
A Punctured Programming Approach to Adaptively Secure

Functional Encryption

Brent Waters∗

University of Texas at Austin
bwaters@cs.utexas.edu

Abstract

We propose a new construction for achieving adaptively secure functional encryption for poly-sized
circuits from indistinguishability obfuscation. Our reduction has polynomial loss to the underlying prim-
itives. We develop a “punctured programming” approach to constructing and proving systems where
outside of obfuscation we rely only on primitives constructable from pseudo random generators.

∗Brent Waters is supported by NSF CNS-0915361 and CNS-0952692, CNS-1228599 DARPA through the U.S. Office of
Naval Research under Contract N00014-11-1-0382, DARPA N11AP20006, Google Faculty Research award, the Alfred P. Sloan
Fellowship, Microsoft Faculty Fellowship, and Packard Foundation Fellowship.

1 Introduction

In traditional encryption systems a message, m, is encrypted to a particular user’s public key PK. Later a
user that holds the corresponding secret key will be able to decrypt the ciphertext and learn the contents of
the message. At the same time any computationally bounded attacker will be unable to get any additional
information on the message.

While this communication paradigm is appropriate for many scenarios such as targeted sharing between
users, there exists many applications that demand a more nuanced approach to sharing encrypted data. For
example, suppose that an organization encrypts video surveillance images and stores these ciphertexts in a
large online database. Later, we would like to give an analyst the ability to view all images that match a
particular pattern such as ones that include a facial image that pattern matches with an particular individual.
In a traditional encryptions system we would be forced to either give the analyst the secret key enabling
them to view everything or give them nothing and no help at all.

The concept of functional encryption (FE) was proposed to move beyond this all or nothing view of
decryption. In a functional encryption system a secret key SKf is associated with a function f . When
a user attempts to decrypt a ciphertext CT encrypted for message m with secret key SKf , he will learn
f(m). The security of functional encryption states that an attacker that receives keys for any polynomial
number of functions f1, . . . , fQ should not be able to distinguish between an encryption of m0,m1 as long
as ∀i fi(m0) = fi(m1).

The concept of functional encryption first appeared under the guise of predicate encryption [BW07,
KSW08] with the nomenclature later being updated[SW08, BSW11] to functional encryption. In addition,
functional encryption has early roots in Attribute-Based Encryption [SW05] and searching on encrypted
data [BCOP04].

A central challenge is to achieve functional encryption for as expressive functionality classes as pos-
sible — ideally one would like to achieve it for any poly-time computable function. Until recently, the
best available was roughly limited to the inner product functionality proposed by Katz, Sahai, and Wa-
ters [KSW08]. This state of affairs changed dramatically with the introduction of a candidate indistin-
guishability obfuscation [BGI+12] system for all poly-size circuits by Garg, Gentry, Halevi, Raykova, Sahai,
and Waters [GGH+13]. The authors showed that a function encryption system for any poly-sized circuits
can be built from an indistinguishability obfuscator plus public key encryption and statistically simulation
sound non-interactive zero knowledge proofs.

Thinking of Adaptive Security While the jump from inner product functionality to any poly-size
circuit is quite significant, one limitation of the GGHRSW functional encryption system is that it only offers a
selective proof of security where the attacker must declare the challenge messages before seeing the parameters
of the FE system. Subsequently, Boyle, Chung and Pass [BCP14] proposed an FE construction based on
an obfuscator that is differing inputs secure. We briefly recall that an obfuscator O is indistinguishability
secure if it is computationally difficult for an attacker to distinguish between obfuscations O(C0) and O(C1)
for any two (similar sized) circuits that are functionally equivalent (i.e. ∀x C0(x) = C1(x)). On the other
hand assuming an obfuscator is differing inputs [BCP14, ABG+13] secure allows for C0 and C1 to not be
functionally equivalent, but requires that for any PPT attacker that distinguishes between obfuscations of
the two circuits there must a PPT extraction algorithm that finds some x such that C0(x) 6= C1(x). Thus,
differing inputs obfuscation is in a qualitatively different class of “knowledge definitions”. Furthermore,
there is significant evidence [GGHW14] that there exists certain functionalities with auxiliary input that are
impossible to build obfuscate under the differing inputs definition.

Our goal is to build adaptively secure functional encryption systems from indistinguishability obfuscation.
We require that our reductions have polynomial loss of security relative to the underlying primitives. In
addition, we want to take a minimalist approach to the primitives we utilize outside of obfuscation. In
particular, we wish to avoid the use of additional “strong tools” such as non-interactive zero knowledge
proofs or additional assumptions over algebraic groups.

1

Our Results In this work we propose two new constructions for achieving secure functional encryption (for
poly-sized circuits) from indistinguishability obfuscation. We develop a “punctured programming” approach
[SW14] to constructing and proving systems where our main tools in addition to obfuscation are a selectively
secure puncturable pseudo random functions. We emphasize puncturable PRFs are themselves constructible
from pseudo random generators [GGM84, BW13, BGI13, KPTZ13].

We start toward our an FE construction which is provably secure against any attacker that is limited
to making all of its private key queries after it sees the challenge ciphertext.1 While this is attacker is still
restricted relative to a fully adaptive attacker, we observe that such a definition is already stronger than the
commonly used selective restriction.

To build our system we first introduce an abstraction that we call puncturable deterministic encryp-
tion (PDE). The main purpose of this abstraction is to serve in some places as a slightly higher level
and more convenient abstraction to work with than puncturable PRFs. A PDE system is a symmetric
key and deterministic encryption scheme and consists of four algorithms: SetupPDE(1λ),EncryptPDE(K,m),
DecryptPDE(K,CT), and PuncturePDE(K,m0,m1). The first three algorithms have the usual correctness se-
mantics. The fourth puncture algorithm takes as input a master key and two messages (m0,m1) and outputs
a punctured key that can decrypt all ciphertexts except for those encrypted for either of the two messages
— recall encryption is deterministic so there are only two such ciphertexts. The security property of PDE
is stated as a game where the attacker gives two messages (m0,m1) to the attacker and then returns back
a punctured key as well as two ciphertexts, one encrypted under each message. In a secure system no PPT
attacker will be able to distinguish which ciphertext is associated with which message.

Our PDE encryption mechanism is rather simple and is derived from the hidden trigger mechanism from
the Sahai-Waters [SW14] deniable encryption scheme. PDE Ciphertexts are of the form:

CT = (A = F1(K1,m), B = F2(K2, A)⊕m).

where F1 and F2 are puncturable pseudo random functions, with F1 being an injective function. Decryption
requires first computing m′ = B ⊕ F2(K2, A) and then checking that F1(K1,m

′) = A. 2

With this tool in place we are now ready to describe our first construction. The setup algorithm will
first choose a puncturable PRF key K for function F . Next, it will create the public parameters PP as an
obfuscation of a program called InitialEncrypt. The InitialEncrypt program will take in randomness
r and compute a tag t = PRG(r). Then it will output a PDE key k which is derived from F (K, t). The
encryption algorithm can use this obfuscated program to encrypt as follows. It will simply choose a random
value r ∈ {0, 1}λ, where λ is the security parameter. It then runs the obfuscated program on r to receive
(t, k) and then creates the ciphertext CT as (t, c = EncryptPDE(k,m)).

