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Abstract. The SPEKE protocol is commonly considered one of the
classic Password Authenticated Key Exchange (PAKE) schemes. It has
been included in international standards (particularly, ISO/IEC 11770-4
and IEEE 1363.2) and has been deployed in commercial products. We
observe that the original SPEKE specification is subtly different from
those defined in the ISO/IEC 11770-4 and IEEE 1363.2 standards. We
show that those differences have critical security implications. First of
all, we present two new attacks on SPEKE: a relay attack and a key-
malleability attack. The first attack allows an attacker to impersonate a
user without knowing the password by engaging in two parallel sessions
with the victim. The second attack allows an attacker to malleate the ses-
sion key established between two honest users without being detected.
Both attacks are applicable to the original SPEKE scheme. However,
they are to some extent addressed in the ISO/IEC 11770-4 and IEEE
1363.2 standards, but in a vaguely defined manner. The vagueness makes
it extremely difficult for a security-conscious developer to implement the
protocol correctly. We propose countermeasures and suggest concrete
changes to the standards.

1 Introduction

Password Authenticated Key Exchange (PAKE) is a protocol that aims to es-
tablish a secure communication channel between two remote parties based on
a shared low-entropy password without relying on any external trusted parties.
Since the seminal work by Belloven and Merrit in 1992 [2], many PAKE protocols
have been proposed, and some have been standardised [10,11].

The Simple Password Exponential Key Exchange (SPEKE) protocol is one
of the most well-known PAKE solutions. It was originally designed by Jablon
in 1996 [7]. Although some concerns are raised [8, 9], no major flaws seems to
have been uncovered. Over the past decade, SPEKE has been included in the
IEEE P1362.2 [10] standard draft1 and ISO/IEC 11770-4:2006 [11] Part 4:
“Mechanisms based on weak secrets”. Furthermore, SPEKE has been deployed
in commercial applications – for example in BlackBerry devices produced by
Research in Motion and in Entrust’s TruePass [5] end-to-end web products [6].

1 As of July 2014, the latest draft is D26. See http://grouper.ieee.org/groups/

1363/passwdPK/draft.html



In this paper, we revisit the original SPEKE protocol and review its spec-
ifications in the two standardisation documents: IEEE P1363.2 and ISO/IEC
11770-4. We observe that the original protocol is subtly different from those
defined in the standards. The reason for the difference, or deviation from the
original specification, is not justified clearly in the standards.

During the investigation, we have identified several issues with SPEKE that
have not been reported before. Our findings are summarised below:

1. We show the original SPEKE protocol is subject to a relay attack when the
victim is engaged in two parallel sessions with an active attacker. The attack
is able to achieve mutual authentication in both sessions without knowing
the password.

2. We show the original SPEKE protocol is subject to a key-malleability attack.
The attacker, sitting in between two honest users, is able to malleate the
session key without being detected.

3. While both attacks clearly work on the original SPEKE protocol, we show
they are to some extent addressed in IEEE P1363.2 and ISO/IEC 11770-4,
but in a vaguely defined way. We propose explicit and concrete changes to
both standards.

Details of our findings are explained in the following sections.

2 The original SPEKE scheme

First, we define the original SPEKE scheme based on Jablon’s 1996 paper [7]. Let
p be a safe prime, p = 2q+1 where q is also a prime. Assume two remote parties,
Alice and Bob, share a common password s. SPEKE defines a function f(·) to
map a password s to a group element: f(s) = s2 mod p. We use g to denote the
result returned from f(s), i.e., g = f(s). The SPEKE protocol provides implicit
authentication in one round, which is defined below. (Unless stated otherwise, all
modular operations are performed modulo p, hence the explicit mod p is omitted
for simplicity.)

Round 1 (SPEKE) Alice selects x ∈R [1, q−1] and sends gx to Bob. Similarly,
Bob selects y ∈R [1, q − 1] and sends gy to Alice.

Upon receiving the sent data, Alice verifies that gy is within [2, p−2]. This is
to ensure the received element does not fall into the small subgroup of order two,
which contains {1, p − 1}. Alice then computes a session key κ = H((gy)x) =
H(gxy), where H is a secure one-way hash function. Similarly, Bob verifies that
gx is within [2, p − 2]. He then computes the same session key κ = H((gx)y) =
H(gxy).

