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Abstract—We use cryptographic techniques to study zone enu-
meration in DNSSEC. DNSSEC is designed to prevent network
attackers from tampering with domain name system (DNS) mes-
sages. The cryptographic machinery used in DNSSEC, however,
also creates a new vulnerability, zone enumeration, enabling an
adversary to use a small number of online DNSSEC queries
combined with offline dictionary attacks to learn which domain
names are present or absent in a DNS zone.

We prove that the current DNSSEC standard, with NSEC
and NSEC3 records, inherently suffers from zone enumeration:
specifically, we show that security against network attackers and
privacy against zone enumeration cannot be satisfied simulta-
neously unless the DNSSEC server performs online public-key
cryptographic operations.

We then propose a new cryptographic construction that solves
the problem of DNSSEC zone enumeration while remaining faith-
ful to the operational realities of DNSSEC. NSEC5 can be thought
of as a variant of NSEC3, in which the unkeyed hash function is
replaced with a deterministic RSA-based keyed hashing scheme.
With NSEC5, a zone remains protected against network attackers
and compromised nameservers even if the secret NSEC5-hashing
key is compromised; leaking the NSEC5-hashing only harms
privacy against zone enumeration, by effectively downgrading
the security of NSEC5 back to that of NSEC3.

I. INTRODUCTION

DNSSEC was introduced in the late 1990s to protect the
Domain Name System (DNS) from network attacks. With
DNSSEC, the response to a DNS query is authenticated with a
digital signature; in this way, the resolver that issues the DNS
query (“What is the IP address for www.example.com?”)
can be certain that the response (“155.41.24.251”) was sent by
an authoritative nameserver, rather than an arbitrary network
attacker. The road to DNSSEC deployment has been rocky, and
a variety of technical issues have forced the Internet commu-
nity to rewrite the DNSSEC standard multiple times. One of
the most interesting of these issues is the problem of zone enu-
meration [Ber11], [BM10], [AL01]. Zone enumeration allows
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an adversary to learn the IP addresses of all hosts in a zone
(including routers and other devices), creating a toehold from
which it can launch more complex attacks. While a number of
standards (RFC 4470 [WI06], RFC 5155 [LSAB08]) have tried
to fix the zone enumeration problem, a complete solution to
the problem has remained mysteriously elusive. In this paper,
we use cryptographic lower bounds to explain why previous
techniques based on hashing failed to solve the problem.
Our result shows that achieving privacy guarantees in this
setting (while preserving the security property of DNSSEC)
necessitates the use of public-key cryptographic operations
in the online phase of the protocol. Moreover, we provide a
new cryptographic construction that addresses the problem of
DNSSEC zone enumeration while remaining faithful to the
operational realities of DNSSEC.

A. DNSSEC.

For the purpose of understanding the zone enumeration
problem, we can partition the functionalities of DNSSEC into
two distinct parts. The first is to provide an authenticated
positive response to a DNS query. (For example, query:
“What is the IP address for www.example.com?”; answer:
“www.example.com is at 155.41.24.251.”)

The second is to provide an authenticated denial
of existence, when no response to the query is
available. (For example, query: “What is the IP
address for aWa2j3.example.com?”; answer:
“aWa2j3.example.com is a non-existent domain.”)
DNSSEC deals with these functionalities in different ways.

For positive responses, the authoritative nameserver for the
zone (i.e., the nameserver that is authorized to answer DNS
queries for domains ending in example.com) keeps a finite
set R of signed resource records; each record contains a
mapping from one domain name to its IP address(es) and is
signed by the zone’s secret keys. Importantly, these signatures
need not be computed online in response to live DNS queries,
but instead are precomputed ahead of time and stored at the
nameserver. This has the twin advantages of (1) reducing the
computational load at the nameserver, and (2) eliminating the
need to trust the nameserver (since it need not store the signing
key). This second advantage is especially important because
most zones have more than one authoritative nameserver,
and some nameservers might even be operated by entirely
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different organizations than the one that administers the zone1.
In what follows, we will use the term primary nameserver
(or simply primary) to describe nameservers that are trusted,
and secondary nameservers (or simply secondary) to describe
those that are not.

B. The DNSSEC Zone Enumeration Problem
The zone enumeration problem becomes an issue when

we consider DNSSEC negative responses. The trivial idea
of responding to every query for a non-existent domain
with the precomputed signed message “Non-existent domain”
opens the system up to replay attacks. Another trivial idea
of precomputing signed responses of the form “ is
a non-existent domain” also fails, since the number of pos-
sible queries that deserve such a response is infinite, mak-
ing precomputation of signed responses infeasible. Instead,
RFC4034 [AAL+05c] provided a solution for precomputed
denial-of-existence, by defining the NSEC record as follows:
a lexicographic ordering of the names present in a zone is
prepared, and every consecutive pair of names is signed;
each pair of names is an NSEC record. Then, to prove the
non-existence of a name (x.example.com), the nameserver
returns the precomputed NSEC record for the pair of existent
names that are lexicographically before and after the non-
existent name (w.example.com and z.example.com), as
well as its associated DNSSEC signatures.2 While this solution
elegantly eliminates the need to trust the nameserver and
allows for precomputation, it unfortunately allows for trivial
zone enumeration attacks; namely, an adversary can use NSEC
records to enumerate all the domain names present in the zone.

Why is zone enumeration a problem? This question has cre-
ated some controversy, with many in the DNSSEC community
initially arguing that it is actually not a problem (e.g., RFC
4033 [AAL+05a]), before eventually arriving at consensus that
it is a problem for some zones (RFC 5155 [LSAB08]). Zone
enumeration allows an adversary to learn the IP addresses of
all hosts in a zone (including routers and other devices); this
information can then be used to launch more complex attacks,
some of which are mentioned in RFC 5155:

Though the NSEC RR meets the requirements for
authenticated denial of existence, it introduces a side-
effect in that the contents of a zone can be enu-
merated. This property introduces undesired policy
issues. ... An enumerated zone can be used, for
example, as a source of probable e-mail addresses
for spam, or as a key for multiple WHOIS queries
to reveal registrant data that many registries may
have legal obligations to protect. Many registries
therefore prohibit the copying of their zone data;
however, the use of NSEC RRs renders these policies
unenforceable.

1For example, the zone umich.edu has two authoritative name-
servers run by the University of Michigan (dns1.itd.umich.edu and
dns2.itd.umich.edu) and one run by the University of Wisconsin
(dns.cs.wisc.edu) [RS05].

2For simplicity of exposition, we ignore the issues of wildcard records and
enclosers in our descriptions of NSEC and NSEC3; see RFC 7129 [GM14].

Indeed, some zones (e.g., .de, .uk) require protection against
zone enumeration in order to comply with European data
protection laws [San04], [Ait11, pg. 37].

Thus, in 2008, RFC 5155 [LSAB08] suggested NSEC3,
a precomputed denial of existence technique, designed to
make zone enumeration more difficult. With NSEC3, first each
domain name present in a zone is cryptographically hashed,
and then all the hash values are lexicographically ordered.
Every consecutive pair of hashes is an NSEC3 record, and
is signed by the authority for the zone. To prove the non-
existence of a name, the nameserver returns the precomputed
NSEC3 record (and the associated DNSSEC signatures) for
the pair of hashes lexicographically before and after the hash
of the non-existent name.3

Hashing the names makes trivial enumeration of the zone
much more difficult, but the design nevertheless remains
vulnerable to zone enumeration using an offline dictionary
attack. Specifically, an adversary can issue several queries
for random non-existent names, obtain a number of NSEC3
records, and then use rainbow tables (or other dictionary
attacks for cracking hashes) to determine the names that are
present in the zone from the hashes in the NSEC3 records.
Indeed, Bernstein’s nsec3walker tool [Ber11] does just that,
effectively checking up to 234 hash value guesses in one day,
using a standard laptop and existing cryptographic libraries,
and recent work [WSBW14] used a GPU to reverse 64% of the
NSEC3 hashes in the .com zone in 4.5 days. Indeed, RFC 5155
(Sec. 12.1.1) acknowledges these zone enumeration attacks.

To blunt the impact of dictionary attacks, the RFCs do
introduce a salt value (using the NSEC3PARAM record); how-
ever, in contrast to password-hashing applications that mitigate
against dictionary attacks by using a unique salt for each user,
RFC 5155 requires that “there MUST be at least one complete
set of NSEC3 [records] for the zone using the same salt value.”
This is necessary to ensure that every possible query for a
non-existent name properly maps to an NSEC3 record; if a
different salt is used for each NSEC3 record, a query for a non-
existent name might not map to any NSEC3 record. Moreover,
since changing the salt requires re-computing the signatures for
the entire zone, RFC 6781 [KMG12] recommends updating
the salt only when key-rollover takes place (an infrequent—
monthly, or even yearly— event), which makes the salt a fairly
weak defense against dictionary attacks. Moreover, once an
adversary has collected a number of NSEC3 records and the
salt for the zone, it can use offline dictionary attacks to learn
the records present in the zone, even after the salt changed.

C. Our Model

Our story thus begins here. Today, DNSSEC deployments
support NSEC and/or NSEC3 and remain vulnerable to zone
enumeration attacks. In this paper, we use cryptographic lower
bounds to explain why zone enumeration attacks could not be

3There was also an Internet Draft [GM12] (that expired without becoming
an RFC) proposing NSEC4. NSEC4 combines NSEC and NSEC3, allowing
zones to opt-out from hashed names to unhashed names. Like NSEC3, NSEC4
is vulnerable to zone enumeration via offline dictionary attacks.
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addressed by previous designs, and propose a new solution,
called NSEC5, that protects against them.

