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Abstract. Template Attacks consist of two stages, the profiling stage
and the extraction stage. In order to improve the classification perfor-
mance of Template Attacks, a feasible and usual way is to characterize
signals and noises more accurate. Under the assumption that a reference
device is fully controlled by the attacker, in the profiling stage, the at-
tacker can operate the reference device as many times as possible and
samples a large number of actual power traces to help accurately char-
acterize signals and noises at different interesting points. However, in
some practical scenarios, this is not always the case and the attacker can
only record a limited number of actual power traces. In this paper, we
show that the attacker can still make Template Attacks practical and
more powerful in the above scenario if he could obtain the priori knowl-
edge about the reference device. The priori knowledge is a kind of priori
distribution of the actual value of the signal component of the instan-
taneous power consumption. Evaluation results exhibit that leaking this
kind of priori knowledge poses serious threat to the physical security of
cryptographic devices.

Keywords: Side-Channel Attacks, Power Analysis Attacks, Template
Attacks, Priori Knowledge.

1 Introduction

Template Attacks which are widely accepted to be the strongest side-channel
attacks from an information theoretic point of view were firstly proposed by S.
Chari et al. in 2002 [1]. As an important tools, Template Attacks are also used
to evaluate the physical security of cryptographic devices.

Template Attacks consist of two stages. The first stage is the profiling stage
and the second stage is the extraction stage. In the profiling stage, one has a
reference device identical or similar to the targeted device and builds templates
for each key-dependent operation with the reference device. In the extraction
stage, one can exploit a small number of actual power traces measured from the
targeted device and the templates to classify the correct (sub)key.

Now, let’s focus on the practical attack scenario. In order to improve the
classification performance of Template Attacks, a feasible and usual way is to



characterize signals and noises more accurate. Under the assumption that a
reference device is fully controlled by the attacker, in the profiling stage, the
attacker can operate the reference device as many times as possible and samples
a large number of actual power traces to help accurately characterize signals
and noises at different interesting points. However, in some practical scenarios,
this is not always the case and the attacker can only record a limited number of
actual power traces (For example, the attacker can only obtain less than 5,000
actual power traces.). For example, a common countermeasure is used to limit
the number of invocations that the reference device can perform in certain time
interval, or that the reference device performs under one key for limited number
of invocations and then the key is refreshed. In these cases, the attacker can
only record limited number of actual power traces. Furthermore, the signals and
noises may not be characterized accurately enough if the attacker uses classical
method of building templates with limited number of actual power traces.

Motivations Although the attacker can not obtain enough actual power
traces to characterize signals and noises accurately enough in the above cases, it
is still possible for him to possess the priori knowledge (accurate or inaccurate)
about the reference device (as well as the targeted device) in practice. Specifi-
cally speaking, the priori knowledge is a kind of priori distribution (rather than
accurate value) of the actual value of the signal component of the instantaneous
power consumption. We show two possible ways which the attacker could obtain
the priori knowledge. Example 1: The attacker may obtain the priori knowledge
about the reference device from his previous experiments of conducting Tem-
plate Attacks against similar devices. Example 2: For a sophisticated attacker,
after obtaining actual power traces from the reference device, he uses the actual
power traces to obtain an interval estimation (may be not very accurate) of the
actual value of the signal component and infers the prior distribution of the ac-
tual value of the signal component is a kind of distribution over the interval. To
sum up, for a seasoned attacker, it is very difficult to guarantee that he does not
possess any priori knowledge about the reference device from a practical point
of view.

Therefore, we need to answer two natural and important questions when the
attacker can not obtain enough actual power traces but has the priori knowledge
about the reference device. The first question is that how can the attacker exploit
the priori knowledge in a correct and reasonable way to improve the classification
performance of Template Attacks? The second question is that whether or not
the priori knowledge (even if may not be very accurate) will make Template
Attacks practical and more powerful (achieve higher classification performance)?
In this paper, we try to answer these two important questions.