The secret key SKf for a function f will be created as an obfuscated program. This program will take
as input a ciphertext CT = (t, c). The program first computes k from F (K, t), then uses k to decrypt c to
a message m and outputs f(m). The decryption algorithm is simply to run the obfuscated program on the
ciphertext.

The proof of security of our first system follows what we can a “key-programming” approach. The high
level idea is that for each key we will hardwire in the decryption response into each secret key obfuscated
program for when the input is the challenge ciphertext. For all other inputs the key computes decryption
normally. Our key-programming approach is enabled by two important factors. First, in the security game
there is a single challenge ciphertext so only one hardwiring needs to be done per key. Second, since all
queries come after the challenge messages (m0,m1) are declared we will know where we need to puncture
to create our hardwiring.

Intuitively, our proof can be broken down into two high level steps. First, we will perform a set of steps
that allow us to hardwire the decryption answers to all of the secret keys for the challenge ciphertext. Next,
we use PDE security to move from encrypting mb for challenge bit b ∈ {0, 1} to always encrypting m0—
independent of the bit b. (The actual proof of Section 5 contains multiple hybrids and is more intricate.)

1This model has been called semi-adaptive in other contexts [CW14].
2Despite sharing the term deterministic, our security definition of PDEs does not have much in common with deterministic

encryption [BFO08, BFOR08] which has a central goal of hiding information among message distributions of high entropy.

2

Handling Full Security We now move to dealing with full security where we need to handle private key
queries on both sides of the challenge ciphertext. At this point it is clear that relying only key-programming
will not suffice. First, a pre-challenge ciphertext key for function f will need to be created before the challenge
messages (m0,m1) are declared, so it will not even be known at key creation time what f(m0) = f(m1) will
be. One natural thought is to try to program the answers to pre-challenge keys in the challenge ciphertext,
however, this clearly cannot work since the ciphertext is of bounded size and we wish to support an unbounded
number of queries. Another perhaps more promising direction would be to apply the dual system encryption
[Wat09] methodology. While this methodology has been successful in proving adaptive security in ABE
and simple predicate encryption schemes [LOS+10, OT10] there is not an obvious translation to this setting.
However, we will see below that our techniques have connections to this methodology and could be considered
a certain variant of it.

Our central idea is to replace the notion of key-programming with what we call “key-signaling”. In a
key-signaling system a normal ciphertext will be associated with a single message m which we refer to as an
α-message. The decryption algorithm will use the secret key to prepare an α-signal for the ciphertext which
will enable normal decryption. However, the ciphertext can also have a second form in which it is associated
with two messages mα and mβ . The underlying semantics are that if it receives an α-signal it uses mα and
if it receives a β-signal it uses mβ .

These added semantics open up new strategy for proving security. In the initial security game the
challenge ciphertext encrypts mb for challenge bit b. It will only receive α-signals from keys. Next we
(indistinguishably) move the challenge ciphertext to encrypt mb as the α-message and m0 as the β-message.
All keys still send only α-signals. Now one by one we change each key to send an β-signal to the challenge
ciphertext as opposed to an α-signal. This step is feasible since for any queried function f we must have
that f(mb) = f(m0). Finally, we are able to erase the message mb since no key is signaling for it.

Stepping back we can see that instead of storing the response of decryption for the challenge ciphertext
at each key, we are storing the fact that it is using the second message in decryption.

To actually execute this strategy we will need further ideas. The first thing that we do is associate each
ciphertext with a random tag t (like in the first solution) and also each key with a random tag y. Second,
both private keys and ciphertexts contain obfuscated programs. The decryption algorithm will use both the
key program and ciphertext program to decrypt.

A key program will take as input the ciphertext tag t and generate two objects. The first is a PDE
encryption, c, of the signal α. This PDE ciphertext is generated under a key derived from the pair of tags
(t, y). Second it will create a one-bounded secure private key SKOB for functionality f . The master secret
key for this one-bounded system is again derived from the pair of tags (t, y). Next, the ciphertext program
will take as input the key tag y and PDE encryption c. It will first use the pair of keys to generate a PDE
key which decrypts c. If the signal is correct, it then creates a one-bounded ciphertext CTOB of its message
m. Finally, the decryption algorithm combines the one-bounded scheme and ciphertext to decrypt and learn
the output.

Our technique using a signaling strategy to generate a bounded key and ciphertext pair for each tag
pair. Gorbunov, Vaikuntanathan and Wee [GVW12] proved adaptive security of a public key FE 1-bounded
scheme from IND-CPA secure public key encryption. Since we actually only need master key encryption,
we observe that that this can be achieved from IND-CPA symmetric key encryption. Thus, we maintain
our goal of not using heavy weight primitives outside of obfuscation. One important fact is that the GVW
scheme is proven to be 1-bounded adaptively secure regardless of whether the private key query comes before
or after the challenge ciphertext.

The actual proof of security requires several hybrid steps and we defer further details to Section 6.

3

2 Preliminaries

In this section, we define indistinguishability obfuscation, and puncturable pseudo random functions (PRFs).
All the variants of PRFs that we consider can be constructed from one-way functions.

2.1 Indistinguishability Obfuscation and PRFs

The definition of indistinguishability obfuscation below is adapted from [GGH+13]; following [KSW14] the
main difference with previous definitions is that we uncouple the security parameter from the circuit size by
directly defining indistinguishability obfuscation for all circuits:

Definition 1 (Indistinguishability Obfuscator (iO)). A uniform PPT machine iO is called an indistinguisha-
bility obfuscator for circuits if the following conditions are satisfied:

• For all security parameters λ ∈ N, for all circuits C, for all inputs x, we have that

Pr[C ′(x) = C(x) : C ′ ← iO(λ,C)] = 1

• For any (not necessarily uniform) PPT adversaries Samp, D, there exists a negligible function α such
that the following holds: if Pr[|C0| = |C1| and ∀x,C0(x) = C1(x) : (C0, C1, σ)← Samp(1λ)] > 1−α(λ),
then we have:

∣∣∣ Pr
[
D(σ, iO(λ,C0)) = 1 : (C0, C1, σ)← Samp(1λ)

]
−Pr

[
D(σ, iO(λ,C1)) = 1 : (C0, C1, σ)← Samp(1λ)

]∣∣∣ ≤ α(λ)

Such indistinguishability obfuscators for circuits were constructed under novel algebraic hardness as-
sumptions in [GGH+13].

2.2 Puncturable PRFs

Puncturable PRFs were defined by Sahai and Waters [SW14] as a simple type of constrained PRF [BW13,
BGI13, KPTZ13]. They define a puncturable PRFs as a PRF for which a key can be given out that allows
evaluation of the PRF on all inputs, except for a designated polynomial-size set of inputs.