Our first contribution is the following cryptographic model,
which makes precise the desired notion of privacy:
Model. We have a trustworthy source, called a primary
nameserver, which is trusted to determine the set R of names
(www.example.com) present in the zone and their mapping
to corresponding values (“155.41.24.251”). Secondary name-
servers receive information from the primary nameserver, and
respond to DNS queries for the zone, made by resolvers.
Our goal is to design a denial-of-existence mechanism that
achieves the following:
(1) Soundness. The primary nameserver is trusted to
determine the set R of names in the zone, and to provide
correct responses to DNS queries. However, the secondary
nameservers and other network adversaries are not trusted
to provide correct responses to DNS queries. The soundness
property ensures that bogus responses by secondaries or net-
work adversaries will be detected by the resolver. This is the
traditional DNSSEC security requirement of “data integrity
and ... origin authentication” described in RFC 3833 [AA04].
(2) Privacy. Both primary and secondary nameservers are
trusted to keep the contents of R private. (If they don’t,
there is nothing we can do, since they already know R.)
However, resolvers are not. The privacy property must ensure
that the response to a query by a resolver must only reveal
information about the queried domain name, and no other
names. Our main definitional contribution is the formalization
of this requirement to avoid zone enumeration, raised, e.g., in
RFC 5155 [LSAB08]
(3) Performance. We would like to limit the online compu-
tation that must be done by a nameserver in response to each
query. This is discussed in e.g., RFC 4470 [WI06].
The formal cryptographic model and security definitions are
in Section II. We call a system satisfying these definitions a
Primary-Secondary-Resolver (PSR) system.

D. Cryptographic Lower Bound
We demonstrate in Section IV that if the resolvers send

queries in the clear (as they currently do in DNSSEC), then
satisfying both the soundness and privacy goals implies that
nameservers must necessarily compute a public-key crypto-
graphic signature for each negative response. This explains
why the approaches taken by NSEC and NSEC3, which limit
the nameserver computation to cryptographic hashes, cannot
prevent zone enumeration.

Moreover, we show that this problem cannot be solved on
the resolver’s end of the protocol: we show that even if the
resolvers pre-process the query, then resolver-to-secondary-
nameserver protocol is necessarily a secure interactive message
authentication protocol, for which the best known solution is
a cryptographic signature anyway. In Section IV-C we discuss
the question of whether our privacy requirements are “too
strong” and argue that any meaningful relaxation still implies
public-key authentication. Thus we conclude that preventing
zone enumeration requires substantial (“public-key”) online

computation, rather than just private-key computation such as
evaluating a cryptographic hash function (as in NSEC3).

E. NSEC5: A Denial-of-existence Mechanism
Armed with the knowledge that privacy necessitates an

online signature computation for every negative response,
we present a new solution that requires two online hash
computations and a single online RSA computation for each
authenticated denial of existence. Our solution, called NSEC5,
provably achieves soundness and privacy.

In designing NSEC5, our key observation is that we can
“separate” our two security goals (soundness and privacy)
using two separate cryptographic keys. To achieve soundness,
we follow the traditional approach used in DNSSEC with
NSEC and NSEC3, and allow only the primary nameserver
to know the primary secret key SKP for the zone; this
primary secret key is used to ensure the soundness of the
zone. However, we now make the crucial observation that,
while the soundness definition does not allow us to trust the
secondary nameserver, our privacy definition does (because if
the secondary nameserver is untrusted, then privacy is lost
anyway, since it knows the entire zone). Thus, we achieve
privacy by introducing a secondary key SKS , that we provide
to both the primary and secondary namesevers. The secondary
key is only used to prevent zone enumeration by resolvers,
and will have no impact on the soundness of the zone. The
public keys PKP and PKS corresponding to SKP and SKS

will, naturally, be provided to the resolver, using the standard
mechanisms used to transmit public keys in DNSSEC.
Construction. Our NSEC5 construction is extremely similar
to NSEC3: all we need to do is replace the unkeyed hash used
in NSEC3 with a new “keyed hash” F that uses the secondary
keys PKS , SKS . Our solution is as follows.

The secondary keys PKS = (NS , eS) and SKS =
(NS , dS) are an RSA key pair. For each record x present in the
zone R, the primary nameserver computes a deterministic RSA
signature on x using hash function h1 (modeled as random
oracle [BR93])

S(x) = (h1(x))
dS mod NS (1)

and hashes it to a short string with another hash function h2
(also modeled as random oracle)

F (x) = h2(S(x)) .

The resulting F values are lexicographically ordered, and each
pair is signed by the primary nameserver using its key SKP

(just like in NSEC and NSEC3). The resulting pair of F values
is an NSEC5 record.

To prove the non-existence of a name q queried by
the resolver, the secondary nameserver computes S(q) and
F (q) using SKS , and responds to the resolver with (1) an
NSEC5PROOF record containing the value S(q) and (2) the
signed NSEC5 record for the hashes that are lexicographically
before and after F (q).

The resolver can then validate the response by (1) confirm-
ing that the NSEC5 record is validly signed by SKP (using
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PKP ), (2) using PKS to verify S(q) in the NSEC5PROOF,
checking that

(S(q))eS mod NS = h1(q)

and (3) checking that h2(S(q)) (from the NSEC5PROOF) is
lexicographically between the hashes in the NSEC5 record.
Thus, S(q) maintains soundness by acting as a “proof” that
the value F (q) is the correct “keyed hash” of q.

Note that the keyed hash F (q) must be a deterministic
and verifiable function of q. Our specific choice of the RSA
signature algorithm used to compute S in equation (1) is thus
crucial; in contrast, any secure signature algorithm can be used
to sign the NSEC5 record using SKP .
Privacy. In Section III-C we formally prove that our con-
struction satisfies both soundness and privacy as defined in
Section II. Roughly, privacy follows because the resolver does
not know the secondary secret key SKS . This eliminates zone
enumeration via offline dictionary attacks, since the resolver
cannot compute the “keyed hash value” F (q) on its own; the
only way it can learn F (q) is by asking online queries to the
nameserver (or by breaking RSA!).
Soundness and secret key at nameservers. NSEC5 requires
secondary nameservers to hold a secret secondary key SKS .
Fortunately, SKS only needs to be as secure as the records
whose the privacy it protects, since leaking SKS does not
compromise soundness in any way. Specifically, if SKS is
leaked or the secondary nameserver becomes adversarial, the
soundness of the zone is not compromised; all that is lost is
privacy against zone enumeration, effectively downgrading the
security of NSEC5 to that of NSEC3.

Soundness is maintained because only the primary name-
server can sign NSEC5 records; the resolver can use the
secondary public key PKS to verify that the secondary name-
server correctly computed S(q) in the NSEC5PROOF, and
responded with the right NSEC5 record. If an adversary wanted
to send a bogus non-existence record, (s)he would not be able
to produce a properly-signed NSEC5 record covering F (q),
even if (s)he knew the secret secondary key SKS .
Performance. Our solution allows resolvers to verify using
the same technologies they always used: hashing and validation
of RSA signatures. NSEC5 does, however, require a single
online RSA computation at the secondary nameserver, making
it more computationally heavy than NSEC and NSEC3 (and
NSEC4). However, our lower bounds do prove this extra
computation is necessary to eliminate zone enumeration. Ad-
ditionally, only the zone administrators that require our strong
privacy guarantees need to deploy NSEC5; others that don’t
can just use NSEC or NSEC3. We discuss other practical issues
regarding NSEC5 deployment in Section III-B.

Indeed, online signing for denial of existence was already
proposed in RFC 4470 [WI06], further discussed in RFC
4471 [SL06], and implemented in nameserver software like
powerDNS [Pow13, Sec. 4] and Phreebird [Kam11]. These
online signing solutions require every nameserver (even the
secondary) to be given the primary key for the zone, and
use it to produce online signatures to responses of the form
“q is a non-existent domain”. Some criticized the RFC 4470

solution because it compromises soundness (if a secondary
nameserver is hacked or leaks its key). In contrast, our solution
has the same computational complexity without the same risks
to soundness, because the online signing is used only for
looking up the correct NSEC5 record and cannot be used
to produce a false denial-of-existence response. Thus, NSEC5
preserves soundness even when the secondary nameserver is
compromised, or its secret secondary key SKS is leaked.

We therefore believe NSEC5 presents an attractive alterna-
tive to NSEC3 for those zone operators who require strong
privacy against zone enumeration. Moreover, because NSEC5
is structurally very similar to NSEC3, it can incorporate
the other performance and policy optimizations developed
for DNSSEC, including NSEC3 opt-out or the space-saving
techniques proposed in NSEC4 [GM12].

F. Organization & Contributions
The organization of this paper follows the summary above.

Section II presents our model and security definitions; we
use a traditional DNSSEC notion of soundness, and our main
definitional contribution is in our notion of privacy. Our next
contribution is our NSEC5 construction; we present NSEC5
in Section III and prove it satisfies soundness and privacy.
Our final contribution is a number of cryptographic lower
bounds, which explain why NSEC5 requires online signing
at the secondary nameserver in order achieve simultaneous
soundness and privacy, which we present in Section IV. Our
results are supported by the standard cryptographic definitions
(signatures, random oracles) in Appendix A.

G. Other related work
There are several tools and primitives in the cryptographic

literature that are related to our work. The first is zero-
knowledge sets, introduced by Micali, Rabin and Kilian (ZKS
for short) and its generalization to zero-knowledge elementary
databases [MRK03]. The latter is a primitive where a prover
can commit to a database, and later open and prove the value
in the database to a verifier in a zero knowledge fashion.
One can use ZKS in our setting, where the resolver is the
ZKS verifier, the primary nameserver is the ZKS prover that
creates the commitment to the set, the secondary namesever
is the online ZKS prover that provides online proofs to the
verifier. However, we can’t use the existing ZKS solutions as is,
because even the best known constructions of ZKS [CHL+05]
are too inefficient to be practical for DNSSEC4. On the
other hand, the requirements in a ZKS are very stringent, in
that one does not trust even the primary nameserver (i.e.,
the commitment to the database). In the DNSSEC setting,
where the primary nameserver is trusted, this property is not
necessary and by working in this less stringent setting, we are
able to obtain more efficient constructions.

Data structures that come with soundness guarantees are also
relevant (see e.g. [BEG+94], [NN00], [TT10], [MHKS14]).

4 [CHL+05] requires the verifier to verify log |U | mercurial commitments,
where U is the universe of elements and each verification involves a “public-
key operation”.
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These data structures return an answer along with a proof
that the answer is sound; “soundness” means that the answer
is consistent with some external information. We also need
soundness in our setting, but we augment this with the addi-
tional requirement of privacy against zone enumeration.

