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Abstract. Template attacks are widely accepted as the strongest side-
channel attacks from the information theoretic point of view, and they
can be used as a very powerful tool to evaluate the physical security of
cryptographic devices. Template attacks consist of two stages, the pro-
filing stage and the extraction stage. In the profiling stage, the attacker
is assumed to have a large number of power traces measured from the
reference device, using which he can accurately characterize signals and
noises in different points. However, in practice, the number of profiling
power traces may not be sufficient. In this case, signals and noises are
not accurately characterized, and the key-recovery efficiency of template
attacks is significantly influenced. We show that, the attacker can still
make template attacks powerfully enough in practice as long as the pri-
ori knowledge about the reference device be obtained. We note that, the
priori knowledge is just a prior distribution of the signal component of
the instantaneous power consumption, which the attacker can easily ob-
tain from his previous experience of conducting template attacks, from
Internet and many other possible ways. Evaluation results show that, the
priori knowledge, even if not accurate, can still help increase the power
of template attacks, which poses a serious threat to the physical security
of cryptographic devices.

Keywords: Side-Channel Attacks, Power Analysis Attacks, Template
Attacks, Priori Knowledge.

1 Introduction

Template attacks were proposed by Chari et al. in 2002 [1], which consist of two
stages, i.e. the profiling stage and the extraction stage. In the profiling stage,
the attacker has a reference device identical or similar to the target device, and
he can use the reference device to characterize the leakage of the target device.
In the extraction stage, the attacker can exploit a small number of power traces
measured from the target device to recover the correct (sub)key. In order to
make template attacks powerfully enough, the attacker needs to use a large
number of power traces to accurately characterize signals and noises in different



interesting points. However, in practice, the number of profiling traces may be
limited. For example, a common countermeasure is to limit the operation times
of the reference device, or the key used by the reference device will be refreshed
after being used several times. In these scenarios, the attacker can only obtain
a limited number of power traces in the profiling stage, and signals and noises
are not accurately characterized, which significantly influences the key-recovery
efficiency of template attacks.

1.1 Motivations

A natural question is whether or not it is possible to further increase the power of
template attacks even if the number of profiling traces is limited? We anticipate
that using the priori knowledge about the reference device may be a possible way.
The priori knowledge is just a kind of prior distribution of the actual value of
the signal component in the instantaneous power consumption. There are many
ways that the attacker can obtain the priori knowledge in practice. We show
three typical examples here.

Example 1: Assume that the attacker has characterized the power leakages
of some cryptographic devices whose leakage characterizations are similar to the
reference device. Then, he may obtain the priori knowledge about the reference
device. For example, noises in different interesting points are usually assumed
to follow the normal distribution. If the attacker can estimate the mean value
and the variance of the normal distribution using power traces measured from
previous cryptographic devices, then the priori knowledge about the reference
device can be obtained.

Example 2: From Internet (e.g. [18,19]), the attacker may obtain some power
traces or other potential useful information (e.g. Signal-to-Noise Ratio) of dif-
ferent devices which are similar to the reference device, using which he can infer
the priori knowledge of the reference device (similarly to Example 1).

Example 3: For a sophisticated attacker, after obtaining power traces from
the reference device in the profiling stage, he can use the power traces to obtain
an interval estimation of the actual value of the signal component and roughly
infer the prior distribution is a kind of distribution (e.g. normal distribution or
uniform distribution) over the interval.

To sum up, for a seasoned attacker, it is not only reasonable but also realistic
for him to possess the priori knowledge about the reference device from a prac-
tical point of view. Therefore, we need to consider the power of template attacks
when the attacker can not obtain enough power traces from the reference device
in the profiling stage but has the priori knowledge about the reference device.
Specifically, two questions need to be answered. The first question is how can
the attacker exploit the priori knowledge during the profiling stage in a the-
oretically correct and practically feasible way to make template attacks more
powerful (i.e. achieve better classification performance)? The second question is
whether or not the priori knowledge (even if it may not be very accurate) will
make template attacks more powerful really?
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Of course, one may ask such question: Why not the attacker exploits the
power traces obtained from the similar devices (from his previous experience of
conducting template attacks or from Internet) together with the power traces
obtained from the reference device to build the templates to make template
attacks more powerful? In fact, if one directly exploits power traces from the
similar devices and the reference device to build the templates, the classifica-
tion performance of template attacks will be decreased [21]. The reason is that
the acquisition campaigns about the devices are different1 even if the leakage
distributions of the similar devices and the reference device are similar [21].