Definition 2. A puncturable family of PRFs F mapping is given by a triple of Turing Machines (KeyF ,
PunctureF , and EvalF), and a pair of computable functions n(·) and m(·), satisfying the following conditions:

• [Functionality preserved under puncturing] For every PPT adversary A such that A(1λ) outputs
a set S ⊆ {0, 1}n(λ), then for all x ∈ {0, 1}n(λ) where x /∈ S, we have that:

Pr
[
EvalF (K,x) = EvalF (KS , x) : K ← KeyF (1λ),KS = PunctureF (K,S)

]
= 1

• [Pseudorandom at punctured points] For every PPT adversary (A1, A2) such that A1(1λ) out-
puts a set S ⊆ {0, 1}n(λ) and state σ, consider an experiment where K ← KeyF (1λ) and KS =
PunctureF (K,S). Then we have∣∣∣ Pr

[
A2(σ,KS , S,EvalF (K,S)) = 1

]
− Pr

[
A2(σ,KS , S, Um(λ)·|S|) = 1

]∣∣∣ = negl(λ)

where EvalF (K,S) denotes the concatenation of EvalF (K,x1)), . . . ,EvalF (K,xk)) where S = {x1, . . . , xk}
is the enumeration of the elements of S in lexicographic order, negl(·) is a negligible function, and U`
denotes the uniform distribution over ` bits.

4

For ease of notation, we write F (K,x) to represent EvalF (K,x). We also represent the punctured key
PunctureF (K,S) by K(S).

The GGM tree-based construction of PRFs [GGM84] from one-way functions are easily seen to yield
puncturable PRFs where the punctured size sizes are polynomial in the size of the set S, as recently observed
by [BW13, BGI13, KPTZ13]. Thus we have:

Theorem 1. [GGM84, BW13, BGI13, KPTZ13] If one-way functions exist, then for all efficiently computable
functions n(λ) and m(λ), there exists a puncturable PRF family that maps n(λ) bits to m(λ) bits.

Next we consider families of PRFs that are with high probability injective using the definition:

Definition 3. A statistically injective (puncturable) PRF family with failure probability ε(·) is a family of
(puncturable) PRFs F such that with probability 1 − ε(λ) over the random choice of key K ← KeyF (1λ),
we have that F (K, ·) is injective.

If the failure probability function ε(·) is not specified, then ε(·) is a negligible function.

Theorem 2. If one-way functions exist, then for all efficiently computable functions n(λ), m(λ), and e(λ)
such that m(λ) ≥ 2n(λ) + e(λ), there exists a puncturable statistically injective PRF family with failure
probability 2−e(λ) that maps n(λ) bits to m(λ) bits.

The proof of this theorem is contained in Sahai-Waters [SW14].

Sampling Master Keys At times instead of running the KeyF (1λ) algorithm to generate the master
key for a puncturable PRF we will generate the master key by simply sampling a uniformly random string
K ∈ {0, 1}λ where λ is the security parameter. We argue that we can do this without loss of generality. First,
suppose there exists a puncturable PRF system as defined above. Then we can create another puncturable
PRF system which uses the random coins, r used in KeyF (1λ; r) as the master secret key. Since the original
master secret key can be generated from these coins, we can adapt the algorithms to use r as the master
secret key — any algorithm that needs to use the original master key K will simply first generate it by
calling KeyF (1λ; r). Second, suppose there is an algorithm that chooses a master secret key as a random
string of length z > λ. Then we can always create another puncturable PRF system with length λ secret
keys that simply using a pseudo random generator to expand the key from λ to z bits.

The above transformations are standard observations used in cryptography. We mention this here since
in our constructions we will often sample a directly as a random string instead of going through the process
of picking randomness and then generating a key from the randomness. The reason is simply to cut down
on the number of steps we need in our exposition.

3 Functional Encryption

Our syntax for functional encryption roughly follows in the line of Boneh-Sahai-Waters [BSW11] except we
specialize our notation for the case where the private key is a function f and the ciphertext input is a message
m. This is without loss of generality when f can be any poly-sized circuit and thus includes a universal
circuit.

For security we use the indistinguishability notion, which was the first one considered for functional
encryption (as well as predicate encryption [BW07, KSW08]). De Caro et. al. [CJO+13] show how in
the randomoracle model one can transform a system with indistinguishability secure into one with strong
simulation security.

Definition 4 (Functional Encryption). A functional encryption scheme for a class of functions F = F(λ)
over message space M =M(λ) consists of four algorithms FE = {Setup,KeyGen,Encrypt,Decrypt}:

Setup(1λ) – a polynomial time algorithm that takes the unary representation of the security parameter λ
and outputs public parameters PP and a master secret key MSK.

5

KeyGen(MSK, f) – a polynomial time algorithm that takes as input the master secret key MSK and a
description of function f ∈ F and outputs a corresponding secret key SKf .

Encrypt(PP, x) – a polynomial time algorithm that takes the public parameters PP and a string x and
outputs a ciphertext CT.

Decrypt(SKf ,CT) – a polynomial time algorithm that takes a secret key SKf and ciphertext encrypting
message m ∈M and outputs f(m).

A functional encryption scheme is correct for F if for all f ∈ F and all messages m ∈M:

Pr[(PP,MSK)← Setup(1λ); Decrypt(KeyGen(MSK, f),Encrypt(PP,m)) 6= f(m)] = negl(λ).

Indistinguishability Security for Functional Encryption

We describe indistinguishability security as a multi-phased game between an attacker A and a challenger.

Setup: The challengers runs (PP,MSK)← Setup(1λ) and gives PP to A.

Query Phase 1: A adaptively submits queries f in F and is given SKf ← KeyGen(MSK, f). This step can
be repeated any polynomial number of times by the attacker.

Challenge: A submits two messages m0,m1 ∈ M such that f(m0) = f(m1) for all functions f queried in
the key query phase. The challenger then samples CT∗ ← Encrypt(PP,mb) for the attacker.

Query Phase 2: A continues to issue key queries as before subject to the restriction that any f queried
must satisfy f(m0) = f(m1).

Guess: A eventually outputs a bit b′ in {0, 1}.

The advantage of an algorithm A in this game is AdvA = Pr[b′ = b]− 1
2 .

Definition 5. A functional encryption scheme is indistinguishability secure if for all poly-timeA the function
AdvA(λ) is negligible.

Definition 6. In the above security game we define a post challenge ciphertext attacker as one that does not
make any key queries in Phase 1. We define a functional encryption scheme to be post challenge ciphertext
indistinguishability secure if for any poly-time algorithm A that is a post challenge ciphertext attacker the
advantage of A is negligible in the indistinguishability security game.

Remark 1. We remark that any system that is post challenge ciphertext secure must also be selectively
secure. Recall that a selective attacker is required to give the challenge messages m0,m1 before seeing the
parameters and then can make as many queries as desired. We first observe that if there exists a selective
attacker on a system that makes both Phase 1 and Phase 2 queries, then there exists a selective attacker
that makes only Phase 2 queries. Intuitively, even though a selective attacker it can then make both Phase 1
and Phase 2 queries, the abilitiy to make Phase 1 queries does not provide any additional leverage (over only
making Phase 2 queries) since the selective committed to the challenge messages. With this observation in
mind we now see that a post challenge ciphertext attacker has the same power except it has the additional
leverage in that it can delay its decision of what challenge messages to commit to until after seeing the public
parameters.

6

3.1 One Bounded FE schemes

In our main construction we will use as a building block adaptively secure one-bounded secure functional
encryption schemes. These are functional encryption schemes in which the attacker is allowed to make at
most one private key query. Gorbunov, Vaikuntanathan and Wee [GVW12] proved adaptive security of a
1-bounded scheme from IND-CPA secure public key encryption. (They later use this to build k-bounded
schemes for larger k.) Following Sahai and Seyalioglu [SS10], they base their construction off of Yao garbled
circuits. An important point is that the 1-bounded security holds whether they key query comes before or
after the challenge ciphertext.

