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Abstract

In their seminal work on non-malleable cryptography, Dolev, Dwork and Naor, showed how
to construct a non-malleable commitment with logarithmically-many "rounds"/"slots", the idea
being that any adversary may successfully maul in some slots but would fail in at least one.
Since then new ideas have been introduced, ultimately resulting in constant-round protocols
based on any one-way function. Yet, in spite of this remarkable progress, each of the known
constructions of non-malleable commitments leaves something to be desired.

In this paper we propose a new technique that allows us to construct a non-malleable protocol
with only a single �slot", and to improve in at least one aspect over each of the previously
proposed protocols. Two direct byproducts of our new ideas are a four round non-malleable
commitment and a four round non-malleable zero-knowledge argument, the latter matching the
round complexity of the best known zero-knowledge argument (without the non-malleability
requirement). The protocols are based on the existence of one-way functions and admit very
e�cient instantiations via standard homomorphic commitments and sigma protocols.

Our analysis relies on algebraic reasoning, and makes use of error correcting codes in order
to ensure that committers' tags di�er in many coordinates. One way of viewing our construction
is as a method for combining many atomic sub-protocols in a way that simultaneously ampli�es
soundness and non-malleability, thus requiring much weaker guarantees to begin with, and
resulting in a protocol which is much trimmer in complexity compared to the existing ones.
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1 Introduction

The notion of non-malleability is central in cryptographic protocol design. Its objective is to protect
against a man-in-the-middle (MIM) attacker that has the power to intercept messages and transform
them in order to harm the security in other instantiations of the protocol. Commitment is often used
as the paragon example for non-malleable primitives because of its ability to almost �universally�
secure higher-level protocols against MIM attacks.

Commitments allow one party, called the committer, to probabilistically map a message m into a
string, Com(m; r), which can be then sent to another party, called the receiver. In the statistically
binding variant, the string Com(m; r) should be binding, in that it cannot be later �opened" into
a message m′ 6= m. It should also be hiding, meaning that for any pair of messages, m,m′, the
distributions Com(m; r) and Com(m′; r′) are computationally indistinguishable.

A commitment scheme is said to be non-malleable if for every message m, no MIM adversary,
intercepting a commitment Com(m; r) and modifying it at will, is able to e�ciently generate a com-
mitment Com(m̃; r̃) to a related message m̃. Interest in non-malleable commitments is motivated
both by the central role that they play in securing protocols under composition (see for exam-
ple [CLOS02, LPV09]) and by the unfortunate reality that many widely used commitment schemes
are actually highly malleable. Indeed, man-in-the-middle (MIM) attacks occur quite naturally when
multiple concurrent executions of protocols are allowed, and can be quite devastating.

Beyond protocol composition, non-malleable commitments are known to be applicable in secure
multi-party computation [KOS03, Wee10, Goy11], authentication [NSS06], as well as a host of other
non-malleable primitives (e.g., coin �ipping, zero-knowledge, etc.), and even into applications as
diverse as position based cryptography [CGMO09].

1.1 Prior Work

Since their conceptualization by Dolev, Dwork and Naor [DDN91], non-malleable commitments
have been studied extensively, and with increasing success in terms of characterizing their round-
e�ciency and the underlying assumptions required. By now, we know how to construct constant-
round non-malleable commitments based on any one-way function, and moreover the constructions
are fully black-box. While this might give the impression that non-malleable commitments are well
understood, each of the currently known constructions leaves something to be desired.

The �rst construction, due to DDN is perhaps the simplest and most e�cient, mainly because it
can in principle be instantiated with highly e�cient cryptographic �sub-protocols". This, however,
comes at the cost of round-complexity that is logarithmic in the maximum overall number of possible
committers. Subsequent works, due to Barak [Bar02], Pass [Pas04], and, Pass and Rosen [PR05] are
constant-round, but rely on (highly ine�cient) non-black box techniques. Wee [Wee10] (relying on
[PW10]) gives a constant-round black-box construction under the assumption that sub-exponentially
hard one-way functions exist. This construction employs a generic (and costly) transformation that
is designed to handle general �non-synchronizing� MIM adversaries.

Finally, recent works by Goyal [Goy11] and Lin and Pass [LP11] attain non-malleable commit-
ment with constant round-complexity via the minimal assumption that polynomial-time hard to
invert one-way functions exist. The Lin-Pass protocol makes highly non-black-box use of the under-
lying one-way function (though not of the adversary), along with a concept called signature chains;
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resulting in signi�cant overhead. Most relevant to the current work is the work of Goyal [Goy11].
Goyal's protocol, using a later result of Goyal, Lee, Ostrovsky and Visconti [GLOV12], can be made
fully black-box, with its only shortcomings being high-communication complexity and the use of
the Wee transformation (or alternatively a similarly costly transformation due to Goyal [Goy11])
for handling non-synchronizing adversaries. To construct non-malleable commitments, our work
follows the blueprint proposed by Goyal, and introduces new proof techniques to signi�cantly trim
down its complexity, making various parts of the protocol of Goyal [Goy11] unnecessary.

The current state of a�airs is such that in spite of all the remarkable advances, the DDN construc-
tion and its analysis remain the simplest and arguably most appealing candidate for non-malleable
commitments. This is both due to its black-boxness and because it does not require transformations
for handling a non-synchronizing MIM (in fact, the protocol is purposefully designed to introduce
asynchronicity in message scheduling, which can be then exploited in the analysis).

1.2 Our Results

In this work we introduce a new algebraic technique for obtaining non-malleability, resulting in
a simple and elegant non-malleable commitment scheme. The scheme's analysis contains many
fundamentally new ideas allowing us to overcome substantial obstacles without sacri�cing e�ciency.
The protocol is constructed using any statistically binding commitment scheme as a building block,
and hence requires the minimal assumption that one way functions exist.

Theorem. Assume the existence of one-way functions. Then there is a 4−round non-malleable
commitment scheme.

Our protocol enjoys the following appealing features, each of which makes it preferable in at
least one way over any of the previously proposed protocols for non malleable commitment:

Simplicity. Compared to all previous protocols, ours is signi�cantly simpler to describe and to
instantiate (though not to analyze). The simplicity of the protocol also means that there is
no need to introduce costly transformations for handling non-synchronizing adversaries.

E�ciency. In particular, ours is signi�cantly more e�cient than all prior protocols both in terms
of round complexity, and in the sense that we use a surprisingly small number of sub-protocols,
each of which can be instantiated in a very e�cient way (e.g. using standard sigma protocols).

Assumption. The assumption underlying our main protocol is the existence of one-way functions,
which is necessary for non-malleable commitments.

A direct consequence of our protocol is a 4-round non-malleable zero-knowledge argument based
on any OWF. This demonstrates that for zero-knowledge, non-malleability does not necessarily
come at the cost of extra rounds of interaction or complexity assumptions.

Theorem. Assume the existence of one-way functions. Then there is a 4-round black-box non-
malleable zero-knowledge argument for every language in NP .

Beyond the above virtues, we believe that our new techniques are actually the most signi�cant
contributions of this work. In addition to our use of algebra, we make novel combinatorial use of error
correcting codes in order to ensure that di�erent committers' tags di�er in many coordinates (more
on that later on). Whereas prior work relied on �worst-case" analysis of di�erences in committers'
tags, ours follows from an �average-case� claim.
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One way of viewing our construction is as a method for combining n atomic sub-protocols in a
way that simultaneously ampli�es their soundness and non-malleability properties, thus requiring
much weaker soundness and non-malleability to begin with. We hope that this paradigm will become
the norm for future work on in the area as, despite requiring more careful and strenuous analysis, it
leads to pleasantly lightweight protocols. For example, this technique alone allows for an immediate
linear reduction in communication complexity compared with its nearest relative, Goyal's protocol.

Another payo� of the algebraic techniques we employ is that our protocol only has one �slot�.
Nearly all of the non-malleable commitment schemes in the literature use multiple slots of interaction
as a way to set up imbalances between the two di�erent protocol instantiations that the MIM is
involved in. The well known �two slot trick� of [Pas04, PR05, Goy11], for example, is a way to turn
an arbitrary asymmetry between the instantiations into two: one which is heavy on the right and
one on the left. The inability of the MIM to align the imbalances is crucial to the proof of non-
malleability. Running the two slots in parallel introduces several technical problems, most notably
�if the two imbalances are side by side, won't they just cancel each other out?� Our analysis uses
a computational version of the �linear independence of polynomial evaluation� mantra in order to
argue that the MIM cannot combine the two imbalances and must deal with each one separately.

We stress that the use of algebra and error correcting codes does not yield such reward for free:
the analysis required becomes substantially more di�cult. In the next section we describe and
brie�y discuss our new protocol and extractor. We then outline our techniques, keeping it informal
but pointing out several of the challenges faced and new ideas required to overcome them.

Subsequent Work. Shortly after this work, Brenner et al. [BGR+15] give an e�cient instantia-
tion of a sequential 7-round version of our protocol assuming the hardness of DDH over elliptic curve
groups. More recently, Goyal, Pandey and Richelson [GPR16] give a three round non-malleable
commitment scheme, matching the lower bound of [Pas13]. Their scheme uses the same method
of extraction as our scheme, along with many new ideas. Even more recently, Ciampi, Ostrovsky,
Siniscalchi and Visconti [COSV16a] construct three round concurrent non-malleable commitments
assuming subexponentially secure OWF. In another recent work, the same authors give the �rst
four-round concurrent non-malleable commitment scheme based on (standard) OWF, using the
scheme in this work as a building block [COSV16b]. They observe that our scheme already satis�es
a weak form of concurrent non-malleability, where no MIM who commits to a valid message in
each session on the right can be mauling. They then show how to compile it into a scheme with
full concurrent non-malleability without incurring a cost to the round complexity or the underlying
assumption.

1.3 The New Protocol

Suppose that committer C wishes to commit to message m, and let t1, . . . , tn ∈ Z be a sequence of
tags that uniquely correspond to C's identity (more on the tags later). Let Com be a statistically
binding commitment scheme, and suppose that m ∈ Fq where q > maxi 2ti . The protocol proceeds
as follows:

1. C chooses random r = (r1, . . . , rn) ∈ Fnq and sends Com(m) and {Com(ri)}ni=1 to R;

2. R sends C a query vector α = (α1, . . . , αn) where each αi is drawn randomly from
[
2ti
]
⊂ Fq;

3. C sends R the response a = (a1, . . . , an) where ai = riαi +m;
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4. C proves in ZK that the values a (from step 3) are consistent with m and r (from step 1).

The statistical binding property of the protocol follows directly from the binding of Com. The
hiding property follows from the hiding of Com, the zero-knowledge property of the protocol used
in step 4, and from the fact that for every i the receiver R observes only a single pair of the form
(αi, ai), where ai = riαi +m.

Note the role of C's tags in the protocol: ti determines the size of the i−th coordinate's chal-
lenge space. Historically, non-malleable commitment schemes have used the tags as a way for the
committer to encode its identity into the protocol as a mechanism to prevent M (whose tag is
di�erent from C's tag) from mauling. In our protocol the tags play the same role, albeit rather
passively. For example, though the size of the i−th challenge space depends on ti, the size of the
total challenge space depends only on the sum

∑n
i=1 ti of the tags. In particular, our scheme leaves

open the possibility that the left and right challenge spaces might have the same size (in fact this
will be ensured by our choice of tags). This raises a red �ag, as previous works go to great lengths
to set up imbalances between the left and right challenge spaces in order to force M to �give more
information than it gets�. Nevertheless, we are able to prove that any mauling attack will fail.

At a very high level, our protocol can be seen as an algebraic abstraction of Goyal's protocol.
However, the fundamental di�erence we should emphasize from [Goy11] is that he crucially relies
on the challenge space in the left interaction being much smaller than the challenge space in the
right. For us, the challenge spaces in the two interactions are exactly the same size and so the
techniques of [Goy11] do not apply to our setting−at least at �rst. Our protocol does have small
imbalances between the challenge spaces of individual coordinates, which is what we will eventually
use to prove non-malleability. However, proving that the coordinates are su�ciently independent
so that these imbalances accrue to something usable is completely new to this work.

1.4 Proving Non-Malleability

Consider a MIM adversary M that is playing the role of the receiver in a protocol using tags
t1, . . . , tn while playing the role of the committer in a protocol using tags t̃1, . . . , t̃n (we describe
explicitly how to construct the tags from C's identity in Section 2). We refer to the former as the
�left" interaction and to the latter as the �right" interaction. We let m and m̃ denote the messages
committed to in the left and right interactions respectively. One nice feature of our protocol is that
it is automatically secure against a non-synchronizing adversary, simply because there are so few
rounds, there is no way for the MIM to bene�t by changing the message order: any scheduling but
the synchronous one can be dealt with trivially. So the only scheduling our proof actually needs to
handle is a synchronizing one, as depicted in Figure 1 below.

Our proof of non-malleability involves demonstrating the existence of an extractor, E, who is able
to rewind M and extract m̃ without needing to rewind C in the left instantiation. Our extractor is
modeled after Goyal's extractor which: (1) rewinds M to where α̃ was sent and asks a new query
β̃ instead, and (2) responds to M's left query randomly (it cannot do better without rewinding C
as it does not know m), hoping that M answers correctly on the right.

In Goyal's protocol there is no way for E to know whether M answered correctly or not, and so it
must have a veri�cation message after the query response phase so E can compare M's answer with
the main thread to verify correctness. We sidestep this necessity in the following way. We rewind to
the beginning of step 2 twice and ask two new query vectors β̃ and γ̃, we answer randomly on the
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C M R
Com(m),Com(r) Com(m̃),Com(r̃)

α =
(
α1, . . . , αn

)
, αi ∈

[
2ti
]

α̃ =
(
α̃1, . . . , α̃n

)
, α̃i ∈

[
2t̃i
]

a =
(
a1, . . . , an

)
ã =

(
ã1, . . . , ãn

)
ZK: ai = riαi +m ∀ i ZK: ãi = r̃iα̃i + m̃ ∀ i

Figure 1: Protocol with Man-in-the-Middle

left obtaining
{

(α̃, ã), (β̃, b̃), (γ̃, c̃)
}
, where (α̃, ã) is from the main thread. Comparing both (β̃i, bi)

and (γ̃i, ci) with (α̃i, ai) will result in candidate values m̃i and m̃
′
i, but with no veri�cation message

it is not clear how E should verify which one (if either) is correct. We accomplish this with the
following �collinearity test�. If m̃i = m̃′i then E checks whether the points

{
(α̃i, ãi), (β̃i, b̃i), (γ̃i, c̃i)

}
are collinear. If so, E deems that m̃i was the correct value. This requires proving that M cannot
answer �incorrectly but collinearly�.

Tags in Error Corrected Form. This discussion is meant for readers who are familiar with
the roles of tags in previous non-malleable commitment schemes, for a more thorough introduction
see Section 2. Just as in many of the existing NMC schemes, our protocol consists of n �atomic
subprotocols�, one for each tag. Previous schemes use the so called �DDN trick� [DDN91] in order
to turn C's k−bit identity into a list of n (= k) tags t1, . . . , tn, satisfying the properties: (1) each
ti is of length log n+ 1; and (2) if {ti}i and {t̃j}j are the tags resulting from two distinct identities
then there exists some i such that ti is completely distinct from {t̃j}j , meaning that ti 6= t̃j for all j.

Previous schemes' security proofs require the extractor to be able to use any completely distinct
left subprotocol (i.e., one whose tag is completely distinct from {t̃j}j) to extract M's commitment
m̃ with high probability. This ensures that extraction is possible even in the worst case when there
is a single such subprotocol. It also introduces a good deal of redundancy into the protocol.

While one would generally expect most pairs of distinct identities to result in pairs of tags such
that property (2) holds for many i, all the DDN trick can guarantee in the worst case is that it
holds for a single i (since M is allowed to choose his identity adversarily, this worst case situation
might very well be realized). If however, one �rst applies an error correcting code to C's identity
obtaining, say, a codeword in Fn for suitably chosen �nite �eld F with |F| = poly(n), then applying
the DDN trick to this codeword would yield tags such that (1) ti is of length O(log n); and (2) ti is
completely distinct from {t̃j}j for a constant fraction of the i ∈ {1, . . . , n}.

Our �completely distinct on average� property requires only that extraction is possible from a
completely distinct left subprotocol with constant probability, since there now are guaranteed to be
many extraction opportunities. This allows us to remove much of the arti�cial redundancy resulting
in an incredibly trim protocol.
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Non-malleability against a copying M. To get a sense of why we might expect our scheme to be
non-malleable, let us examine the situation against an M who attempts to maul C's commitment by
simply copying its messages from the left interaction to the right. Let m be the message committed
to on the left and let {ti}ni=1 and {t̃i}ni=1 be the corresponding tags.