Contributions Main contributions of this paper are two-folds. Firstly, based
on the method of Bayes estimation [17], we theoretically give out a correct and
reasonable way of exploiting the priori knowledge when the attacker conducts
Template Attacks with limited number of actual power traces in the profiling
stage. Secondly, we verify the way of exploiting the priori knowledge by both
simulated and practical experiments. Evaluation results show that Template
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Attacks will be practical and more powerful if the attacker can possess the priori
knowledge. What’s more, more accurate the priori knowledge is, more powerful
Template Attacks will be. These discoveries enable us to realize that the attacker
may be more powerful than we previously think if he obtains the priori knowledge
about the reference device.

Related Work The paper [2] provided answers to some basic and practi-
cal issues of Template Attacks, such as how to choose interesting points in an
efficient way and how to preprocess noisy data. The paper [4] proposed effi-
cient methods to avoid several possible numerical problems when implementing
Template Attacks. The paper [12] presented a variant of Template Attacks that
can be applied to block ciphers when the plaintext and ciphertext used are
unknown. In [8], Template Attacks were used to attack a masking protected im-
plementation of a block cipher. Recently, a simple pre-processing technique of
Template Attacks, normalizing the sample values using the means and variances
was evaluated for various sizes of test data [7]. Principal Component Analysis
(PCA)-Based Template Attacks were investigated in [3]. However, this kind of
Template Attacks may not improve the classification performance [7]. Therefore,
PCA-Based Template Attacks are not used widely in practice and we do not con-
sider PCA-Based Template Attacks in this paper. LDA-based Template Attacks
were introduced in [9]. This kind of Template Attacks depends on the condition
of equal covariances [4] (Please see Section 2.1.1 for more details.), which does
not hold in most settings. Therefore, it is not a better choice compared with
PCA-based Template Attacks in most settings [4].

Organization of This Paper The rest of this paper is organized as follows.
In Section 2, we review the basic concept of Template Attacks and the method
of Bayes estimation. In Section 3, we give out a correct and reasonable way of
exploiting the priori knowledge to make Template Attacks practical and more
powerful. In Section 4, we verify the way of exploiting the priori knowledge by
simulated and practical experiments. In Section 5, we conclude the whole paper.

2 Preliminaries

Template Attacks mainly include: Classical Template Attacks [1] and Reduced
Template Attacks [23]. In this section, we briefly review Classical Template At-
tacks, Reduced Template Attacks, and the method of Bayes estimation.

2.1 Classical Template Attacks

We will introduce the two stages of Classical Template Attacks: the profiling
stage and the extraction stage.

The Profiling Stage Assume that there existK different (sub)keys keyi, i =
0, 1, . . . ,K − 1 which need to be classified. Also, there exist K different key-
dependent operations Oi, i = 0, 1, . . . ,K − 1. Usually, one will generate K tem-
plates, one for each key-dependent operation Oi. One can exploit some meth-
ods to choose N interesting points (P0, P1, . . . , PN−1). The interesting points
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are those time samples that contain the most information about the charac-
terized key-dependent operations. Each template is composed of a mean vec-
tor and a covariance matrix. The mean vector is used to estimate the sig-
nal component of side-channel leakages. It is the average signal vector Mi =
(Mi[P0], . . . ,Mi[PN−1]) for each one of the key-dependent operations. The co-
variance matrix is used to estimate the probability density of the noise com-
ponent at different interesting points. It is assumed that noises at different in-
teresting points approximately follow the multivariate normal distribution. A
N dimensional noise vector ni(S) is extracted from each actual power trace
S = (S[P0], . . . , S[PN−1]) representing the template’s key dependency Oi as
ni(S) = (S[P0]−Mi[P0], . . . , S[PN−1]−Mi[PN−1]). One computes the (N ×N)
covariance matrix Ci from these noise vectors. The probability density of the
noises occurring under key-dependent operation Oi is given by the N dimension-
al multivariate Gaussian distribution pi(·), where the probability of observing a
noise vector ni(S) is:

pi(ni(S)) =
1√

(2π)N |Ci|
exp

(
− 1

2
ni(S)C

−1
i ni(S)