II. MODEL AND SECURITY DEFINITIONS

We define the new primitive, Primary-Secondary-Resolver
Membership Proof system (PSR), with the goal of secure
denial of existence while preventing zone enumeration. A PSR
is an interactive proof system consisting of three parties. The
primary nameserver (or simply primary) sets up the zone by
specifying a set R ⊆ U , where R represents the existing
domain names in the zone and U represents the universe of all
possible domain names. In addition to R, the primary specifies
a value v(x) ∈ V for every x ∈ R (where v(x) represents
e.g., the IP address corresponding to domain name x). It
then publishes public parameters PK for the zone, which are
distributed via the usual DNSSEC mechanisms. The secondary
nameservers (or secondaries) get PK and extra information
IS necessary to produce response to queries made by resolvers.
The resolvers get PK. After the setup phase is complete,
the secondaries and resolvers act as provers and verifiers of
statements of the form “x ∈ R and v(x) = y” or “x /∈ R”.

Following DNSSEC, we consider only two-round protocols,
where a query is sent from the resolver to the secondary and
a response is returned. More interaction is possible, but we do
not consider it here. DNSSEC has resolvers send queries in the
clear (i.e., send x and get v(x)), which is also what our NSEC5
construction does (Section III). However, for generality, when
defining our model and proving our lower bound in Section IV,
we allow resolvers to transform the query x before sending;
in particular, our model allows resolvers to keep state between
query issuance and answer verification (although our NSEC5
construction does not need this).

A. Algorithms for the Parties in PSR Systems
A PSR system consists of four algorithms.
The Setup algorithm is used by the primary nameserver to

generate the public parameters PK, which it publishes to all
parties in the protocol, and the information IS , delivered to
secondary nameservers. A resolver uses the Query algorithm
to generate a query for elements in the universe; it then sends
this query to a secondary, who replies to a query using the
Answer algorithm. The resolver finally uses Verify to validate
the response from the secondary.

Definition II.1. Let U be a universe of elements and V a
set of possible values. A Primary-Secondary-Resolver system
is specified by four probabilistic polynomial-time algorithms
(Setup,Query,Answer, V erify):
Setup(R, v(·), 1k)

On input k the security parameter, a privileged set
R ⊆ U , a value function5 v : R→ V , this algorithm
outputs two strings: public parameters PK and the
information IS given to the secondaries.

5This function e.g., maps domain names to their corresponding IP addresses.

Query(x, PK)
On input x ∈ U and the public parameters PK,
this algorithm outputs a query q. It also leaves state
information for the Verify algorithm.

Answer(q, IS , PK)
The algorithm gets as input a query q for some
element x ∈ U , the information IS produced by
Setup, and the public parameters. If x ∈ R then the
algorithm outputs a bit b = ‘yes’, the value v(x),
and a proof π for x ∈ R and v(x). Else it outputs
b = ‘no’, an empty v, and a proof π for x /∈ R.

V erify(b, v, π)
The algorithm, which is given state information
from the Query algorithm, including x and PK,
gets a bit b, a value v (empty if b = ‘no’), and
the proof π. If b = ‘yes’ then it checks that the
proof π validates that x ∈ R and the value is v(x).
If b = ‘no’ it checks to validate that x /∈ R. If the
proof is correct it returns 1 and otherwise 0.

For simplicity, our definition above considers only the case
where the set R is static; R is chosen when the primary sets
up the zone and it does not change it afterwards.6

We will require the above four algorithms to satisfy three
properties: Completeness, Soundness, and Privacy.

B. Functionality and Soundness

The requirement that the system be functional is called, as
is traditional in interactive proof systems, completeness. When
the different parties are honest and follow the protocol, then
the system should work properly; that is, resolvers will learn
whether names are in the set R or not. We do allow a negligible
probability of failure.

Definition II.2. Completeness: For all R ⊆ U and for all
v : R→ V and ∀x ∈ U ,

Pr


(PK, IS)

R← Setup(R, v(·), 1k);
q
R← Query(x, PK);

(b, v, π)
R← Answer(q, IS , PK) :

V erify(b, v, π) = 1

 ≥ 1− µ(k)

for a negligible function µ(k).

Soundness is the traditional DNSSEC notion of security;
we require that even a malicious secondary cannot convince
an honest resolver of a false statement with more than a
negligible probability. This must hold even when the malicious
secondary gets to choose R and v, then gets (PK, IS), and
finally chooses element x ∈ U it wishes to cheat on, and its
deceitful proof π.

6There are methods for handling changes to R that borrow from the CRL
world (e.g., [NN00]) but we chose not to concentrate on this here. Our NSEC5
construction can, however, use techniques similar to NSEC and NSEC3 to deal
with dynamic changes to R.
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Definition II.3. Soundness: for all probabilistic polynomial
time stateful adversaries A we have

Pr



(R, v(·)) R← A(1k);

(PK, IS)
R← Setup(R, v(·), 1k);

x
R← A(PK, IS);

q
R← Query(x, PK);

(b′, v′, π)
R← A(PK, IS) :

V erify(b′, v′, π) = 1 ∧
((x ∈ R ∧ (b′ = ‘no’ ∨ v′ 6= v(x))) ∨
(x /∈ R ∧ b′ = ‘yes’))


≤ µ(k)

for a negligible function µ(k).

Our definition is strong because it ensures (up to negligible
probability) that an adversary cannot find x ∈ U violating
completeness or soundness even if it has IS , the information
given to the secondaries.

C. Privacy: Preventing Zone Enumeration
In our setting, privacy means preventing zone enumeration.

We want to make sure that resolvers do not learn too much
about the elements in the set R, apart from the responses
to their queries. We formulate this requirement with a strong
notion that we call f -zero-knowledge (f -zk for short), where
f(R) is some information about the set which we can tolerate
leaking to the resolvers. For example, our NSEC5 construction
has f(R) = |R| (the number of names in the set R).

We formulate f -zk by requiring every PSR system to have
its own simulator algorithm, who can fool a resolver into
thinking that it is communicating with a real secondary in a
PSR system. The simulator must do this without access to the
set R; instead it is only given f(R), and limited oracle access
to R—the simulator may only ask the oracle if element x is in
R if the resolver explicitly queries the simulator for x. Despite
these limitations, the simulator must still be able to “forge” a
satisfactory response to every query sent by the resolver, such
that the resolver cannot distinguish between (1) an interaction
with a secondary in a real PSR system (who knows R), and (2)
an interaction with the simulator (who only knows f(R) and
those elements x queried by the resolver). It follows that the
resolver learns nothing about R from its interaction with the
secondaries, apart from f(R) and whether the elements x that
it queried are in R or not; this further implies privacy against
zone enumeration. We note that the use of simulators to prove
that a protocol is zero knowledge is standard in cryptography;
see [Gol01, Ch. 4] for a comprehensive treatment. Later, in
Section II-D we show that our f -zk notion implies a more
“intuitive” security definition.
PSR Simulator. More formally, we define a PSR Simulator.
Let SIM be a probabilistic polynomial time algorithm with
limited oracle access to R, meaning that SIM can only ask the
R-oracle if x ∈ R (and if so, what is v(x)) when the adversary
explicitly queries the simulator for x. Upon initializing, SIM
receives f(R) and outputs fake public parameters PK∗, fake
secret information SKSIM and the leaked information f(R).
Next, SIM receives queries from the resolver and needs to

output a (simulated) proof of either x /∈ R or of x ∈ R plus
v(x); to do this, SIM is allowed to query the R-oracle for
the element x. The simulator’s output (public parameters and
proofs) should be computationally indistinguishable from the
output generated by a real PSR system.

We divide this process into two phases. In the first phase,
we refer to the resolver as “the adversary”7. This first phase
requires the adversary to take part in an interactive protocol
with either the simulator or a PSR system; the adversary does
not know if it is talking to the real PSR system or the simulator.
The interactive protocol starts by giving the adversary the
public parameters, either generated by the real PSR system:

(PK, IS , f(R))
R← Setup(R, v(·), 1k)

or by the simulator that generates fake parameters:

(PK∗, SKSIM , f(R))
R← SIMR(f(R), 1k)

Next, the adversary starts issuing queries qi (adaptively), based
on the public parameters and previous responses to queries it
got. If the adversary is talking to the simulator, the simulator
responds to the queries with the answers (bi, vi, πi) using the
fake public parameters PK∗ and the fake secret information
SKSIM . If the adversary is talking to the real PSR system, it
responds to the queries with the answers (bi, vi, πi) using the
real parameters and information (PK, IS). The adversary can
verify responses using the public parameters it was given.

The second phase starts after the interactive protocol ends;
here, “a distinguisher” is required to distinguish whether the
adversary was interacting with the simulator, or with the real
PSR protocol.

We say that the system is f -zk if there exists a simulator
such that for every adversary, there is no distinguisher who
knows R and can distinguish with more than a negligible
advantage between the two views containing the public pa-
rameters, f(R), queries and responses which were generated
by either the system or the simulator.

Definition II.4. Let the leaked info f() be some function from
2U to some domain and let (Setup,Query,Answer, V erify)
be a PSR system. We say that it is f -zero knowledge (f -zk
for short) if it satisfies the following property for a negligible
function µ(k):

There exists a simulator SIM such that for every probabilis-
tic polynomial time algorithms Adv and distinguisher D a set
R ⊆ U and v : R→ V the distinguisher D cannot distinguish
between the following two views:

viewreal = {PK, f(R), q1, (b1, v1, π1), q2, (b2, v2, π2), ...}

and

viewSIM = {PK∗, f(R), q1, (b1, v1, π∗1), q2, (b2, v2, π∗2), ...}

with an advantage greater than µ(k), even for D that knows R
and v (the two views are generated by the protocols described
above).

7Referring to a resolver as an “adversary” when studying f -zero knowledge
makes sense, since the resolver is the adversary that wishes to break the privacy
of the system.
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Remark. Those familiar with cryptographic definitions will
note that our definition requires simulation to be online: there
is no rewinding, and the number and nature of the queries to
the R-oracle are restricted to the queries made by the resolver.
This means that our simulator has little power (in the sense
that the simulator only has the oracle access and f(R) to work
with) but it still manages to provide indistinguishable proofs
with overwhelming probability. The less power the simulator
has, the harder it is to construct a valid simulator that can
fool an adversary, the more meaningful the f -zk property. Our
simulator definition thus makes our f -zk requirement stronger.