After the �rst message, M will have copied C's commitments over to the right interaction,
successfully committing to the coe�cients of the linear polynomials f̃i(x) = rix + m, i = 1, . . . , n.
The hiding of Com ensures it does not know the polynomials themselves, and so when it receives
the right query vector α̃, its only hope of coming up with the correct valuations f̃i(α̃i) is to copy R's
challenge to the left interaction and copy C's response back. However, it is unlikely that this will
be possible. Indeed, M can only copy α̃i over to the left when α̃i ∈

[
2ti
]
. If t̃i > ti then the i−th

challenge space on the right is at least twice as big as the i−th challenge space on the left, which
means that the probability α̃i can be copied is at most 1/2. We will use a code which ensures that
t̃i > ti for a constant fraction of the i, making the probability that M can copy every coordinate of
R's query vector α̃ negligible. So M will not be able to successfully answer R's query and complete
the proof when performing the �copying� attack.

Non-malleability against general M. Establishing security against a general man-in-the-middle
adversary is signi�cantly more challenging, and this is where the bulk of the new ideas are required.
Our proof of non-malleability will require us to delve into the full range of possibilities for M's
behavior. In each case, we will show that one of three things happen:

1. M does not correctly answer its queries with good enough probability;

2. E succeeds in extracting m̃ with su�cient probability;

3. an M with such behavior can be used to break the hiding of Com.

The core of our result can be seen as a reduction from a PPT M who correctly answers its queries
with non-negligible probability and yet causes E to fail, to a machine A who breaks the hiding of
Com. The following is a very high level outline of our proof.

We de�ne USEFUL to be the set of transcripts which do not lead to situation 1 above; that is,
transcripts for which M has a good chance of completing the protocol given the pre�x. This is
important in order for E to have any chance of successfully extracting m̃. Indeed, if M just aborts
in every rewind, E will have no chance. From this standpoint, USEFUL is the set of transcripts
which give E �something to work with.� We prove that most transcripts are in USEFUL in Claim 3.

We then de�ne EXT, the set of �extractable� transcripts, on which E will succeed with high
probability. These are the transcripts which lead to situation 2. Intuitively, EXT is the set of
transcripts such that M has good probability of correctly answering a query in a rewind despite the
fact that E provides random answers to M's queries. We prove that indeed, if a transcript is in EXT
then E succeeds in extracting m̃.

Finally, we de�ne TRB, the set of �troublesome� transcripts which are both useful and not
extractable. Transcripts in TRB are problematic as on the one hand, usefulness ensures that the
pre�x is such that if M receives correct responses to its queries on the left, it gives correct responses
to the queries on the right. At the same time however, transcripts in TRB are not extractable and
so the pre�x is also such that if M receives random responses to its queries on the left it answers
the right queries incorrectly. Certainly, the hiding of Com ensures that M cannot know whether it
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receives correct or random responses to its queries on the left. So this di�erence in behavior suggests
that we may be able to use M to violate the hiding of Com, leading to situation 3 above.

Our main claim in this part of our proof is Claim 8, which says that if the left challenge α has
a superpolynomial number of preimage right challenges α̃ then either E succeeds in extracting m̃,
or M can be used to break hiding. Such a claim has been at core of the analysis of some previous
NMC schemes. In fact, as many previous schemes (such as [Goy11], for example) use multiple slots
in order to ensure that some slot has a right challenge space that is much bigger than the left, such
a claim often encompasses nearly the entire analysis. In our case, we have some work still left as
there is only a single slot and the right and left challenge spaces have the same size. Nevertheless,
we are able to prove, using a series of combinatorial arguments, that any mauling attack will wind
up with M's left query having exponentially many preimage right queries.

To see these techniques in action, de�ne the set S = {i ∈ [n] : t̃i ≤ ti}, and consider an M who
simply copies the right challenges α̃i for i ∈ S over to the left but who makes sure to produce a
legal query in the coordinates not in S on the left. As

[
2t̃i
]
⊂
[
2ti
]
for all i ∈ S, copying α̃i when

i ∈ S is �ne. If we think of M as a map sending right challenge α̃ to left challenge α, then for
any α̃S = (α̃i)i∈S , M sends α̃′ such that α̃′S = α̃S to α′ such that α′S = α̃S . In other words, M
maps the set of right query vectors whose S−coordinates are �xed to α̃S to the set of left query
vectors whose S−coordinates are also �xed to α̃S . However, the sizes of these subsets of right and
left challenges are ∏

i/∈S

2t̃i and
∏
i/∈S

2ti ,

respectively, and
∏
i/∈S 2t̃i = 2Ω(n)

∏
i/∈S 2ti (we are using that our tags are in error-corrected form,

which ensures
∣∣[n] \ S

∣∣ = Ω(n)). So we see that M, when restricted to the right challenges with
S−coordinates �xed to α̃S , is exponentially many to one on average, and so α has exponentially
many preimages with high probability.

4−Round Non-Malleability. The protocol in Figure 1 is explained sequentially, and as written,
consists of 8 rounds: two for Naor's commitment, two for the query/response phase, and four for
the ZK argument. However, it can be parallelized down to four rounds using the Feige-Shamir
four round ZK argument system [FS90]. This requires running the entire ZK argument in parallel
with the commit, query and response messages. We make use of some standard properties of
the [FS90] scheme; namely, that it is delayed-input zero-knowledge and that it is an argument of
knowledge. Additionally we make a further requirement that the ZK argument is instantiated on
top of 3 round WI proofs which remain WI even if the adversary gets to rewind the challenger one
time. This technical property is non-standard and is crucial for our proof. Most of the di�culty in
Section 6 revolves around constructing a delayed-input three-round WI with this property. We also
construct the �rst 4-round non-malleable zero-knowledge argument essentially by running a 4-round
ZK argument protocol in parallel with a non-malleable commitment to the witness w.

Using the OWF in a Blackbox Fashion. The protocol described in Figure 1 makes non-
blackbox use of the OWF during the ZK part of the protocol. It is often desirable for protocols to
make only blackbox use of their building blocks, as the alternative tends to be vastly less e�cient.
To this end, the work of [GLOV12] replaces the ZK proof in the [Goy11] NMC scheme with an
�MPC in the head� computation [IKOS07], resulting in a constant round NMC scheme which makes
blackbox use of a OWF. The same transformation works for our protocol as well. We point out,
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however, that all the ZK argument in our protocol has to do is prove �knowledge of committed
values� and that these values satisfy a linear equation, both of which can be proved very e�ciently
(i.e., without resorting to costly NP−reductions), assuming DDH (or other widely used hardness
assumptions). Therefore, if a statistically binding commitment scheme is available that has an
e�cient proof of knowledge of committed value, our protocol will be much more e�cient than the
generic transformation of [GLOV12], which requires C to imagine an entire MPC in his head.

It is worth noting that directly plugging in the ideas of [GLOV12] into our protocol results in a
6-round NMC scheme. We do not address the issue of trying to reduce the round complexity of this
blackbox protocol to 4 because our 4-round non-blackbox protocol is so much faster in practice.

2 Preliminaries

For positive n ∈ N, let [n] = {1, . . . , n}. A function ε : N → R+ is negligible if it tends to 0
faster than any inverse polynomial i.e., for all constants c there exists nc ∈ N such that for every
n > nc it holds that ε(n) < n−c. We use negl(·) to specify a generic negligible function. We
abbreviate �probabilistic polynomial time� with PPT. We assume familiarity with computational
indistinguishability and zero-knowledge proofs (and related protocols).

2.1 Commitment schemes

Commitment schemes are protocols which enable a party, known as the committer C, to commit
himself to a value while keeping it secret from the (potentially cheating) receiver, R. This property
is known as hiding. Additionally, upon receiving the commitment from C, R is ensured that even if
C cheated, there is at most one value that C can decommit to during a later, decommitment phase
(binding). In this work, we consider commitment schemes that are statistically-binding which means
that the hiding property only holds against computationally bounded adversaries.

De�nition 1 (Statistically Binding Commitment Scheme). Let 〈C,R〉 be an interactive pro-
tocol between C and R. We say that 〈C,R〉 is a statistically binding commitment scheme if the
following properties hold:

Correctness: If C and R do not deviate from the protocol, then R should accept (with prob-
ability 1) during the decommit phase.

Binding: For every C∗, there exists a negligible function negl(·) such that C∗ succeeds in the
following game with probability at most negl(λ): On security parameter 1λ: C∗ �rst interacts
with R in the commit phase to produce commitment c. Then C∗ outputs two decommitments
(c,m0, d0) and (c,m1, d1), and succeeds if m0 6= m1 and R accepts both decommitments.

Hiding: For every PPT receiver R∗ and every two messages m0,m1, the view of R∗ after
participating in the commitment phase, where C committed to m0 is indistinguishable from
its view after participating in a commitment to m1.

[Nao91] gives a 2-round, statistically binding bit commitment scheme that can be built from any
OWF [HILL99].
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2.2 Non-malleable commitments

We wish for our commitment scheme to be impervious to a MIM adversary, M, who takes part in
two protocol executions (in the left interaction M acts as the receiver while in the right, M plays
the role of the committer), and tries to use the left interaction to a�ect the right. The security
property we desire can be summarized:

For any MIM adversary M, there exists a standalone machine who plays only one execu-
tion as the committer, yet whose commitment is indistinguishable from M's commitment
on the right.

At �rst glance, non-malleability seems impossible as surely nothing can be done to protect
against a MIM who simply copies messages from one protocol execution to another. For this
reason, non-malleable security o�ers protection only against any MIM who tries to change messages
in a meaningful way.

On the Existence of Identities. In this work, just as in [DDN91, PR05], we assume that the
committer has an identity id ∈ {0, 1}k. In order to perform a successful mauling attack, a MIM
has to maul a commitment corresponding to C's identity into a commitment of his own, distinct
identity. Though this sounds like a strong assumption on the network, essentially requiring that
�you know who you are talking to�, for our purposes, it is actually equivalent to the requirement
discussed above, that the MIM do something other than simply copy messages. This is because our
protocol is interactive, and the �rst committer message contains a statistically binding commitment
to m. This means that if we set the committer's identity to be the �rst committer message, C's
and M's identities will be distinct unless M copied C's �rst message.

Moving forward, we assume that the committer's id is externally given and we require that
non-malleability holds only in the case when C and M's identities are di�erent. We also assume
for simplicity that player identities are known before the protocol begins, though strictly speaking
this is not necessary, as the identities do not appear in the protocol until after the �rst committer
message. We point out that M can choose his identity adversarially, as long as it is not equal to C's.

De�nition of Non-Malleable Commitments. In this work, we consider the notion of non-
malleability with respect to commitment and we will frequently refer to the �message committed to
by a MIM adversary M during the commitment phase". We note that this is uniquely de�ned, as all
commitment schemes in this work are statistically binding, and so for all but a negligible fraction
of the possible transcripts T of the interaction between M and an honest receiver R, there exists at
most one message m that is consistent with T (i.e., for which there exist random coin tosses which
give T). We recall the de�nition of non-malleable commitments of Lin et al et al. [LPV08].

The man-in-the-middle execution. In the man-in-the-middle execution, the MIM adversary
M is simultaneously participating in two interactions called the left and the right interaction. In
the left interaction M is the receiver and interacts with a honest committer whereas in the right
interaction M is the committer and interacts with a honest receiver. We de�ne a random variable
MIM〈C,R〉(m, z) describing (m̃, v): the value M commits to in the right interaction, and M's view
in the full experiment. Speci�cally, M has auxiliary information z and interacts on the left with an
honest committer C with input message m and identity id and on the right with honest receiver R.
M attempts to commit to a value m̃ that is related to m using an identity ĩd of its choice. If the
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right commitment (as determined by the transcript) is invalid or unde�ned, or id = ĩd its value is
set to ⊥.

The simulated execution. In the simulated execution a simulator S interacts with an honest
receiver R. S receives security parameter 1λ and auxiliary information z and interacts with the
honest receiver R. Let SIMS〈C,R〉(1

λ, z) denote the random variable describing (m̃, v): the value S
commits to in the right interaction, and S's view during the entire experiment. If the commitment
produced by S is invalid or unde�ned, its value is set to ⊥.

De�nition 2 (Non-Malleable Commitments). A commitment scheme 〈C,R〉 is non-malleable
with respect to commitment if for every PPT MIM adversary M, there exists a PPT simulator S
such that the following ensembles are indistinguishable for all m ∈ {0, 1}λ:

{MIM〈C,R〉(m, z)}z∈{0,1}? , and {SIMS〈C,R〉(1
λ, z)}z∈{0,1}?,id∈{0,1}k

2.3 Tags in Error Corrected Form

In this section, we describe how to derive the tags from C's identity, highlighting the properties we
will use moving forward. Let id ∈ {0, 1}k be C's identity and let y ∈ Fn/2 be the image of id under
an error correcting code with constant distance, for a suitable �nite �eld F. Constant distance
implies that if id, ĩd ∈ {0, 1}k are distinct identities then y and ỹ di�er on a constant fraction of
their coordinates. Now, set

ti =

{
2i|F|+ yi, i ≤ n/2
(2n+ 1)|F| − tn−i+1, i > n/2

Note that 2i|F| ≤ ti < (2i+ 1)|F| for all i. The following is a list of useful properties that the tags
satisfy. Let {ti}i and {t̃i}i be the tags resulting from distinct identities id 6= ĩd.

1. Ordered: t1 < t2 < · · · < tn;

2. Well Spaced: t1 = ω(log λ) and ti+1−ti = ω(log λ) for all i ∈ [n]; moreover ti+1− t̃i = ω(log λ).

3. Good Distance and Balance: if i 6= j then ti 6= t̃j ; moreover ti < t̃i holds for a constant
fraction of i ∈ [n] (as does ti > t̃i).

Properties 1 and 2 follow immediately as long as |F| = ω(log λ). Property 3 follows from 1)
the distance of the error correcting code as ti = t̃i i� yi = ỹi which must not be the case for a
constant fraction of the i ∈ [n]; along with 2) if ti 6= t̃i then either ti < t̃i or else tn−i < t̃n−i. This
is reminiscent of the two slot trick of [Pas04, PR05].

It remains to select parameters. Note that we have already touched on the role that the tags
play in our protocol: the size of the challenge space in coordinate i is 2ti . This means that we
would like to make the tags as small as possible, while still allowing our security proof to go
through. We make the conservative selection n = O(λ) and |F| = log2(λ) to ensure both that
the above properties hold and that all that is required of the error correcting code is that it has
constant distance and constant rate. Codes with such properties are known to exist. We could use,
for example polynomial based codes such as Reed-Muller codes, the multivariate generalization of
Reed-Solomon codes. This results in the overall communication complexity of our non-malleable
commitment scheme being Õ(λ2). Slightly better communication complexity might be available
through more agressive choices of parameters or better codes. We do not press the issue further.
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3 The Protocol

In this section, we describe our protocol given tags t1, . . . , tn in error corrected form as described in
Section 2.3. We use Naor's two round, statistically binding bit commitment scheme [Nao91] as a
building block.1 We use boldface to denote vectors; in particular a challenge vector α = (α1, . . . , αn)
and a response vector a = (a1, . . . , an). We write Com for the entire �rst commitment message, so
Com =

(
Com(m),Com(r1), . . . ,Com(rn)

)
. Our non-malleable commitment scheme 〈C,R〉 between

a committer C trying to commit to m and a receiver R appears in Figure 2. The decommitment
phase is done by having the committer C send m and the randomness it used during the protocol.

Proposition 1. The commitment scheme 〈C,R〉 is computationally hiding and statistically binding.

Proof Sketch. Statistical binding follows from the statistical binding property of the underlying
commitment scheme Com. To prove computational hiding, we consider the following hybrid exper-
iments.

1. Simulate the ZK consistency proof step. Indistinguishability follows from the ZK property.

2. For each i ∈ [n], replace the commitment Com(ri) to be a commitment to random value.
Indistinguishability follows from the hiding of Com.

3. Replace the polynomials with random polynomials f̄1, . . . , f̄n such that f̄i(αi) = fi(αi) and
f̄i(0) = m′ for randomly sampled m′ and all i ∈ [n]. The indistinguishability follows from
having n+ 1 variables and only n equations.

4. Change the commitment Com(m) to be a commitment to a random string (as opposed to a
commitment to m). Indistinguishability follows from the hiding of Com.

In the �nal hybrid, the transcript of the commitment stage contains no information about the value
m being committed to, and so no information about m is leaked by the protocol.