T
)

ni(S) ∈ RN . (1)

In equation (1), the symbol |Ci| denotes the determinant of Ci and the symbol
C−1

i denotes its inverse. We know that the matrixCi is the estimation of the true
covariance Σi. The condition of equal covariances [4] means that the leakages
from different key-dependent operations have the same true covariance Σ =
Σ0 = Σ1 = · · · = ΣK−1. In most settings, the condition of equal covariances
does not hold. Therefore, in this paper, we only consider the devices in which
the condition of equal covariances does not hold.

The Extraction Stage Assume that one obtains t actual power traces (de-
noted by S1,S2, . . . ,St) from the targeted device in the extraction stage. When
the actual power traces are statistically independent, one will apply maximum
likelihood approach on the product of conditional probabilities [11], i.e.

keyck := argmaxkeyi

{ t∏
j=1

Pr(Sj |keyi), i = 0, 1, . . . ,K − 1

}
,

where Pr(Sj |keyi) = pf(Sj ,keyi)(nf(Sj ,keyi)(Sj)). The keyck is considered to be
the correct (sub)key. The output of the function f(Sj , keyi) is the index of a
key-dependent operation. For example, when one attacks the output of a S-box
(denoted by Sbox) in the first round of AES-128, one builds templates for each
output of the S-box. In this case, f(Sj , keyi) = Sbox(mesj ⊕ keyi), where mesj
is the plaintext corresponding to the actual power trace Sj .

2.2 Reduced Template Attacks

In order to avoid numerical problems with the inversion of the covariance ma-
trix Ci, one can set the covariance matrix equal to the identity matrix. This
essentially means that one does not take the covariances between the interesting
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points into account. A template that only consists of a mean vector is called a
reduced template [23]. Naturally, Template Attacks based on reduced templates
are called Reduced Template Attacks. In Reduced Template Attacks, the proba-
bility density of the noises occurring under key-dependent operation Oi is given
by the distribution p′i(·), where the probability of observing a noise vector ni(S)
is:

p′i(ni(S)) =
1√

(2π)N
exp

(
− 1

2
ni(S)ni(S)

T
)

ni(S) ∈ RN .

2.3 Bayes Estimation

In the following, we briefly introduce the method of Bayes estimation [17]. We
first introduce the definition of Bayes estimators. Then, we introduce how to
compute a Bayes estimator.

Definition 1. An estimator is a real-valued function δ defined over the sample
space. It is used to estimate an estimand, g(θ), a real-valued function of the
parameter θ [17].

Suppose an unknown parameter θ is known to have a prior distribution Λ
(The prior distribution can be discrete or continuous distribution. In this paper,
we only assume the prior distribution is continuous.). Quite generally, suppose
that the consequences of estimating g(θ) by a value δ(X) (based on some mea-
surements X) are measured by L(θ, δ(X)). Of the loss function L, we shall
assume that

L(θ, δ(X)) ≥ 0 for all θ and δ(X),

and

L[θ, g(θ)] = 0 for all θ,

so that the loss is zero when the correct value is estimated. The accuracy, or
rather inaccuracy, of an estimator δ is then measured by the risk function

R(θ, δ) = Eθ{L[θ, δ(X)]},

the long-term average loss resulting from the use of δ(X). This defines the risk
function as a function of δ(X). An estimator δ(X) minimizing

r(Λ, δ) =

∫
R(θ, δ)dΛ(θ)

is called a Bayes estimator with respect to the prior distribution Λ. Note that,
the distribution Λ is a probability distribution of the parameter θ, that is,∫

dΛ(θ) = 1.
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Now, we will introduce how to compute a Bayes estimator of an unknown
parameter θ. Let λ(θ) denote the prior probability density of the parameter θ.
The prior probability density of the population (or discrete probability func-
tion) is denoted by f(X; θ). If one extracts n samples (X1, X2, . . . , Xn) from the
population, then the probability density of this group of samples is

f(X1; θ)f(X2; θ) · · · f(Xn; θ).