Also note that the concept of a simulator receiving some
f(R) may look similar to the definition of auxiliary-input
zero knowledge (see [Gol01, Ch. 4]), but it is different. In the
latter, both the adversary and the simulator receive the same
auxiliary information and the adversary must still distinguish
between the two views. In our case, the construction itself
leaks the information f(R), and we would like to show that
it doesn’t leak any additional information. The auxiliary-input
property can be incorporated into our definition as well, in case
we would like our resolvers to have some prior information
about the set R; still, the resolvers would not be able to gain
any additional information on R besides f(R) and the prior
information they received.

D. Zero-knowledge Implies Hardness of Zone Enumeration
Next, we argue formally that our f -zero-knowledge property

indeed prevents zone enumeration; that is, that a resolver in
a PSR system cannot learn anything about the elements in R
(i.e., the domain names that are present in the zone R) except
for those elements for which it explicitly queried. In fact, we
now prove that our definition of f -zk implies even a very weak
version of privacy against zone enumeration; specifically, we
show that a resolver whose goal is to learn whether one of two
known elements (i.e., domain names) is in the zone R, cannot
succeed if he is not allowed to explicitly query for those two
elements. We call this security property selective membership
security, and define it using a game-based security definition
where the resolver wins if it guesses a bit correctly.

Definition II.5. PSR security against selective membership.
A PSR protocol is said to be ε-secure against selective mem-
bership under an adaptive chosen message attack if every
probabilistic polynomial time algorithm A playing against a
challenger wins the following game with probability at most
1
2 + ε:

1) The adversary A starts by sending the challenger a set
S ⊆ U , two target elements x0, x1 /∈ S and a value
function v for the elements in S

⋃
{x0, x1}.

2) The challenger defines R = S
⋃
{x0} with probability 1

2
and R = S

⋃
{x1} otherwise. Next the challenger runs

algorithm Setup(R, v(·), 1k), sends the output PK to
the adversary A and keeps IS secret to himself.

3) Algorithm A mounts an adaptive chosen message attack
by sending queries to the elements y1, .., ym, where the
queries are qi = Query(yi, PK) and yi /∈ {x0, x1}.
The challenger responds with proper answers to all the
queries: A1, .., Aq .

4) Finally A outputs one bit g, with g = 0 if A believes
that x0 ∈ R and g = 1 if it believes x1 ∈ R.

We say that A won the game if the bit g is the correct guess,
i.e., if xg ∈ R.

We show that a PSR that is f -zk for f(R) = |R| is also
secure against selective membership attacks for a negligible ε.

Theorem II.6. Suppose that we have an f -zk PSR system
(Setup,Query,Answer, V erify) for f(R) = |R| and µf
is the bound on the advantage of the distinguisher in f -zk.
Then, it is also ε-secure against selective membership under
an adaptive chosen message attack, where ε = 2 · µf

Proof: We will show that the two possible views the
adversary can witness in the security game, the one where
R = S

⋃
{x0} and the other where R = S

⋃
{x1}, are

computationally indistinguishable.
For any choice of (S, v : R → V, x0, x1) we define four

views. We will show that all four views are indistinguishable
from one another and that two of them correspond to the two
views of the adversary in the security game (either x0 ∈ R
or x1 ∈ R). Thus we can conclude that an adversary cannot
find the additional element xg ∈ R with a non-negligible
advantage; if it could, the adversary could also distinguish
between the two views.

For j ∈ {0, 1} denote the view of an adversary in the
security game when xj ∈ R as viewrealj (S, v(·), x0, x1) and
denote the view when we switch from a secondary to the
simulator as viewsimj (S, v(·), x0, x1).

First let us see that the views viewrealj (S, v(·), x0, x1)
and viewsimj (S, v(·), x0, x1) are indistinguishable for j ∈
{0, 1}. According to the f -zk assumption, for every choice of
(R, v(·)) the view of any adversary communicating with the
simulator is indistinguishable from that of the same adversary
communicating with the real system, when both are given
f(R) = |R|. The adversary chooses S and knows that
|R| = |S| + 1 and the simulator and real system also know
the size of R by that same logic. So an adversary playing
the security game cannot distinguish between cases where
it is communicating with the simulator and ones where it
communicates with the real system with advantage greater than
µf , according to the definition of the f -zk property, which
makes those views indistinguishable.

Now we notice that the views viewsim0 (S, v(·), x0, x1) and
viewsim1 (S, v(·), x0, x1) are not only indistinguishable, but
identical. This is true because the simulator SIM doesn’t know
the full set R—SIM only knows |R|, and has limited access
to an R-oracle that SIM may query for an element x only
when the adversary explicitly queries SIM on x, but not for
any other elements. Since the adversary may not query SIM
for x0, x1 (because it is his target challenge), the adversary can
send identical queries to SIM and get identical answers in both
views. Moreover, both views are identically distributed during
the key generation, since SIM gets the same f(R) and cannot
query its R-oracle. Thus, both views are identically distributed
and cannot be distinguished.

Combining it all, we get that viewreal0 (S, v(·), x0, x1) and
viewreal1 (S, v(·), x0, x1) cannot be distinguished with prob-
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Srsa, RSA,RSA
−1 RSA algorithms

PKS , SKS RSA keys (secondary keys)
Ssig, Sig, V er Signature scheme algorithms
PKP , SKP Signature scheme keys (primary keys)

h1 Random oracle from U to ZN
h2 Random oracle from ZN to {0, 1}n

F : U → {0, 1}n The function h2(RSA−1SKS
(h1(·)))

S : U → ZN The function RSA−1SKS
(h1(·))

R = {x1, .., xr} Set of existent domain names
U Universe of domain names
V Universe of IP addresses

v : R→ V Function mapping domain names
to IP addresses

Fig. 1. Table of notation.

ability greater than 2µf . This means that any probabilistic
polynomial time adversary can win the selective security game
with only a negligible advantage of 2 · µf .

III. NSEC5 CONSTRUCTION AND PROOF

Our NSEC5 construction was described in Section I-E. Here
we show why our NSEC5 construction is a secure PSR system,
and prove its security in the random oracle model. Table 1
summarizes our notation. Section III-A maps our NSEC5
construction to our formal model of a PSR system, while
Section III-B discusses its practical considerations, including
computational requirements, and the DNSSEC record types it
requires. Our proof of security is in Section III-C.

A. Formally Modeling NSEC5 as a PSR System
We specify our NSEC5 construction in detail, and map it to

our formal model of a PSR system in Section II.
Building blocks. Our NSEC5 construction is based on an
RSA permutation, two hash functions, and a signature scheme.
The RSA permutation has a key generation function that gener-
ates an RSA key pair PKS = (NS , eS) and SKS = (NS , dS).
We also use two cryptographic hash functions, where

h1 : U → ZNS

is a “full-domain hash” [BR93] whose output size is exactly
the size of the RSA modulus NS , and

h2 : ZNS
→ {0, 1}n

is a standard cryptographic hash function (e.g., SHA-256)
whose output length is chosen to prevent birthday attacks.
Our security proofs model both h1 and h2 as random oracles.
Finally, we use any existentially-unforgeable signature scheme
(formally defined in Appendix B).
PSR algorithms. We now map our NSEC5 construction to
the four PSR algorithms described in Section II.

Setup: The primary nameserver runs the setup algorithm
Setup(R, v(·), 1k), taking in the set R (e.g., domain names
in the zone) and its associated values v (e.g., the IP addresses
corresponding to those domain names), and security parameter

k. It generates the public parameters PK and the information
for the secondary nameservers IS as follows.

It starts by generating the public parameters: It generates
a key pair (PKP , SKP ) for the existentially-unforgeable
signature (the “primary keys”), generates an RSA key pair
(PKS , SKS) (the “secondary keys”), and finally selects the
hash functions h1 and h2. The public parameters are PK =
(PKP , PKS , h1, h2).

Next, it constructs IS , the information given to the sec-
ondary nameservers as follows: First, it signs the names that
are present in the zone: using the primary secret key SKP

and the existentially-unforgeable signature algorithm, it obtains
Sig(x, v(x)) for each element x ∈ R (domain name) and its
corresponding values v(x) (IP address). Next, it constructs the
authenticated denial-of-existence records: it uses the secondary
secret RSA key SKS = (dS , NS) and the “full-domain” hash
function h1 to compute a deterministic RSA signature on each
x ∈ R as

π = S(x) = (h1(x))
dS mod NS (2)

which is then hashed to a shorter string using h2

y = F (x) = h2(π) (3)

The y values are lexicographically ordered as y1, . . . , yr, and
y0 = 0n and yr+1 = 1n are added. For j ∈ {0, .., r}, each
pair (yj , yj+1) is signed using the existentially-unforgeable
signature algorithm with the primary secret key SKP to obtain
Sig(yj , yj+1).

Finally, the secondary nameserver is given the following
information as IS : the secondary secret key SKS , the pairs
(x, v(x)) and their signatures Sig(x, v(x)) for every x ∈ R
present in the zone, and the denial-of-existence pairs (yj , yj+1)
and their signatures Sig(yj , yj+1) for j = 0...r, see Figure 2.

Query: Resolvers send queries in the clear: Query(x, PK)
outputs element x (a domain name) as the query q.

Answer: Secondary nameservers run Answer(q, IS , PK)
to respond to queries by resolvers. First, the secondary checks
if q ∈ R. If so, it returns the corresponding signed records

‘yes’, (q, v(q)), Sig(q, v(q))

Otherwise, it uses the secondary secret key SKS to compute
the RSA signature πy = S(q) per equation (2), hashes this
down to y = h2(πy) per equation (3), finds the appropriate
denial-of-existence record by locating index j for which yj <
y < yj+1, and returns

‘no’, (yj , yj+1), (πy, Sig(yj , yj+1)) where πy = S(q)

Verify: The resolvers verify the response with
V erify(b, v, π).

If the response had b = ‘yes’, they use the primary public
key PKP to verify that Sig(q, v(q)) is a valid signature on
(q, v(q)). If so, return ‘1’ for success; else return ‘0’.