Theorem 1 (Main theorem). The commitment scheme 〈C,R〉 is non-malleable against a synchro-
nizing adversary.

We comment that non-malleability against a general non-synchronizing adversary actually holds in
the above protocol (provided we choose a ZK with suitable properties, such as [FS90]). However,
we only prove non-malleability against a synchronizing MIM (i.e., one who plays corresponding
messages of the two instantiations one after the other) because the large number of messages of the
protocol above make it cumbersome to examine all possibilities for M's scheduling.

We defer the proof of non-malleability against non-synchronizing M until after we parallelize our
protocol down to four rounds (see Section 6). This makes it much easier (in fact trivial) to directly
examine all of the non-synchronizing options for message scheduling that M has available.

1Brie�y recall Naor's scheme: 1) R sends random initialization message σ, and 2) C responds with Comσ(m; s),
a commitment to m ∈ {0, 1} using randomness s (we will feel free to just write Com(m), surpressing σ and s
for simplicity). We comment that the same initialization message σ can be used for polynomially many parallel
instantiations of the scheme, allowing C to commit to m ∈ Zq one bit at a time (actually [Nao91] shows how to
commit to longer messages more e�ciently).
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Public Parameters: Tags t1, . . . , tn and a large prime q such that q > 2ti for all i.

Commiter's Private Input: Message m ∈ Fq to be committed to.

Commit Phase:

0. R→ C Initialization message: Send the �rst message σ of the Naor commitment scheme.

1. C→ R Commit message: Sample random r1, . . . , rn ∈ Fq and s, s1, . . . , sn.

• De�ne linear functions f1, . . . , fn by fi(x) = rix+m.

• Send commitments Com =
(
Comσ(m; s),Comσ(r1; s1), . . . ,Comσ(rn; sn)

)
.

2. R→ C Query:

• Send random challenge vector α = (α1, . . . , αn), αi ∈ [2ti ] ⊂ Fq.

3. C→ R Response:

• Send evaluation vector a = (a1, . . . , an), ai = fi(αi).

4. C←→ R Consistency proof: Parties engage in a zero-knowledge argument protocol
where C proves to R that ∃

(
(m, s), (r1, s1), . . . , (rn, sn)

)
such that:

• Com =
(
Comσ(m; s),Comσ(r1; s1), . . . ,Comσ(rn; sn)

)
; and

• ai = riαi +m ∀ i = 1, . . . , n.

Decommit Phase:

C→ R Decommit Message: Send
(
(m, s), (r1, s1), . . . , (rn, sn)

)
.

Veri�cation: R checks the correctness of the commit and response messages.

Figure 2: The non-malleable commitment scheme 〈C,R〉.

4 Proof of Non-Malleability

In this section we prove Theorem 1. Recall from De�nition 2 that we must show that for any PPT
MIM M there exists a PPT simulator S such that{

MIM〈C,R〉(m, z)
}
m,z
≈c
{
SIMS〈C,R〉(1

λ, z)
}
z,id

,

where the distributions output (m̃, v): the commitment in the right interaction and view after the
commit phases of both executions are complete in the real and ideal worlds, respectively. Our
simulator is a very simple machine who runs M internally, committing honestly to 0 ∈ Zq on the
left and forwarding M's messages on the right to an honest receiver R.

We prove indistinguishability of the above distributions for any M by constructing an extractor
E which takes M's view after the commit phases of the left and right executions are complete
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and outputs its commitment m̃ in the right execution whp. It follows that an algorithm which
distinguishes D0 =

{
MIM〈C,R〉(m, z)

}
m,z

from D1 =
{
SIMS〈C,R〉(1

λ, z)
}
z,id

can be used to break

the hiding of 〈C,R〉 in the following way: 1) let v be M's view after completing the commit phases
of the left and right executions in either the real or ideal world; 2) use E to obtain the pair (m̃, v);
3) use the distinguisher to determine whether M's interaction took place in the real or ideal world.
This breaks the hiding of the left commitment as the only di�erence between the worlds is that in
the real, C commits to m while in the ideal, S commits to 0.

Formally, we assume that there exists a PPT distinguisher D such that∣∣∣∣Pr(m̃,v)←D0

(
D(m̃, v) = 1

)
− Pr(m̃,v)←D1

(
D(m̃, v) = 1

)∣∣∣∣ ≥ 2p

for some non-negligible p = p(λ). We prove that E succeeds with probability at least 1 − p. Note
this su�ces for proving non-malleability since it means that E extracts m̃ AND the D will use (m̃, v)
to determine whether M is interacting with C committing to m, or S committing to 0. We also
assume without loss of generality that M is deterministic and that M's probability of successfully
completing the protocol (over C's and R's random coins) is at least p.

4.1 The Extractor E

The high level description of our extractor (described formally in Figure 3) is quite simple. Intu-
itively, our protocol begins by C committing to n, threshold 2, Shamir secret sharings [Sha79] of m;
R then asks for one random share from each sharing, which C gives. All E does is rewind M to the
beginning of the right session's query phase ask for a new random share. Since E gets one share as
part of its input, this will allow E to reconstruct m̃.

The problem with this approach is that E does not know the value C has committed to on the
left and so it does not know how to answer M's query on the left correctly. The best E can do is give
a random response on the left and hope that M will give a correct response on the right anyway.
On the one hand, the hiding of Com dictates that M cannot distinguish a correct response from a
random one. On the other hand, M doesn't actually need to know whether the response on the left
is correct or not in order to perform a successful mauling attack. Imagine, for example, the MIM
who mauls R's challenge to the left execution and mauls C's response back. Such an M will prevent
E from extracting m̃ because M only correctly answers E's query if given a correct response to its
own left query, which E cannot give. Of course we will prove that no M with such behavior can
exist, but this proof is highly non-trivial.

Another question which our extractor raises is �how can E tell a correct response from an incorrect
one?� As we have described it, the hiding of Com ensures that it cannot. However, a small
modi�cation to the E described above �xes this. Instead of asking for one new share, E rewinds
twice to the beginning of the right query phase and asks for two di�erent new shares.

The key observation is that if M answers both queries correctly then the three shares it holds (the
two it received plus the one it got as input) are collinear, whereas if M answers at least one incorrectly
they are overwhelmingly likely to NOT be collinear. This is the �rst appearance of a tangeable payo�
of the algebraicity of our protocol. For example, the protocol of [Goy11] (which is similar to ours, but
strictly combinatorial in nature) does not have this algebraic veri�cation technique at its disposal
and must introduce use extra rounds into the protocol to ensure its extractor can reconstruct m̃.
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E is given as input a transcript of a complete commit phase in both the left and right interactions.
We denote the transcript with the letter T. Speci�cally,

T =
(
Com, ˜Com,α, α̃,a, ã, π, π̃

)
.

Since E will not be interested in the proofs (π, π̃), and since M is deterministic (and so ˜Com, α, ã
are uniquely determined by Com, α̃, and a) we will often just write T =

(
Com, α̃, a

)
.

De�nition 3 (Accepting Transcript). We say that T ∈ ACC if both π and π̃ are accepting proofs.

The soundness of the ZK ensures that if T ∈ ACC then query vectors α̃ and α are answered
correctly. We say that M aborts if M behaves in such a way as to make T /∈ ACC. Note this includes
the case when M acts in an obviously corrupt fashion, causing C or R to abort.

The extractor E gets T ∈ ACC as input so the probabilities which arise in our analysis often are
conditioned on the event T ∈ ACC. We denote this with the convenient shorthand PrT∈ACC

(
· · ·
)

instead of PrT
(
· · ·
∣∣T ∈ ACC

)
. For �xed Com, M can be thought of as a deterministic map, mapping

right query vectors to left ones. We write α = M(α̃) to be consistent with this point of view. We
assume that the transcript E gets as input is consistent with exactly one right commitment m̃. As
〈C,R〉 is statistically binding, this happens with overwhelming probability.

See Figure 3 below for a formal description of the extractor. Note that there are two ways for E
to fail to output m̃. The �rst is if E fails to extract any value and outputs FAIL. The other is if E
accidentally extracts an incorrect value m̃′ 6= m̃.

Theorem 2 (Su�cient for Theorem 1). Let E be the extractor described in Figure 3, and let T
be the transcript it is given as input. Let m̃ be M's commitment in the right interaction of T. Then

PrT∈ACC
(
E(T) 6= m̃

)
≤ p,

where the probability is over T ∈ ACC and the randomness of E.

4.2 Extractable, Useful and Troublesome Transcripts

We now begin to chip away at Theorem 2 by examining special classes of transcripts on which a
mauling attack will fail. This allows us to gather properties which the remaining pertinent tran-
scripts must satisfy which will aid our future analysis. In this section we focus on the commitment
message of the protocol.

Recall the two ways E can fail: by outputting FAIL or by outputting incorrect m̃′ 6= m̃. Note
that the second way requires M to answer a pair of queries incorrectly but in such a way so that
they yield the same candidate message and they pass the collinearity test. In this case we say that
M answers incorrectly but collinearly.

De�nition 4 (Incorrect but Collinear). Fix a main thread transcript T = (Com, α̃,a) and an
i ∈ {1, . . . , n}. Let (β̃, b̃) and (γ̃, c̃) denote two query/response pairs arising during the execution of
E while rewinding M. Suppose that interpolating (β̃i, b̃i) and (γ̃i, c̃i) against the main thread's point
(α̃i, ãi) produces the same candidate message m̃′. We say that M answers (β̃i, γ̃i) incorrectly but
collinearly if:

1. m̃′ 6= m̃; and
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Tags: Let {ti}i and {t̃i}i be the left and right tags, respectively, in error corrected form.

Input: T =
(
Com, α̃, a

)
∈ ACC, and a large value N = poly(λ). E is given oracle access to M.

Extraction procedure: For j ∈ [N ]:

1. Rewind M to the beginning of step 2 of the protocol:

• generate a random right challenge vector β̃j = (β̃1,j , . . . , β̃n,j), where β̃i,j ∈ [2t̃i ].

• Feed M with β̃j and receive challenge βj = (β1,j , . . . , βn,j) for left interaction.

2. Feed bj = (b1,j , . . . , bn,j) to M where bi,j =

{
ai, βi,j = αi

r
R← Zq, βi,j 6= αi

. Get b̃j = (b̃1,j , . . . , b̃n,j).

3. For each i ∈ [n] use
{

(α̃i, ãi), (β̃i,j , b̃i,j)
}
to interpolate a line and recover candidate m̃i,j .

4. Repeat steps 1-3. Let γ̃j = (γ̃1,j , . . . , γ̃n,j) be new right challenge vector and
c̃j = (c̃1,j , . . . , c̃n,j) be corresponding response. Let (m̃′1,j , . . . , m̃

′
n,j) be recovered candidates.

5. If for some i ∈ [n], m̃i,j = m̃′i,j and
{

(α̃i, ãi), (β̃i,j , b̃i,j), (γ̃i,j , c̃i,j)
}
are collinear output m̃i,j

and halt.

Output: Output FAIL.

Figure 3: The Extractor E.

2.
{

(α̃i, ãi), (β̃i, b̃i), (γ̃i, c̃i)
}
are collinear.

We de�ne the set IBCi(Com, α̃i) =
{

(β̃, γ̃) : M answers (β̃i, γ̃i) incorrectly but collinearly
}
. Fi-

nally, de�ne
IBC(β̃, γ̃) =

{
T ∈ ACC : (β̃, γ̃) ∈ IBCi(Com, α̃i) for some i

}
.

Note that IBCi(Com, α̃i) is well de�ned given T and E's randomness. Intuitively IBC is the set
of transcripts for which E might fail because M answers incorrectly but collinearly. The following
claim shows that these transcripts rarely occur.

Claim 1. For any (β̃, γ̃), PrT∈ACC
(
T ∈ IBC(β̃, γ̃)

)
= negl(λ).

Proof. Fix i ∈ {1, . . . , n} and let T,T′ ∈ ACC be main threads with the same pre�x Com but di�er-
ent i−th right queries α̃i and α̃

′
i. Moreover, �x E's randomness arbitrarily making it deterministic,

so that the sets IBCi(α̃i) and IBCi(α̃′i) are de�ned. Note that IBCi(α̃i) and IBCi(α̃′i) are disjoint.
Indeed, suppose (β̃, γ̃) ∈ IBCi(α̃i) ∩ IBCi(α̃′i). Then the four points{

(α̃i, ãi), (α̃
′
i, ã
′
i), (β̃i, b̃i), (γ̃i, c̃i)

}
are collinear. This means that the line they all lie on is correct because (α̃i, ãi) and (α̃′i, ã

′
i) are

correct (T,T′ ∈ ACC) and so (β̃, γ̃) /∈ IBCi(α̃i) ∪ IBCi(α̃′i) as M answered β̃i and γ̃i correctly.
Therefore, for a �xed pre�x Com and extractor queries (β̃, γ̃), there is at most one value of α̃i such
that (β̃, γ̃) ∈ IBCi(α̃i). As the set of possible α̃i is superpolynomial, the chances that R's query
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α̃ in T is such that (β̃, γ̃) ∈
⋃
i IBC

i(α̃i) for any extractor query (β̃, γ̃) is negligible. The result
follows.

As our extractor only asks polynomially many pairs of new queries (β̃, γ̃), we see that E outputs
the wrong message m̃′ 6= m̃ with negligible probability. This means that if E fails, it does so because
it does not receive correct answers to its queries. We de�ne EXT, the set of �extractable� transcripts,
on which M has a non-negligible chance of answering a query correctly even given that its queries
are answered by E.

De�nition 5 (Extractable Transcripts). Fix ε∗ =
(
λ/N

)1/2
. We de�ne

EXTi =
{

(Com, α̃) : Prβ̃
(
M correctly answers β̃i

∣∣Com & M's queries answered by E
)
≥ ε∗

}
.

Set EXT =
{
T ∈ ACC : (Com, α̃) ∈ EXTi for some i

}
.

Intuitively, EXT is the set of transcripts such that M has good probability of providing at least
one pair of correct answers to a pair of queries asked in a rewind despite the fact that E provides
random answers to M's queries. We now prove that if a transcript is in EXT then E succeeds in
extracting m̃ whp.

Claim 2. PrT
(
E(T) = FAIL

∣∣T ∈ EXT
)

= negl(λ), where the probability is over T and the ran-
domness of E.

Proof. Let Ej be the event that there exists an i such that M answers both i−th queries correctly in
rewind j. Since T ∈ EXT we have that Pr(Ej) ≥ (ε∗)2 = λ/N for all j. As the Ej are independent,

PrT
(
E(T) = FAIL

∣∣T ∈ EXT
)

= Pr(not Ej ∀ j
∣∣T ∈ EXT

)
≤
(

1− λ

N

)N
= negl(λ).

Having looked at transcripts on which E succeeds whp, we next examine a set of transcripts on
which E trivially fails. These are transcripts which M was lucky to complete given the commitment
phase. Indeed, if every time E rewinds M simply aborts, E will have no chance of extracting m̃.

De�nition 6 (Useful Transcripts). Fix non-negligible δ < 1
3 and (temporarily) de�ne

W =
{
Com : PrT

(
T ∈ ACC

∣∣Com
)
≤ δp2

}
.

Set USEFUL :=
{
T ∈ ACC : Com /∈W

}
.

Informally, W is the set of partial transcripts for which M is unlikely to complete the protocol, so
USEFUL is the set of transcripts such that if M is rewound and executed again on a di�erent query,
the protocol will complete successfully with good probability. We note that most transcripts are
indeed useful.

Claim 3. PrT∈ACC
(
T /∈ USEFUL

)
≤ δp.

Proof. We have

PrT∈ACC
(
Com ∈W

)
= PrT

(
Com ∈W

∣∣T ∈ ACC
)
≤

PrT
(
T ∈ ACC

∣∣Com ∈W
)

PrT(T ∈ ACC)
≤ δp,

using the de�nition of W and the fact that PrT(T ∈ ACC) ≥ p.
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Transcripts in EXT are those for which M is likely to correctly answer a right query even given
incorrect responses to its own left queries. On the other hand, USEFUL can be thought of as the
transcripts for which M answers the right queries correctly if given correct answers to its left queries.
This leads us to the following de�nition.

De�nition 7 (Troublesome Transcripts). We de�ne TRB = USEFUL \ EXT.

Transcripts in TRB are troublesome as essentially, they are transcripts for which M answers the
right queries correctly if given correct answers to its left queries, but incorrectly if given incorrect
answers to its left queries. Certainly, the hiding of Com ensures that M cannot know whether it
receives correct or random responses to its queries on the left. So this di�erence in behavior suggests
that we may be able to use M to break the hiding of Com. However, it is not so easy. Keep in mind,
M does not have to know whether it is giving a correct or incorrect answer on the left. Indeed,
almost all mauling attacks one could imagine have the property that M answers correctly on the
right if and only if it gets correct answers on the left. The following lemma comprises the heart of
our analysis.