Thereby, we can compute the marginal density

p(X1, X2, . . . , Xn) =

∫
λ(θ)f(X1; θ)f(X2; θ) · · · f(Xn; θ)dθ.

Then, the following posterior probability density is computed:

λ(θ|X1, . . . , Xn) = λ(θ)f(X1; θ) · · · f(Xn; θ)/p(X1, X2, . . . , Xn). (2)

In general, the Bayes estimator of the parameter θ is set to be the mean value
of λ(θ|X1, . . . , Xn).

3 How to Use The Prior Knowledge For Template
Attacks

In this section, we introduce how to use the prior knowledge for Template At-
tacks. The usage of the prior knowledge for Template Attacks is the same for
both Classical Template Attacks and Reduced Template Attacks.

It is well known that the instantaneous power consumption PCtotal can
be modeled as the sum of an operation-dependent component PCop, a data-
dependent component PCdata, electronic noise PCel.noise, and a constant com-
ponent PCconst [18], i.e.

PCtotal = PCop + PCdata + PCel.noise + PCconst.

The value PCop + PCdata (or PCop + PCdata + PCconst) can be viewed as
the signal component and the value PCel.noise can be viewed as the noise com-
ponent. Usually, for each point Pj in an actual power trace, its power consump-
tion PCtotal follows a normal distribution N (µj , σ

2
j ) and the electronic noise

PCel.noise follows the normal distribution N (0, σ2
j ) [18]. For fixed operation on

fixed data, due to

V ar(PCop) = V ar(PCdata) = V ar(PCconst) = 0,

it has that PCop + PCdata + PCel.noise = µj .
More accurate the signal component (the actual value of µj) is estimated,

more accurate the noise component (the value PCtotal−µj) will be estimated. For
an interesting point, if actual values of the signal component and the noise com-
ponent are accurately estimated, accurate templates (reduced templates) will be
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built and better classification performance of Template Attacks (both Classical
Template Attacks and Reduced Template Attacks) will be achieved. In the clas-
sical way of building templates (reduced templates), for an interesting point, the
attacker computes the mean value of the samples to estimate the actual value of
the signal component µj . Specifically speaking, for the key-dependent operation
Oi, the point Pj is an interesting point and the attacker obtains n actual power
traces (S1,S2, . . . ,Sn) to build the template for the key-dependent operation Oi.
Therefore, the attacker obtains n values of the power consumption of the point
Pj , one from each actual power trace. The n values are S1[Pj ], S2[Pj ], . . . , Sn[Pj ].
The actual value of µj is estimated by µ̃j as follows:

µ̃j = Mi[Pj ] =
n∑

k=1

Sk[Pj ]/n.

However, in our scenario, the attacker not only has n actual power traces
(obtained from the reference device), but also possesses a kind of prior knowledge
about the reference device (the targeted device). The prior knowledge is a kind of
prior distribution of the actual value of µj . Let’s consider the most common case.
Assume that the attacker knows that the actual value of µj follows the normal
distribution N (θ1, θ

2
2)

1 (Note that, the normal distribution N (θ1, θ
2
2) itself may

not be very accurate. However, from the prior knowledge, the parameters θ1, θ
2
2

are known to the attacker.) and does not know what the actual value of µj

accurately is. The attacker can use the method of Bayes estimation to estimate
the actual value of µj with the prior knowledge as follows: The attacker computes
the probability density of the actual value of µj from prior knowledge as

λ(µj) = (
√
2πθ2)

−1exp
[
− 1

2θ22
(µj − θ1)

2
]
.