Otherwise, b = ‘no’. Resolvers then: (a) use the primary
public key PKP to verify that Sig(yj , yj+1) is a valid
signature on (yj , yj+1) (b) use h2 and πy to check that

yj < h2(πy) < yj+1
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IS︷ ︸︸ ︷
y1, . . . , yr

Sig(y0, y1), . . . , Sig(yr, yr+1)︸ ︷︷ ︸
Denial-of-existence records

(x1, v(x1)), . . . , (xr, v(xr))
Sig(x1, v(x1)), . . . , Sig(xr, v(xr))︸ ︷︷ ︸

Records for present names

SKS

Fig. 2. Illustration of IS .

and (c) use the secondary key PKS = (eS , NS) to verify that
πy is a deterministic RSA signature on q, i.e., that

h1(q) = πeSy mod NS (4)

If all three checks pass, return ‘1’; else return ‘0’.

B. Practical Considerations and Compatibility with DNSSEC
We highlight the similarities and differences between our

construction and the existing DNSSEC standard with NSEC3.
To do this, we map the description in Sections I-E,III-A to
DNSSEC record types, and discuss computational overheads.

Before we move on to less straightforward details of our
construction, we note that the primary public key PKP from
Section III-A is the usual DNSSEC zone-signing key (ZSK),
stored in a DNSKEY record and securely distributed using the
usual DNSSEC mechanisms. Each pair (x, v(x)) of domain
name x ∈ R and IP addresses v(x) present in the zone is
the usual DNS A records; their signatures Sig(x, v(x)) are
the usual DNSSEC RRSIG records. Each of our new NSEC5
records contains a pair (yj , yj+1) of lexicographically-adjacent
hash values (see equations (2) and (3) above); each NSEC5
record is signed using the primary key (the ZSK) and its
signature is stored in a DNSSEC RRSIG record. Observe that
our NSEC5 records are almost identical to NSEC3 records.
Computational overhead. The main computational overhead
of our approach over NSEC3 is online signing at the secondary
nameservers. Specifically, we require secondaries to compute a
deterministic RSA signature S(q) online for every query q that
requires a negative response (see equation (2)). Note, however,
that online signing has been standardized (RFC 4470 [WI06])
and implemented in commercial DNSSEC systems [Pow13,
Sec. 4], [Kam11].

We also require resolvers to verify the RSA signature S(q)
(equation (4)). This is no slower than actually verifying the
signature on an NSEC record itself, representing no more than
a 2x increase in computational overhead. Moreover, comparing
the extra overhead to its analogous computation in NSEC3—
namely, computing (multiple iterations) of a hash (e.g., SHA-
256) on the query q—suggests that NSEC3 and NSEC5 can
have identical computational overhead at the resolver. Specifi-
cally, RFC 5155 [LSAB08, Sec 10.3] specifies that the number
of iterations in the NSEC3 hash can result in a computation
with similar cost as verifying a signature on an NSEC3 record
(e.g., 500 SHA1 iterations for a 2048-bit RSA signature).

Finally, the primary also needs to compute some extra
signatures when setting up the zone—an additional r = |R|
RSA signing computations (to compute the yj’s) in addition to
the 2r+1 signatures needed to sign the NSEC5 records. This

represents a 2x increase over NSEC3, which requires |R|+ 1
signatures on the NSEC3 records.

Storing secrets at the nameservers. NSEC5 requires sec-
ondary nameservers to hold the the secret secondary key
SKS . Fortunately, SKS only needs to be as secure as the
records whose privacy it protects, since leaking SKS does not
compromise soundness in any way (Section III-C). Specifi-
cally, if SKS is leaked or the secondary nameserver becomes
adversarial, the soundness of the zone is not compromised;
all that is lost is privacy against zone enumeration, effectively
downgrading the security of NSEC5 to that of NSEC3. This
is in stark contrast to the RFC 4470 [WI06] online signing
solution, that requires the secondary nameservers to hold the
zone-signing key (i.e., the primary secret key SKP ); with
the RFC 4470 approach, soundness is completely lost if the
secondary is compromised or the key is leaked.

Transmitting information to the resolvers. Our NSEC5
solution requires the secondary to respond to queries for non-
existent names with NSEC5 records (pairs (yj , yj+)), as well
as the RSA value S(q). What DNSSEC record should be used
to transmit S(q)? In contrast to the information in the NSEC5
record, which is computed during setup and signed by SKP ,
the RSA value S(q) is computed online and is not signed. We
therefore propose transmitting S(q) from secondary to resolver
in a new unsigned record type, called e.g., NSEC5PROOF.

We must also consider how the primary nameserver can
authentically transmit the secondary public key PKS and hash
functions h1, h2 to the resolver. An analogous issue arises
in NSEC3, when transmitting the salt and hash function to
the resolver; NSEC3 deals with this by including the salt
and an “algorithm identifier” for the hash in the NSEC3
record itself, and having the entirety of the NSEC3 record
signed using the primary secret key SKP [LSAB08]. We
could analogously include the secondary public key PKS and
algorithm identifiers for the hash functions h1 and h2 in each
NSEC5 record, and then sign the entire NSEC5 record using
SKP .8 Alternatively, if we want to avoid including PKS in
each NSEC5 record (since an 2048-bit public RSA key is
much larger than the 24-bit NSEC3 salt), we could use a
separate DNSKEY record, setting the flag bits to indicate it
is not a signing key for the zone (e.g., using the reserved
flag bits, or setting the ZSK and SEP bits to 0, or perhaps
by introducing a new DNSKEY flag); this approach complies
with RFC 4035 [AAL+05b]’s discussion on the use of the
DNSKEY record for non-zone keys.

Transmitting information to secondary nameservers. Next,
observe that the primary nameserver must communicate some
extra information to the secondary nameserver during setup
(apart from the usual A records, NSEC5 records, and RRSIGs);
namely, the public parameters PKS , h1, h2 and the secondary
secret key SKS . NSEC3 uses the NSEC3PARAM record to
transmit the NSEC3 salt and hash function to the secondary
nameservers; we could similarly distribute PKS , h1, h2 in

8Notice that by signing the entire NSEC5 record with SKP , which is
only known to the primary, we ensure that PKS , h1, h2 are authentically
communicated from the primary to the resolver.
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an NSEC5PARAM records. Distributing the secondary se-
cret keys SKS may be more cumbersome, however, because
secondaries traditionally do not store any secret keys in
DNSSEC. Fortunately, since leaking SKS does not compro-
mise soundness in any way, we could just include SKS in
the NSEC5PARAM record (and require that NSEC5PARAM
is never sent to resolvers), or alternatively have the primary
directly send SKS to the secondaries in a TSIG message9.
Opt-out. Finally, the structural similarity of NSEC5 with
NSEC3 and NSEC allows for easy adoption of existing mecha-
nisms such as wildcards, Opt-out (RFC 5155) and Opt-in (RFC
4956 [AKB07]). We will address these complications in future
versions of this work; here we only note that several space-
saving proposals from the NSEC4 draft [GM12] can also be
incorporated into our NSEC5 construction.10

C. Proof of Security for NSEC5
We show that our system is complete, sound, and leaks

nothing more than the size of the set R.

Theorem III.1. The four algorithms described above consti-
tute an f -zk PSR for the function f(R) = |R|.

Proof: We start by proving a few useful properties of the
function F in equation (3). First, because h1, h2, and RSA are
all deterministic algorithms and RSA is also a permutation,
it follows that for every x ∈ U there exists exactly one pair
(y, πy) for which it holds that (cf. equation (4))

F (x) = y, h2(πy) = y, and h1(x) = πeSy mod NS

The second property is verifiable pseudorandomness:

Lemma III.2. For every x ∈ U , the value F (x) is pseudo-
random over {0, 1}n in the following sense: no probabilistic
polynomial-time adversary, who gets x and can ask for F (xi)
and S(xi) on any sequence of points x1, x2 . . . not containing
x, can distinguish F (x) from a random value in {0, 1}n. 11

Proof: Assume to the contrary that there exists an ad-
versary A which gets x ∈ U and after the sequence of
queries described, manages to distinguish F (x) and a random
value with a non-negligible advantage. We show that, using
A, we can invert the RSA permutation with the same non-
negligible probability, violating the RSA hardness assumption
in Appendix C.

We are given a public RSA key (e,N) and challenge z that
we wish to invert. Assume wlog that for every xi 6= x that
A asks the random oracle to evaluate h1(xi), it also asks to
see (F (xi), S(xi)). Also assume wlog that the upper bound on

9TSIG is used by the primaries to authentically and dynamically update
information stored at the secondaries.

10Using the wildcard optimization from NSEC4 [GM12], our denial-of-
existence response (containing two NSEC5 records and two NSEC5PROOF
records in the worst case) is only about one RSA-value (e.g., 2048 bits) longer
than today’s unoptimized NSEC3 standard (containing three NSEC3 records
in the worst case).

11Note that this means that the function F () combined with S() constitutes
a selective VRF, as defined in [MRV99]. This is a very simple and efficient
implementation of the primitive (albeit, only in the random oracle model).

the number of queries made by the adversary A is Q. Before
A’s first query, we draw uniformly at random c1, .., cQ ∈ ZN
(where ZN is the domain/range of the RSA permutation) and
use the public RSA key to compute zi = cei mod N . Now,
every time A queries the h1-random oracle on xi 6= x (that
wasn’t queried before), we answer with h1(xi) = zi; we also
return S(xi) = ci, return F (xi) = ri where ri is a random
value, and remember that ri = h2(ci) is the output of the
h2-random oracle on input ci. When h1 is queried on x, we
answer with the challenge z. When h2 is queried on p we
check if z = pe mod N ; if so, we have successfully inverted
RSA on challenge z, and otherwise, we just answer in random
and consistent (with previous answers) manner.

The distribution A witnesses is identical to the real distribu-
tion. There are two possible cases: If A did not query h2 on p
such that z = pe mod N , it follows that A never learned the
value of F (x), and thus A cannot distinguish between F (x)
and a random string with greater than 0 advantage. Otherwise,
we have successfully inverted RSA on challenge z. Thus, A’s
advantage in distinguishing F (x) from a random string is the
probability of successfully inverting RSA.