Lemma 1. If Com is computationally hiding then there exists a constant δ′ < 1
3 such that

PrT∈ACC
(
T ∈ TRB

)
≤ δ′p.

Lemma 1 combined with Claims 1 through 3 give us

PrT∈ACC
(
E(T) 6= m̃

)
≤ PrT∈ACC

(
T /∈ USEFUL

)
+ PrT∈ACC

(
T ∈ TRB

)
+ PrT

(
E(T) = FAIL

∣∣T ∈ EXT
)

+ PrT∈ACC
(
T ∈ IBC(β̃, γ̃) for some (β̃, γ̃) asked by E

)
≤ δp+ δ′p+ negl(λ) < p,

proving Theorem 2.

5 Proof of Lemma 1

5.1 Proof Overview

We prove Lemma 1 by de�ning the notion of �query dependence�, and then considering the possible
di�erent ways in which M's left queries α can depend on right queries α̃. Intuitively, αi′ being
dependent on α̃i is the result of M performing a mauling attack. Suppose that M mauls Com(fi′)
in order to obtain Com(f̃i). Then M does not know f̃i and so cannot hope to answer α̃i except
by mauling C's answer to αi′ . Therefore, if M is rewound to the beginning of step 2 and asked a
di�erent query vector β̃ such that β̃i = α̃i, M will have to ask β such that βi′ = αi′ if it wants to
answer successfully. This is the idea of query dependence: if α̃i is asked on the right, then αi′ must
be asked on the left.

Recall that in the introduction we considered a copying MIM who attempts to maul C's commit-
ment by simply copying and pasting messages between the left and right sessions. Such an attack is
a very simple example of a mauling attack in which each αi is dependent on α̃i. We saw this attack
is foiled by the large number of left tags which di�er from all right tags, preventing the right query
α̃ from being a legal left query except with negligible probability. In fact, we prove in Claim 7 that
all mauling attacks in which each αi depends on α̃i will fail whp.
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This encourages us to investigate what else can happen. We arrive at three possibilities.

• UNBAL: There exist i′ > i such that αi′ depends on α̃i.

• 1−2: There exist (i1, i2, i
′) such that αi′ depends on both α̃i1 and α̃i2 .

• IND: There exists i such that each αi′ does not depend on α̃i.

In the actual proof we formalize the above possibilities using precise conditional probability state-
ments. We keep it informal here, however, in order to convey as much intuition as possible.

Note that if none of the above three events occur then αi depends on α̃i for all i which is what
we hope happens. We complete the proof by showing that each of the three events cannot happen
except with very small probability. However, this is easier said than done. Consider, for example,
the mauling attack which results in 1−2. Intuitively, if αi′ is dependent on both α̃i1 and α̃i2 then M
is using C's response fi′(αi′) on the left to produce both f̃i1(α̃i1) and f̃i2(α̃i2) on the right. On the
one hand it is extremely unlikely that a single polynomial evaluation on the left contains enough
information to allow M to correctly give two random evaluations on the right. On the other hand,
this intuition alone isn't enough to say that 1−2 can't occur as the argument is information theoretic
in nature. Indeed, any statment one wishes to make about M's behavior in the query phase must
have a computational proof as an unbounded M can query however it wants to and then simply
break the hiding of the commitments in the �rst message to learn the f̃i and answer correctly.

The key claim which allows us to capitalize on our information theoretic intuition is Claim 8
which states that if the left query α has a superpolynomial number of preimage right queries α̃
then either E succeeds in extracting m̃ or M can be used to break the hiding of 〈C,R〉. The proof
is technical; at this point we give only some intuition which speaks to the truth of Claim 8. Full
details can be found in Section 5.3. If there are superpolynomially many α̃ such that M(α̃) = α,
the chances that M can use C's response by itself to answer α̃ are negligible. It follows that either
M must be content to not answer most of the α̃ such that M(α̃) = α (the probability of which can
be bounded using a straightforward conditional probability argument) or M must know some �extra
information� about the f̃i which allows him to provide a correct response to α̃. But this means that
either M will use this extra information to correctly answer α̃ even when given a random answer
to α on the left (in which case E succeeds in extracting m̃), or M is choosing to utilize this extra
information only when C answers correctly on the left. However, the hiding of the commitment in
the �rst message ensures that M cannot know whether he receives correct responses on the left or
not, and this di�erence in behavior will allow us to use M to break hiding.

Armed with Claim 8, we can now make de�nitive statements about UNBAL and 1−2. For
example, if UNBAL occurs then αi′ is dependent on α̃i for some i′ > i, and so if R asks a new right
challenge with the same i−th query, M will �x αi′ on the left. However, as i′ > i, αi′ is drawn from a
much larger challenge space than α̃i, and so M is �wasting challenge space�. Speci�cally, the residual
right challenge space with the i−th query �xed to α̃i is superpolynomially larger than the residual
left challenge space with αi′ �xed, and so with high probability, we will �nd ourselves in a situation
where the left query has superpolynomially many right query preimages. By Claim 8, this must not
happen except with negligible probability. This simple combinatorial argument is essentially the
content of Claim 5. In Section 5.2 we prove Claims 5 through 7 which show that if either UNBAL or
1−2 or �not (UNBAL or 1−2 or IND)� occur, then the left query will have superpolynomially many
right query preimages. The proofs of Claims 6 and 7 are more involved than that of Claim 5, but
they are still purely combinatorial.
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Finally, we prove in Claim 9 that IND cannot happen using another reduction to hiding. It uses
the same framework as Claim 8 and has similar underlying intuition (again, we di�er the technical
discussion and formal proof to Section 5.3). Here the main point is that if IND occurs then there
exists a right query α̃i on which no αi′ on the left is dependent. Intuitively this means that M
does not need any of the left challenges in order to correctly return f̃i(α̃i), implying that he knows
some information about the polynomial f̃i. As in the intuition for Claim 8 this means either that
extraction is successful, or that M is breaking hiding.

5.2 Analyzing Dependencies

In Section 4.2, we looked at the commitment message of 〈C,R〉, and established that it su�ces
to consider only transcripts T ∈ TRB in order to prove Theorem 1. We now consider the query
message of 〈C,R〉. Let R and L be the sets of right and left query vectors respectively. In this
section we will often �x a commitment message Com (implicitly �xing ˜Com = M(Com)) in which
case M can be thought of as a deterministic function M : R → L mapping α̃ to α. In the rest of
this section we will frequently consider subsets of R and L. Whenever we do so, we assume that
Com is �xed (even if do not mention it explicitly). This is because we are really interested in how
M behaves on these subsets, and M is not de�ned as a function until Com is �xed.

De�nition 8 (Honest Queries). For �xed Com, we say that a right query vector α̃ ∈ R is honest
if M answers α̃ honestly in the right interaction given correct responses to its queries α = M(α̃)
in the left interaction. We denote the set of honest right query vectors by HONCom, or just HON
when Com is clear from context.

Let Ri(α̃i) and Li
′
(αi′) denote the sets of right and left query vectors whose i−th and i′−th

coordinates are �xed on α̃i and αi′ , respectively. We write M : Riτ (α̃i) −→ Li
′
(αi′) if M maps a

τ−fraction of Ri(α̃i) to Li
′
(αi′). Similarly, de�ne HONi(α̃i) := Ri(α̃i) ∩ HON. Finally, we write

Prα̃∈HON

(
· · ·
)
as shorthand for Prα̃

(
· · ·
∣∣α̃ ∈ HON

)
.

Claim 4. Let Com be the pre�x of a transcript T ∈ USEFUL. Then

1.
∣∣HON∣∣ ≥ δp2

∣∣R∣∣;
2. for any i ∈ [n], if we (temporarily) de�ne Ziτ =

{
α̃i ∈

[
2t̃i
]

:
∣∣HONi(α̃i)∣∣ ≤ τ ∣∣Ri(α̃i)∣∣}, then

Prα̃∈HON

(
α̃i ∈ Ziτ

)
≤ τ

δp2
.

Intuitively, 2 says that with good probability, for all values α̃i which appear in an honest α̃, HON
i(α̃i)

comprises at least a τ−fraction of Ri(α̃i).

Proof. 1 follows immediately from the de�nition of USEFUL. For 2, we have

Prα̃∈HON

(
α̃i ∈ Ziτ

)
≤

Prα̃
(
α̃ ∈ HON

∣∣α̃i ∈ Ziτ)
Prα̃

(
α̃ ∈ HON

) ≤ τ

δp2
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Parameters. We have already introduced parameters n = O(λ), non-negligible p = p(λ), con-

stants δ, δ′ < 1/3, and ε∗ =
(
λ/N

)1/2
for N = poly(λ), a yet unspeci�ed polynomial. Shortly we

will introduce the values ε = 1/n − ε′ where ε′ = 1/2n2. We will require that ε∗ ≤ σδ2p5/16 and
also that ε∗ ≤ nε′(ε′δδ′p3)2/2048, where σ = ε′(δ′)2p4/257n3 is de�ned for convenience. All in all,
setting N = ω

(
λn10p−18

)
will su�ce. We stress that there is no reason to believe that N must be

such a large polynomial; it arises due to our analysis, which is not concerned with minimizing N .
We now formally de�ne ε−dependence.

De�nition 9 (ε−dependence). For �xed T ∈ ACC and i, i′ ∈ {1, . . . , n}, we say αi′ is ε−dependent
on α̃i if Prβ̃∈HON

(
βi′ = αi′

∣∣β̃i = α̃i
)
≥ ε.

We stress that it is important to condition on the event β̃ ∈ HON because any statement about
M's behavior during the query/response phase is useless unless M actually plans to successfully
complete the right protocol.

Note that if ε > ε′ and αi′ is ε−dependent on α̃i, then αi′ is automatically also ε′−dependent
on α̃i. Additionally, notice that though our de�nition does leave open the possibility that there
could be more than one value which is ε−dependent on α̃i, there can only be polynomially many
(at most ε−1 to be exact). We call these values the ε−dependencies of α̃i. This notion is di�erent
from ε−dependence de�ned above only because the ε−dependencies exist regardless of what queries
are asked in T, whereas we only say that αi′ is ε−dependent on α̃i if both α̃i and αi′ appear in
T. For the remainder of the proof we �x non-negligible values ε and ε′ such that ε = 1/n− ε′ and
ε′ = 1/2n2.

De�nition 10 (Special Sets of Transcripts). Fix (as a function of λ), ω = ω(1). De�ne the
following sets of transcripts:

1. UNBAL :=
{
T ∈ ACC : ∃ i′ > i st αi′ is ε

′ − dependent on α̃i
}
;

2. 1−2 :=
{
T ∈ ACC : ∃ (i1, i2, i

′) st αi′ is ε
′ − dependent on both α̃i1 and α̃i2

}
;

3. IND :=
{
T ∈ ACC : ∃ i st Prβ̃∈HON

(
βi′ 6= αi′ ∀ i′

∣∣β̃i = α̃i
)
≥ ε′n

}
;

4. SUPER−POLY :=
{
T ∈ ACC : #{α̃ ∈ HON : M(α̃) = α} ≥ λω

}
.

Note that if T /∈ IND then for all i, there exists an i′ such that αi′ is ε−dependent on α̃i.

What follows is a sequence of claims which sheds light on the relationships between the special
sets of transcripts de�ned above. The statements all resemble one another and their proofs are
similar, and are in order of increasing complexity. We recommend those readers who are interested
in understanding the proofs to read them in order as it will make the later ones much easier to
understand. Readers who are interested in understanding the general �ow of our overall proof will
most likely �nd reading the proof of Claim 5 and the statements of Claims 6 and 7 more than
su�cient.

Claim 5. Fix σ = ε′(δ′)2p4

257n3 . If PrT∈ACC
(
T ∈ TRB ∩ UNBAL

)
≥ δ′p

4 , then

PrT∈ACC
(
T ∈ TRB ∩ SUPER−POLY

)
≥ σ.

Proof. We begin with the inequality PrT
(
T ∈ TRB ∩ UNBAL

)
≥ δ′p2/4 (using the fact that

PrT(T ∈ ACC) ≥ p). Fix a random commit message Com. With probability at least δ′p2/8
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over Com, we have that Prα̃∈HON

(
T ∈ TRB ∩ UNBAL

∣∣Com
)
≥ δ′p2/8. Now let i′ > i be such

that Prα̃∈HON

(
αi′ is ε

′− dependent on α̃i & T ∈ TRB
∣∣Com

)
≥ δ′p2/8n2. Such (i, i′) must exist by

de�nition of UNBAL. Temporarily de�ne the sets X and Z as follows:

• X =
{
α̃ ∈ HON : αi′ is ε

′ − dependent on α̃i & T ∈ TRB
}
;

• Z =
{
α̃i ∈

[
2t̃i
]

:
∣∣HONi(α̃i)∣∣ ≤ τ ∣∣Ri(α̃i)∣∣}, where τ = δδ′p4

16n2 .

Remark. De�ning temporary sets X, Y and Z will be a recurring theme throughout the proofs
in this section (though in this �rst proof we only need X and Z). X will be a set of queries which
display evidence of a particular type of query dependence; and Y and Z will be sets of queries
in a particular coordinate in the right session which display some certain bad behavior. We will
lower bound the probability that α̃ ∈ X using the claim's hypotheses, and we will upper bound the
probability that α̃i ∈ Z using Claim 4 (in fact, Z is the same set as Ziτ in the statement of Claim 4,
just with the indices omitted for simplicity). Though it doesn't appear here, we will also upper
bound the probability that α̃i ∈ Y using simple conditional probability. We now proceed.

We have

Prα̃∈HON

(
α̃ ∈ X & α̃i /∈ Z

)
≥ Prα̃∈HON

(
α̃ ∈ X

)
− Prα̃∈HON

(
α̃i ∈ Z

)
≥ δ′p2

8n2
− δ′p2

16n2
=

δ′p2

16n2
,

using Claim 4. However, if α̃ ∈ HON is such that α̃ ∈ X & α̃i /∈ Z, then T ∈ TRB and M maps an
ε′−fraction of HONi(α̃i) into L

i′(αi′). Furthermore, as∣∣HONi(α̃i)∣∣ ≥ τ ∣∣Ri(α̃i)∣∣ ≥ τ2ω(log λ)
∣∣Li′(αi′)∣∣

(using i′ > i and that the tags are well spaced), we see that M, when restricted appropriately, is
superpolynomially many to one on average. This means that T ∈ TRB and that α has superpoly-
nomially many preimages in HON whp, and so

PrT∈ACC
(
T ∈ TRB ∩ SUPER−POLY

)
≥ δ′p2

8
· δ
′p2

16n2
·
(
1− negl(λ)

)
=

(δ′)2p4

128n2
− negl(λ) > σ.

Claim 6. Fix σ = ε′(δ′)2p4

257n3 . If PrT∈ACC
(
T ∈ TRB ∩ 1−2

)
≥ δ′p

4 , then

PrT∈ACC
(
T ∈ TRB ∩ SUPER−POLY

)
≥ σ.

Proof. Fix a commitment message Com. With probability at least δ′p2/8 over the choice of Com,
we have Prα̃∈HON

(
T ∈ TRB ∩ 1−2

∣∣Com
)
≥ δ′p2/8. Let (i1, i2, i

′) be such that

Prα̃∈HON

(
αi′ is ε

′ − dependent on α̃i1 and α̃i2 & T ∈ TRB
∣∣Com

)
≥ δ′p2

8n3
.

Such (i1, i2, i
′) must exist by de�nition of 1−2. Temporarily de�ne sets X,Y and Z:

• X =
{
α̃ ∈ HON : αi′ is ε

′ − dependent on both α̃i1 and α̃i2 & T ∈ TRB
}
;

• Y =
{
α̃i1 ∈

[
2t̃i1
]

: Prα̃∈HON

(
α ∈ X

∣∣(Com, α̃i1)
)
≤ ε′δ′p2

16n3

}
;
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• Z =
{
α̃i1 ∈

[
2t̃i1
]

:
∣∣HONi1(α̃i1)

∣∣ ≤ τ ∣∣Ri1(α̃i1)
∣∣}, where τ = ε′δδ′p4

32n3 .

Note that with Com �xed as above we have

Prα̃∈HON

(
α̃ ∈ X

)
≥ δ′p2

8n3
; Prα̃

(
α̃i1 ∈ Y

∣∣α̃ ∈ X) ≤ ε′

2
; and Prα̃∈HON

(
α̃i1 ∈ Z

)
≤ ε′δ′p2

32n3
.