If we can give positive answers to the above two important questions, then
in order to make template attacks more powerful in the above scenarios, the
attacker can first extract the priori knowledge from the power traces obtained
from the different but similar devices and then conduct template attacks with the
priori knowledge as well as the limited power traces obtained from the reference
device. From this point of view, these two questions are worth researching.

1.2 Contributions

Main contributions of our work are two-folds. Firstly, based on the method of
Bayes estimation [13], we give a theoretically correct and practically feasible way
of exploiting the priori knowledge when the attacker conducts template attacks
with limited power traces obtained from the reference device in the profiling
stage.

Secondly, we verify our way of exploiting the priori knowledge using both
simulated and practical experiments. Evaluation results show that, template
attacks will be more powerful if the attacker can possess accurate priori knowl-
edge. Additionally, the more accurate the priori knowledge is, the more powerful
template attacks will be. Therefore, with the priori knowledge we can further
increase the power of template attacks.

1.3 Related Work

Answers to some practical issues of template attacks were provided by [2], such as
how to choose interesting points in an efficient way and how to preprocess noisy
data. Choudary et al. proposed efficient methods to avoid possible numerical
obstacles when implementing template attacks in [4]. In [10], Hanley et al. pre-
sented a variant of template attacks which can be applied to block ciphers when
the plaintext and ciphertext are unknown. In [7], template attacks were used to
attack a masked implementation. Recently, a simple pre-processing technique of
template attacks, normalizing the sample values using the means and variances
was evaluated [6]. Standaert et al. [20] showed how to best evaluate profiling
and extraction of profiled attacks by using the information theoretic metric and
the security metric. Principal Component Analysis (PCA)-Based template at-
tacks were investigated in [3]. However, this kind of template attacks may not

1 For example, there exist offsets in the different acquisition campaigns.
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improve the classification performance [6]. Therefore, PCA-Based template at-
tacks are not widely used in practice. Linear Discriminant Analysis (LDA)-based
template attacks were introduced in [8] and depend on the condition of equal
covariances [4], which does not hold in most settings. Therefore, it is not a better
choice compared with PCA-based template attacks [4]. Up to now, no previous
work considered our important questions.

1.4 Organization of This Paper

The rest of this paper is organized as follows. In Section 2, we review the concept
of template attacks and Bayes estimation. In Section 3, we give a reasonable way
of exploiting the priori knowledge to make template attacks more powerful. In
Section 4, we verify the way of exploiting the priori knowledge by both simulated
and practical experiments. In Section 5, we conclude the whole paper.

2 Preliminaries

Template attacks mainly include: classical template attacks [1] and reduced tem-
plate attacks (pp. 108 in [9]). In this section, we briefly review these two kinds
of template attacks and the method of Bayes estimation.

2.1 Classical Template Attacks

We will introduce the two stages of classical template attacks: the profiling stage
and the extraction stage.

2.1.1 The Profiling Stage Assume that there exist K different (sub)keys
keyi, i = 0, 1, . . . ,K − 1 which need to be classified. Also, there exist K dif-
ferent key-dependent operations Oi, i = 0, 1, . . . ,K − 1. Usually, one will gen-
erate K templates, one for each key-dependent operation Oi. One can exploit
some methods to choose N interesting points (P0, P1, . . . , PN−1). The interest-
ing points are those time samples that contain the most information about
the characterized key-dependent operations. Each template is composed of a
mean vector and a covariance matrix. The mean vector is used to estimate
the signal component of side-channel leakages. It is the average signal vector
Mi = (Mi[P0], . . . ,Mi[PN−1]) for each one of the key-dependent operations.
The covariance matrix is used to estimate the probability density of the noise
component at different interesting points. It is assumed that noises at differen-
t interesting points approximately follow the multivariate normal distribution.
A N dimensional noise vector ni(S) is extracted from each actual power trace
S = (S[P0], . . . , S[PN−1]) representing the template’s key dependency Oi as
ni(S) = (S[P0]−Mi[P0], . . . , S[PN−1]−Mi[PN−1]). One computes the (N ×N)
covariance matrix Ci from these noise vectors. The probability density of the
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noises occurring under key-dependent operation Oi is given by the N dimension-
al multivariate Gaussian distribution pi(·), where the probability of observing a
noise vector ni(S) is:

pi(ni(S)) =
1√

(2π)N |Ci|
exp

(
− 1

2
ni(S)C

−1
i ni(S)

T
)

ni(S) ∈ RN . (1)

In equation (1), the symbol |Ci| denotes the determinant of Ci and the symbol
C−1

i denotes its inverse.