Corollary III.3. The proof generalizes naturally to distin-
guishing a set of random values in {0, 1}n from the true values
of F on a set of elements R ⊂ U .12

Corollary III.3 will helps us construct the simulator used
to prove f -zk. We now prove Theorem III.1 by showing the
following three properties (Definitions II.2, II.3 and II.4):

Completeness. For every R ⊆ U , v : R → V and x ∈ U ,
we need to show that that after we run Setup(R, v(·), 1k) to
get (PK, IS) and Answer(x, IS , PK), the V erify algorithm
will output 1.

If x ∈ R, then from the definition of Setup, Sig(x, v(x))
will be a valid signature on (x, v(x)), and V erify will output
1 with probability 1.

If x /∈ R, we claim that F (x) 6= yj for every j = 0...r
with overwhelming probability. (yj is defined in equations
(2) and (3)). Otherwise, we could guess F (x) with non-
negligible probability without querying for F (x), violating the
pseudorandomness of F proved in Lemma III.2. Furthermore,
an adversary cannot even find an element x /∈ R to violate
the completeness property with non-negligible probability; if
it could, this would again contradict Lemma III.2. To be exact,
the probability for a collision for x /∈ R is at most |R||NS | +

|R|
2n

(probability for a collision in h1 plus that of h2). Thus with
Q attempts one would get a violation to the completeness
requirement with negligible probability Q·|R|

|NS | +
Q·|R|
2n .13

12This follows because inverting RSA on any of a set of r values is as hard
as inverting it on a single element (see Appendix C). This is the one place
where we have used the specific properties of RSA; if we had used a generic
trapdoor permutation in our construction, we would have lost a factor r in the
advantage due to a hybrid argument.

13In the DNSSEC world, the set R changes dynamically, so if the adversary
can affect the choice of the set R (after receiving the parameters (PK, IS)),
he could find a collision in Q attempts with probability Q2

|N| +
Q2

2n
, due to

the birthday paradox. Thus, we also require h1, h2 to be chosen so that this
probability is negligible.
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Soundness. The soundness of our proposal follows from the
existential unforgeability of the underlying signature scheme
(that is used to sign records with the primary key SKP ).
More formally, given an algorithm A that breaks soundness
with probability ε (per Definition II.3), we can construct a
forging algorithm F that, given a public key PKP , can win
the existential unforgeability game with probability ε, where
both algorithms have similar running times. Recall that in the
existential unforgeability game, the forger F can ask a signing
oracle for signatures on arbitrary messages and must forge a
signature on a new message (Appendix B).

Initially the forger F receives the public key PKP (and
the security parameter k). It then starts running adversary A
that breaks soundness as follows. First, the forger F obtains
the set R and the function v(·) that is output by A (See
Definition II.3). Next, it needs to compute IS that it will return
to A. To do this, the forger F runs the NSEC5 Setup algorithm
in Section III-A, with the following modifications:
• The forger F no longer generates the primary keys;

instead, PKP (that F was given as input) is used as
the primary public key.

• The forger F does not have the private primary key
SKP . Instead, it queries its signature oracle to obtain
signatures on pairs (yj , yj+1) for j ∈ {0, . . . , |R| + 1}
and pairs (x, v(x)) for all x ∈ R.

The forger then gives A the output of the Setup algorithm.
A then outputs the value x that it wishes to cheat on, and
corresponding values b′, v′, π. Suppose V erify(b′, v′, π) = 1.

Suppose b′ = ′no′ but x ∈ R. Since π passes verification,
it contains πy that satisfies equation (4). Also, π contains a
signature σ computed using the primary key on some pair
(y′1, y

′
2), such that y′1 < h2(πy) < y′2. We now show that

the forger F did not request the signature σ when it ran its’
modified NSEC5 Setup algorithm; thus the forger F can win
the game by outputting message (y′1, y

′
2) and σ as its forged

signature. First, observe that x ∈ R, so it follows that when
F ran its modified NSEC5 Setup algorithm, it computed the
RSA value S(x) per equation (2). Next, because the RSA
function S(·) (see equation (2)) is deterministic, it follows
that πy = S(x). Therefore, value y = h2(πy) must be one
of the values in the sequence y0, . . . , y|R|+1 that were used
to construct denial-of-existence records during setup. Since
y′1 < y and y′2 > y, it follows that (y′1, y

′
2) are not adjacent

values. We conclude that the forger F never queried its signing
oracle for a signature on (y′1, y

′
2) during setup.

Suppose instead that b′ = ′yes ′ but x 6∈ R or v(x) 6= v′. F
can output the message (x, v′) and its signature as the forgery;
F wins the game because this signature was not requested by
F during setup.

Therefore, we see that F succeeds whenever A succeeds in
breaking the soundness, i.e., with probability ε.
Privacy. In order to show that NSEC5 is f -zk for f(R) = |R|
we now construct a suitable simulator, where no probabilistic
polynomial time distinguisher can distinguish between an
interaction with the simulator and one with the real NSEC5
system. Recall from Section II-C that the simulator is given
oracle access to R (i.e., the set of domain names in the zone).

Our simulator algorithm SIMR(1k, 1|R|) is as follows.
SIM initializes by running the RSA setup algorithm to obtain
secondary keys (PKS , SKS) and the signature scheme’s setup
algorithm to obtain primary keys (PKP , SKP ). SIM then
chooses the random oracles h1, h2. SIM then selects a list
of |R| uniformly random values in {0, 1}n, sorts them lexico-
graphically to obtain y1, ..., y|R|, and adds the values y0 = 0n

and yr+1 = 1n. For j ∈ {0, .., |R|}, each pair (yj , yj+1) is
signed using the existentially-unforgeable signature algorithm
and the primary secret key SKP to obtain Sig(yj , yj+1).
SIM then outputs the fake public parameters PK∗ =

(PKS , PKP , h1, h2) and fake secret information

SK∗SIM = (SKS , SKP , {yj}|R|j=1, {Sig(yj , yj+1)}|R|j=0, ),

The secret simulator key (fake secret information) is very
similar to the original secret information IS that is usually
given to the secondary nameserver after the Setup algorithm in
Section III-A terminates; the main difference is that instead of
including the signatures {Sig(x, v(x))} for x ∈ R, it contains
the primary secret key SKP instead. (This is natural, since
when SIM initializes it does not know R.)

Next, SIM receives queries from the resolver and outputs
a (simulated) proof for either x /∈ R or x ∈ R plus v(x)
as follows: for each received query xi, SIM uses his oracle
access to the set R to check if xi /∈ R or xi ∈ R and its
value vi. If xi ∈ R, SIM uses the secret key SKP and
the existentially-unforgeable signature scheme to produce a
signature Sig(xi, vi), and outputs

‘yes’, (xi, vi), Sig(xi, vi)

If xi /∈ R, then SIM uses SKS to computes the RSA
signature π = S(xi) according to equation (2), and the
hash value y = h2(π) per equation (3); it then searches
through its secret parameters SK∗SIM for an index j for which
yj < y < yj+1. If such an index j is found, SIM returns

‘no’, (yj , yj+1), (π, Sig(yj , yj+1))

If no such index j is found, i.e., a collision has occurred, SIM
aborts, as it fails to produce a proof for xi /∈ R. Note this is
exactly the case where our completeness requirement fails to
hold (see our completeness argument earlier in this section),
and so SIM , just like the real NSEC5 system, fails to prove
non-membership with negligible probability.

Now we need to show that the view of the adversary
communicating with SIM is indistinguishable from that of the
adversary communicating with the real NSEC5 system. SIM
generates public parameters PK∗ using the same algorithms
as the real NSEC5 system. SIM generates (online) responses
to queries for x ∈ R that are identically distributed to those
constructed by the real NSEC5 system during its setup phase.
However, for every query x /∈ R, SIM responds with a
randomly-generated pair of values (yj , yj+1) (and its signa-
ture), rather than values (yj , yj+1) computed by applying equa-
tions (2),(3) to the elements of R, as in the real NSEC3 system.
Fortunately, we argued in Lemma III.2, that a polynomial time
adversary cannot distinguish between {F (xi)|xi ∈ R} (per
equations (2),(3)) and a collection of |R| random values in
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{0, 1}n, with more than a negligible advantage. It follows that
the simulation cannot be distinguished from the real NSEC5
system.
Remark. We could get perfect completeness for NSEC5
by adding proofs for the special case of collisions in the
hash functions h1 and h2. If x /∈ R collides with x∗ ∈ R
(F (x) = F (x∗)) then a valid proof for x /∈ R would be (‘no’,
(S(x), S(x∗), x∗, v(x∗), Sig(x∗, v(x∗)))). A resolver would
verify this proof by checking that F (x) = F (x∗) and verifying
the signature Sig(x∗, v(x∗)). This would leak information
about the set R (the fact that x∗ ∈ R and its value is v(x∗)), but
this will not violate our privacy requirement since collisions
occur with negligible probability.

IV. ON-LINE PUBLIC-KEY OPERATIONS ARE NECESSARY

In this section we show that the secondary responders in
a PSR system must perform a public-key computation on
each query. We do so by showing how to obtain a public-key
signature scheme from a PSR system, with the complexity of
the signer is roughly equal to the complexity of the secondary
nameserver (plus the complexity of the query algorithm). The
signature scheme will be secure as long as the PSR system
is complete, sound, and private—even if it satisfies only the
weaker notion of privacy in Definition II.5 rather than the full-
fledged zero-knowledge of Definition II.4.

Since in a public-key signature system, the signers must
perform a public-key operation for each message, the same
holds for the PSR system. Of course, a limited number of
signatures can be precomputed in a signature scheme, and the
same holds for a PSR system (e.g., all positive responses may
be precomputed, as in most existing constructions, including
ours). The rest—and, in particular, negative responses to un-
expected queries—must be done on-line.

We obtain signatures only when the PSR system satisfies the
following property: the query algorithm is deterministic or, if
randomized, soundness holds even when the adversary has the
knowledge of the random values used to generate q. Note that
the systems in which q = x (such as our proposal and all the
versions of DNS/DNSSEC) trivially satisfy this property.