Now, for v ∈
[
2ti′
]
, let Ev be the event �αi′ = v.� Note that if Prα̃

(
Ev
∣∣α̃ ∈ X) > 0 then v is an

ε′−dependency of α̃i1 . Let D
i′(α̃i1) ⊂

[
2ti′
]
be the set of all ε′−dependencies of α̃i1 . Then for �xed

α̃i1 , we de�ne a probability mass function on Di′(α̃i1) by P (v) = Prα̃
(
Ev
∣∣α̃ ∈ X & α̃i1

)
. We say

that v∗ ∈ Di′(α̃i1) is maximal if P (v∗) ≥ P (v) for all v ∈ Di′(α̃i1). Clearly for a random α̃ ∈ X,
the resulting αi′ is maximal with probability at least ε′ as

∣∣Di′(α̃i1)
∣∣ ≤ (ε′)−1. We now lower bound

the quantity V = Prα̃∈HON

(
α̃ ∈ X & α̃i1 /∈ Y ∪ Z & αi′ maximal

)
. We have

V ≥ Prα̃∈HON

(
α̃ ∈ X & α̃i1 /∈ Y & αi′ maximal

)
−Prα̃∈HON

(
α̃i1 ∈ Z

)
≥ Prα̃∈HON

(
α̃ ∈ X

)
·
[
Prα̃

(
α̃i1 /∈ Y & αi′ maximal

∣∣α̃ ∈ X)]− ε′δ′p2

32n3

≥ δ′p2

8n3
·
[
Prα̃

(
αi′ maximal

∣∣α̃ ∈ X)− Prα̃
(
α̃i1 ∈ Y

∣∣α̃ ∈ X)]− ε′δ′p2

32n3

≥ δ′p2

8n3
· ε
′

2
− ε′δ′p2

32n3
=
ε′δ′p2

32n3
.

Finally we show that if α̃ is such that �α̃ ∈ X & α̃i1 /∈ Y ∪Z & αi′ is maximal�, then T ∈ TRB
(where T is the transcript resulting from α̃) and with probability at least τ ′ = δ(δ′)2(ε′)4p6/512n6

over β̃ ∈ HON, we will have βi′ = αi′ . This completes the proof of Claim 6 as it means that M
maps a τ ′−fraction of HON into Li

′
(αi′) and since∣∣HON∣∣ ≥ δp2

∣∣R∣∣ ≥ δp22ω(log λ)
∣∣Li′(αi′)∣∣

(using the �well spaced� property of the tags), M is superpolynomially many to one on average when
restricted appropriately. Just like in the proof of Claim 5, this gives

PrT∈ACC
(
T ∈ TRB ∩ SUPER−POLY

)
≥ δ′p2

8
· ε
′δ′p2

32n3
− negl(λ) > σ.

So all that remains is to prove that if α̃ is such that �α̃ ∈ X & α̃i1 /∈ Y ∪ Z & αi′ is maximal�
then Prβ̃∈HON

(
βi′ = αi′

)
≥ τ ′. The maximality of αi′ combined with the fact that α̃i1 /∈ Y ensure

that if γ̃ ∈ HONi1(α̃i1) is chosen at random, then with probability at least (ε′)2δ′p2/16n3 over γ̃
we will have �γi′ is ε

′ − dependent on γ̃i1 and γ̃i2 & γi′ = αi′�. Moreover, as α̃i1 /∈ Z, a random
γ̃ ∈ Ri1(α̃i1) will be such that �γi′ is ε

′ − dependent on γ̃i1 and γ̃i2 & γi′ = αi′� with probability at
least δ(δ′)2(ε′)3p6/512n6 = τ ′/ε′.

So choose a random γ̃ ∈ Ri1(α̃i1) and then choose a random β̃ ∈ HONi2(γ̃i2). Clearly such a β̃
is a random element of HON. As �γi′ is ε

′ − dependent on γ̃i2 & γi′ = αi′� with probability at least
τ ′/ε′, the de�nition of ε′−dependence ensures that βi′ = γi′ = αi′ with probability at least τ ′, as
desired.

Claim 7. Fix σ = ε′(δ′)2p4

257n3 . If PrT∈ACC
(
T ∈ TRB \ (UNBAL ∪ 1−2 ∪ IND)

)
≥ δ′p

4 , then

PrT∈ACC
(
T ∈ TRB ∩ SUPER−POLY

)
≥ σ.
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Proof. Fix a commitment message Com. With probability at least δ′p2/8 over the choice of Com,
we have Prα̃∈HON

(
T ∈ TRB\(UNBAL∪1−2∪IND)

∣∣Com
)
≥ δ′p2/8. Now consider the consequences

of T /∈ (UNBAL ∪ 1−2 ∪ IND):

• if T /∈ UNBAL, then for all i′ > i, αi′ cannot be ε−dependent on α̃i (since ε ≥ ε′);

• if T /∈ 1−2, then there do not exist (i1, i2, i
′) such that αi′ is ε−dependent on α̃i1 and α̃i2 ;

• if T /∈ IND then for every i, there exists at least one i′ such that αi′ is ε−dependent on α̃i.

It follows that if T /∈ (UNBAL∪1−2∪ IND) then for each i, αi must be ε−dependent on α̃i. Indeed,
α1 must be ε−dependent on α̃1 as something must depend on α̃1 and it cannot be αi′ for i

′ > 1.
Next, either α1 or α2 must be ε−dependent on α̃2 and it cannot be α1 as that is already dependent
on α̃1. Continuing in this fashion, we deduce that each αi is ε−dependent on α̃i.

Now, going one step further in examining the consequences of T /∈ (UNBAL ∪ 1−2 ∪ IND), since
each αi is ε−dependent on α̃i and T /∈ 1−2, it must be that αi′ is not ε′−dependent on α̃i for all
i′ 6= i. It follows that for all i, Prβ̃∈HON

(
∃ i′ 6= i st βi′ = αi′

∣∣β̃i = α̃i
)
≤ ε′n. As T /∈ IND, we have

that for all i,

Prβ̃∈HON

(
βi = αi

∣∣β̃i = α̃i
)
≥ Prβ̃∈HON

(
∃ i′ st βi′ = αi′

∣∣β̃i = α̃i
)

− Prβ̃∈HON

(
∃ i′ 6= i st βi′ = αi′

∣∣β̃i = α̃i
)
.

≥ 1− ε′n− ε′n = 1− 2ε′n,

so we see that, in fact, each αi is (1 − 2ε′n)−dependent on α̃i. As 2ε′n < 1
2 , each α̃i has a unique

(1− 2ε′n)−depencence.

Now, choose a random α̃ ∈ HON and let S = {i ∈ [n] : t̃i ≤ ti}, α̃S = (α̃i)i∈S and de�ne
HONS(α̃S) =

⋂
i∈S HON

i(α̃i). De�ne R
S(α̃S) and LS(αS) similarly. Now, temporarily de�ne sets

X,Y, Z as follows:

• X =
{
α̃ ∈ HON : αi is (1− 2ε′n)− dependent on α̃i ∀ i & T ∈ TRB

}
;

• Y =
{
α̃S : Prα̃∈HON

(
α̃ ∈ X

∣∣α̃S

)
≤ δ′p2

16

}
;

• Z =
{
α̃S :

∣∣HONS(α̃S)
∣∣ ≤ τ ∣∣RS(α̃S)

∣∣}, where τ = δδ′p4

32 .

Note that

Prα̃∈HON

(
α̃ ∈ X

)
≥ δ′p2

8
; Prα̃

(
α̃S ∈ Y

∣∣α̃ ∈ X) ≤ 1

2
; and Prα̃∈HON

(
α̃S ∈ Z

)
≤ δ′p2

32
,

and so Prα̃∈HON

(
α̃ ∈ X & α̃S /∈ Y ∪ Z

)
≥ δ′p2/32. Now suppose that some α̃ ∈ HON is such that

�α̃ ∈ X & α̃S /∈ Y ∪ Z�. Then T ∈ TRB and for a randomly selected β̃ ∈ HONS(α̃S), β̃ ∈ X with
probability at least δ′p2/16. But if α̃, β̃ ∈ X and α̃S = β̃S , then αS = βS . Indeed, all α̃i have a
unique (1− 2ε′n)−dependency, meaning that if αi and βi are dependent on α̃i and β̃i and α̃i = β̃i
for all i ∈ S, then it must be that αi = βi for all i ∈ S.

It follows that if �α̃ ∈ X & α̃S /∈ Y ∪Z� then T ∈ TRB and M maps a τ ′−fraction of HONS(α̃S)
into LS(αS) where τ ′ = δ′p2/16. Moreover,∣∣HONS(α̃S)

∣∣ ≥ τ ∣∣RS(α̃S)
∣∣ ≥ τ2ω(log λ)

∣∣LS(αS)
∣∣
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(using the �good distance and balance� property of the tags). As in the proofs of Claims 5 and 6,
we have

PrT∈ACC
(
T ∈ TRB ∩ SUPER−POLY

)
≥ δ′p2

8
· δ
′p2

32
− negl(λ) > σ.

5.3 Reductions to the Hiding of 〈C,R〉

In this section we complete the proof of Lemma 1 by proving two claims which show how to use
an M with unlikely behavior to break the hiding of 〈C,R〉. We �rst give an intuitive description of
our method of argument. This description is slightly technical but does not get into the speci�cs of
either Claim 8 or Claim 9.

We construct an adversary A who takes part in the hiding game for 〈C,R〉. A is de�ned as
follows:

• A chooses random m0,m1 ∈ Zq and sends (m0,m1) to a challenger C, signaling the beginning
of the hiding game of 〈C,R〉.

• A instantiates M and runs two sessions of 〈C,R〉 until the end of the commit phase of both
executions, forwarding the messages it receives as C to C. In the left execution, C commits to
mu for secret u ∈ {0, 1}. More speci�cally:

� A, acting as R, sends σ̃ to M, and receives σ which it forwards to C.
� A then receives Com from C which it forwards to M, and receives ˜Com.

� A sends random α̃ such that α̃i ∈
[
2t̃i
]
to M, receiveing α which it forwards to C.

� A receives a from C which it forwards to M, obtaining ã.

� A continues forwarding messages between M and C during the zero-knowledge proof
phase of 〈C,R〉, playing honestly as R in the right interaction.

� When the proofs are �nished, A veri�es both π and π̃. If either is not accepted, A aborts.
Let T =

(
Com, α̃,a

)
be the resulting transcript.

• A chooses random u′ ∈ {0, 1} and de�nes polynomial vector f such that f(α) = a and every
coordinate of f has constant term mu′ .

• A rewinds M to the beginning of the query phase of the right execution and sends a new query
β̃, receiving left query β. It can do this many times, resulting in a set of new right queries
{β̃, γ̃, . . . }.

• A answers the left queries it obtained in the previous step with f, and receives a right response.
It collects the points it receives on the right into the set

{
(α̃, ã), (β̃, b̃), (γ̃, c̃), . . .

}
.

• A tests whether the points
{

(α̃, ã), (β̃, b̃), (γ̃, c̃), . . .
}
satisfy some condition. If so, then A

outputs u′, if not it outputs 1− u′.

Exactly what condition A tests for will change between the two proofs. In the proof of Claim 8, A
checks that the points

{
(α̃, ã), (β̃, b̃), (γ̃, c̃)

}
are collinear, while in the proof of Claim 9, A checks

that b̃i = ãi for some preselected i. The important thing however, is that the condition be satis�ed
when M answers correctly, but not when M answers incorrectly. Note that if u′ = u then responses
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generated with f are correct and so if T ∈ USEFUL, then we can lower bound the probability that M
answers correctly on the right using Claim 4. On the other hand, if u′ 6= u then the responses on the
left are random. If T /∈ EXT then we have an upper bound on the probability that M answers any
right query correctly. These observations together tell us that there is a non-negligible gap between
the probability that the condition is satis�ed when u′ = u and when u′ 6= u. This gap translates to
A having a noticeable advantage in winning the hiding game.

There are two main issues with the above outline which need to be addressed. We discuss them
informally here in order to exhibit the di�culties faced when trying to push the above intuition
through. The �rst is that we have assumed that T ∈ TRB when in reality we are only allowed to
assume that T ∈ TRB with probability at least δ′p

4 . Fact 1 below says essentially that if the gap
between the condition being satis�ed when u′ = u and not when u′ 6= u is large enough, this does
not matter.

A second, more subtle, issue is that we can only use T /∈ EXT to upper bound the probability
that M answers correctly on the right when u′ 6= u if the answers on the left are distributed as if
they were answered by the extractor, E. Recall that E is instructed to answer randomly on the left
unless the left query is the same as in the main thread, in which case E reuses the main thread's
answer. Note that this process is exactly the same as answering one query according to f when
u′ 6= u. However, if M is rewound more than once and asks left challenges {β,γ}, the responses it
receives will no longer be random. Indeed,

{
(α,a), (β,b), (γ, c)

}
will be collinear so certainly not

random (and hence, not distributed as E's responses). This will mean, for example, that we will not
be able to use Claim 1 to argue that M's responses on the right cannot be incorrect but collinear.
In fact, if M receives random but collinear responses on the left, it might well be the case that M's
right responses are incorrect but collinear (consider for example the copying MIM). Instead, we will
have to use the additional hypothesis that T ∈ SUPER−POLY along with the observation that β is
answered identically to how E would answer it to bound the probability that

{
(α̃, ã), (β̃, b̃), (γ̃, c̃)

}
are collinear when u′ 6= u. For details see Claim 8 below.

In the proof of Claim 9, A rewinds M and asks a new challenge β̃ such that β̃i = α̃i for some i.
Note that if β is such that βi′ = αi′ for some i′, then M will receive at least one correct answer on
the left regardless of whether u′ = u or not. If u′ 6= u, this will mean that the answers M receives
on the left are not distributed identically to the answers M would receive from E. Indeed, suppose
that some αi′ is dependent on α̃i. Then if β̃ such that β̃i = α̃i is asked on the right by A, M will ask
β on the left with βi′ = αi′ , and get at least one correct response. If, on the other hand, β̃ is asked
on the right by E, then with overwhelming probability, β̃ does not share any query with the query
vector asked in the main thread as E draws its queries randomly, independent of T. This means
that βi′ will likely not equal αi′ , and so M will get a random response instead of a correct one.
This inherent di�erence between A and E means that we cannot use Claim 2 to upper bound the
probability that M answers correctly on the right. Instead we have to use the additional assumption
that T /∈ IND to ensure that β is completely distinct from α even though β̃i = α̃i on the right. Even
with this assumption, the proof requires some delicacy to ensure that in fact the answers A gives
to M are the same as the ones E would give. For details see the proof of Claim 9.

Fact 1. Consider an e�ciently testable condition that the set
{

(α̃, ã), (β̃, b̃), (γ̃, c̃), . . .
}
either sat-

is�es or not, as described in the above paragraphs. Let E be an event such that:

• PrT∈ACC(E) ≥ ξ;

• Pr
(
Condition satis�ed

∣∣u′ = u & E
)
≥ ξ′;
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• Pr
(
Condition satis�ed

∣∣u′ 6= u & E
)
≤ ξ′′,

for non-negligible values ξ, ξ′, ξ′′ satisfying ξ′′ ≤ (pξξ′)/8. Then there exists a PPT algorithm A that
breaks the hiding of 〈C,R〉.

Proof. Fix ` = 1/2ξ′′ and let A play in an `−way version of the usual hiding game of 〈C,R〉 as
follows:

• A chooses random m1, . . . ,m` ∈ Zq and sends (m1, . . . ,m`) to C.

• A instantiates M and runs two sessions of 〈C,R〉 until the end of the commit phase of both
executions, forwarding the messages it receives as C to C. In the left execution, C commits to
mj′ for secret j

′ ∈ [`].

• For each j ∈ [`], A de�nes polynomial vectors gj such that gj(α) = a and every coordinate
of gj has constant term mj .

• A rewinds M to the beginning of the query phase of the right execution and sends new queries
β̃, γ̃, . . . , receiving left queries β,γ, . . . .

• For each j ∈ [`], A answers the left queries it obtained in the previous step with gj , and

receives a right response. It collects the set
{

(α̃, ã), (β̃, b̃j), (γ̃, c̃j), . . .
}
j∈[`]

.

• For each j ∈ [`], A tests whether the points
{

(α̃, ã), (β̃, b̃j), (γ̃, c̃j), . . .
}
satisfy the condition.

If so, then A outputs j∗ = j and halts.

