the set R, even not its
cardinality. For both constructions the amount of work consists
of a few bilinear operations and logarithmic in |U | number of
multiplications.

We also plan to write an Internet Draft for NSEC5.

REFERENCES

[Ait11] Brian Aitken, Interconnect communication MC / 080:DNSSEC
Deployment Study, http://stakeholders.ofcom.org.uk/binaries/
internet/domain-name-security.pdf, 2011.

[AL01] Paul Albitz and Cricket Liu, Dns and bind, O’Reilly Media, Inc.,
2001.

[BBG05] Dan Boneh, Xavier Boyen, and Eu-Jin Goh, Hierarchical identity
based encryption with constant size ciphertext, EUROCRYPT,
2005, pp. 440–456.

http://stakeholders.ofcom.org.uk/binaries/internet/domain-name-security.pdf
http://stakeholders.ofcom.org.uk/binaries/internet/domain-name-security.pdf

13

[BEG+94] Manuel Blum, William S. Evans, Peter Gemmell, Sampath
Kannan, and Moni Naor, Checking the correctness of memories,
Algorithmica 12 (1994), no. 2/3, 225–244.

[Ber11] Daniel J. Bernstein, Nsec3 walker, http://dnscurve.org/
nsec3walker.html, 2011.

[BLS04] Dan Boneh, Ben Lynn, and Hovav Shacham, Short signatures
from the weil pairing, J. Cryptology 17 (2004), no. 4, 297–319.

[BM10] Jason Bau and John C. Mitchell, A security evaluation of dnssec
with nsec3, NDSS, The Internet Society, 2010.

[BR93] Mihir Bellare and Phillip Rogaway, Random oracles are practi-
cal: A paradigm for designing efficient protocols, ACM Confer-
ence on Computer and Communications Security, ACM, 1993,
pp. 62–73.

[BR94] , Optimal asymmetric encryption, EUROCRYPT, Lecture
Notes in Computer Science, vol. 950, Springer, 1994, pp. 92–
111.

[BR96] , The exact security of digital signatures - how to sign
with rsa and rabin, EUROCRYPT, Lecture Notes in Computer
Science, vol. 1070, Springer, 1996, pp. 399–416.

[CGH04] Ran Canetti, Oded Goldreich, and Shai Halevi, The random
oracle methodology, revisited, J. ACM 51 (2004), no. 4, 557–
594.

[CHL+05] Melissa Chase, Alexander Healy, Anna Lysyanskaya, Tal
Malkin, and Leonid Reyzin, Mercurial commitments with appli-
cations to zero-knowledge sets, EUROCRYPT, 2005, pp. 422–
439.

[Cor00] Jean-Sébastien Coron, On the exact security of full domain
hash, CRYPTO, Lecture Notes in Computer Science, vol. 1880,
Springer, 2000, pp. 229–235.

[DDN00] Danny Dolev, Cynthia Dwork, and Moni Naor, Nonmalleable
cryptography, SIAM J. Comput. 30 (2000), no. 2, 391–437.

[DY05] Yevgeniy Dodis and Aleksandr Yampolskiy, A verifiable random
function with short proofs and keys, Public Key Cryptography,
Lecture Notes in Computer Science, vol. 3386, Springer, 2005,
pp. 416–431.

[FFS87] Uriel Feige, Amos Fiat, and Adi Shamir, Zero knowledge proofs
of identity, STOC, ACM, 1987, pp. 210–217.

[FS86] Amos Fiat and Adi Shamir, How to prove yourself: Practical
solutions to identification and signature problems, CRYPTO,
Lecture Notes in Computer Science, vol. 263, Springer, 1986,
pp. 186–194.

[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micali, How to
construct random functions, J. ACM 33 (1986), no. 4, 792–807.

[GM12] R. Gieben and W. Mekking, DNS Security (DNSSEC) Au-
thenticated Denial of Existence, IETF DNSEXT Internet Draft
http://tools.ietf.org/html/draft-gieben-nsec4-00, January 2012.

[Gol01] Oded Goldreich, The foundations of cryptography - volume 1,
basic techniques, Cambridge University Press, 2001.

[Gol04] , The foundations of cryptography - volume 2, basic
applications, Cambridge University Press, 2004.

[HW10] Susan Hohenberger and Brent Waters, Constructing verifiable
random functions with large input spaces, EUROCRYPT, Lec-
ture Notes in Computer Science, vol. 6110, Springer, 2010,
pp. 656–672.