To provide explicit key confirmation, the SPEKE paper defines the following
procedure. One party sends H(H(κ)) and the other party replies with H(κ).
The paper does not specify who must initiate the key confirmation and hence
leaves it as a free choice for specific applications to decide.



3 Previously reported attacks

In 2004, eight years after SPEKE was initially designed, Zhang presented an
exponential-equivalence attack [8]. The attack is based on the observation that
some passwords are exponentially equivalent. Hence, an active attacker can ex-
ploit that equivalence to test multiple passwords in one protocol execution. This
is especially problematic when the password is digits-only, e.g., a Personal Identi-
fication Numbers (PIN). As a countermeasure, Zhang proposed to hash the pass-
word before taking the square operation. In other words, redefine the password
mapping function as: f(s) = (H(s))2 mod p. The hashing of passwords makes it
much harder for the attacker to find exponential equivalence among the hashed
outputs. Zhang’s attack is acknowledged in IEEE P1363.2 [10], which adds a
hash function in SPEKE when deriving the base generator from the password.

In 2005, Tang and Mitchell presented three attacks on SPEKE [9]. The first
attack is similar to Zhang’s [8] – an on-line attacker tests multiple passwords
in one execution of the protocol by exploiting the exponential equivalence of
some passwords. The second attack assumes that the user shares the same pass-
word with two servers, say S1 and S2. By relaying the messages between the
client and S2, the attacker may trick the client into believing that she shares a
key with S1, but actually the key is shared with S2. The authors call this an
“unknown key-share” attack. They suggest to address this attack by including
the server’s identifier into the computation of g. (However, we note that this
suggested countermeasure has the side-effect of breaking the symmetry of the
original protocol.) The third attack indicates a generic vulnerability. In this sce-
nario, two honest parties launch two concurrent sessions. The attacker can swap
the messages between the two sessions to exchange the two session keys. The
two communicating parties will be able to decrypt messages successfully but
they may get confused about which message belongs to which session.

4 New attacks

In this section, we describe two new attacks: relay attack and key-malleability at-
tack. The first attack indicates a significant flaw in the original design of SPEKE,
while the second attack has an unfavourable implication on the theoretical anal-
ysis of the protocol.

4.1 Relay attack

The Relay attack works when the user is engaged in several sessions in parallel
with another user. This is a realistic scenario in practice as two users may want
to run several concurrent SPEKE key exchange sessions and use each established
channel for a specific application, as Tang and Mitchell also observe [9].

Without loss of generality, we assume Alice is honest and Bob is an attacker.
Bob does not know the password but attempts to impersonate someone who



Alice (honest) Bob (Impersonator)

Select x ∈R [1,q-1] gx
−−−−→

(Session 1)Compute κ = H(gxy) gy
←−−−

Start key confirmation H(H(κ))
−−−−−−→

Verify key confirmation H(κ)
←−−−−−

{gx, H(H(κ))} ↓↑ {gy, H(κ)}

Select y ∈R [1,q-1] gx
←−−−−

(Session 2)Compute κ = H(gxy) gy
−−−→

Verify key confirmation H(H(κ))
←−−−−−−

Reply key confirmation H(κ)
−−−−−→

Fig. 1. Relay attack on SPEKE

knows the password. We let Alice initiate a SPEKE session – which we call Ses-
sion 1 – with Bob by sending gx (see Figure 1). At the same time, Bob initiates
another SPEKE session – which we call Session 2 – with Alice by relaying gx.
In the second session, Alice replies with gy, which is then relayed by Bob as
a Bob’s message in Session 1. Following the key confirmation procedure as in
the original SPEKE paper, Alice provides the first key confirmation challenge
in Session 1 H(H(κ)), which is subsequently relayed to Section 2 as Bob’s key
confirmation challenge. In Session 2, Alice answers the key confirmation chal-
lenge by replying with H(κ), which is then relayed in Section 1 to complete the
mutual authentication in both sessions. Without knowing the password, Bob has
been successfully authenticated by Alice. This indicates a significant flaw in the
original protocol specification.