Moreover, the power consumption of the point Pj satisfies the following proba-
bility density function:

f(x;µj , σj) = (
√
2πσj)

−1exp
[
− 1

2σ2
j

(x− µj)
2
]
.

Although the value σj is not known to the attacker, it does not affect the process
of computing the Bayes estimator of the actual value of µj . What the attacker
needs is just an accurate estimation of the actual value of µj . From equation (2),
the attacker computes the posterior probability density:

λ(µj |S1[Pj ], . . . , Sn[Pj ]) = exp
[
− 1

2θ22
(µj − θ1)

2 − 1

2

n∑
k=1

(Sk[Pj ]− µj)
2
]/

C1,

1 The attacker may possess other kind of prior distribution of the actual value of µj ,
e.g., an uniform distribution over a small closed interval which contains µj . This
case may be occur in practice because the attacker can exploit interval estimation
method to obtain the small closed interval.
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the constant C1 only has relation with θ1, θ2, S1[Pj ], . . . , Sn[Pj ] and has no rela-
tion with µj . It has that

− 1

2θ22
(µj − θ1)

2 − 1

2

n∑
k=1

(Sk[Pj ]− µj)
2 = − 1

2A2
(µj −B)2 + C2,

where
A2 = 1/(n+ 1/θ22),

B = (nMi[Pj ] + θ1/θ
2
2)/(n+ 1/θ22),

and C2 has no relation with µj . Furthermore, the attacker can obtain

λ(µj |S1[Pj ], . . . , Sn[Pj ]) = C3exp
[
− 1

2A2
(µj −B)2

]
,

where C3 = C1e
C2 . Because it has that∫ +∞

−∞
λ(µj |S1[Pj ], . . . , Sn[Pj ])dµj = 1,

hence C3 = (
√
2πA)−1. Up to now, the attacker obtains the Bayes estimator of

the actual value of µj as

µ̃j =
n

n+ 1/θ22

(∑n
k=1 Sk[Pj ]

n

)
+

1/θ22
n+ 1/θ22

θ1. (3)

The equation (3) shows that if the attacker does not have the prior knowledge
(i.e. the prior distribution:N (θ1, θ

2
2)), he can only use

∑n
k=1 Sk[Pj ]/n to estimate

the actual value of µj . If the attacker does not have actual power traces obtained
from the reference device, he can only use the prior knowledge (i.e. the value θ1)
to estimate the actual value of µj . If the attacker has the prior knowledge as well
as actual power traces obtained from the reference device, by equation (3), he will
use the weighted average of

∑n
k=1 Sk[Pj ]/n and θ1 to estimate the actual value

of µj under the ratio n : 1/θ22. This ratio is reasonable and the relevant reasons
are as follows. On one hand, when more actual power traces are obtained from
the reference device by the attacker, the proportion of

∑n
k=1 Sk[Pj ]/n should be

larger. On the other hand, when the value θ22 is smaller (This means that the
prior distribution of the actual value of µj is more accurate.), the proportion of
θ1 should be larger.

Other details of building templates (reduced templates) remain unchanged.
Our method only exploits the prior knowledge to estimate the actual value of
the signal component more accurate. In the next section, we will experimentally
verify the classification performance of Template Attacks with prior knowledge.

4 Experimental Evaluations

For the implementation of a cryptographic algorithm with countermeasures, one
usually first uses some methods to delete the countermeasures from actual power
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traces and then tries to recover the correct (sub)key using classical attack meth-
ods against unprotected implementation. For example, if one has actual power
traces with random delays [13], he may first use the method proposed in [14]
to remove the random delays from actual power traces and then uses classical
attack methods to recover the correct (sub)key. The methods of deleting counter-
measures from actual power traces are beyond the scope of this paper. Therefore,
we take unprotected AES-128 implementation as example.