For our purposes we will only need a one-bounded FE scheme with symmetric key (or master key)
encryption. This is clearly implied by a public key FE scheme. In this security model an attacker will not
be given any public parameters, but can query an encryption oracle a polynomial number of times. Without
loss of generality we will sometimes assume that the master secret key is chosen as a uniform string of λ
bits for security parameter λ. (See the previous section’s discussion on sampling master keys.) We observe
that the 1-bounded GVW scheme can by based off of IND-CPA security of symmetric key encryption if the
one-bounded FE scheme itself is only required to provide for master key encryption.

4 Puncturable Deterministic Encryption

In this section we define a primitive of puncturable deterministic encryption and show how to build it from
(injective) puncturable PRFs. The main purpose of this abstraction is to give a slightly higher level tool
(relative to puncturable PRFs) to work with in our punctured programming construction and proofs.

4.1 Definition

Definition 7 (Puncturable Deterministic Encryption). A puncturable deterministic encryption (PDE) scheme
is defined over a message spaceM =M(λ) and consists of four algorithms: (possibly) randomized algorithms
SetupPDE, and PuncturePDE along with deterministic algorithms EncryptPDE and DecryptPDE. All algorithms
will be poly-time in the security parameter.

SetupPDE(1λ) The setup algorithm takes a security parameter and uses its random coins to generate a key
K from a keyspace K.

EncryptPDE(K,m) The encrypt algorithm takes as input a key K and a message m. It outputs a ciphertext
CT. The algorithm is deterministic.

DecryptPDE(K,CT) The decrypt algorithm takes as input a key K and ciphertext CT. It outputs either a
message m ∈M or a special reject symbol ⊥.

PuncturePDE(K,m0,m1) The puncture algorithm takes as input a key K ∈ K as well as two messages
m0,m1. It creates and outputs a new key K(m0,m1) ∈ K. The parentheses are used to syntactically
indicate what is punctured.

Correctness A punctured deterministic encryption scheme is correct if there exists a negligible function
negl such that the following holds for all λ and all pairs of messages m0,m1 ∈M(λ).

Let K = SetupPDE(1λ) and K(m0,m1)← PuncturePDE(K,m0,m1). Then for all m 6= m0,m1

Pr[DecryptPDE(K(m0,m1),EncryptPDE(K,m)) 6= m] = negl(λ).

In addition, we have that for all m (including m0,m1)

Pr[DecryptPDE(K,EncryptPDE(K,m)) 6= m] = negl(λ).

Definition 8. We say that a correct scheme is perfectly correct if the above probability is 0 and otherwise
say that it is statistically correct.

7

(Selective) Indistinguishability Security for Punctured Deterministic Encryption

We describe indistinguishability security as a multi-phased game between an attacker A and a challenger.

Setup: The attacker selects two messages m0,m1 ∈ M and sends these to the challenger. The challenger
runs K = SetupPDE(1λ) and K(m0,m1) = PuncturePDE(K,m0,m1). It then chooses a random bit
b ∈ {0, 1} and computes

T0 = EncryptPDE(K,mb), T1 = EncryptPDE(K,m1−b).

It gives the punctured key K(m0,m1) as well as T0, T1 to the attacker.

Guess: A outputs a bit b′ in {0, 1}.

The advantage of an algorithm A in this game is AdvA = Pr[b′ = b]− 1
2 .

Definition 9. A puncturable deterministic encryption scheme is indistinguishability secure if for all poly-
time A the function AdvA(λ) is negligible.

One can also consider an adaptive game of security where the attacker can probe an encryption oracle
on multiple messages before committing to m0,m1. However, we do not explore this further in this paper.

Remark 2. Our definition allows for a key to be punctured at two messages. One possibility is to extend
this abstraction to allow for puncturing at many messages (and likewise adapt the security game). However,
we chose a narrower definition since it is simpler and sufficient to suit our purposes.

Sampling Master Keys At times instead of running the SetupPDE(1λ) algorithm to generate the master
key for a puncturable PRF we will generate the master key by simply sampling a uniformly random string
k ∈ {0, 1}λ where λ is the security parameter. We can also do this without loss of generality from an
argument similar to the one we gave for sampling puncturable PRF keys (see Section 2.2).Our motivation
again is to cut down on the description length of our primitives and proofs.

4.2 A Construction from Puncturable PRFs

We now describe our PDE construction which is derived from the mechanism used to implement “hidden
triggers” in the Sahai-Waters [SW14] deniable encryption system. The PDE scheme we provide is param-
eterized over a security parameter λ and has message space M = M(λ) = {0, 1}λ. It makes use off two
puncturable PRF families. The first is a statistically injective puncturable PRF F1 that takes inputs from
λ bits to ` = `(λ) bits and the second F2 goes from ` bits to λ bits.

SetupPDE(1λ) The setup algorithm samples keys K1 ← KeyF1
(1λ) and K1 ← KeyF2

(1λ).

EncryptPDE(K = (K1,K2),m) The encryption algorithm (deterministically) computes a ciphertext as:

CT = (A = F1(K1,m), B = F2(K2, A)⊕m).

DecryptPDE(K,CT = (A,B)) The decryption algorithm first computes m′ = F2(K2, A)⊕B. Next, it checks
if F1(K1,m

′) ?= A. If so, it outputs m′, otherwise it outputs ⊥.

PuncturePDE(K,m0,m1) The algorithm computes dA = F1(K1,m0) and eA = F1(K1,m1). It setsK1(m0,m1) =
PunctureF1(K, {m0,m1}) and K2(dA, eA) = PunctureF2(K, {dA, eA}). 3 The output PDE key is
K(m0,m1) = (K1(m0,m1),K2(dA, eA)).

3We assume that the distribution of PunctureF1 (K1, {m0, m1}) is the same as PunctureF1 (K1, {m1, m0}). This can be
easily achieved by treating the parameters in lexicographic or random order. (We also assume this for F2.)

8

Correctness. Correctness holds in the case where K1 is sampled such that the function F (K1, ·) is injec-
tive. For use of non-punctured keys, correctness follows from observation. The encryption and decryption
algorithms can also be used on punctured keys . Here correctness will follow for key K(m0,m1) on all
messages m 6= m0,m1 as long as F1(K1,m) 6= F1(K1,m0) or F1(K1,m1). This bad event will not occur as
long as F (K1, ·) is injective.

4.2.1 Security

We sketch a proof of security via a sequence of hybrid games.

Game 1

1. Attacker declares (m0,m1) and challenger samples K = (K1,K2).

2. Challenger computes dA = F1(K1,m0), eA = F1(K1,m0).

3. Challenger computes dB = F2(K2, dA), eB = F2(K2, eA).

4. Challenger outputs K(m0,m1) = (K1(m0,m1),K2(dA, eA)).

5. Challenge flips a coin b and outputs: Tb = (dA, dB ⊕m0) T1−b = (eA, eB ⊕m1).

6. Attacker guesses b′ and wins if b = b′.

Game 2
Line 2. Challenger chooses random dA, eA.

By punctured PRF security no attacker can distinguish Game 1 and Game 2.

Game 3
Line 3. Challenger chooses random dB , eB .

By punctured PRF security no attacker can distinguish Game 2 and Game 3.