Note that

Pr(j∗ = j′) ≥ PrT
(
T ∈ ACC

)
· PrT∈ACC(E)

· Pr
(
Condition satis�ed when j = j′

∣∣E)
· Pr

(
Condition not satis�ed whenever j 6= j′

∣∣E)
≥ (pξξ′) · Pr

(
Not E′j for all j 6= j′

∣∣E).
where E′j is the event

E′j : �Conditions are satis�ed when gj is used to answer left queries.�

We are given that Pr
(
E′j
∣∣E) ≤ ξ′′ for all j 6= j′, and as the E′j are independent this means that the

expected number of E′j which occur is at most ξ′′` = 1/2. It follows that

Pr(j∗ = j′) ≥ (pξξ′) · Pr
(
No E′j occur when j 6= j′

∣∣E) ≥ pξξ′

2
≥ 2

`
,

which means that A's chances of winning the hiding game are noticeably greater than 1/`, violating
the hiding of 〈C,R〉.

Claim 8. Fix σ = ε′(δ′)2p4

257n3 . If PrT∈ACC
(
T ∈ TRB ∩ SUPER−POLY

)
≥ σ then there exists a PPT

algorithm A who breaks the hiding of 〈C,R〉.

Proof. Our A proceeds as follows.
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• A chooses random m0,m1 ∈ Zq and begins the hiding game, sending (m0,m1) to C. Then A
instantiates M and runs two sessions of 〈C,R〉 forwarding the messages it receives as C to C.
In the left interaction, C commits to mu for unknown u ∈ {0, 1}. Let T =

(
Com, α̃, a

)
be the

resulting transcript. Additionally, A chooses random u′ ∈ {0, 1} and de�nes the polynomial
vector f, to be the unique such vector so that f(α) = a and so that every coordinate of f has
constant term mu′ .

• A chooses two new random challenge vectors β̃ and γ̃ such that each β̃i, γ̃i ∈
[
2t̃i
]
. It rewinds

M back to the beginning of the right execution's query message and sends β̃, receiving left
query β. It responds with b = f(β) and receives right response b̃. It repeats this process,
sending challenge γ̃, answering γ with c = f(γ) and receiving c̃.

• A checks whether the points
{

(α̃, ã), (β̃, b̃), (γ̃, c̃)
}
are collinear (by checking for collinearity

in each coordinate). If so, A outputs u′, if not A outputs 1− u′.

In light of Fact 1, it su�ces to construct an event E such that:

1. PrT∈ACC
(
E
)
≥ σ;

2. Pr
({

(α̃, ã), (β̃, b̃), (γ̃, c̃)
}
collinear

∣∣u′ = u & E
)
≥ δ2p4;

3. Pr
({

(α̃, ã), (β̃, b̃), (γ̃, c̃)
}
collinear

∣∣u′ 6= u & E
)
≤ 2ε∗,

since ε∗ ≤ σδ2p5/16. Let E (temporarily) be the event �T ∈ TRB∩ SUPER−POLY.� By hypothesis
of Claim 8, PrT∈ACC(E) ≥ σ. Also, if T ∈ USEFUL and u′ = u then Claim 4 ensures that M answers
β̃ and γ̃ correctly on the right with probability at least (δp2)2, which means that the probability
that

{
(α̃, ã), (β̃, b̃), (γ̃, c̃)

}
are collinear given u′ = u & E is at least as high. On the other hand,

Pr
({

(α̃, ã), (β̃, b̃), (γ̃, c̃)
}
collinear

∣∣u′ 6= u & E
)
≤ Pr

(
collinear

∣∣b̃ incorrect
)

+ Pr
(
b̃ correct

∣∣u′ 6= u & E
)

≤ Pr
(
collinear

∣∣b̃ incorrect
)

+ ε∗,

as if u′ 6= u then the answer M receives to β is distributed identically to the answer it would have
received from E, and T /∈ EXT. Therefore, it su�ces to show that

Pr
({

(α̃, ã), (β̃, b̃), (γ̃, c̃)
}
collinear

∣∣b̃ incorrect
)

= negl(λ).

Suppose that α̃, α̃′ ∈ HON are such that M(α̃) = α = M(α̃′). Note that it cannot be the case that{
(α̃, ã), (β̃, b̃), (γ̃, c̃)

}
and

{
(α̃′, ã′), (β̃, b̃), (γ̃, c̃)

}
are collinear as this would mean that the four

points {
(α̃, ã), (α̃′, ã′), (β̃, b̃), (γ̃, c̃)

}
lie on the same line, and moreover, that this is the correct line as it contains the correct points
(α̃, ã) and (α̃′, ã′). This contradicts the hypothesis that b̃ is an incorrect answer. So we see that
there exists at most one α̃ ∈ HON such that

1. M(α̃) = α;

2.
{

(α̃, ã), (β̃, b̃), (γ̃, c̃)
}
are collinear.

As T ∈ SUPER−POLY, there are at least λω values of α̃ ∈ HON such that number 1 holds, so the
probability that A chose the unique α̃ such that both 1 and 2 hold is negligible.
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Claim 9. If PrT∈ACC
(
T ∈ TRB ∩ IND

)
≥ δ′p

4 then there exists a PPT algorithm A who breaks the
hiding of 〈C,R〉.

Proof. For each i′ ∈ [n], de�ne the set

FIXEDi
′

=
{
Com : ∃ v ∈

[
2ti′
]
st Prα̃∈HON

(
αi′ = v

∣∣Com
)
≥ ε
}
,

and let FIXED =
{
T ∈ ACC : Com ∈ FIXEDi

′
for some i′ ∈ [n]

}
.

Fact 2. Fix σ = ε′(δ′)2p4

257n3 . If PrT∈ACC
(
T ∈ TRB ∩ FIXED

)
≥ δ′p

8 , then

PrT∈ACC
(
T ∈ TRB ∩ SUPER−POLY

)
≥ σ.

Proof of Fact 2. This proof is similar to (and easier than) the proofs of Claims 5 through 7. Fix
commitment message Com. Just as in the previous proofs, with probability at least δ′p2/16 over
Com, Prα̃∈HON

(
T ∈ TRB ∩ FIXED

∣∣Com
)
≥ δ′p2/16. Let i′ ∈ [n] and v ∈

[
2ti′
]
be such that

Prα̃∈HON

(
αi′ = v & T ∈ TRB

∣∣Com
)
≥ εδ′p2

16n
.

Such (i′, v) must exist by de�nition of FIXED. But this means that T ∈ TRB and M maps at least
a τ−fraction of HON into Li

′
(v), where τ = εδ′p2/16n. As∣∣HON∣∣ ≥ δp2

∣∣R∣∣ ≥ δp22ω(log λ)
∣∣Li′(v)

∣∣,
(using the �well spaced� property of the tags), we see that M, when restricted appropriately, is
superpolynomially many to one on average. It follows that

PrT∈ACC
(
T ∈ TRB ∩ SUPER−POLY

)
≥ δ′p2

16
· εδ

′p2

16n
− negl(λ) > σ.

In light of Fact 2 and Claim 8, it su�ces to show that if Prα̃∈HON

(
T ∈ TRB∩IND\FIXED

)
≥ δ′p/8

then there exists a PPT A who breaks the hiding of 〈C,R〉. Therefore, assume that this probability
is at least δ′p/8 and de�ne A as follows.

• A chooses random m0,m1 ∈ Zq and begins the hiding game, sending (m0,m1) to C. Then A
instantiates M and runs two sessions of 〈C,R〉 forwarding the messages it receives as C to C.
In the left interaction, C commits to mu for unknown u ∈ {0, 1}. Let T =

(
Com, α̃, a

)
be the

resulting transcript. Additionally, A chooses random u′ ∈ {0, 1} and de�nes the polynomial
vector f, to be the unique such vector so that f(α) = a and so that every coordinate of f has
constant term mu′ .

• A chooses random i ∈ [n] and random legal challenge vector β̃ such that β̃i = α̃i. It rewinds
M back to the beginning of the right execution's query message and sends β̃, receiving left
query β. If βi′ = αi′ for any i

′ ∈ [n] then A aborts. If not, A responds with b = f(β) receiving
right response b̃.

• A checks whether b̃i = ãi. If so, A outputs u′, if not A outputs 1− u′.

Just as in the proof of Claim 8, it su�ces (by Fact 1) to construct an event E such that:
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1. PrT∈ACC
(
E
)
≥ ε′δ′p

16 ;

2. Pr
(
b̃i = ãi

∣∣u′ = u & E
)
≥ ε′δδ′p3

16 ;

3. Pr
(
b̃i = ãi

∣∣u′ 6= u & E
)
≤ ε∗

nε′δp2 ,

since ε∗ ≤ nε′(ε′δδ′p3)2/2048. Temporarily let Z =
{
α̃i ∈

[
2t̃i
]

:
∣∣HONi(α̃i)∣∣ ≤ τ

∣∣Ri(α̃i)∣∣}, where i
is the index chosen by A and τ = ε′δδ′p3/16. De�ne the event

E : �T ∈ TRB ∩ IND \ FIXED & A does not abort & α̃i /∈ Z.�

Note that

PrT∈ACC
(
E
)
≥ PrT∈ACC

(
T ∈ TRB ∩ IND \ FIXED & A not abort

)
− PrT∈ACC

(
α̃ ∈ Z

)
≥ −ε

′δ′p

16
+ PrT∈ACC

(
T ∈ TRB ∩ IND \ FIXED

)
·

· Prα̃∈HON

(
A not abort

∣∣T ∈ TRB ∩ IND \ FIXED
)

≥ δ′p

8
· 1

n
· ε′n− ε′δ′p

16
=
ε′δ′p

16
,

by de�nition of IND (the 1/n appears because A must guess the right value of i ∈ [n]). Moreover, as
α̃i /∈ Z, if u′ = u then M answers β̃ and correctly on the right with probability at least ε′δδ′p3/16,
which means that the probability that b̃i = ãi given u

′ = u & E is at least as high.

Finally, we bound Pr
(
b̃i = ãi

∣∣u′ 6= u & E
)
. It does not quite work to try to use Claim 2 directly

to argue that M does not answer β̃i correctly if u′ 6= u. This is because the answers M receives if
u′ 6= u are randomly distributed (this is ensured by A aborting in case βi′ = αi′ for any i

′), whereas
the answers M receives to β from E are random only in the case that β di�ers in every coordinate
from the α asked in the main thread. For this reason, we must also use the fact that T /∈ FIXED.

Consider now the interaction between M and E where the main thread E receives as input has
Com as the commitment message but has unspeci�ed query and response messages. By de�nition,
if Com /∈ FIXEDi

′
for all i′ (ensuring that the main thread E receives is not in FIXED), then for

any γi′ ∈
[
2ti′
]
, Prβ̃∈HON

(
βi′ = γi′

)
≤ ε. It follows by the union bound that no matter what main

thread left query γ occurs (we use γ so as not to be confused with the α that was asked by M
during its interaction with A above),

Prβ̃
(
βi′ 6= γi′ ∀ i′

)
≥ (1− nε) · Prβ̃

(
β̃ ∈ HON

)
≥ nε′δp2

(assuming also that Com is such that the transcript is in USEFUL). So we see that if the transcript
E receives as input is in TRB \ FIXED, then a good portion of the left queries which M asks during
its interaction with E will not share any coordinate with the main thread query, and so M will be
given truly random responses. If in addition, the transcript given to E is not in EXT then

ε∗ ≥ Prβ̃
(
M answers β̃i correctly

∣∣E answers β
)

≥ Prβ̃
(
M answers β̃i correctly

∣∣E answers β & βi′ 6= γi′ ∀ i′
)
· Prβ̃

(
βi′ 6= γi′ ∀ i′

)
≥

(
nε′δp2

)
· Prβ̃

(
M answers β̃i correctly

∣∣β answered randomly
)
.
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And so we have

Pr
(
b̃i = ãi

∣∣u′ 6= u & E
)

= Pr
(
M answers β̃i corr.

∣∣β answered rand. & T ∈ TRB \ FIXED
)

≤ ε∗

nε′δp2
,

completing the proof of Claim 9.

Claims 5 through 9 combine to give that if Com is computationally hiding, then

PrT∈ACC
(
T ∈ TRB

)
≤ PrT∈ACC

(
T ∈ TRB ∩ UNBAL

)
+ PrT∈ACC

(
T ∈ TRB ∩ 1−2

)
+ PrT∈ACC

(
T ∈ TRB ∩ IND

)
+ PrT∈ACC

(
T ∈ TRB \ (UNBAL ∪ 1−2 ∪ IND)

)
≤ δ′p

4
+
δ′p

4
+
δ′p

4
+
δ′p

4
= δ′p,

completing the proof of Lemma 1, Theorem 2 and Theorem 1.

6 Non-Malleability in Four-Rounds

6.1 Four-Round Non-Malleable Commitments

In this section we show how to squeeze our non-malleable protocol 〈C,R〉 into 4 rounds. In the new
protocol, the zero-knowledge messages are lifted up and sent together with the commit, challenge and
response messages. It will be important for our security proof that we can extract M's commitment
message from many coordinates. In order to facilitate this, we change our protocol 〈C,R〉 so that C
commits to the coe�cients of a quadratic polynomial in each coordinate and reveals two evaluations
in the second and third protocol message. The constant terms of these quadratics will be shares ofm
in an appropriately chosen secret sharing scheme. We use a variant of the zero-knowledge argument
of knowledge protocol of Feige and Shamir [FS90] in which V sets a trapdoor by proving a hard
statement using a 3-round witness-hiding argument of knowledge (WHAOK) and P uses a 3-round
witness-indistinguishable proof of knowledge (WIPOK) to prove either the original statement x ∈ L
or knowledge of V's trapdoor. We instantiate the WIPOK with a version of the 3-round WIPOK
protocol of [FLS99], where the statement to be proven can be chosen in the last round, and where
witness-indistinguishability holds even if the adversary is allowed to rewind the challenger once.
These properties together allow our protocol to be parallelized down to four rounds. We comment
that the 3-round WIPOK of [FLS99] requires OWP, but as it can be changed to require OWF
by including an additional random string along with the �rst message of the WHAOK, we ignore
this issue. Finally, we note that there exist protocols for proving knowledge of commitment which
are amenable to this type of parallelization, and do not require a general NP−reduction (such as
Schnorr protocols based on DDH). Such protocols make a much better choice in practice.

The above parallelization gives the �rst 4-round non-malleable commitment scheme. Our 4-round
commitment scheme 〈C,R〉OPT appears in Figure 4. We discuss now the modi�ed Feige-Shamir zero-
knowledge protocol we use. First, we alter the WHAOK in order to require only the existence of
a OWF f (the original construction required OWP). Second, we change the WIPOK so that it
retains some security even in a version of the WI game where the adversary is allowed to rewind
the challenger once. The four round ZK protocol we use goes as follows:

1. R chooses 2n random pairs (xbi , y
b
i ) for i = 1, . . . , n and b ∈ {0, 1} such that ybi = f(xbi) for a

OWF f , and sends the ybi to C.
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Public Parameters: Fix ` = n/4, k = Ω(λ), and n′ = Ω(λ2). Let {ti,j , t′i,j}(i,j)∈[n]×[k] be tags in

error corrected form, prime q st q > 2ti,j , 2t
′
i,j for all i, j, and OWF f : X → Y . Let π be 3−round

WIPOK whose statement may be chosen in the last round.

Commiter's Private Input: Message m ∈ Fq to be committed to.

1. R→ C: Sample random x0
i , x

1
i ∈ X for i = 1, . . . , λ and send (y0

i , y
1
i )i =

(
f(x0

i ), f(x1
i )
)
i
.

Also send σ, the �rst message of Naor's commitment scheme.

2. C→ R:

• Let (m1, . . . ,mk) ∈ Zkq be random shares of m under an ` out of k Shamir secret
sharing scheme. For (i, j) ∈ [n]× [k] choose random ri,j , si,j ← Zq and randomness
ωi,j ← $. Set Com =

{
Comσ(mj‖ri,j‖si,j ;ωi,j)

}
i,j
.

• Choose a random z ∈ {0, 1}λ, and kn′ �rst messages for π whose statements will be
chosen later: {π1

j,Ij
}(j,Ij)∈[k]×[n′]. Send

(
Com, z, {π1

j,Ij
}
)
to R.

3. R→ C: For (i, j) ∈ [n]× [k] choose αi,j , α
′
i,j ←

[
2ti,j

]
×
[
2t
′
i,j
]
⊂ (Z∗q)2; set

(α,α′) =
(
{αi,j}, {α′i,j}

)
. Choose k second messages for π: {π2

j }j∈[k]. Send(
(α,α′), {xzii }λi=1, {π2

j }
)
.