2.1.2 The Extraction Stage Assume that one obtains t power traces (de-
noted by S1,S2, . . . ,St) from the target device in the extraction stage. When the
power traces are statistically independent, one will apply maximum likelihood
approach on the product of conditional probabilities (pp. 156 in [9]), i.e.

keyck := argmaxkeyi

{ t∏
j=1

Pr(Sj |keyi), i = 0, 1, . . . ,K − 1

}
,

where Pr(Sj |keyi) = pf(Sj ,keyi)(nf(Sj ,keyi)(Sj)). The keyck is considered to be
the correct (sub)key. The output of the function f(Sj , keyi) is the index of a
key-dependent operation.

2.2 Reduced Template Attacks

In order to avoid numerical obstacles with the inversion of the covariance matrix
Ci, one can set the covariance matrix equal to the identity matrix. This essen-
tially means that one does not take the covariances between different interesting
points into consideration. A template that only consists of a mean vector is called
a reduced template (pp. 108 in [9]). Correspondingly, template attacks based on
reduced templates are called as reduced template attacks. In reduced template
attacks, the probability density of the noises occurring under key-dependent op-
eration Oi is given by the distribution p′i(·), where the probability of observing
a noise vector ni(S) is:

p′i(ni(S)) =
1√

(2π)N
exp

(
− 1

2
ni(S)ni(S)

T
)

ni(S) ∈ RN .

2.3 Bayes Estimation

In the following, we briefly introduce the method of Bayes estimation [13]. We
firstly introduce the definition of Bayes estimators. Then, we introduce how to
compute a Bayes estimator.

Suppose an unknown parameter θ is known to have a prior distribution Λ
(The prior distribution can be discrete or continuous distribution. In this paper,
we only assume the prior distribution is continuous.). Quite generally, suppose
that the consequences of estimating g(θ) by a value δ(X) (based on some mea-
surements X) are measured by L(θ, δ(X)). As of the loss function L, we shall
assume that
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L(θ, δ(X)) ≥ 0 for all θ and δ(X),

and L[θ, g(θ)] = 0 for all θ, so that the loss is zero when the correct value is
estimated. The accuracy, or rather inaccuracy, of an estimator δ is then measured
by the risk function

R(θ, δ) = Eθ{L[θ, δ(X)]},
the long-term average loss resulting from the use of δ(X). This defines the risk
function as a function of δ(X). An estimator δ(X) minimizing

r(Λ, δ) =

∫
R(θ, δ)dΛ(θ)

is called a Bayes estimator with respect to the prior distribution Λ. Note that,
the prior distribution Λ is a probability distribution of the parameter θ, that is,∫

dΛ(θ) = 1.

Now, we will introduce how to compute a Bayes estimator of an unknown
parameter θ. Let λ(θ) denote the prior probability density of the parameter θ.
The prior probability density of the population (or discrete probability func-
tion) is denoted by f(X; θ). If one extracts n samples (X1, X2, . . . , Xn) from the
population, then the probability density of this group of samples is

f(X1; θ)f(X2; θ) · · · f(Xn; θ).

Thereby, we can compute the marginal density

p(X1, X2, . . . , Xn) =

∫
λ(θ)f(X1; θ)f(X2; θ) · · · f(Xn; θ)dθ.

Then, the following posterior probability density is computed:

λ(θ|X1, . . . , Xn) = λ(θ)f(X1; θ) · · · f(Xn; θ)/p(X1, X2, . . . , Xn). (2)

In general, the Bayes estimator of the parameter θ is set to be the mean value
of λ(θ|X1, . . . , Xn).

3 Using Priori Knowledge to Improve Template Attacks

In this section, we introduce how to use the priori knowledge about the reference
device for template attacks. The usage of the priori knowledge for template
attacks is the same for both classical template attacks and reduced template
attacks.