However, we can now see that since dA, dB , eA, eB are all chosen uniformly at random in Game 3 we have
that T0, T1 information theoretically hide the bit b. This final information theoretic argument depends on
the fact that the distribution of PunctureF1(K1, {m0,m1}) is the same as PunctureF1(K1, {m1,m0}).

5 A Post Challenge Ciphertext Secure Construction

We now describe our construction for a functional encryption (FE) scheme that is post challenge ciphertext
secure. We let the message space M =M(λ) = {0, 1}`(λ) for some polynomial function ` and the function
class be F = F(λ).

We will use a puncturable PRF F (·, ·) such that when we fix the key K we have that F (K, ·) takes in a
2λ bit input and outputs λ bits. In addition, we use a puncturable deterministic encryption scheme (PDE)
where the message space M is the same as that of the (FE) system. In our PDE systems master keys are
sampled uniformly at random from {0, 1}λ. Finally, we use an indistinguishability secure obfuscator and a
length doubling pseudo random generator PRG : {0, 1}λ → {0, 1}2λ.

Setup(1λ)
The setup algorithm first chooses a random punctured PRF keyK ← KeyF (1λ) and sets this as the master se-
cret key MSK. Next it creates an obfuscation of the program Initial-Encrypt as P ← iO(1λ, Initial-Encrypt:1[K]).4

This obfuscated program, P , serves as the public parameters PP.
4The program Initial-Encrypt:1 is padded to be the same size as Initial-Encrypt:2.

9

Encrypt(PP = P (·),m ∈M)
The encryption algorithm chooses random r ∈ {0, 1}λ. It then runs the obfuscated program P on r to get:

(t, k)← P (r).

It then computes EncryptPDE(k,m) = c. The output ciphertext is CT = (t, c).

KeyGen(MSK, f ∈ F(λ)) The KeyGen algorithm produces an obfuscated program Pf by obfuscating

Pf ← iO(Key-Eval:1[K, f]).5

Decrypt(CT = (t, c),SK = Pf) The decryption algorithm takes as input a ciphertext CT and a secret key
SK which is an obfuscated program Pf . It runs Pf (t, c) and outputs the response.

Correctness Correctness follows in a rather straightforward manner from the correctness of the underlying
primitives. We briefly sketch the correctness argument. Suppose we call the encryption algorithm for message
m with randomness r. The obfuscated program generates (t, k) = (PRG(r), F (K, t)). Then it creates the
ciphertext CT = (t, c = EncryptPDE(k,m)). Now let’s examine what occurs when Decrypt(CT = (t, c),SKf =
Pf) is called where Pf was a secret key created from function f . The decryption algorithm calls Pf (t, c).
The (obfuscated) program will compute the same PDE key k = F (K, t) as used to create the ciphertext.
Then it will use the PDE decryption algorithm and obtain m. This follows via the correctness of the PDE
scheme. Finally, it outputs f(m) which is the correct output.

Initial-Encrypt:1

Constants: Puncturable PRF key K.
Input: Randomness r ∈ {0, 1}λ.

1. Let t = PRG(r).

2. Compute: k = F (K, t).

3. Output: (t, k).

Figure 1: Program Initial-Encrypt:1

Key-Eval:1

Constants: PRF key K, function description f ∈ F .
Input: (t, c).

1. Compute: k = F (K, t).

2. Output f(DecryptPDE(k, c)). (If DecryptPDE(k, c) evaluates to ⊥ the program outputs ⊥.)

Figure 2: Program Key-Eval:1

5.1 Proof of Security

Theorem 3. The above functional encryption scheme is post challenge ciphertext secure if it is instantiated
with a secure punctured PRF, puncturable deterministic encryption scheme, pseudo random generator, and
indistinguishability secure obfuscator.

5The program Key-Eval:1 is padded to be the same size as Key-Eval:2.

10

Proof. To prove the above theorem, we first define a sequence of games where the first game is the original
FE security game. Then we show (based on the security of different primitives) that any poly-time attacker’s
advantage in each game must be negligibly close to that of the previous game. We begin by with describing
Game 1 in detail, which is the (post challenge ciphertext) FE security game instantiated with our construc-
tion. From there we describe the sequence of games where each game is described by its modification from
the previous game. We continue to enumerate each step in every game in order to ease verification of our
lemmas.

Game 1 The first game is the original security game instantiated for our construction.

1. Challenger computes K ← KeyF (1λ) and randomly chooses the challenge bit b ∈ {0, 1}.

2. Challenger chooses random r∗ ∈ {0, 1}λ and computes t∗ = PRG(r∗).

3. Challenger creates P ← iO(1λ, Initial-Encrypt:1[K]) and passes P to attacker.

4. Attacker gives messages m0,m1 ∈M to challenger. (No Phase 1 queries.)

5. Challenger computes k∗ ← F (K, t∗).

6. Challenger computes c∗ ← EncryptPDE(k∗,mb) and outputs challenge ciphertext as CT∗ = (t∗, c∗).

7. On attacker key query for function f ∈ F the challenger responds with Pf ← iO(Key-Eval:1[K, f]).

8. The attacker gives a bit b′ and wins if b′ = b.

Game 2

1. Challenger computes K ← KeyF (1λ) and randomly chooses the challenge bit b ∈ {0, 1}.

2. Challenger chooses random t∗ ∈ {0, 1}2λ.

3. Challenger creates P ← iO(1λ, Initial-Encrypt:1[K]) and passes P to attacker.

4. Attacker gives messages m0,m1 ∈M to challenger. (No Phase 1 queries.)

5. Challenger computes k∗ ← F (K, t∗).

6. Challenger computes c∗ ← EncryptPDE(k∗,mb) and outputs challenge ciphertext as CT∗ = (t∗, c∗).

7. On attacker key query for function f ∈ F the challenger responds with Pf ← iO(Key-Eval:1[K, f]).

8. The attacker gives a bit b′ and wins if b′ = b.

Game 3 Parameters program is now punctured at t∗.

1. Challenger computes K ← KeyF (1λ) and randomly chooses the challenge bit b ∈ {0, 1}.

2. Challenger chooses random t∗ ∈ {0, 1}2λ and computes computes K(t∗) = PunctureF (K, t∗).

3. Challenger creates P ← iO(1λ, Initial-Encrypt:2[K(t∗)]) and passes P to attacker.

4. Attacker gives messages m0,m1 ∈M to challenger. (No Phase 1 queries.)

5. Challenger computes k∗ ← F (K, t∗).

6. Challenger computes c∗ ← EncryptPDE(k∗,mb) and outputs challenge ciphertext as CT∗ = (t∗, c∗).

7. On attacker key query for function f ∈ F the challenger responds with Pf ← iO(Key-Eval:1[K, f]).

8. The attacker gives a bit b′ and wins if b′ = b.

11

Game 4 Obfuscated programs in secret keys are punctured and hardwired.