[Kam11] Dan Kaminsky, Phreebird, http://dankaminsky.com/phreebird/,
2011.

[MHKS14] Andrew Miller, Michael Hicks, Jonathan Katz, and Elaine Shi,
Authenticated data structures, generically, POPL, ACM, 2014,
pp. 411–424.

[MRK03] Silvio Micali, Michael O. Rabin, and Joe Kilian, Zero-knowledge
sets, FOCS, IEEE Computer Society, 2003, pp. 80–91.

[MRV99] Silvio Micali, Michael O. Rabin, and Salil P. Vadhan, Verifi-
able random functions, FOCS, IEEE Computer Society, 1999,
pp. 120–130.

[Nie02] Jesper Buus Nielsen, Separating random oracle proofs from
complexity theoretic proofs: The non-committing encryption
case, CRYPTO, Lecture Notes in Computer Science, vol. 2442,
Springer, 2002, pp. 111–126.

[NN00] Moni Naor and Kobbi Nissim, Certificate revocation and certifi-
cate update, IEEE Journal on Selected Areas in Communications
18 (2000), no. 4, 561–570.

[Pow13] PowerDNS, Powerdns manual, December 2013.
[RS05] Venugopalan Ramasubramanian and Emin Gün Sirer, Perils of

transitive trust in the domain name system, Proceedings of
the 5th ACM SIGCOMM conference on Internet Measurement,
USENIX Association, 2005, pp. 35–35.

[San04] Marcos Sanz, Dnssec and the zone enumeration, Eu-
ropean Internet Forum: http://www.denic.de/fileadmin/public/
events/DNSSEC testbed/zone-enumeration.pdf, October 2004.

[Sho01] Victor Shoup, OAEP Reconsidered, CRYPTO, Lecture Notes in
Computer Science, vol. 2139, Springer, 2001, pp. 239–259.

[TT10] Roberto Tamassia and Nikos Triandopoulos, Certification and
authentication of data structures, AMW, CEUR Workshop Pro-
ceedings, vol. 619, CEUR-WS.org, 2010.

APPENDIX

A. The Random Oracle model
As our construction is analyzed in the random oracle model

we need to rigorously define this model. The random oracle
model has been used quite extensively to analyze cryptographic
protocols [BR93], [BR94], [BR96], [Cor00], [Sho01]. We
define the model as in Canetti, Goldreich and Halevi [CGH04].
In a scheme set in the Random Oracle Model, all parties
including adversaries interact with each other like they would
at the standard model, but they can also make oracle queries.
According to the security parameter k and a length function
`out(·), an oracle O is a function chosen uniformly at random
out of all possible functions mapping {0, 1}∗ to {0, 1}`out(k).
Every party has access to this oracle. Security is defined as
usual, meaning that a system is still considered secure when its
adversary has a negligible probability of success or a negligible
advantage, where the probability is also taken over the choices
of the random oracle. Note that in the proof of security the
random oracles can be “programmed”, meaning that certain
values of the random oracle can be set either before hand or
on the fly to be specific values (chosen uniformly at random)
by a simulator (see Nielsen [Nie02]). Values can be set only
the first time someone wishes to know O(x) as the oracle must
remain consistent.

B. Signature schemes
We use signature schemes in our construction, for that end

we define signature schemes and their properties as we need
them for our constructions. We define public key signature
schemes as in Goldreich [Gol04].

Definition A.1. A signature scheme is defined by three (poly-
nomial time) algorithms (G,S, V): The key generator G gets
the security parameter k and outputs two keys, a signing
key sk and a verification key vk, G(1k) = (sk, vk). The
signing algorithm S takes the secret key sk and a message
M ∈ {0, 1}` and produces a signature. The verification
algorithm V gets vk and a presumed signature to a message

http://dnscurve.org/nsec3walker.html
http://dnscurve.org/nsec3walker.html
http://tools.ietf.org/html/draft-gieben-nsec4-00
http://dankaminsky.com/phreebird/
http://www.denic.de/fileadmin/public/events/DNSSEC_testbed/zone-enumeration.pdf
http://www.denic.de/fileadmin/public/events/DNSSEC_testbed/zone-enumeration.pdf

14

and verifies it, i.e., outputs ‘accept’ (’1’) or ‘reject’ (’0’). We
require perfect completeness: For every pair of keys (sk, vk)
generated by G(1k) and for every message M ∈ {0, 1}`=p(k)
(every message of length at most polynomial in the security
parameter) it holds that

Pr[Vvk(Ssk(M),M) = 1] = 1

We will assume that the signature scheme is deterministic
in the sense that for every message m there is a single signa-
ture σ that the signing algorithm produces (even though the
verification algorithm may accept many different signatures).
This is true wlog because we can always add to the signing
key sk a description of a pseudorandom function to provide
the randomness needed to sign m (see [GGM86]).