It is well known that the instantaneous power consumption PCtotal can
be modeled as the sum of an operation-dependent component PCop, a data-
dependent component PCdata, the electronic noise PCel.noise, and a constant
component PCconst (pp. 62-65 in [9]), i.e.

PCtotal = PCop + PCdata + PCel.noise + PCconst.
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The value PCop + PCdata (or PCop + PCdata + PCconst) can be viewed
as the signal component and the value PCel.noise can be viewed as the noise
component. Usually, for each point Pj in an actual power trace, when the oper-
ation and the data are all fixed, its power consumption PCtotal follows a normal
distribution N (µj , σ

2
j ) and the electronic noise PCel.noise follows the normal dis-

tribution N (0, σ2
j ) (pp. 62-65 in [9]). For fixed operation on fixed data, due to

V ar(PCop) = V ar(PCdata) = V ar(PCconst) = 0, we have PCop + PCdata +
PCconst = µj . The priori knowledge is a kind of prior distribution of the actual
value of the signal component µj . Due to the existence of the electronic noise, we
can reasonably assume the prior distribution of the actual value of µj obtained
by the attacker is a normal distribution.

There are many ways that the attacker can obtain the prior distribution and
we just give out a specific one of them. Considering Example 1 in Section 1, for
the same position about the target intermediate value, the attacker obtains n
samples (For convenience, the samples are denoted by X1, . . . , Xn.) from power
traces obtained from his previous experience of conducting template attacks
against different devices which are similar to the reference device. Then, by
computing

θ1 =
1

n
·

n∑
i=1

Xi, θ22 =
1

n− 1
·

n∑
i=1

(Xi − θ1)
2,

the attacker can easily obtain the prior distribution which is the normal dis-
tribution N (θ1, θ

2
2). Because the leakage distributions of the devices are very

similar to that of the reference device, the prior distribution can be used for the
interesting points correspond to the same position about the target intermediate
value for the reference device. We note that, compared with traditional template
attacks, the computational price of obtaining the priori knowledge about the ref-
erence device is very small. This implies that the attacker can obtain the prior
distribution easily in practice.

The more accurate the signal component (the value of µj) is estimated, the
more accurate the noise component (the value PCtotal − µj) will be estimated.
For an interesting point, if the signal component and the noise component are
accurately estimated, accurate templates (reduced templates) will be built and
template attacks (both classical template attacks and reduced template attacks)
will be more powerful. In the classical way of building templates (reduced tem-
plates), for an interesting point, the attacker computes the mean value of the
samples to estimate the actual value of the signal component µj . Specifically,
for the key-dependent operation Oi, the point Pj is an interesting point and the
attacker obtains n power traces (S1,S2, . . . ,Sn) from the reference device in the
profiling stage. Therefore, the attacker obtains n values of the power consump-
tion of the point Pj , one from each power trace. The n values are denoted by
S1[Pj ], S2[Pj ], . . . , Sn[Pj ]. The actual value of µj is estimated by µ′

j :

µ′
j = Mi[Pj ] =

n∑
k=1

Sk[Pj ]/n.
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However, in our scenario, the attacker not only has n power traces (The power
traces are obtained from the reference device. However, the number of the power
traces is limited.), but also possesses the priori knowledge about the reference
device which can be used to estimate the actual value of µj more accurately. Let’s
consider the most common case. Assume that the attacker knows that the actual
value of µj follows the normal distribution N (θ1, θ

2
2) from priori knowledge1 but

does not know what the actual value of µj accurately is. The attacker can use
the method of Bayes estimation to estimate the actual value of µj with the priori
knowledge N (θ1, θ

2
2) in the profiling stage as follows: The attacker computes the

probability density of the actual value of the signal component µj from priori
knowledge as

λ(µj) = (
√
2πθ2)

−1exp
[
− 1

2θ22
(µj − θ1)

2
]
.

Moreover, the power consumption of the point Pj satisfies the following prob-
ability density function:

f(x;µj , σj) = (
√
2πσj)

−1exp
[
− 1

2σ2
j

(x− µj)
2
]
.