4. C→ R: If yzii 6= f(xzii ) for some i, abort. Otherwise, for (i, j) ∈ [n]× [k] let
(ai,j , a

′
i,j) =

(
mj + αi,jri,j + α2

i,jsi,j ,mj + α′i,jri,j + (α′i,j)
2si,j

)
. Set (a,a′) =

(
{ai,j}, {a′i,j}

)
.

Also choose Ij ← [n′] at random and let π3
j be the third message of π so that (π1

j,Ij
, π2
j , π

3
j )

proves the following statement. Send
(
(a,a′), {(Ij , π3

j )}j
)
to R.

• EITHER: ∃
(
mj , {(ri,j , si,j , ωi,j)}i

)
such that Comj =

{
Comσ(mj‖ri,j‖si,j ;ωi,j)

}
i
and

(ai,j , a
′
i,j) =

(
mj + αi,jri,j + α2

i,jsi,j ,mj + α′i,jri,j + (α′i,j)
2si,j

)
;

• OR: ∃ (x0, x1) such that (y0
val, y

1
val) =

(
f(x0), f(x1)

)
for some val = 1, . . . , λ.

Decommitment and Output: C sends {(mj , ri,j , si,j , ωi,j)}(i,j)∈[n]×[k]. R checks that these
are valid decommitments to Com sent in round 2 and are consistent with (a, a′) sent in
round 4. If so, R reconstructs and outputs m ∈ Zq from the shares {mj}.

Figure 4: : 4-round non-malleable commitment scheme 〈C,R〉OPT.

2. C chooses a random challenge z ∈ {0, 1}n and sends z, along with π1
1, . . . , π

1
n′ where each is

the �rst message of a WIPOK for a statement to be determined later.2

3. R returns xzii for all i = 1, . . . , n, and additionally sends π2, the second message of WIPOK.

4. C checks that yzii = f(xzii ) for all i = 1, . . . , n (aborting if not) and chooses i′ ∈ {1, . . . , n′} at
random and sends (i′, π3) so that (π1

i′ , π
2, π3) is a WIPOK transcript proving either x ∈ L

2the security properties of the ZK hold for arbitrary polynomials n, n′ = poly(λ); we choose n′ larger than n for
our proof of non-malleability.
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or knowledge of some pair (x0, x1) such that (y0
i , y

1
i ) =

(
f(x0), f(x1)

)
for some i.

Computational soundness follows from the hardness of inverting f and the soundness ofWIPOK.
Just as in the original Feige-Shamir protocol, zero-knowledge follows from the witness indistinguisha-
bility of WIPOK. Notice also that because C uses only π1

i′ in the �nal round, if R is allowed to
rewind C and get a second fourth message

(
i′′, (π3)′

)
, proving another (possibly di�erent) state-

ment, R is not able to distinguish which witness C is using in this second proof unless i′′ = i′

which happens with probability 1/n′ (over C's randomness, which will change in rewinding3 based
on changes to C's auxiliary input). This observation will be crucial in our proof of non-malleability.

Theorem 3. If OWFs exist then 〈C,R〉OPT is a 4−round statistically binding, non-malleable com-
mitment scheme.

Proof Sketch. Statistical binding and computational hiding are immediate. Our proof that 〈C,R〉OPT

is non-malleable follows the same extraction paradigm as the proof of Theorem 1, except that now
we must extract from many coordinates because of the way the commitment is secret shared. Specif-
ically, in order to extract m̃ we must extract m̃j for at least ` values of j ∈ [k]. This requires a
slightly di�erent analysis of the dependencies between the left and right queries, and is the reason
why our four round protocol uses quadratic polynomials instead of linear, however one can show
that essentially the same extractor used for proving Theorem 1 works here as well. The extractor

rewinds M twice to the beginning of the right session's third message and asks new queries (β̃, β̃
′
)

and (γ̃, γ̃ ′), receiving left queries (β,β′) and (γ,γ ′), provides random answers (b,b′) and (c, c′)

and receives (b̃, b̃
′
) and (c̃, c̃′) on the right. For each (i, j), E checks whether either{

(α̃i,j , ãi,j), (α̃
′
i,j , ã

′
i,j), (β̃i,j , b̃i,j), (γ̃i,j , c̃i,j)

}
; or

{
(α̃i,j , ãi,j), (α̃

′
i,j , ã

′
i,j), (β̃

′
i,j , b̃

′
i,j), (γ̃

′
i,j , c̃

′
i,j)
}

are consistent with a quadratic polynomial. If so, E sets m̃j equal to the constant term of this
quadratic. E repeats this process polynomially many times and at the end attempts to reconstruct
m̃ from the m̃j he has extracted. If E has not extracted enough m̃j to recover m̃ or if recovery errs
because the m̃j are not consistent with a valid sharing, E outputs ⊥.

One important point is that because (a,a′) is sent along with the �nal message of the zero-
knowledge argument proving correctness of (a, a′), if E wants to send random responses on the left,
he must also send the �nal message of a simulated argument; namely, he must use M's trapdoor
statement as his witness. This means that before E can start extracting, he must extract M's
trapdoor and, more importantly, that E will only succeed in extracting m̃ if M gives correct answers
on the right with non-negligible probability when given random answers on the left and a simulated
argument. We prove in Appendix A that if (i, j) is such that M answers either α̃i,j or α̃

′
i,j correctly

on the right given correct answers and simulated argument on the left then E extracts m̃j with high
probability. This portion of the proof is very similar to the proof of Theorem 1.

We know that M's chance of answering correctly on the right is non-negligible when given
correct answers and correct proofs on the left (else T /∈ USEFUL) so it remains to deal with an M
who answers correctly on the right with non-negligible probability given correct answers and honest
proofs on the left, but who answers correctly on the right only with negligible probability given
correct answers and simulated proofs on the left. We will show how to use such an M to break
the security of the WIPOK. In the next section we introduce some notation and give a formal
proof of this part, which completes the proof that 〈C,R〉OPT is standalone non-malleable against a
synchronizing adversary.

3This can be achieved by C choosing the random tape in this step by applying a PRF on the view so far.
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In order to prove standalone non-malleability against a non-synchronizing M, we note that
extraction is trivial from an M who uses any scheduling other than the synchronizing one. The key
observations are: 1) an M who mauls must play the second message on the left before the second
message on the right, 2) if the third and fourth messages on the right are consecutive then E can

extract m̃ trivially simply by rewinding and asking (β̃, β̃
′
), receiving (b̃, b̃

′
) and checking whether

the coordinates of {
(α̃, ã), (α̃′, ã′), (β̃, b̃), (β̃

′
, b̃
′
)
}

are consistent with quadratics. In other words, E works as usual except it does not have to worry
about sending a random response and simulated proof on the left because of the way M has scheduled
the messages.

6.2 Completing the Proof of Theorem 3

Recall that p ≤ PrT(T ∈ ACC). Say T ∈ NICE if PrÎ
(
M answers cor. on right

∣∣Î) ≥ p2/3 where the
experiment consists of rewinding M and sending a new fourth message on the left with the same
(a,a′), and random indices Î = {Îi,j} along with corresponding proofs. Just like in Claim 3, we
have PrT∈ACC(T /∈ NICE) ≤ p/3. Given ε > 0 and T ∈ ACC we say that an index j ∈ [k] is required
for T if PrÎ

(
M answers correctly on right

∣∣Îj 6= Ij
)
≤ ε. Given I = {Ij}, J = {Jj} ∈ [n′]k, say

that I ∩ J = ∅ if Ij 6= Jj for all j ∈ [k]. Given ε > 0, T ∈ ACC and J ∈ [n′]k, we say that j is
required for T away from J if PrÎ

(
M answers cor.

∣∣Î ∩ J = ∅ & Îj 6= Ij
)
≤ ε. We will be interested

in approximately computing the required indices for T.
Note that if we are given T ∈ ACC, oracle access to M, and all of the decommitment information

for the π1
j,Ij

and both witnesses for each proof, we can approximate PrÎ
(
M answers cor.

∣∣Îj 6= Ij
)

to within ε2 with probability at least 1− 2−Ω(λ) for all j ∈ [k] in polynomial time by the Cherno�
bound. In this way, we partition [k] into three categories: 1) j such that approx is > ε + ε2; 2)
j st approx is < ε − ε2; 3) j st approx is in [ε − ε2, ε + ε2]. Let RQDε(T) be the j ∈ [k] which
fall into the second and third category. De�ne RQDε,J(T) similarly except using approximations of

PrÎ
(
M answers cor.

∣∣Î∩J = ∅ & Îj 6= Ij
)
. Note this does not require the decommitment information

for the π1
j,Jj

. We usually omit the T, writing RQDε and RQDε,J . Note RQDε and RQDε,J depend
slightly on the randomness of the approximations, however this will not matter for us; the properties
we need will hold whp over this randomness. Given I, Î ∈ [n′]k write ÎRQDε = IRQDε to mean Îj = Ij
for all j ∈ RQDε.

De�nition 11 (Half Extractable Transcripts). Fix non-negligible ε∗ = p4/(36λ2). We say that
transcript T ∈ EXTHALF if

Pr
(β̃,β̃

′
),Î

(
M answers cor. on right

∣∣πj sim. ∀ j /∈ RQDε & ÎRQDε = IRQDε

)
≥ ε∗.

In words, T ∈ EXTHALF if M's chance of answering correctly on the right is non-negligible given
that his queries are answered correctly but he is given simulated proofs except for the coordinates
in RQDε.

De�nition 12 (Extractable Transcripts). Fix ε∗∗ = p(ε∗)5/λ2 and T ∈ ACC. We say that the
index (i, j) ∈ [n]× [k] is extractable for T if

Pr
(β̃,β̃

′
),(b,b′),Î

(
M answers β̃i,j or β̃

′
i,j cor.

∣∣fourth message on left given by E
)
≥ ε∗∗,

where the probability is over rewind queries (β̃, β̃
′
), rewind answers (b, b′) and rewind indices Î such

that ÎRQDε = IRQDε. We say that T ∈ EXT if T ∈ ACC and

#{j ∈ [k] : ∃ i st (i, j) extractable for T} ≥ `.
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In words, the coordinate (i, j) is extractable if M answers one of β̃i,j or β̃
′
i,j correctly on the right with

non-negligible probability when given random answers and simulated proofs on the left. Because of
the way m̃ is secret shared, T ∈ EXT implies that E(T) = m̃ with high probability (see Figure 6 in
Appendix A for the formal description of E). We have already seen that PrT∈ACC(T /∈ NICE) ≤ p/3.
The following two claims combine to show that PrT∈ACC(T /∈ EXT) ≤ p.
Claim 10. If PrT∈ACC(T ∈ NICE \ EXTHALF) ≥ p/3 then there exists a PPT A who breaks the
witness indistinguishability of WIPOK.
Claim 11. If PrT∈ACC(T ∈ EXTHALF \EXT) ≥ p/3 then there exists a PPT A who breaks the hiding
of Com.

Claim 11 is analogous to the Lemma 1 from Section 4, we give a proof sketch in Appendix A.
Claim 10 is the main result of this section and is proven below. Let us �rst complete the proof of
Theorem 3 assuming PrT∈ACC(T /∈ EXT) ≤ p. As usual, the existence of an extractor with high
success probability gives a reduction from non-malleability to hiding. In this case, we do not get
exactly such a reduction because in addition to taking T as input, E takes also the decommitments
for the indices (i, j) such that j ∈ RQDε. Note that as |RQDε| = O(1) when T ∈ ACC with
probability � 1− p, the number of auxiliary shares m̃j E requires is small. E therefore transforms
an M who mauls 〈C,R〉OPT to a PPT adversary who wins the following enhanced hiding game with
non-negligible advantage. Claim 12 below completes the proof of Theorem 3.

Enhanced Hiding Game for 〈C,R〉OPT. Consider the following game between a challenger C
and PPT adversary A speci�ed by a constant c.

1. A sends m0,m1 ∈ Zq to C;

2. C returns a commitment to mb for random b ∈ {0, 1} using 〈C,R〉OPT; let

Com = {Comj}j∈[k] =
{

Com(mj‖ri,j‖si,j ;ωi,j)
}

(i,j)∈[n]×[k]

be the commitment vector in the second round of 〈C,R〉OPT.

3. A sends C a subset S ⊂ [k] of size at most c.

4. C returns the decommitments (mj , ri,j , si,j , ωi,j) for all (i, j) such that j ∈ S.

5. A outputs b′ ∈ {0, 1} and wins if b′ = b.

Claim 12. For all constants c and PPT A, Pr(A wins) ≤ 1/2 + negl.

Claim 12 follows via a standard reduction to the hiding of Com; the key point is that since c = O(1),
the set S ⊂ [k] of auxiliary decommitments A will require can be guessed and one does not run into
selective hiding issues.

Proof of Claim 10. If T ∈ NICE we have

p2/3 ≤ PrÎ
(
M answers cor.

∣∣Î) ≤ PrÎ
(
M answers cor.

∣∣ÎRQDε = IRQDε

)
+ kε.

We choose ε so that PrÎ
(
M answers cor.

∣∣ÎRQDε = IRQDε

)
≥ p2/4 when T ∈ NICE. Consider the

random variable XJ = PrÎ
(
M answers cor.

∣∣Î ∩ J = ∅
)
over the choice of J ← [n′]k. We have that

XJ −kε ≤ PrÎ
(
M answers cor.

∣∣Î ∩J = ∅ & ÎRQDε,J = IRQDε,J

)
. Also, E[XJ ] ≥ p2/3 when T ∈ NICE.

It follows that if T ∈ NICE then XJ > p2/6 with probability at least p2/6 over J ← [n′]k, which in
turn means PrÎ

(
M answers cor.

∣∣Î ∩J = ∅ & ÎRQDε,J = IRQDε,J

)
≥ p2/12. Our A interacts with the

challenger C as follows.
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Setting T: A instantiates two sessions of 〈C,R〉OPT with M. Before sending the second mes-
sage on the left, A chooses a random J ∈ [n′]k, and receives from C, {π1

j,Jj
}: many �rst

messages of WIPOK for a statement to be declared later. A completes the second message
by choosing {π1

j,Ij
}(j,Ij)∈[k]×([n′]\{Jj}) on his own and sends the message to M. A plays honestly

as R, when M sends back the third message of the left session, A prepares a fourth message
by choosing I ∈ [n′]k at random such that I ∩ J = ∅, and sending {π3

j } so that (π1
j,Ij
, π2
j , π

3
j )

is an honest proof for each j for the usual statement of 〈C,R〉OPT. A receives M's fourth
message on the right. If any of the proofs fail, A outputs a random guess b′ ∈ {0, 1}. If all of
the proofs pass, A proceeds, saving (ã, ã′), the evaluation portion of M's fourth message.

Computing RQDε,J : A uses T, oracle access to M and the decommitment information for the
{π1

j,Ij
} for Ij 6= Jj to compute RQDε,J as described above.

Checking T ∈ NICE \ EXTHALF (to within Reasonable Doubt): A uses the same informa-
tion as above to compute approximations of the probabilities XJ and

YJ = PrÎ
(
M answers cor.

∣∣Î ∩ J = ∅ & ÎRQDε,J = IRQDε,J & πj simulated
)

to within ε∗ with probability 1− 2−Ω(λ). If the approximation for XJ is less than p/6− ε∗ or
for YJ is greater than >

√
ε∗ + ε∗, output a random b′ ∈ {0, 1}. Otherwise proceed.

A's Decision: A now returns to his interaction with C. Let {π2
j } be as in the third message

of the left interaction of T. A sends {π2
j } to C along with the statement from 〈C,R〉OPT to be

proven and both witnesses. A receives {π̂3
j }. Now, A sends

(
(a, a′), {(Îj , π3

j )}
)
to M where

(Îj , π
3
j ) is as in T when j ∈ RQDε,J , and equals (Jj , π̂

3
j ) otherwise. A checks whether the

evaluation component of M's fourth message on the right is (ã, ã′). If so and all of M's proofs
pass, output b′ = 1; otherwise output a random b′ ∈ {0, 1}.

Computing A's Winning Probability. Consider the T which A computes. If T /∈ ACC A
guesses b′ randomly, so wins with prob 1/2. With probability at least p, T ∈ ACC. Similarly,
if XJ < p2/6 − 2ε∗ or YJ >

√
ε∗ + 2ε∗ then A guesses b′ randomly and so wins with prob 1/2.