Moreover, even when the PSR system does not satisfy this
property, we obtain an interactive protocol that is very similar
to signatures: namely a public-key authentication protocol
(PKA), in which the a sender transmits an authentic message
to the receiver using some interaction. Again, in our obtained
PKA protocol, the complexity of the sender is similar to that
of the secondary responder in a PSR system. Since such a
PKA protocol is not known to have any implementation that
is much more efficient than a digital signature scheme, we can
conclude that a non-trivial computational task is required of
secondaries in PSR systems.

Both our transformations are in the random oracle model.
We first describe our result on transforming PSR schemes

to PKA schemes, and then extend to signatures when the
constraints on the query algorithm are satisfied.

A. Public-Key Authentication from PSR

Defining Public-key Authentication Security Public-key
authentication (PKA; see [DDN00, Section 3.5]) can be seen

as a relaxation of signature schemes in which we tolerate
interaction between the sender and the receiver and give up
the transferability property (i.e., the receiver is no longer able
to convince a third party that the signature is valid).

PKA schemes are related to, but are harder to build than
identification protocols, in which there isn’t even a message;
instead the prover (sender) convinces the verifier that he is
alive. (Such protocols can be used, for example, with key
cards as provers in order to control access.) Identification
protocols can be constructed from any zero-knowledge proof
of knowledge [FFS87] for a computationally hard problem, but
in practice no protocol where the efficiency of the prover is
better than that of the signer in a signature scheme is known
for either PKA or identification.

We define the relevant selective and existential security
notions for public key authentication protocols.

Definition IV.1. Public key authentication security against
selective forgery. A public key authentication protocol
(PKA Setup, PKA Prove, PKA V erify) is said to be ε-
secure against selective forgery under an adaptive chosen mes-
sage attack if every polynomial time probabilistic algorithm
A playing against a challenger wins the game that will be
described next with probability at most ε.

1) The forger A starts by picking a target message M .
2) The challenger runs the setup algorithm for the PKA,

sends PK to the forger A and keeps SK secret.
3) Algorithm A mounts an adaptive chosen message attack

by sending messages to be authenticated by the chal-
lenger, M1, ..,Mm, where ∀i : Mi 6= M and for each
one they engage in an authentication session.

4) At some point of A’s choosing it attempts to authenti-
cate the message M to a verifier where A plays the role
of the prover. Note that the sessions of authentication
of the Mi’s may be running concurrently.

We say that A wins the game if the verifier accepts the
authentication on M .

Definition IV.2. Public key authentication security against
existential forgery. A Public key authentication protocol
(Setup, Prove, V erify) is said to be ε-secure against ex-
istential forgery under an adaptive chosen message attack if
the same conditions as in Definition IV.1 hold, except A can
choose M at any point in the game.

From PSR to Selectively Secure PKA We show how
we can use a PSR system (PSR Setup, PSR Query,
PSR Answer, PSR V erify) that is selectively secure
against polynomial time adversaries (as in Definition II.5) and
construct a Public key authentication protocol

(PKA Setup, PKA Prove, PKA V erify)

that is selectively secure against polynomial time adversaries.
• PKA Setup(1k): Select uniformly at random a mes-

sage MR ∈ U , define R = {MR} and denote v(·) as the
function that returns 1 on MR and ⊥ otherwise. Run the
setup algorithm PSR Setup(R, v(·), 1k) for the PSR,
and obtain (PK, IS), which will be our public and secret
keys.
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• PKA Prove(Mi, IS , PK): The prover acts as the sec-
ondary in the PSR system proving that Mi 6∈ R. It
receives q, run the PSR Answer algorithm, and sends
back its results.

• PKA V erify(Mi, PK): The verifier acts as the re-
solver in the PSR system. If runs the PSR Query algo-
rithm to obtain and send q, receives the response, and
accepts if the PSR Verify algorithm accepts the proof
of non-membership.

Remark IV.3. Note that our PKA construction does not satisfy
perfect completeness (if the verifier happens to choose MR,
we cannot authenticate that message). If the PSR system has
perfect completeness, then we can also get a PKA system
with perfect completeness by adding a bit to each element
in the universe indicating whether it is ‘real’ or ‘dummy’,
where we authenticate only the real elements. The set R should
contain a single random dummy element and this way we can
authenticate all real elements.

Theorem IV.4. Suppose we have a PSR system that is ε-
secure against selective membership under an adaptive chosen
message attack then the derived Public key authentication
protocol described above is ε′-secure against selective forgery
under an adaptive chosen message attack, where ε′ = 4ε+ µs
and µs is the soundness parameter of the PSR.

Proof: Suppose that there exists a polynomial time forger
B which manages to win the selective forgery security game
for the derived PKA game with non-negligible probability
ε′. We describe an adversary A that uses the forger B as
a subroutine to win the selective membership security game
against the PSR in polynomial time with a non-negligible
advantage ε = ε′

4 −
µs(k)

4 .
• The adversary A starts by obtaining the message M

which B selects to forge. A draws at random a message
M∗, sets the target set to be empty, S = φ, denotes v(·)
as the function that returns v(M) = v(M∗) = 1 and ⊥
otherwise and sends (S, v(·),M,M∗) to the challenger.

• The challenger defines R = {M} with probability 1
2

and R = {M∗} otherwise. Next the challenger runs
PSR Setup(R, v(·), 1k) and sends PK to A.

• After algorithm A receives the public key PK from the
challenger it emulates B by acting as an intermediary
between the challenger and B by relaying their authen-
tication messages to each other.

• Finally B plays the role of a prover and tries to forge
an authentication for M , where A plays the role of the
verifier. If the verifier A accepts the authentication, then
A returns 1 (which means A believes R = {M∗}), else
A chooses a bit uniformly at random and returns it.

If R = {M∗}, then B witnesses exactly the same view as
in a real execution: the PSR Setup algorithm is defined as in
the PKA protocol as well as the remaining parts. In this case
B wins his game with probability at least ε′, and A identifies
the success of the forgery attempt. So the probability A wins
in this case is at least ε′+ 1−ε′

2 , as either B succeeds in forging
the authentication (probability ε′) or A guesses the bit correctly
(probability 1−ε′

2 ). If R = {M}, then it is no longer true that

B sees the same view as in a real execution, however, due
to the PSR’s soundness property the probability that B can
generate a proof for a false statement (and M /∈ R is false in
that case) is at most µs(k) (which should be negligible). So
the probability A wins in this case is at least 1−µs(k)

2 . Since
these two cases are equally likely, this means that A wins the
game with probability at least

1

2

(
ε′ +

1− ε′

2

)
+

1

2

(
1− µs(k)

2

)
=

1

2
+
ε′

4
− µs(k)

4

which is a non-negligible advantage in winning the security
game (ε = ε′

4 −
µs(k)

4 ), in contradiction to the security
assumption on the PSR system.
From Selective to Existential Security Next we prove that
in the random oracle model using a PKA which is selectively
secure (Definition IV.1) we can construct a PKA scheme which
is existentially secure (Definition IV.2), thus showing that
a PSR system implies a strong security notion for a PKA
scheme. To do that we simply use a random oracle to hash the
message we want to authenticate before authenticating it and
modify the algorithms appropriately. As a result, the running
time of the PKA sender will be greater than the running time
of a PSR system secondary by only a single random oracle
query.

Theorem IV.5. Suppose that we have a Public key authen-
tication protocol (Setup, Prove, V erify) which is ε′-secure
against selective forgery under an adaptive chosen message
attack then in the random oracle model the derived scheme
above is ε-secure against existential forgery under an adaptive
chosen message attack, where ε′ = ε/q(k) and q is some
polynomial in k.

Proof: Suppose that there is an adversary B which wins
the existential security game for public key authentication in
the random oracle model with non negligible probability ε.
We use this adversary B to win the selective security game,
contradicting our assumption.

Note that as we are in the random oracle model (see
Appendix A) we control the random oracle and every time B
wants to compute some h(M) it gets the value. As adversary
B runs in polynomial time, we know B can make at most a
polynomial number of queries to the random oracle, assume an
upper bound on that number is q(k). We describe adversary A
which uses adversary B in order to win the selective security
game:
• Our adversary A chooses uniformly at random a message

M from the message space and declares M as the
message it intends to forge. A also draws at random
j ∈ [q(k)].

• The challenger simply runs the setup algorithm for the
authentication protocol and sends A the public key PK.

• A starts by emulating B, by functioning as an interme-
diary between the challenger and B and relaying their
authentication messages to each other. When B queries
the random oracle h, answer with random values at
all steps except the jth one. At the jth step, when B
queries h for message m′, then set h(m′) to be M . If
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at some point before the forgery attempt by B, it asks
to authenticate the message m′, A stops and declares
failure.

• Finally B tries to forge an authentication for some
message M∗, if h(M∗) = M then A uses this forged
authentication to try and authenticate M , else it fails.

We may assume that B accesses h on the message it tries
to forge (otherwise its probability of success is negligible).
Therefore with probability 1

q(k) adversary A sets the value of
the random oracle over the message B tries to forge; h(M∗),
to be the message M that A tries to forge as well. This means
that A wins the security game in the case that both B managed
to successfully forge an authentication for his target message
and the right j was picked, which happens with probability
ε′ = ε

q(k) .

B. Digital Signatures from PSR with Simple Query Algorithms

We have seen that PSR systems can be used to construct
public-key authentication schemes of the same complexity.
Our goal in this section is to point out that for PSR systems
that satisfy some restrictions on the query algorithm, we can
actually get a signature scheme of about the same complexity,
as well. This shows that on-line public-key operations on
the responders are inherent for those schemes, including any
scheme that simply sends x as the query.

Consider any PSR system in which the Query algorithm is
deterministic and apply the transformation of Section IV-A to
get a PKA scheme. Observe that interaction is not necessary in
the resulting PKA scheme, because each side can compute the
receiver’s first message on its own. Thus, the resulting PKA
scheme is actually a signature scheme. The complexity of the
signer is the same as the complexity of the Query and Answer
algorithms in the PSR schemes.

In case the Query algorithm is randomized, the same
approach does not work, because the PKA sender cannot
be trusted to choose or even to know the randomness that
the Query algorithm uses. We get around the problem of
choosing the randomness by using the approach of Fiat and
Shamir [FS86]: namely, apply the transformation of Sec-
tion IV-A, but let the randomness for the Query algorithm be
h(x), where h is a random oracle. This allows the sender to
know the randomness and thus to compute the receiver’s first
message q. However, now the security proof for the resulting
signature scheme works only if soundness for the PSR schemes
holds against an adversary who knows the randomness used
in the Query algorithm.