Although the value σj is not known to the attacker, it does not affect the process
of computing the Bayes estimator of the actual value of µj . What the attacker
needs is just an accurate estimation about the actual value of µj . From equation
(2), the attacker computes the posterior probability density:

λ(µj |S1[Pj ], . . . , Sn[Pj ]) = exp
[
− 1

2θ22
(µj − θ1)

2 − 1

2

n∑
k=1

(Sk[Pj ]− µj)
2
]/

C1,

the constant C1 only has relation with θ1, θ2, S1[Pj ], . . . , Sn[Pj ] and has no rela-
tion with µj . It has that

− 1

2θ22
(µj − θ1)

2 − 1

2

n∑
k=1

(Sk[Pj ]− µj)
2 = − 1

2A2
(µj −B)2 + C2,

where A2 = 1/(n + 1/θ22), B = (nMi[Pj ] + θ1/θ
2
2)/(n + 1/θ22), and C2 has no

relation with µj . Furthermore, the attacker can obtain

λ(µj |S1[Pj ], . . . , Sn[Pj ]) = C3exp
[
− 1

2A2
(µj −B)2

]
,

where C3 = C1e
C2 . Because it has that∫ +∞

−∞
λ(µj |S1[Pj ], . . . , Sn[Pj ])dµj = 1,

1 Note that, the normal distribution N (θ1, θ
2
2) itself may not be very accurate. How-

ever, from the priori knowledge, the parameters θ1, θ
2
2 are all known to the attacker.

8



hence C3 = (
√
2πA)−1. Up to now, the attacker obtains the Bayes estimator of

the actual value of µj as

µ′′
j =

n

n+ 1/θ22

(∑n
k=1 Sk[Pj ]

n

)
+

1/θ22
n+ 1/θ22

θ1. (3)

The equation (3) shows that if the attacker does not have the priori knowl-
edge (i.e. the prior distribution N (θ1, θ

2
2)), he can only use

∑n
k=1 Sk[Pj ]/n to

estimate the actual value of µj . If the attacker does not have power traces ob-
tained from the reference device, he can only use the priori knowledge (i.e. the
value θ1) to estimate the actual value of µj . If the attacker has power traces
obtained from the reference device as well as the priori knowledge, by equation
(3), he will use the weighted average of

∑n
k=1 Sk[Pj ]/n and θ1 to estimate the

actual value of µj under the ratio n : 1/θ22 in the profiling stage. This ratio is
reasonable and the relevant reasons are as follows. On one hand, when more
power traces are obtained from the reference device by the attacker, the propor-
tion of

∑n
k=1 Sk[Pj ]/n should be larger. On the other hand, when the value θ22

is smaller (This implies that the prior distribution of the actual value of µj is
more accurate.), the proportion of θ1 should be larger.

Other details of building templates (reduced templates) remain unchanged.
Our way only exploits the priori knowledge to estimate the actual value of the
signal component more accurately. We note that, due to the computational price
of obtaining and exploiting the priori knowledge is very small, the priori knowl-
edge can easily be used by practical attackers.

4 Experimental Evaluations

For the implementation of a cryptographic algorithm with countermeasures, one
usually tries his best to use some approaches to delete the countermeasures from
power traces at first. If the countermeasures can be deleted, then one tries to
recover the correct (sub)key using some attacks against unprotected implemen-
tation. For example, if one has power traces with random delays [11], he may
first use the approach proposed in [12] to remove the random delays from power
traces and then uses some attacks to recover the correct (sub)key. The approach-
es of deleting countermeasures from power traces are beyond the scope of this
paper. Moreover, considering power traces without any countermeasures shows
the upper bound of the physical security of the target cryptographic device.
Therefore, we take unprotected AES-128 implementation as an example.

We verified both classical template attacks and reduced template attacks by
conducting simulated and practical experiments. In both simulated and practical
experiments, we tried to attack the outputs of the S-boxes in the 1st round of
AES-128. Before introducing the specific experiment details, we first introduce
how to get the prior distribution of the actual value of the signal component for
every interesting point for both simulated and practical experiments.

The work [17] showed that reduced template attacks are more powerful com-
pared with classical template attacks when the number of power traces used
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in the profiling stage is limited. Therefore, we mainly exploit reduced template
attacks to exhibit our discoveries (Note that, our method can be used for both
classical template attacks and reduced template attacks.).