1. Challenger computes K ← KeyF (1λ) and randomly chooses the challenge bit b ∈ {0, 1}.

2. Challenger chooses random t∗ ∈ {0, 1}2λ and computes computes K(t∗) = PunctureF (K, t∗).

3. Challenger creates P ← iO(1λ, Initial-Encrypt:2[K(t∗)]) and passes P to attacker.

4. Attacker gives messages m0,m1 ∈M to challenger. (No Phase 1 queries.)

5. Challenger computes k∗ ← F (K, t∗).

6. Challenger computes c∗ ← EncryptPDE(k∗,mb) and outputs challenge ciphertext as CT∗ = (t∗, c∗).

7. Let k′ = PuncturePDE(k∗,m0,m1). Choose random γ ∈ {0, 1} and let c0 = EncryptPDE(k∗,mγ) and let
c1 = EncryptPDE(k∗,m1−γ).
Consider each attacker key query for function f ∈ F . Let df = f(m0) = f(m1). The challenger responds
with Pf ← iO(Key-Eval:2[K(t∗), t∗, f, c0, c1, df , k′]).

8. The attacker gives a bit b′ and wins if b′ = b.

Game 5

1. Challenger computes K ← KeyF (1λ) and randomly chooses the challenge bit b ∈ {0, 1}.

2. Challenger chooses random t∗ ∈ {0, 1}2λ and computes computes K(t∗) = PunctureF (K, t∗).

3. Challenger creates P ← iO(1λ, Initial-Encrypt:2[K(t∗)]) and passes P to attacker.

4. Attacker gives messages m0,m1 ∈M to challenger. (No Phase 1 queries.)

5. Challenger chooses random k∗ ∈ {0, 1}λ.

6. Challenger computes c∗ ← EncryptPDE(k∗,mb) and outputs challenge ciphertext as CT∗ = (t∗, c∗).

7. Let k′ = PuncturePDE(k∗,m0,m1). Choose random γ ∈ {0, 1} and let c0 = EncryptPDE(k∗,mγ) and let
c1 = EncryptPDE(k∗,m1−γ). Consider each attacker key query for function f ∈ F . Let df = f(m0) =
f(m1). The challenger responds with Pf ← iO(Key-Eval:2[K(t∗), t∗, f, c0, c1, df , k′]).

8. The attacker gives a bit b′ and wins if b′ = b.

Game 6

1. Challenger computes K ← KeyF (1λ) and randomly chooses the challenge bit b ∈ {0, 1}.

2. Challenger chooses random t∗ ∈ {0, 1}2λcomputes computes K(t∗) = PunctureF (K, t∗).

3. Challenger creates P ← iO(1λ, Initial-Encrypt:2[K(t∗)]) and passes P to attacker.

4. Attacker gives messages m0,m1 ∈M to challenger. (No Phase 1 queries.)

5. Challenger chooses random k∗ ∈ {0, 1}λ.

6. Challenger computes c∗ ← EncryptPDE(k∗,m0) and outputs challenge ciphertext as CT∗ = (t∗, c∗).

7. Let k′ = PuncturePDE(k∗,m0,m1). Choose random γ ∈ {0, 1} and let c0 = EncryptPDE(k∗,mγ) and let
c1 = EncryptPDE(k∗,m1−γ). Consider each attacker key query for function f ∈ F . Let df = f(m0) =
f(m1). The challenger responds with Pf ← iO(Key-Eval:2[K(t∗), t∗, f, c0, c1, df , k′]).

8. The attacker gives a bit b′ and wins if b′ = b.

12

Initial-Encrypt:2

Constants: Punctured PRF key K(t∗).
Input: Randomness r ∈ {0, 1}λ.

1. Let t = PRG(r).

2. Compute: k = F (K(t∗), t).

3. Output: (t, k).

Figure 3: Program Initial-Encrypt:2
Key-Eval:2

Constants: PRF key K(t∗), tag value t∗ ∈ {0, 1}2λ, function description f ∈ F , PDE ciphertexts c0, c1,
df ∈ {0, 1}, and punctured deterministic encryption key k′ = kt∗(m0,m1).
Input: (t, c).

1. If t = t∗ AND c 6= c0, c1 output f(DecryptPDE(k
′, c)).

2. If t = t∗ AND (c = c0 OR c = c1) output df .

3. Otherwise compute: k = F (K, t).

4. Output f(DecryptPDE(k, c)).

Figure 4: Program Key-Eval:2

We observe that in this final game the attacker has no information on the challenger’s bit b since the
game always just encrypts m0.

We now move to establishing the lemmas that argue the attacker’s advantage must be negligibly close
between successive games. We let AdvA,i denote the advantage of algorithm A in Game i of guessing the bit
b.

Lemma 1. If our pseudo random generator PRG is secure then for all PPTA we have that AdvA,1−AdvA,2 =
negl(λ) for some negligible function negl.

Proof. We describe and analyze a PPT reduction algorithm B that plays the pseudo random generator
security game. B first receives a PRG game challenge T ∈ {0, 1}2λ. It then runs the attacker and executes
the security game as described in Game 1 with the exception that in Step 2 it lets t∗ = T . If the attacker
wins (i.e. b′ = b), then B guesses ‘1’ to indicated that T was in the image of a PRG; otherwise, it outputs
‘0’ to indicate that T was chosen randomly.

We observe that when T is generated as T = PRG(r), then B gives exactly the view of Game 1 to A.
Otherwise if T is chosen randomly the view is of Game 2. Therefore if AdvA,1 − AdvA,2 is non-negligble, B
must also have non-neglgible advantage against the pseudo random generator security game.

Lemma 2. If iO is a secure indistinguishability obfuscator, then for all PPT A we have that AdvA,2 −
AdvA,3 = negl(λ) for some negligible function negl.

Proof. We describe and analyze a PPT reduction algorithm B that plays the indistinguishability obfus-
cation security game with A. B runs steps 1-2 as in Game 2. Next it creates two circuits as C0 =
Initial-Encrypt:1[K] and C1 = Initial-Encrypt:2[K(t∗)]. It submits both of these to the IO chal-
lenger and receives back a program P which it passes to the attacker in step 3. It executes steps 4-8 as in
Game 2. If the attacker wins (i.e. b′ = b), then B guesses ‘0’ to indicated that P was and obfuscation of C0;
otherwise, it guesses ‘1’ to indicate it was an obfuscation of C1.

We observe that when P is generated as and obfuscation of C0, then B gives exactly the view of Game 2
to A. Otherwise if P is chosen as an obfuscation of C1 the view is of Game 2. In addition, the programs are

13

functionally equivalent with all but negligible probability. The reason is that t∗ is outside the image of the
pseudo random generator with probability at least 1− 2λ. Therefore if AdvA,2 − AdvA,3 is non-negligble, B
must also have non-neglgible advantage against the indisguishability obfuscation game.

Lemma 3. If iO is a secure indistinguishability obfuscator, then for all PPT A we have that AdvA,3 −
AdvA,4 = negl(λ) for some negligible function negl.

Proof. To prove this lemma we will consider a hybrid argument. Let Q = Q(λ) be the number of private
key queries issued by some attacker A. (Without loss of generality we can assume A always makes exactly
Q queries on every execution.) For i ∈ [0, Q] we define Game 3, i to be the same as Game 3 except that the
first i private key queries of step 7 are handled as in Game 4 and the last Q − i are handled as in Game 3.
We observe that Game 3, 0 is the same as Game 3 and that Game 3, Q is the same as Game 4. Thus to
prove security we need to establish that no attacker can distinguish between Game 3, i and Game 3, i+ 1 for
i ∈ [0, Q− 1] with non negligible advantage.