We verified both Classical Template Attacks and Reduced Template Attacks
by conducting simulated and practical experiments. In both simulated and prac-
tical experiments, we tried to attack the output of the S-boxes in the first round
of AES-1281. Before introducing the specific experiment details, we first intro-
duce how to get the prior distribution of the actual value of the signal component
for every interesting point for both simulated and practical experiments.

The paper [25] showed that Reduced Template Attacks are more powerful
compared with Classical Template Attacks when the number of actual power
traces used in the profiling stage is limited. Therefore, we mainly exploit Re-
duced Template Attacks to exhibit our discoveries in this paper (Note that, our
method can be used for both Classical Template Attacks and Reduced Template
Attacks.).

For simplicity, for both simulated and practical experiments, let np denote
the number of traces used in the profiling stage and let ne denote the number of
traces used in the extraction stage. In this paper, we use Guessing Entropy [6] as
a metric about the classification performance of Template Attacks (Many other
papers also used Guessing Entropy as a metric (e.g. [19,21,22]).).

4.1 How to Get The Prior Knowledge

We get the prior distribution of the actual value of the signal component for ev-
ery interesting point for both simulated and practical experiments in a simulated
way. In this way, we can clearly give out an upper bound of how powerful Tem-
plate Attacks will become by exploiting the prior knowledge. In both simulated
and practical experiments, for each key-dependent operation Oi, we considered
the prior distribution of the actual value of the signal component µj of each
interesting point Pj with four different levels of accuracy and assumed the prior
distributions is a normal distribution N (θ1, θ

2
2). For each key-dependent opera-

tion Oi, we generated 400 traces (simulated traces or actual power traces). The
400 traces were used to estimate the parameters θ1, θ

2
2 for every interesting point

as follows. We repeated a process 300 times. Every time, we chose 16 traces (Let
m = 16 and the 16 traces are denoted by S1, . . . , Sm.) from the 400 traces u-
niformly at random and computed

∑m
k=1 Sk[Pj ]/m. Therefore, there were 300

different values of
∑m

k=1 Sk[Pj ]/m. The mean value of the 300 different values
was set to be θ1 and the variance of the 300 different values was set to be θ22. In

1 Due to the length of the output of every S-box is 8 bits long, we need to build 256
templates, one for each output.
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this way, we obtained the estimation of θ1 and θ22. Similarly, we additionally let
m = 32, 64, 128 and obtained four different groups of estimation of θ1 and θ22.

Clearly, when the value m is larger, the estimation of θ1 and θ22 is more
accurate. Therefore, we obtained estimation of the parameters θ1 and θ22 with
four different levels of accuracy. The corresponding four normal distributions
represent the prior knowledge which the attacker can possess in practical attack
scenario.

In all the experiments, we let the symbol “CTA” denotes the Classical Tem-
plate Attacks without any prior knowledge. The symbol “CTA-16” denotes Clas-
sical Template Attacks based on prior knowledge (i.e. The actual value µj is
estimated by equation (3).) which is obtained when the value m equals to 16.
Similarly, we define the symbols “CTA-32”, “CTA-64”, and “CTA-128” to de-
note the cases that the value m equals to 32, 64, and 128 respectively. We let
the symbol “RTA” denotes the Reduced Template Attacks without any prior
knowledge. The symbol “RTA-16” denotes Reduced Template Attacks based on
prior knowledge which is obtained when the value m equals to 16. Similarly, we
define the symbols “RTA-32”, “RTA-64”, and “RTA-128” to denote the cases
that the value m equals to 32, 64, and 128 respectively.

4.2 Simulated Experiments

In all simulated experiments, we chose 4 interesting points and the typical
Hamming-Weight power model [20] was adopted to describe the power consump-
tion. In all simulated experiments, the variance of simulated Gaussian noise is
denoted by v. We employed three different noise levels to test the influence of
noises on the classification performance of Template Attacks. The variances of
simulated Gaussian noise for the three noise levels were 4, 9, and 16.