For simplicity, for both simulated and practical experiments, let np denote
the number of traces used in the profiling stage and let ne denote the number
of traces used in the extraction stage. In this paper, we use the typical metric
Guessing Entropy [5] as the metric about the classification performance of tem-
plate attacks (Many other papers also used Guessing Entropy (e.g. [4,14,15]).).

4.1 How to Get The Priori Knowledge

In order to get the priori knowledge, we simulated the cases that the attacker can
obtain the priori knowledge from his previous experience of conducting template
attacks against a device similar to the reference device.

For both simulated and practical experiments, we get the prior distribution
of the actual value of the signal component for every interesting point using the
traces which were generated in the same way as those were used in the two stages
of template attacks. In this way, we can clearly give out an upper bound of how
powerful template attacks will become by exploiting the priori knowledge.

In both simulated and practical experiments, for each key-dependent opera-
tion Oi and each interesting point Pj , we considered the prior distribution under
four different levels of accuracy and assumed the prior distribution is a normal
distribution N (θ1, θ

2
2) (For different interesting points, the corresponding prior

distributions are different.).
For each key-dependent operation Oi, we generated 400 traces (simulated

traces or actual power traces). The 400 traces were used to estimate the prior
distributions for every interesting point as follows. We repeated the following
process 300 times. Every time, we chose m traces (denoted by S1, . . . , Sm) from
the 400 traces uniformly at random and computed

∑m
k=1 Sk[Pj ]/m. Therefore,

there were 300 different values about
∑m

k=1 Sk[Pj ]/m. The mean value of the 300
different values was set to be θ1 and the variance of the 300 different values was
set to be θ22. In this way, the prior distribution N (θ1, θ

2
2) was got. Note that, in

practice, the attacker has many ways to get the prior distribution N (θ1, θ
2
2). Our

method which were used in this paper is just one of them. We respectively letm =
16, 32, 64, 128 and obtained four different estimation of the prior distribution.
Clearly, when the value m is larger, the estimation of θ1 and θ22 is more accurate.
Therefore, we obtained four different prior distributions under different levels of
accuracy, which represent the priori knowledge that the attacker can possess in
practical attack scenarios.

We considered many kinds of template attacks and define the following sym-
bols to denote them. In all the experiments, we let the symbol “CTA” denotes the
classical template attacks without any priori knowledge. The symbol “CTA-16”
denotes classical template attacks based on priori knowledge which is obtained
when the value m equals to 16. Similarly, we define the symbols “CTA-32”,
“CTA-64”, and “CTA-128” to denote the cases that the value m equals to 32,
64, and 128 respectively. We let the symbol “RTA” denotes the reduced template
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attacks without any priori knowledge. The symbol “RTA-16” denotes reduced
template attacks based on priori knowledge which is obtained when the val-
ue m equals to 16. Similarly, we define the symbols “RTA-32”, “RTA-64”, and
“RTA-128” to denote the cases that the value m equals to 32, 64, and 128.

4.2 Simulated Experiments

In simulated experiments, we chose 4 interesting points and the typical Hamming-
Weight power model (pp. 40-41 in [9]) was adopted to describe the power con-
sumption. The standard deviation of simulated Gaussian noise is denoted by
σ. We employed three different noise levels to test the influence of noises on
the classification performance of template attacks. The standard deviations of
simulated Gaussian noise for the three noise levels were 2, 3, and 4.

For each noise level, we respectively used 2,000 and 4,000 simulated traces
to build the 256 reduced templates in the profiling stage for the five kinds of
reduced template attacks (RTA, RTA-16, RTA-32, RTA-64, and RTA-128). This
means that the attacker respectively obtained 2,000 and 4,000 traces from the
reference device in the profiling stage. The simulated traces used in the profil-
ing stage were generated with a fixed subkey and random plaintext inputs. We
generated additional 100,000 simulated traces with another fixed subkey and
random plaintext inputs. The 100,000 simulated traces were used in the extrac-
tion stage. For fixed np and σ, we tested the Guessing Entropy of the five kinds
of reduced template attacks when the attacker could use ne simulated traces in
the extraction stage as follows. We respectively repeated the five kinds of re-
duced template attacks 1,000 times. For each time, we chose ne simulated traces
from the 100,000 simulated traces uniformly at random and the five kinds of re-
duced template attacks were conducted with the same ne simulated traces. We
respectively computed the Guessing Entropy of the five kinds of reduced tem-
plate attacks with the results of the 1,000 times attacks. The Guessing Entropy
of the five kinds of reduced template attacks for different values of np and σ is
shown in Figure 1.