The type of security we require from our signature scheme
is “existential unforgeability against chosen message attacks”,
which means that even an adversary who can gain access to a
polynomial number of signatures to messages of his choosing
will still not be able to generate a signature for any message
the adversary did not explicitly request a signature for.

Definition A.2. A signature scheme is existentially secure
against chosen message attacks if every probabilistic polyno-
mial time adversary A wins the following security game with
negligible probability. The game is modeled as a communica-
tion game between the adversary and a challenger C.
• The challenger C runs the setup algorithm S(1k) and

obtains (sk, vk), sends vk to the adversary and keeps
sk secret to himself.

• The adversary A issues an adaptively chosen sequence
of messages m1, ..,mq to the challenger and gets in
return a signature on each of those messages s1, .., sq
where si = Ssk(mi). By adaptively chosen we mean that
the adversary chooses mi+1 only after seeing signature
si.

• The adversary chooses a message M together with a
forged signature s and sends them to the challenger;
The only restriction is that M 6= mi for every i.

The adversary wins the game when Vvk(s,M) = 1, i.e., the
forged signature is accepted as valid.

C. RSA and Trapdoor Permutations
Our construction needs a trapdoor permutation and we use

the famed RSA function for that. An RSA scheme has three
algorithms (G,RSA,RSA−1). The key generator G gets the
security parameter k and outputs two keys, a public key
PK (used for the forward direction: encryption and verifying
signatures) and a secret or private key SK (used for the
backward direction: decryption and signing). The algorithm
G chooses an exponent e (for efficiency we could select e to
be small, say 3), two large prime numbers P and Q of length
roughly k such that e is relatively prime to P −1 and to Q−1
and computes N = P · Q. It then calculates d such that for
L = lcm(P − 1, Q − 1) it holds that d · e ≡ 1 mod L. It
then sets PK = (N, e) and SK = (N, d). The RSA forward
algorithm takes a value m ∈ [N] and the public key and
computes RSAPKrsa(m) ≡ me mod N ≡ σ mod N . The

RSA backword algorithm takes a value σ ∈ [N] and the secret
key and computes RSA−1SKrsa

(σ) ≡ σd mod N ≡ m mod N .
Here are a few known properties/assumptions of this en-

cryption scheme which we will find useful.
RSA is a permutation. Every value x ∈ [N] is mapped by
the encryption algorithm to some unique y ∈ [N] and the
decryption algorithm maps y back to x.
The RSA hardness assumption wrt to exponent e and security
parameter k. The assumption states that it is hard to compute
the RSA inverse of a random value: for any polynomial time
adversary A, for exponent e, random primes P,Q of length k
where e is relatively prime to P −1 and Q−1 and N = P ·Q,
for a random y ∈ [N], it holds that

Pr[A(y,N, e) = x and xe ≡ y mod N]

is negligible in the security parameter.
Note that succeeding in finding the RSA inverse of any

element of a set of r random challenges is just as hard. The
reason is that given a single random z, by selecting random
wi ∈ [N] and generating zi = z · wei mod N we get a set of
r numbers so that from the RSA inverse of any of them it is
possible to get RSA−1(z).
RSA is efficient. We can use low exponent RSA encryption
in our construction in order to increase efficiency. If we
pick e to be small then the forward algorithm will work
fast, as it will need to make a smaller number of modular
multiplications. The inversion algorithm takes the same amount
of time regardless of the size of e.

	Introduction
	DNSSEC.
	The DNSSEC Zone Enumeration Problem
	Our Model
	Cryptographic Lower Bound
	NSEC5: A Denial-of-existence Mechanism
	Organization & Contributions
	Related work

	Model and Security Definitions
	PSR Systems
	Functionality and Soundness
	Privacy: Preventing Zone Enumeration
	Zero-knowledge Implies Hardness of Finding an Additional Element

	NSEC5 Construction and Proof
	Computational Requirements of NSEC5
	NSEC5 is a Good PSR

	Cryptographic Lower Bounds
	Public-key Authentication Security
	PKA from PSR
	Existential Security
	On Signatures and Transferability
	Discussion

	Further Work
	References
	Appendix
	The Random Oracle model
	Signature schemes
	RSA and Trapdoor Permutations