For fixed noise level (The value of v is fixed.), we respectively used 2,000,
4,000, and 6,000 simulated traces to build the 256 reduced templates for Reduced
Template Attacks. The simulated traces were generated with a fixed subkey and
random plaintext inputs. We generated additional 100,000 simulated traces with
another fixed subkey and random plaintext inputs. The 100,000 simulated traces
were used in the extraction stage. For fixed np and v, we tested the Guessing
Entropy of the five kinds of Reduced Template Attacks (RTA, RTA-16, RTA-
32, RTA-64, and RTA-128) when the attacker could use ne simulated traces
in the extraction stage as follows. We respectively repeated the five kinds of
Reduced Template Attacks 1,000 times. For each time, we chose ne simulated
traces from the 100,000 simulated traces uniformly at random and the five kinds
of Reduced Template Attacks were conducted with the same ne simulated traces.
We respectively computed the Guessing Entropy of the five kinds of Reduced
Template Attacks with the results of the 1,000 times attacks. The Guessing
Entropy of the five kinds of Reduced Template Attacks for different values of np
and v is shown in Figure 1.

From Figure 1, we find that if the prior knowledge is more accurate, the
classification performance of Reduced Template Attacks with prior knowledge
will be better. When the noise level is higher, Reduced Template Attacks with

10



prior knowledge will achieve larger advantage over Reduced Template Attacks
without prior knowledge. When more simulated traces can be obtained from the
reference device (e.g. np = 6, 000), the advantages of Reduced Template Attacks
with prior knowledge over Template Attacks without prior knowledge will be
smaller.
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(b) np = 4000, v = 4
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(c) np = 6000, v = 4

5 10 15 20 25 30 35 40 45 50
0

2

4

6

8

10

12

14

16

18

20

The number of traces used in the extraction stage

G
ue

ss
in

g 
E

nt
ro

py

 

 
RTA
RTA−16
RTA−32
RTA−64
RTA−128

(d) np = 2000, v = 9
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(e) np = 4000, v = 9
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(f) np = 6000, v = 9
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(g) np = 2000, v = 16
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(h) np = 4000, v = 16
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(i) np = 6000, v = 16

Fig. 1. Simulated Experiment Results

For Classical Template Attacks, we computed the Guessing Entropy of the
five kinds of Classical Template Attacks (CTA, CTA-16, CTA-32, CTA-64, and
CTA-128) similarly. The simulated experiment results show that Classical Tem-
plate Attacks with prior knowledge have advantages over Classical Template
Attacks without prior knowledge.
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4.3 Practical Experiments

We tried to attack the output of all the S-boxes in the first round of an un-
protected AES-128 software implementation on an typical 8-bit microcontroller
STC89C58RD+ (This kind of 8-bit microcontroller was also exploited by other
papers [15, 16].) whose operating frequency is 11MHz. The actual power traces
were acquired with a sampling rate of 50MS/s. The average number of actual
power traces during the sampling process was 10 times.

We generated two sets of actual power traces, Set A and Set B. The Set A
captured 10,000 actual power traces which were generated with a fixed main key
and random plaintext inputs. The Set B captured 100,000 actual power traces
which were generated with another fixed main key and random plaintext inputs.
We used the same device as that was used to generate the prior distribution
in Section 4.1 to generate the two sets of actual power traces, which provides a
good setting for the focuses of our research. For our device, the condition of equal
covariances does not hold. For each S-box of the unprotected AES-128 software
implementation, we used CPA based method [26] to choose 4 interesting points
in 4 continual clock cycles, one in each clock cycle. Both Classical Template
Attacks and Reduced Template Attacks were conducted based on the same 4
interesting points. We only show the practical experiment results of the first
and the second S-box in this paper. For other S-boxes in the first round of the
unprotected AES-128 software implementation, similar evaluation results were
obtained by us.
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(b) np = 7, 500
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(c) np = 10, 000