We describe and analyze a PPT reduction algorithm B that plays the indistinguishability obfuscation
security game with A. B runs steps 1-6 as in Game 3. For the first i queries of step 7 it answers as in
Game 4. For query i + 1 it creates two circuits as C0 = Key-Eval:1[K, f] where f is the function queried
for. Next, let Let k′ = PuncturePDE(k∗,m0,m1). Choose random γ ∈ {0, 1} and let c0 = EncryptPDE(k∗,mγ)
and let c1 = EncryptPDE(k∗,m1−γ). Let df = f(m0) = f(m1), where f is the key queried for. It creates
C1 = Key-Eval:2[K(t∗), t∗, f, c0, c1, df , k′].

It submits both of these to the IO challenger and receives back a program P which it passes to the
attacker as Pf . It answers the rest of the queries of step 7 as in Game 3 and completes step 8. If the attacker
wins (i.e. b′ = b), then B guesses ‘0’ to indicated that P was and obfuscation of C0; otherwise, it guesses ‘1’
to indicate it was an obfuscation of C1.

We observe that when P is generated as and obfuscation of C0, then B gives exactly the view of Game 3, i
to A. Otherwise if P is chosen as an obfuscation of C1 the view is of Game 3, i+ 1. In addition, the
programs are functionally equivalent with all but negligible probability. The reason is that correctness
holds for all messages with all but negligible probability. The only difference in the programs is that the
response is hardwired in for two inputs. Therefore if AdvA,3,i−AdvA,3,i+1 is non-negligble, B must also have
non-neglgible advantage against the indisguishability obfuscation game.

Lemma 4. If F is a selectively secure puncturable PRF then for all PPT A we have that AdvA,4−AdvA,5 =
negl(λ) for some negligible function negl.

Proof. We describe and analyze a PPT reduction algorithm B that plays the selective puncturable PRF
security game. B first runs step 1, then chooses t∗ and submits it back to the punctured PRF challenger.
It receives back a punctured key K(t∗) and a challenge value z. It runs steps 3-4 for A as in Game 4. In
step 5 it sets k∗ = z. It then runs step 6-8 as in Game 4. We note that in step 7 the punctured key K(t∗)
is sufficient to create the challenge ciphertext and answer all private key queries. If the attacker wins (i.e.
b′ = b), then B guesses ‘1’ to indicated that z = F (K, t∗); otherwise, it outputs ‘0’ to that z was chosen
randomly.

We observe that when z is generated as F (K, t∗), then B gives exactly the view of Game 4 to A. Otherwise
if z is chosen randomly, the view is of Game 5. Therefore if AdvA,4 − AdvA,5 is non-negligble, B must also
have non-neglgible advantage against the security of the puncturable PRF.

Lemma 5. If our puncturable deterministic encryption scheme is secure, then for all PPT A we have that
AdvA,5 − AdvA,6 = negl(λ) for some negligible function negl.

Proof. We begin by observing that the difference between Game 5 and Game 6 is that in Game 6 the message
encrypted in step 6 is always m0 and in Game 5 the message could be m0 or m1 depending on b. When the

14

coin flip of b = 0 the views of the two games are identical. So if there is a difference in advantage it must
solely concentrated in the case where we condition on b = 1 from step 1.

We describe and analyze a PPT reduction algorithm B that plays the puncturable deterministic encryp-
tion security game. B first executes steps 1-4 of Game 5, with the bit of step 1 being set to b = 1. Then it
submits messages m0,m1 to the PDE challenger and receives back k′ = PuncturePDE(k∗,m0,m1) and T0, T1.
On step 6 it sets c∗ = T0.

It then runs the rest of the steps of Game 5. If the attacker wins (i.e. b′ = b), then B guesses ‘1’ to
indicated that c∗ = T1 was an encryption of m1; otherwise, it outputs ‘0’ to that c∗ = T1 was an encryption
of m0. In step 7 it flips a bit γ′ and lets c0 = Tγ′ and c1 = T1−γ′ . It then answers all queries as in Game 5.
We note that k′ was given from the challenger.

We observe that when c∗ = T1 is generated as EncryptPDE(k∗,m1) then B gives exactly the view of
Game 5 (conditioned on b = 1 to A. Otherwise if c∗ is generated as EncryptPDE(k∗,m0) the view is of
Game 6. Therefore if AdvA,5 − AdvA,6 is non-negligble, B must also have non-neglgible advantage against
the puncturable deterministic encryption system.

Now with all the lemmas in place we can pull our main theorem together. By a simple hybrid argument it
follows that any PPT attacker’s advantage in the original security Game 1 can be at most negligibly greater
than its advantage in Game 6. However, the advantage of any attacker in Game 6 is 0 and thus the scheme
is secure.

6 An Adaptively Secure Construction

We now describe our construction of a functional encryption (FE) scheme that is adaptively secure. We let
the message space M = {0, 1}`(λ) for some polynomial function ` and the function class be F(λ) = F .

We will use two puncturable PRFs F1, F2 such that when we fix the keys K we have that F1(K, ·) takes
in a 2λ bit input and outputs two bit strings of length λ and F2(K, ·) takes λ bits to five bitstrings of length
λ. In addition, we use a puncturable deterministic encryption scheme where the message space is {0, 1}λ. In
our Puncturable PRF and PDE systems master keys are sampled uniformly at random from {0, 1}λ. Finally,
we use an indistinguishability secure obfuscator and an injective length doubling pseudo random generator
PRG : {0, 1}λ → {0, 1}2λ.

Finally, we use a one-bounded secure functional encryption system with master key encryption consisting
of algorithms: KeyGenOB,EncryptOB,DecryptOB. We assume without loss of generality that the master key
is chosen uniformly from {0, 1}λ. The message spaceM and key description space f ∈ F of the one bounded
scheme is the same as the scheme we are constructing.

Setup(1λ)
The algorithm first chooses a random punctured PRF key K ← KeyF1

(1λ) which is set as the master secret
key MSK. Next it creates an obfuscation of the program Initial-Encrypt as P ← iO(1λ, Initial-Encrypt:1[K]).6

Encrypt(PP = P (·),m ∈M)
The encryption algorithm performs the following steps in sequence.

1. Chooses random r ∈ {0, 1}λ.

2. Sets (t,Kt, α)← P (r).

3. Sets α̃ = PRG(α).

6The program Initial-Encrypt:1 is padded to be the same size as Initial-Encrypt:2.) This obfuscated program, P serves
as the public parameters PP.

15

4. Creates the program C ← iO(1λ,CT-Eval:1[Kt, α̃,m]).7

5. The output ciphertext is CT = (t, C).

KeyGen(MSK, f ∈ F(λ))
The KeyGen algorithm first chooses a random y ∈ {0, 1}λ. It next produces an obfuscated program Pf by
obfuscating Pf ← iO(Key-Signal:1[K, f, y]). 8

The secret key is SK = (y, Pf).

Decrypt(CT = (t, C),SK = (y, Pf))
The decryption algorithm takes as input a ciphertext CT = (t, C) and a secret key SK = (y, Pf). It first
computes (a,SKOB) = Pf (t). Next it computes CTOB = C(a, y). Finally, it will use the produced secret key
to decrypt the produced ciphertext as DecryptOB(CTOB,SKOB) and outputs the result.