By assumption, PrT∈ACC
(
T ∈ NICE \ EXTHALF

)
≥ p/3 which means we will have XJ > p2/6 and

YJ <
√
ε∗ with probability at least p2/6 −

√
ε∗. In this case, A does not guess b′ randomly and

moreover, there is a gap between XJ and YJ . The claim follows since it means if M's fourth message
matches (ã, ã′) then it is more likely that C chose b = 1 corresponding to the real witness, than
that he chose b = 0 corresponding to the simulated witness. Therefore, A wins with non-negligible
advantage, breaking the witness indistinguishability of WIPOK.

6.3 Four-Round Non-Malleable Zero-Knowledge

Using our new commitment scheme 〈C,R〉OPT, we obtain a simple 4-round non-malleable zero
knowledge argument 〈P,V〉 for any language L ∈ NP. A detailed description of 〈P,V〉 appears
in Figure 5. It builds on top of a four round ZK argument of knowledge π which remains zero-
knowledge even when the adversary is allowed to rewind the prover once. Since the statement and
witness are �xed before the protocol starts, such protocols can be constructed, for example, using
the MPC-in-the-head technique of [IKOS07].

Proposition 2. If OWFs exist then 〈P,V〉 is a 4−round non-malleable zero knowledge argument
of knowledge for any L ∈ NP.
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Public Input: Tags t1, . . . , tn in error corrected form, large prime q and OWF f : X → Y .

Common input: x ∈ L.

Input to the prover: A witness w for x ∈ L.

1. V→ P: Send 〈C(w),R〉1, the �rst message of 〈C,R〉OPT and π1, the �rst message of π.

2. P→ V: Send 〈C(w),R〉2 and π2, the second message of π for the statement:

• 〈C(w),R〉2 contains valid commitment to w such that (x,w) ∈ L.

3. V→ P: Send 〈C(w),R〉3 and π3.

4. P→ V: Send 〈C(w),R〉4 and π4.

Veri�cation and Output: If π and all proofs in 〈C(w),R〉 accept then accept; otherwise reject.

Figure 5: The 4-round non malleable zero-knowledge argument of knowledge protocol 〈P,V〉.

Proof Sketch. Zero-knowledge and soundness follow by the ZK and soundness of π and the hiding
and binding of 〈C,R〉OPT. The extractor for 〈P,V〉 simply runs the extractor for 〈C,R〉OPT. To
prove non-malleability, we use the extractor for 〈C,R〉OPT to extract w̃ from a right execution of
〈P,V〉 without rewinding the left. Note the extractor must simulate π on the left, which amounts
to completing an inner WIPOK using the trapdoor statement. Recall extraction succeeds as long
as M's chance of answering the linear evaluation portion of the fourth message of 〈C,R〉OPT on the
right is non-negligible. Certainly if π is completed honestly on the left then M's chance of answering
correctly on the right is non-negligible. Therefore, either extraction of w̃ succeeds or there is a gap
between M's chance of answering correctly on the right given an honest proof for π and a simulated
proof. Much like in the proof of Claim 10, this gap can be used to break the ZK of π, which is
supposed to hold even if the adversary can rewind the challenger once. We expand on this below.

Let us �x some notation. Denote the fourth message of 〈C,R〉OPT on the left by
(
(a, a′),Γ

)
where

Γ is the information regarding the proofs in 〈C,R〉OPT; Γ will not be important in this discussion,
except that there is some notion of a correct Γ which can be e�ciently veri�ed. Let σ = (σ1, σ2, σ3)
be a three round WIPOK which is a subprotocol of π used to prove either the honest statement
or a trapdoor statement. We assume σ is WI even in a game where the adversary can rewind the
challenger once. Speci�cally, no PPT adversary should be able to win the following game with
non-negligible advantage: C and A interact, obtaining (σ1, σ2, σ3), a valid proof of a statement
using witness W0; then A rewinds C sending σ′2; C chooses b← {0, 1} and responds with σ′3 so that
(σ1, σ

′
2, σ
′
3) is a valid proof using witness Wb; A outputs b′ ∈ {0, 1} and wins if b′ = b. If M's chance

of giving correct
(
(ã, ã′), Γ̃

)
on the right is non-negligible when σ on the left is computed using an

honest witness but negligible when σ is computed using a trapdoor witness then M can be used to
win this game.

Speci�cally, a PPT A instantiates M who plays two sessions of 〈P,V〉 one time through honestly
obtaining (σ1, σ2, σ3) on the left and (ã, ã′) on the right; if either session does not complete, A aborts
and outputs a guess for b′. In particular, if A continues then it must be that (ã, ã′) is correct. Then
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A rewinds M sending a new third message in the right execution, with the same (α̃, α̃′) but random
σ̃′2, receiving (β,β′) and σ′2 on the right. A forwards σ′2 to C and receives σ′3 so that (σ1, σ

′
2, σ
′
3) is

a valid proof using either the honest witness or the trapdoor witness. A sends σ′3 to M along with

correct
(
(b,b′),Γ

)
, and checks whether (b̃, b̃

′
) in M's fourth message on the right equals (ã, ã′). If

so, A decides C used honest witness, if not A answers randomly.
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A Four Round Extractor and Proof of Claim 11

Claim 11 (Restated). If PrT∈ACC(T ∈ EXTHALF \ EXT) ≥ p/3 then there exists a PPT A who
breaks the hiding of Com.

Proof Sketch. Claim 11 says that if M answers correctly on the right given correct answers on the
left (and simulated proofs) then he must also answer correctly in many coordinates on the right
given random answers on the left (and simulated proofs). This is the same high level statement as
Lemma 1, and the proof of Claim 11 follows the same overall path. In particular, we analyze the
di�erent possibilities for the dependencies between the left and right queries and prove that each
such possibility is impossible unless M is breaking the hiding of Com. The tags {ti,j , t′i,j} we are
given are in error-corrected form and ordered so that:

1. ti1,j1 < t′i2,j2 for all (i1, j1), (i2, j2);

2. ti1,j1 < ti2,j2 whenever (i1, j1) < (i2, j2);

3. t′i1,j1 < t′i2,j2 whenever (i1, j1) > (i2, j2);

where (i1, j1) < (i2, j2) if i1 < i2 or i1 = i2 and j1 < j2. Intuitively, this ensures that each
polynomial gets one query from a large subset and one query from a small subset. Recall the
de�nition of ε−dependence.

De�nition 13 (ε−dependence). For T ∈ ACC and (i, j), (i′, j′) ∈ [n] × [k], we say αi′,j′ is
ε−dependent on α̃i,j if Pr

(β̃,β̃
′
)∈HON

(
βi′,j′ = αi′,j′

∣∣β̃i,j = α̃i,j
)
≥ ε.

Now we start classifying important sets of indices; this is analogous to the important sets of tran-
scripts in the proof of Lemma 1.

De�nition 14 (Independent Indices and Super-poly Transcripts). Let ω = ω(1) and ε′ =
1/(kn)− ε. For T ∈ ACC, let

1. IND(T) :=
{

(i, j) ∈ [n]× [k] : Pr
(β̃,β̃

′
)∈HON

(
βi′,j′ 6= αi′,j′ ∀ (i′, j′)

∣∣β̃i,j = α̃i,j
)
≥ ε′nk

}
;

2. SUPER−POLY :=
{
T ∈ ACC : #{(α̃, α̃′) ∈ HON : M(α̃, α̃′) = (α,α′)} ≥ λω

}
.

Note by the union bound, if (i, j) /∈ IND then there exists (i′, j′) such that αi′,j′ is ε−dependent on
α̃i,j . The following claims are analogous to Claims 8 and 9 from Section 4.
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Tags: Let {ti,j , t′i,j} and {t̃i,j , t̃′i,j} be the left and right tags, respectively, in error corrected form.

Input: T =
(
Com, α̃, α̃′,a,a′

)
∈ ACC, a large value N = poly(λ), and all decommitments

corresponding to left messages mj and proofs π1
j,Ij

for j ∈ RQDε(T). Also E receives all

decommitments corresponding to proofs π1
j,Jj

for j /∈ RQDε(T) and Jj 6= Ij . E is given oracle
access to M.

Obtain M's Trapdoor: Rewind M many times to the beginning of the left execution's second
message asking fresh random z ∈ {0, 1}λ. Play honestly on the right and view M's third message
in the left execution until obtaining (x0, x1) such that (y0

val, y
1
val) =

(
f(x0), f(x1)

)
for some

val ∈ [λ]. If after N attempts no such (x0, x1) has been obtained, output FAIL.

Extraction procedure: For count ∈ [N ]:

1. Rewind M to the beginning of step 2 of the protocol:

• generate a random right challenge vector (β̃, β̃
′
) = (β̃i,j , β̃

′
i,j)(i,j)∈[n]×[k], where

(β̃i,j , β̃
′
i,j) ∈ [2t̃i,j ]× [2t̃

′
i,j ].

• Feed M with (β̃, β̃
′
) and reuse the π̃2

j from T receive (β,β′) and {π̂2
j } for left

interaction.

2. Set (b,b′) = (bi,j , b
′
i,j), where bi,j =

{
ai,j , βi,j = αi,j

r
R← Zq, βi,j 6= αi,j

and similarly for b′i,j when

j /∈ RQDε(T). When j ∈ RQDε(T), set bi,j = mj + ri,jβi,j + si,jβ
2
i,j , and similarly for b′i,j

using the decommitments given as input. For each j /∈ RQDε(T), choose Îj ∈ [n′] at random
such that Îj 6= Ij ; set Îj = Ij for j ∈ RQDε. Compute π̂3

j so that (π1
j,Îj
, π2
j , π̂

3
j ) are WIPOK

proofs using the honest witness when j ∈ RQDε and trapdoor witness when j /∈ RQDε.
Receive (b̃, b̃

′
).

3. Repeat steps 1-2. Let (γ̃, γ̃ ′) be right challenge and (c̃, c̃′) the response.

4. For each (i, j) ∈ [n]× [k], check whether either{
(α̃i,j , ãi,j), (α̃

′
i,j , ã

′
i,j), (β̃i,j , b̃i,j), (γ̃i,j , c̃i,j)

}
; or

{
(α̃i,j , ãi,j), (α̃

′
i,j , ã

′
i,j), (β̃

′
i,j , b̃

′
i,j), (γ̃

′
i,j , c̃

′
i,j)
}

are consistent with a quadratic. If so, let m̃j be the constant term of this quadratic.

Message Reconstruction and Output: Use the m̃j to reconstruct and output the secret m̃. If
reconstruction fails or if fewer than ` of the m̃j have been found, output ⊥.

Figure 6: The Four Round Extractor E.

Claim 13. If PrT∈ACC
(
T ∈ (EXTHALF \ EXT) ∩ SUPER−POLY

)
≥ σ then there exists a PPT

algorithm A who breaks the hiding of Com.
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Claim 14. If (i, j) ∈ [n]× [k] is such that

PrT∈ACC
(
T ∈ (EXTHALF \ EXT) & (i, j) ∈ IND(T) & (i, j) not extractable

)
≥ σ

then there exists a PPT algorithm A who breaks the hiding of Com.

As in Section 4, statistical arguments allow us to rule out certain options for the dependencies. The
following is exactly analogous:

De�nition 15. For T ∈ ACC, say T ∈ UNBAL if there exists (i, j), (i′, j′) ∈ [n] × [k] such that
either 1) α′i′,j′ is ε−dependent on α̃i,j; 2) αi′,j′ is ε−dependent on α̃i,j and (i′, j′) > (i, j); or 3)
α′i′,j′ is ε−dependent on α̃′i,j and (i′, j′) < (i, j).

Claim 15. If PrT∈ACC
(
T ∈ (EXTHALF \ EXT) ∩ UNBAL

)
≥ δ′p, then there exists a PPT algorithm

A who breaks the hiding of Com.

De�nition 16. For T ∈ ACC, say T ∈ 1−2 if there exists (i1, j1), (i2, j2), (i′, j′) ∈ [n] × [k] such
that α′i′,j′ is ε−dependent on both α̃i1,j1 and α̃i2,j2.

Claim 16. If PrT∈ACC
(
T ∈ (EXTHALF \ EXT) ∩ 1−2

)
≥ δ′p, then there exists a PPT algorithm A

who breaks the hiding of Com.

Claims 15 and 16 are proven exactly like Claims 5 and 6, using Claim 13. The next de�nition and
claim say that we cannot have a situation in which two left queries in di�erent coordinates depend
on two sibling right queries of the same coordinate. Claim 17 is proven using a reduction to the
hiding of Com analogously to how Claims 8 and 9 from Section 4 are proven.

De�nition 17 (Transcripts with Mixed Polynomial Dependencies). For T ∈ ACC we say
that T ∈ MIXED if there exist (i′1, j

′
1), (i′2, j

′
2), (i, j) ∈ [n]× [k] such that 1) (i′1, j

′
1) 6= (i′2, j

′
2); 2) one

of αi′1,j′1 , α
′
i′1,j
′
1
is ε−dependent on α̃i,j and one of αi′2,j′2 , α

′
i′2,j
′
2
is ε−dependent on α̃′i,j; 3) no αi′,j′

or α′i′,j′ is ε
′−dependent on either α̃i,j or α̃

′
i,j unless (i′, j′) = (i′1, j

′
1) or (i′2, j

′
2).

Claim 17. If
PrT∈ACC

(
T ∈ (EXTHALF \ EXT) ∩MIXED

)
≥ δ′p

then there exists a PPT A who breaks the hiding of Com.

The pieces required to prove Claim 11 are now in place. It su�ces to bound

PrT∈ACC
(
T ∈ (EXTHALF \ EXT) & T /∈ UNBAL & T /∈ 1−2 & T /∈ MIXED & T /∈ SUPER−POLY

)
.

So �x T ∈ EXTHALF \ EXT and let's examine the dependencies among the queries in T. De-
�ne the dependency graph; a directed graph (V,E) with vertex set V = [n] × [k] × {0, 1} and(
(i′, j′, b′), (i, j, b)

)
∈ E if αb

′
i′,j′ is ε−dependent on α̃bi,j , where (α̃0

i,j , α̃
1
i,j) = (α̃i,j , α̃

′
i,j). We analyze

the structure of this graph in light of Claims 14 − 17
First, if (i, j, b) is such that

(
(i′, j′, b′), (i, j, b)

)
/∈ E for all (i′, j′, b′), then (i, j) ∈ IND(T), and so

E extracts m̃j . As T /∈ EXT, there can exist at most `− 1 such j ∈ [k], and so most j ∈ [k] will be
such that: for all (i, b) ∈ [n]× {0, 1}, exists (i′, j′, b′) st

(
(i′, j′, b′), (i, j, b)

)
∈ E.

Second, for each (i′, j′, b′) there exists at most one (i, j, b) st
(
(i′, j′, b′), (i, j, b)

)
∈ E, oth-

erwise T ∈ 1−2. Let N(i, j, b) (resp. N(i′, j′, b′)) be the set of (i′, j′, b′) (resp. (i, j, b)) st(
(i′, j′, b′), (i, j, b)

)
∈ E. Let

U =
{

(i′, j′, b′) : ∃ (i, j, b) st N(i, j, b) = {(i′, j′, b′)} and N(i′, j′, b′) = {(i, j, b)}
}
.
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It follows that |U | ≥ 2n(k − 2`), and so #
{

(i′, j′) ∈ [n]× [k] : (i′, j′, 0), (i′, j′, 1) ∈ U
}
≥ 2n(k − 4`).

Third, there cannot exist (i′, j′) ∈ [n]× [k] and (i1, j1, b1), (i2, j2, b2) ∈ [n]× [k]×{0, 1} such that
(i′, j′, 0), (i′, j′, 1) ∈ U , and

(
(i′, j′, 0), (i1, j1, b1)

)
,
(
(i′, j′, 1), (i2, j2, b2)

)
∈ E unless (i1, j1) = (i2, j2)

and b1 = 0, b2 = 1 (else T ∈ MIXED ∪ UNBAL). Let us write (i′, j′) ∼ (i, j) if (i′, j′, 0), (i′, j′, 1) ∈
U and

(
(i′, j′, 0), (i, j, 0)

)
,
(
(i′, j′, 1), (i, j, 1)

)
∈ E. There are at least 2n(k − 4`) pairs of pairs

(i′, j′), (i, j) such that (i′, j′) ∼ (i, j).
Fourth, we cannot have (i′, j′) ∼ (i, j) unless (i′, j′) = (i, j) or else T ∈ UNBAL. Since the tags

are in error corrected form, a constant fraction of (i, j) ∈ [n]× [k] have (i, j) ∼ (i, j) and ti,j > t̃i,j .
As in the proof of Claim 7, �xing the right queries in all such (i, j) forces M to �x an exponentially
larger fraction of the queries on the right, and so T ∈ SUPER−POLY.
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