The relay attack in Fig. 1 can be made slightly more complex. When relaying
gx received from Section 1 to Alice in Section 2, the attacker can raise it to the
power of an integer z, so it becomes gxz. Accordingly, when relaying gy received
Section 2 to Alice in Section 1, the attacker can raise it to the power of the same
integer z, so it becomes gyz. The attack works the same as before except that
the key exchange messages in two sessions are different. Hence, simply checking
duplicates of data may not be an effective countermeasure.

The relay attack is similar to the “unknown key-share” attack in Tang-
Mitchell’s paper [9], however, our attack seems to be more feasible and harmful
than theirs. The main difference is that in our attack, the attacker relays the
user’s message back to the user herself. In essence, this relay-to-self attack is
basically the same as the “wormhole attack” [3], in which the attacker relays
the sender’s message back to the sender to pass authentication. However, the
“wormhole attack” presented in [3] works in a PKI-based key exchange setting
while the relay attack reported here happens in a password-based key exchange
setting. The two settings are distinct.



Alice MITM Bob

Select x ∈R [1,q-1] gx
−−→

Select z ∈ [2, q − 2]

Raise to power z (gx)z
−−−→

Check (gx)z ∈ [2, q − 2]

Select y ∈R [1, q − 1]
Check (gy)z ∈ [2, q − 2] (gy)z

←−−−
Raise to power z gy

←−−
Compute κ = H(gxyz) Compute κ = H(gxyz)

Fig. 2. Key-malleability attack on SPEKE

4.2 Key-malleability attack

A second attack is called the key-malleability attack. In this attack, the attacker
sits in the middle between two honest users (see Figure 2). The attacker chooses
an arbitrary z within the range of [2, q − 1], raises the intercepted item to the
power of z and passes it on. The users at two ends are still able to derive the
same session key κ = H(gxyz), but without being aware that the messages have
been modified.

We do not claim there is a direct practical harm caused by this attack.
However, the fact that an attacker is able to malleate the session key without
being detected may have significant implications on the theoretical analysis of
the protocol. In the original SPEKE paper, the protocol comes with no secu-
rity proofs. However, it is heuristically argued that the security of the session
key in SPEKE depends on either the Computational Diffie-Hellman assumption
(i.e., an attacker is unable to compute the session key) or the Decisional Diffie-
Hellman assumption (i.e., an attacker is unable to distinguish the session key
from random). The existence of such a key-malleability attack suggests that a
tight reduction to CDH or DDH may be impossible (currently, formal reduction-
ist proofs for SPEKE do not exist). The attacker’s ability to inject randomness
into the session key without being noticed can significantly complicate the theo-
retical analysis. As an example, let us assume the attacker chooses z as a result
of a function with input gx, i.e., z = f(gx). Because of the correlation between x
and z on the exponent, standard CDH and DDH are no longer applicable here.

5 Discussion

While the two attacks clearly work on the original SPEKE protocol [7], it may be
argued that they do not work on variants of SPEKE defined in IEEE P1363.2
and ISO/IEC 11770-4. In this section, we explain the difference between the
original protocol and its variants in the standards in relation to the two attacks.

5.1 Explicit key confirmation

First of all, we observe that the key confirmation procedure of SPEKE defined in
the standard is different from that in the original SPEKE paper [7]. For example,



in ISO/IEC 11770-4, the key confirmation works as follows [11] (the procedure
in IEEE P1363.2 [10] is basically the same).

Alice→ Bob : H(“0x03”‖gx‖gy‖gxy‖g)
Bob → Alice : H(“0x04”‖gx‖gy‖gxy‖g)

As explicitly stated in the ISO/IEC 11770-4 standard, there is no order in the
above two steps2. Either party is free to send out the key confirmation message
without waiting for the other party.

Effect on relay attack We observe that the above key confirmation procedure
does not prevent the relay attack. The attacker is still able to relay the key con-
firmation string in one session to another parallel session to accomplish mutual
authentication in both sessions without being detected. The attack works largely
because the session keys are identical in the two sessions.

Effect on Key-malleability attack The key-malleability attack no longer works
with the key confirmation procedure defined in ISO/IEC 11770-4 (and IEEE
P1363.2). However, it is worth noting that the key confirmation procedures in
both standards are marked as “optional”. Hence, the key-malleability is not
completely addressed.