Fig. 2. The experiment results of Classical Template Attacks for the first S-box

For Classical Template Attacks, we respectively chose 5,000, 7,500, and 10,000
different actual power traces from Set A to build the 256 templates1. For Reduced
Template Attacks, we respectively chose 2,000, 4,000, and 6,000 different actual
power traces from Set A to build the 256 templates. The 100,000 actual power
traces of Set B were used in the extraction stage for both Classical Template
Attacks and Reduced Template Attacks. For fixed np, we tested the Guessing
Entropy of the five kinds of Classical Template Attacks (CTA, CTA-16, CTA-32,

1 Numerical problems will arise when we used less than 5,000 actual power traces to
build the 256 templates.
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(a) np = 2, 000
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(b) np = 4, 000
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(c) np = 6, 000

Fig. 3. The experiment results of Reduced Template Attacks for the first S-box

CTA-64, and CTA-128) when one uses ne actual power traces in the extraction
stage as follows. We repeated the five kinds of Classical Template Attacks 1,000
times. For each time, we chose ne actual power traces from Set B uniformly at
random. The five kinds of Classical Template Attacks were conducted with the
same ne actual power traces. We respectively computed the Guessing Entropy of
the five kinds of Classical Template Attacks with the results of the 1,000 times
of attacks. The Guessing Entropy of the five kinds of Classical Template Attacks
for the first S-box are shown in Figure 2. For Reduced Template Attacks, we
computed the Guessing Entropy of the five kinds of Reduced Template Attacks
(RTA, RTA-16, RTA-32, RTA-64, and RTA-128) when one uses ne actual power
traces in the extraction stage similarly. The Guessing Entropy of the five kinds
of Reduced Template Attacks for the first S-box are shown in Figure 3.

From Figure 2 and Figure 3, we find that, for both Classical Template Attacks
and Reduced Template Attacks, if the prior knowledge is more accurate, the
classification performance will be better. When more actual power traces can
be obtained from the reference device, the advantages of Template Attacks with
prior knowledge over Template Attacks without prior knowledge will be smaller.

For the second S-box, we also used the actual power traces in Set A and
Set B to compute the Guessing Entropy of the five kinds of Classical Template
Attacks and the five kinds of Reduced Template Attacks. The experiment results
of the second S-box for both Classical Template Attacks and Reduced Template
Attacks are exhibited in Appendix A.

5 Conclusion and Future Work

In this paper, we verify that if the attacker can obtain the prior knowledge (Even
if the prior knowledge is just a kind of prior distribution of the actual value of the
signal component rather than an accurate value of it.) about the reference device
(the targeted device), Template Attacks (both Classical Template Attacks and
Reduced Template Attacks) will be practical and more powerful than we previ-
ously think. Evaluation results exhibit that leaking this kind of priori knowledge
poses serious threat to the physical security of cryptographic devices. Therefore,
we suggest that the designers of a cryptographic device should take the prior
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knowledge into consideration when he uses Template Attacks to evaluate the
physical security of the cryptographic device. In the future, it is necessary to
research how to exploit the prior knowledge to make other profiled side-channel
attacks (such as Stochastic Model based Attacks [24]) become more powerful
in a reasonable way. It would be interesting to research how to prevent the at-
tacker to obtain the prior knowledge. It is also necessary to further verify our
discoveries in other devices such as ASIC and FPGA.
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Appendix A: The Practical Experiment Results for The
Second S-box
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(a) np = 5, 000
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(b) np = 7, 500
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(c) np = 10, 000

Fig. 4. The experiment results of Classical Template Attacks for the second S-box
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(a) np = 2, 000
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(b) np = 4, 000
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(c) np = 6, 000

Fig. 5. The experiment results of Reduced Template Attacks for the second S-box
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