Thus, we obtain the following theorem.

Theorem IV.6. Consider any PSR system (PSR Setup,
PSR Query, PSR Answer, PSR V erify) for which the
PSR Query algorithm is deterministic or for which the
randomness of the PSR Query can be given to the adversary
without harming soundness. Such a system implies an exis-
tentially unforgeable digital signature scheme whose signing
complexity is equal to the complexity of PSR Query plus
PSR Answer (plus at most two random oracle queries).

Remark IV.7. Note that although we separated the name-
servers into 2 parties (a primary and secondaries), we still
would have gotten a signature scheme with a 2 party protocol
i.e., when we have just a primary that commits to R and v(·)
and honest secondaries, or that the primary itself is in charge
of providing proofs for resolvers. This means that even without
the separation of nameservers the prover still has to generate
signatures online in order to prevent zone enumeration attacks,
while providing soundness.

C. Discussion
We have shown that we can use a PSR system satisfying

the zero-knowledge requirement (Definition II.4) and hence the
selective membership requirement (Definition II.5) in order to
build signatures, PKA and identification schemes. We therefore
want to claim that we demonstrated that the work involved in
this task must be non-trivial, unlike the NSEC3 protocol which
only uses hashing but does not prevent zone enumeration. One
could protest and argue that our zero-knowledge requirement
or even the selective membership requirement are too strong
and it may be possible to have a more relaxed notion of privacy
that still prevents zone enumeration. We now argue that this
is not the case.

Suppose we modify the privacy notion and protect against an
adversary that produces an element it did not explicitly query
on (the essence of zone enumeration). A little more formally,
suppose that there is some distribution on the set R. We require
that for every probabilistic polynomial time adversary A there
exists a simulator with oracle access to the set R, such that if
A interacts with a PSR system as a resolver and outputs, at
the end of the interaction, an element he believes to be in the
set R which he has not explicitly queried (this is ‘success’),
there is a simulator that interacts with an oracle to the set
R, which is successful as well with similar probability, where
similar means that the difference is negligible. We can show
that under this requirement we get a notion related to selective
membership, where instead of two elements chosen by the
adversary, the two elements of the challenge are chosen at
random, under a similar reduction to Theorem II.6. We can also
show that the latter implies public-key identification, under a
similar reduction to Section IV-A. Therefore we claim that we
have demonstrated that preventing zone enumeration requires
non-trivial computation.

V. FURTHER WORK

In a companion paper we generalize the constructions of
this paper and show how to obtain PSR systems without
random oracles. We suggest a general construction based on
VRFs [MRV99] and in particular relatively efficient incarna-
tions of it [DY05], [HW10]. We also provide a construction
based on hierarchical identity based encryption and in par-
ticular the one by Boneh, Boyen and Goh [BBG05] which
does not reveal any information about the set R, even not its
cardinality. For both constructions the amount of work consists
of a few bilinear operations and logarithmic in |U | number of
multiplications.

We also plan to write an Internet Draft for NSEC5.
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APPENDIX

A. The Random Oracle model
As our construction is analyzed in the random oracle model

we need to rigorously define this model. The random oracle
model has been used quite extensively to analyze cryptographic
protocols [BR93], [BR94], [BR96], [Cor00], [Sho01]. We
define the model as in Canetti, Goldreich and Halevi [CGH04].
In a scheme set in the Random Oracle Model, all parties
including adversaries interact with each other like they would
at the standard model, but they can also make oracle queries.
According to the security parameter k and a length function
`out(·), an oracle O is a function chosen uniformly at random
out of all possible functions mapping {0, 1}∗ to {0, 1}`out(k).
Every party has access to this oracle. Security is defined as
usual, meaning that a system is still considered secure when its
adversary has a negligible probability of success or a negligible
advantage, where the probability is also taken over the choices
of the random oracle. Note that in the proof of security the
random oracles can be “programmed”, meaning that certain
values of the random oracle can be set either before hand or
on the fly to be specific values (chosen uniformly at random)
by a simulator (see Nielsen [Nie02]). Values can be set only
the first time someone wishes to know O(x) as the oracle must
remain consistent.

B. Signature schemes
We use signature schemes in our construction, for that end

we define signature schemes and their properties as we need
them for our constructions. We define public key signature
schemes as in Goldreich [Gol04].

Definition A.1. A signature scheme is defined by three (poly-
nomial time) algorithms (G,S, V ): The key generator G gets
the security parameter k and outputs two keys, a signing
key sk and a verification key vk, G(1k) = (sk, vk). The
signing algorithm S takes the secret key sk and a message
M ∈ {0, 1}` and produces a signature. The verification
algorithm V gets vk and a presumed signature to a message
and verifies it, i.e., outputs ‘accept’ (’1’) or ‘reject’ (’0’). We
require perfect completeness: For every pair of keys (sk, vk)
generated by G(1k) and for every message M ∈ {0, 1}`=p(k)
(every message of length at most polynomial in the security
parameter) it holds that

Pr[Vvk(Ssk(M),M) = 1] = 1

We will assume that the signature scheme is deterministic
in the sense that for every message m there is a single signa-
ture σ that the signing algorithm produces (even though the

verification algorithm may accept many different signatures).
This is true wlog because we can always add to the signing
key sk a description of a pseudorandom function to provide
the randomness needed to sign m (see [GGM86]).

The type of security we require from our signature scheme
is “existential unforgeability against chosen message attacks”,
which means that even an adversary who can gain access to a
polynomial number of signatures to messages of his choosing
will still not be able to generate a signature for any message
the adversary did not explicitly request a signature for.

Definition A.2. A signature scheme is existentially secure
against chosen message attacks if every probabilistic polyno-
mial time adversary A wins the following security game with
negligible probability. The game is modeled as a communica-
tion game between the adversary and a challenger C.
• The challenger C runs the setup algorithm S(1k) and

obtains (sk, vk), sends vk to the adversary and keeps
sk secret to himself.

• The adversary A issues an adaptively chosen sequence
of messages m1, ..,mq to the challenger and gets in
return a signature on each of those messages s1, .., sq
where si = Ssk(mi). By adaptively chosen we mean that
the adversary chooses mi+1 only after seeing signature
si.

• The adversary chooses a message M together with a
forged signature s and sends them to the challenger;
The only restriction is that M 6= mi for every i.

The adversary wins the game when Vvk(s,M) = 1, i.e., the
forged signature is accepted as valid.

C. RSA and Trapdoor Permutations
Our construction needs a trapdoor permutation and we use

the famed RSA function. An RSA scheme has three algorithms
(G,RSA,RSA−1). The key generator G gets the security
parameter k and outputs two keys, a public key PK (used
for the forward direction: encryption and verifying signatures)
and a secret or private key SK (used for the backward
direction: decryption and signing). The algorithm G chooses
an exponent e (for efficiency we could select e to be small,
say 3), two large prime numbers P and Q of length roughly
k such that e is relatively prime to P − 1 and to Q − 1
and computes N = P · Q. It then calculates d such that for
L = lcm(P − 1, Q − 1) it holds that d · e ≡ 1 mod L. It
then sets PK = (N, e) and SK = (N, d). The RSA forward
algorithm takes a value m ∈ ZN and the public key and
computes RSAPKrsa

(m) ≡ me mod N ≡ σ mod N . The
RSA backward algorithm takes a value σ ∈ ZN and the secret
key and computes RSA−1SKrsa

(σ) ≡ σd mod N ≡ m mod N .
Here are a few known properties/assumptions of this en-

cryption scheme which we will find useful.
RSA is a permutation. Every value x ∈ ZN is mapped by
the encryption algorithm to some unique y ∈ ZN and the
decryption algorithm maps y back to x. Ideally we would like
the domain and range of the RSA to be Z∗N in order not to
expose any integers which are not relatively prime to N as
they would expose the factorization of N and by that the secret
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key of the RSA. If we have to “artificially” remove elements
from the domain ZN , due to the fact they are not relatively
prime to N that will also reveal those dangerous integers. Thus
we choose ZN as the domain and range knowing that those
integers are rare; P+Q

P ·Q = 1
P + 1

Q fraction of the domain ZN .
The RSA hardness assumption wrt to exponent e and security
parameter k. The assumption states that it is hard to compute
the RSA inverse of a random value: for any polynomial time
adversary A, for exponent e, random primes P,Q of length k
where e is relatively prime to P −1 and Q−1 and N = P ·Q,
for a random y ∈ ZN , it holds that

Pr[A(y,N, e) = x and xe ≡ y mod N ]

is negligible in the security parameter.
Note that succeeding in finding the RSA inverse of any

element of a set of r random challenges is just as hard. The
reason is that given a single random z, by selecting random
wi ∈ ZN and generating zi = z · wei mod N we get a set of
r numbers so that from the RSA inverse of any of them it is
possible to get RSA−1(z).
RSA is efficient. We can use low exponent RSA encryption
in our construction in order to increase efficiency. If we
pick e to be small then the forward algorithm will work
fast, as it will need to make a smaller number of modular
multiplications. The inversion algorithm takes the same amount
of time regardless of the size of e.


	Introduction
	DNSSEC.
	The DNSSEC Zone Enumeration Problem
	Our Model
	Cryptographic Lower Bound
	NSEC5: A Denial-of-existence Mechanism
	Organization & Contributions
	Other related work

	Model and Security Definitions
	Algorithms for the Parties in PSR Systems
	Functionality and Soundness
	Privacy: Preventing Zone Enumeration
	Zero-knowledge Implies Hardness of Zone Enumeration

	NSEC5 Construction and Proof
	Formally Modeling NSEC5 as a PSR System
	Practical Considerations and Compatibility with DNSSEC
	Proof of Security for NSEC5

	On-Line Public-Key Operations are Necessary
	Public-Key Authentication from PSR
	Digital Signatures from PSR with Simple Query Algorithms
	Discussion

	Further Work
	Acknowledgements
	References
	Appendix
	The Random Oracle model
	Signature schemes
	RSA and Trapdoor Permutations