5.2 Definition of Password

In the original SPEKE paper, the mapping of a password s to a group ele-
ment over the prime field is simply achieved by f(s) = s2. To prevent Zhang’s
exponential-equivalence attack, it is necessary to add a hash function before
performing the squaring operation, i.e., f(s) = (H(s))2. This is essentially the
mapping function defined in ISO/IEC 11770-4 and IEEE P1363.2 (for the case
that p is a safe prime). However, the definition of the shared secret s is sub-
tly changed in both standards. For example, in ISO/IEC 11770-4, the shared
low-entropy secret is defined as follows:

“A password-based octet string which is generally derived from a pass-
word or a hashed password, identifiers for one or more entities, an iden-
tifier of a communication session if more than one session might execute
concurrently, and optionally includes a salt value and/or other data.”3

The definition of the shared low-entropy secret (denoted π in the standard
document) in IEEE P1363.2 is similar:

2 In the same standard, it is also stated that there is no order during the SPEKE
exchange phrase. We find the two statements contradictory: the fact that gx comes
before gy in the definition of key confirmation implies there is an order during the
key exchange phase.

3 It is explained in a note in ISO/IEC 11770-4 that the inclusion of the identifiers is
to avoid an unknown key-share attack reported in Tang-Mitchell’s paper [9].



“A password-based octet string, used for authentication. π is generally
derived from a password or a hashed password, and may incorporate a
salt value, identifiers for one or more parties, and/or other shared data.”

Effect on relay attack Strictly speaking, if the entity identifiers and the session
identifier are included in the definition of the shared secret s, the relay attack
presented in Section 4 will not work. While the lawlike wording in both standards
looks rigorous, it does not really help the implementer, as the instruction is
extremely vague. This is unsatisfactory, especially because the detail here has
critical security implications. To start with, it is not even clear if one or both
parties’ identifiers should be included, and if only one identifier needs to be
included, which one.

For a more concrete discussion, let us denote Alice’s identifier as Â, Bob’s
identifier as B̂ and the session identifier as SID. One straightforward way to
include all these identifiers is: s = H(Password‖Â‖B̂‖SID). But this implies a
preferred order of the parties’ identifies, which need to be agreed beforehand. A
slightly better definition is as follow: s = H(Password‖min(Â, B̂)‖max(Â, B̂)‖SID).
Yet it remains questionable how the SID should be defined and by whom. If SID
should be included in the password-based string, this seems to contradict the
definition in the standards that the password-based string is part of the “prior
shared parameters” before the key exchange. In conclusion, we consider the
SPEKE protocol definition in both standards as “under-specified”.

Effect on Key-malleability attack The inclusion of identifiers for one or more
entities and the specific session into the definition of the password-based string
has no effect in preventing the key-malleability attack. The attack still works.

5.3 Countermeasures and suggested changes in standards

First of all, we need to understand the causes of the two attacks. There are several
reasons. First, there is no reliable method in SPEKE to prevent a sent message
being relayed back to the sender. Second, there is no mechanism in the protocol
to verify the integrity of the message, i.e., whether they have been altered during
the transit. Third, no user identifiers are included in the key exchange process. It
may be argued that all these issues can be addressed by using Zero Knowledge
Proof (ZKP) (as done in [4]). However, in SPEKE, the generator is a secret,
which makes it incompatible with any existing ZKP construction. Since the use
of ZKP is impossible in SPEKE, we need to address the attacks in a different
way.

Our proposed solution is to redefine the session key computation. Assume
Alice sends M = gx and Bob sends N = gy. The session key computation is
defined as follows:

κ = H
(

min(Â, B̂),max(Â, B̂),min(M,N),max(M,N), gxy
)

(1)

The patched SPEKE protocol is summarized in Fig. 3. When the two users
are engaged in multiple concurrent sessions, they need to ensure the identifiers



Alice (Â) Bob (B̂)

Select x ∈R [1,q-1]. Compute M = gx Â,M = gx
−−−−−−−−→

Check M ∈ [2, q − 2]