Table 1. The simulated experiment results for the case np = 2, 000, ne = 20, σ = 4

RTA RTA-16 RTA-32 RTA-64 RTA-128

22.94 17.50 14.65 11.49 8.53

The Guessing Entropy of the five kinds of reduced template attacks for the
case {np = 2, 000, ne = 20, σ = 4} is shown in Table 1. From Figure 1 and Table
1, we find that the classification performance of reduced template attacks with
accurate priori knowledge will be obvious better than that of reduced template
attacks without priori knowledge. For example, in Table 1, the Guessing Entropy
of RTA equals to 22.94, while the Guessing Entropy of RTA-128 equals to 8.53.
Moreover, if the priori knowledge is more accurate, the classification performance
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(b) np = 4, 000, σ = 2
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(c) np = 2, 000, σ = 3
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(d) np = 4, 000, σ = 3
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(e) np = 2, 000, σ = 4
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(f) np = 4, 000, σ = 4

Fig. 1. The simulated experiment results
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of reduced template attacks with priori knowledge will be better. For example,
in Table 1, the Guessing Entropy of RTA-16 equals to 17.50, while the Guessing
Entropy of RTA-128 obviously reduces to 8.53.

Table 2. The simulated experiment results for different levels of noises

np = 2, 000, ne = 20 σ = 2 σ = 3 σ = 4

RTA 1.31 7.80 22.94

RTA-128 1.03 2.14 8.53

Table 2 shows the Guessing Entropy of RTA and RTA-128 for different levels
of noises when np is fixed to 2, 000 and ne is fixed to 20. From Figure 1 and
Table 2, we further find that, when the noise level is higher, reduced template
attacks with priori knowledge will achieve larger advantage over reduced tem-
plate attacks without priori knowledge. For example, in Table 2, the Guessing
Entropy of RTA and RTA-128 is almost equal when σ equals to 2 (1.31 and
1.03). However, when σ equals to 4, the Guessing Entropy of RTA-128 (8.53) is
much lower than that of RTA (22.94).

When more simulated traces can be obtained from the reference device (e.g.
np = 4, 000) in the profiling stage, the advantages of reduced template attacks
with priori knowledge over template attacks without priori knowledge will be
smaller. For classical template attacks, we computed the Guessing Entropy of
the five kinds of classical template attacks (CTA, CTA-16, CTA-32, CTA-64,
and CTA-128) similarly. The simulated experiment results show that classical
template attacks with accurate priori knowledge have advantages over classical
template attacks without priori knowledge.

4.3 Practical Experiments

We tried to attack the outputs of all the S-boxes in the 1st round of an un-
protected AES-128 software implementation on an typical 8-bit microcontroller
STC89C58RD+ whose operating frequency is 11MHz. The actual power traces
were acquired with a sampling rate of 50MS/s. The average number of actu-
al power traces during the sampling process was 10 times. For our device, the
condition of equal covariances [4] does not hold.

We generated two sets of actual power traces, Set A and Set B. The Set A
captured 10,000 power traces which were generated with a fixed main key and
random plaintext inputs. The Set B captured 100,000 power traces which were
generated with another fixed main key and random plaintext inputs. The power
traces in Set A were used in the profiling stage and the power traces in Set B
were used in the extraction stage. We used the same device as that was used to
get the prior distribution in Section 4.1 to generate the two sets of actual power
traces, which provides a good setting for the focuses of our research. For each S-
box of the unprotected AES-128 software implementation, we used CPA based
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method (Chapter 6 in [9]) to choose 4 interesting points in 4 continual clock
cycles, one in each clock cycle1. We note that using CPA to choose interesting
points is a popular method for template attacks. Both classical template attacks
and reduced template attacks were conducted based on the same 4 interesting
points. We only show the practical experiment results of the 1st and the 2nd S-
box in this paper. For other S-boxes in the 1st round, similar evaluation results
were obtained by us.