Check N ∈ [2, q − 2] B̂,N = gy
←−−−−−−−−

Select y ∈ [1,q-1]. Compute N = gy

Alice Computes: κa = H
(

min(Â, B̂),max(Â, B̂),min(M,N),max(M,N), Nx
)

Bob Computes: κb = H
(

min(Â, B̂),max(Â, B̂),min(M,N),max(M,N),My
)

Fig. 3. Patched SPEKE

are unique between these sessions. As an example, assume Alice and Bob launch
several concurrent sessions. They may use “Alice” and “Bob” in the first session.
When launching a second concurrent session, they should add an extension to
make the identifier unique – for example, they may agree at the protocol level to
start the extension from “1” and increment by one if a new concurrent session is
created. Thus, the actual user identifiers become “Alice-1” and “Bob-1” in the
second session. In the third session, the user identifiers become “Alice-2” and
“Bob-2”, and so on. As long the user identifiers are unique between concurrent
sessions, the use of extra session identifier does not seem needed.

The new definition of the session-key computation function in Eq. 1 should
address the relay and key-malleability attacks in Section 4 (and also the “unknown-
key share” attack and the generic attack reported by Tang and Mitchell [9]).
This is achieved without having to involve explicit key confirmation, so the key
confirmation can remain as “optional” as it is in the current standards.

There is an alternative solution, which is to make the definition of a shared
low-entropy secret more explicit in the standards. One way is to define the shared
secret as below:

s = H
(

Password‖min(Â, B̂)‖max(Â, B̂)
)

(2)

In the above definition, we do not include the session identifier SID, as the
concept seems to have been absorbed in the user identifiers as long as we ensure
the use identifiers are unique between concurrent sessions.

Comparing the two solutions, we prefer the first solution in Eq. 1 (also see
Fig. 3) for the following reasons.

– The first solution is more flexible to accommodate pre-computation of gx

and gy. In the second solution, the user must know the identifier of the
other party before the key exchange, which is not always the case.

– The first solution may be more round-efficient. Alice and Bob do not have to
know the exact identifier of the other party before starting the key exchange.
But in the second solution, Alice and Bob may need an extra round before
they are able to compute the generator g.

– The first solution may be more computationally efficient. Because the gen-
erator g is unchanged for the same password, it only needs to be computed



once. In comparison, the generator needs to be re-computed with any change
in the user identifier. (This may not make much difference in terms of compu-
tation if a safe prime is used, but it may significantly decrease performance
in other group settings, e.g., in Elliptic Curve.)

A further suggestion we would like to make for both standards is to reconsider
the definition of the key confirmation method. The existing method, as defined
in ISO/IEC 11770-4 and IEEE 1363.2, breaks the symmetry of the protocol. The
key confirmation method in the original SPEKE paper [7] has the same problem.

Our rationale for suggesting a change is not based on the security consider-
ation, but on the ground of system reliability. For example, if the two parties
happen to send the first key confirmation message at the same time, i.e., Alice
sends H(H(κ)) and without receiving Alice’s message, Bob also sends H(H(κ)).
In that case, they may enter a deadlock and may have to abort the session and
restart a new one. The chance of such occurrence may be non-negligible if the
latency in the network communication is high.

The solution we propose is based on the key confirmation defined in NIST
SP 800-56A Revision 1 [1]. It works as follow:

Alice→ Bob : HMAC(κ, “KC 1 U”‖Â‖B̂‖gx‖gy)

Bob → Alice : HMAC(κ, “KC 1 U”, ‖B̂‖Â‖gy‖gx)

In the above key confirmation method, HMAC is a hash-based MAC algo-
rithm and the string “KC 1 U” refers to unilateral key confirmation [1]. There
is no dependence between the two flows, so Alice and Bob can do this in one
round.

6 Conclusion

In this paper, we present two new attacks on SPEKE, a protocol that has been
included in the IEEE P1363.2 and ISO/IEC 11770-4 standards, and deployed in
commercial products. The first attack indicates a significant practical flaw that
needs to be addressed, while the second attack has only theoretical implications.
We explain the difference between the original SPEKE protocol and its variants
defined in both standards and show how the difference is critically relevant to
the presented attacks. We suggest concrete changes to both standards to address
the issues identified in this paper.
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