For reduced template attacks, we respectively chose 2,000 and 4,000 different
power traces from Set A to build the 256 templates for the five kinds of reduced
template attacks (RTA, RTA-16, RTA-32, RTA-64, and RTA-128). The 100,000
power traces of Set B were used in the extraction stage for the five kinds of
reduced template attacks. For fixed np, we tested the Guessing Entropy of the
five kinds of reduced template attacks when one uses ne power traces in the
extraction stage similarly to that of the simulated experiments but used actual
power traces. The Guessing Entropy of the five kinds of reduced template attacks
for the 1st S-box are shown in Figure 2. The Guessing Entropy of the five kinds
of reduced template attacks for the 1st S-box when np is fixed to 2, 000 and ne

is fixed to 20 is shown in Table 3.
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(b) np = 4, 000

Fig. 2. The experiment results of reduced template attacks for the 1st S-box

From Figure 2 and Table 3, we find that the classification performance of
reduced template attacks with accurate priori knowledge will be obvious better
than that of reduced template attacks without priori knowledge. For example,
in Table 3, the Guessing Entropy of RTA equals to 15.16, while the Guessing
Entropy of RTA-16 reduces to 5.78.

For classical template attacks, in order to avoid numerical obstacles with
the inversion of the covariance matrix, we respectively chose 5,000 and 10,000
different power traces from Set A to build the 256 templates for the five kinds
of classical template attacks (CTA, CTA-16, CTA-32, CTA-64, and CTA-128).

1 In our device, the target intermediate values only continue 4 clock cycles.
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Table 3. The experiment results of reduced template attacks for the 1st S-box

np = 2, 000 RTA RTA-16 RTA-32 RTA-64 RTA-128

ne = 20 15.16 5.78 5.03 4.73 4.65

Moreover, using power traces from Set B, we computed the Guessing Entropy of
the five kinds of classical template attacks when one uses ne power traces in the
extraction stage similarly. The Guessing Entropy of the five kinds of classical
template attacks for the 1st S-box are shown in Figure 3 in Appendix A.

For the 2nd S-box, we also used the actual power traces in Set A and Set B to
compute the Guessing Entropy of the five kinds of reduced template attacks and
the five kinds of classical template attacks similarly. The practical experiment
results for the 2nd S-box which can also verify our discoveries are shown in Figure
4, Figure 5, and Table 4 in Appendix B.

The practical experiment results show that, for both reduced template at-
tacks and classical template attacks, if the priori knowledge is more accurate,
the classification performance will be better. For example, in Table 3, the Guess-
ing Entropy of RTA-16 equals to 5.78, while the Guessing Entropy of RTA-128
reduces to 4.65. When more power traces can be obtained from the reference
device, the advantages of template attacks with priori knowledge over template
attacks without priori knowledge will be smaller.

5 Conclusion and Future Work

In this paper, we show that leaking the priori knowledge about the reference
device poses serious threat to the physical security of cryptographic devices.
Therefore, we suggest that the designers of a cryptographic device should take
the priori knowledge into consideration when he uses template attacks to eval-
uate the physical security of the cryptographic device. The future work is as
follows. First, our discoveries show that the approach to infer (estimate) the pri-
ori knowledge as accurately as possible is crucial and is worth being researched
from the attacker’s point of view. Second, it would be interesting to research how
to prevent the attacker to obtain the priori knowledge (Using countermeasures
such as the random delays [11] may be a good choice.). We should also concern
on how to exploit the priori knowledge to make other profiled side-channel at-
tacks (such as stochastic model based attacks [16], PCA-based template attacks
etc.) become more powerful in a reasonable way. It is also necessary to further
verify our discoveries in other devices such as ASIC and FPGA.
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Appendix A: Practical Experiments for The 1st S-box
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(b) np = 10, 000

Fig. 3. The experiment results of classical template attacks for the 1st S-box

Appendix B: Practical Experiments for The 2nd S-box
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(a) np = 2, 000
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(b) np = 4, 000

Fig. 4. The experiment results of reduced template attacks for the 2nd S-box
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Fig. 5. The experiment results of classical template attacks for the 2nd S-box

Table 4. The experiment results of reduced template attacks for the 2nd S-box

np = 2, 000 RTA RTA-16 RTA-32 RTA-64 RTA-128

ne = 20 19.05 6.64 5.76 5.34 5.25
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