Correctness We briefly sketch a correctness argument. Consider a ciphertext CT = (t, C) created for
message m that is associated with tag t and a key for function f that is associated with tag y. On decryption
the algorithm first calls (a,SKOB) = Pf (t). Here the obfuscated program computes: (Kt, α) = F1(K, t),
(d, k, s1, s2, s3) = F2(Kt, y), and a = EncryptPDE(d, α) and SKOB = KeyGenOB(k, f ; s2).

Next, it calls CTOB = C(a, y), where C was generated as an obfuscation of program CT-Eval:1[Kt, α̃,m]
where α̃ = PRG(α). This obfuscated program will compute the same values of (d, k, s1, s2, s3) = F2(Kt, y)
as the key signal program. By correctness of the PDE system we will have that DecryptPDE(d, a) = α and
thus the program will output EncryptOB(k,m; s1). At this point the decryption algorithm has a one bounded
private key for function f and a one bounded ciphertext for message m both created under the same master
key k. Therefore, running the one-bounded decryption algorithm will produce f(m).

Initial-Encrypt:1

Constants: Puncturable PRF key K.
Input: Randomness r ∈ {0, 1}λ.

1. Let t = PRG(r).

2. Compute (Kt, α) = F1(K, t).

3. Output: (t,Kt, α).

Figure 5: Program Initial-Encrypt:1

CT-Eval:1

Constants: PRF key Kt, α̃ ∈ {0, 1}2λ, message m ∈M.
Input: PDE ciphertext a and value y ∈ {0, 1}λ.

1. Compute (d, k, s1, s2, s3) = F2(Kt, y).

2. Compute e = DecryptPDE(d, a).

3. If PRG(e) = α̃ output EncryptOB(k,m; s1).

4. Else output a rejecting ⊥.

Figure 6: Program CT-Eval:1

7The program CT-Eval:1 is padded to be the same size as the maximum of CT-Eval:2 and CT-Eval:3.
8The program Key-Signal:1 is padded to be the same size as Key-Signal:2.

16

Key-Signal:1

Constants: PRF key K, function description f ∈ F , tag y ∈ {0, 1}λ.
Input: t ∈ {0, 1}2λ.

1. Compute (Kt, α) = F1(K, t).

2. Compute (d, k, s1, s2, s3) = F2(Kt, y).

3. Compute and output a = EncryptPDE(d, α) and SKOB = KeyGenOB(k, f ; s2).

Figure 7: Program Key-Signal:1

6.1 Proof of Security

Theorem 4. The above functional encryption scheme is adaptively secure if instantiated with a secure punc-
tured PRF, puncturable deterministic encryption scheme, pseudo random generator, one-bounded functional
encryption scheme and indistinguishability secure obfuscator.

To prove the above theorem, we first define a sequence of games where the first game is the original FE
security game. Then we show (based on the security of different primitives) that any poly-time attacker’s
advantage in each game must be negligibly close to that of the previous game. We begin by with describing
Game 1 in detail, which is the adaptive FE security game instantiated with our construction. From there we
describe the sequence of games, where each game is described by its modification from the previous game.
We continue to enumerate each step (in most descriptions) to ease verification of our claims.

Game 1 The first game is the original security game instantiated for our construction.

1. Challenger computes keys K ← KeyF1
(1λ) and randomly chooses the challenge bit b ∈ {0, 1}.

2. Challenger chooses random r∗ ∈ {0, 1}λ and computes t∗ = PRG(r∗).

3. Challenger computes K∗t∗ , α
∗ = F1(K, t∗).

4. Challenger sets α̃∗ = PRG(α∗).

5. Challenger creates P ← iO(1λ, Initial-Encrypt:1[K]) and passes P to attacker.

6. Phase 1 Queries: Let fj be the function of associated with the j-th query. Choose random yj ∈ {0, 1}λ.
Generate the j-th private key by computing Pfj

← iO(Key-Signal:1[K, fj , yj]). Output the key as
(yj , Pfj

).

7. Attacker gives messages m0,m1 ∈M to challenger.

8. Challenger sets the program C∗ ← iO(1λ,CT-Eval:1[K∗t∗ , α̃∗,mb]).

9. The output ciphertext is CT = (t∗, C∗).

10. Phase 2 Queries: Same as Phase 1 in step 6.

11. The attacker gives a bit b′ and wins if b′ = b.

Game 2

1. Challenger computes keys K ← KeyF1
(1λ) and randomly chooses the challenge bit b ∈ {0, 1}.

2. Challenger chooses random t∗ ∈ {0, 1}2λ.

3. Challenger computes K∗t∗ , α
∗ = F1(K, t∗).

17

4. Challenger sets α̃∗ = PRG(α∗).

5. Challenger creates P ← iO(1λ, Initial-Encrypt:1[K]) and passes P to attacker.

6. Phase 1 Queries: Let fj be the function of associated with the j-th query. Choose random yj ∈ {0, 1}λ.
Generate the j-th private key by computing Pfj ← iO(Key-Signal:1[K, fj , yj]). Output the key as
(yj , Pfj

).

7. Attacker gives messages m0,m1 ∈M to challenger.

8. Challenger sets the program C∗ ← iO(1λ,CT-Eval:1[K∗t∗ , α̃∗,mb]).

9. The output ciphertext is CT = (t∗, C∗).

10. Phase 2 Queries: Same as Phase 1 in step 6.

11. The attacker gives a bit b′ and wins if b′ = b.

Game 3

1. Challenger computes keys K ← KeyF1
(1λ) and randomly chooses the challenge bit b ∈ {0, 1}.

2. Challenger chooses random t∗ ∈ {0, 1}2λ and computes computes K(t∗) = PunctureF (K, t∗).

3. Challenger computes K∗t∗ , α
∗ = F1(K, t∗).

4. Challenger sets α̃∗ = PRG(α∗).

5. Challenger creates P ← iO(1λ, Initial-Encrypt:2[K(t∗)]) and passes P to attacker.

6. Phase 1 Queries: Let fj be the function of associated with the j-th query. Choose random yj ∈ {0, 1}λ.
Generate the j-th private key by computing Pfj

← iO(Key-Signal:1[K, fj , yj]). Output the key as
(yj , Pfj

).

7. Attacker gives messages m0,m1 ∈M to challenger.

8. Challenger sets the program C∗ ← iO(1λ,CT-Eval:1[K∗t∗ , α̃∗,mb]).

9. The output ciphertext is CT = (t∗, C∗).

10. Phase 2 Queries: Same as Phase 1 in step 6.

11. The attacker gives a bit b′ and wins if b′ = b.

Game 4

1. Challenger computes keys K ← KeyF1
(1λ) and randomly chooses the challenge bit b ∈ {0, 1}.

2. Challenger chooses random t∗ ∈ {0, 1}2λ and computes computes K(t∗) = PunctureF (K, t∗).

3. Challenger computes K∗t∗ , α
∗ = F1(K, t∗).

4. Challenger sets α̃∗ = PRG(α∗).

5. Challenger creates P ← iO(1λ, Initial-Encrypt:2[K(t∗)]) and passes P to attacker.

6. Phase 1 Queries: Let fj be the function of associated with the j-th query.

(a) Choose random yj ∈ {0, 1}λ.

(b) Compute (d∗j , k
∗
j , s
∗
1,j , s

∗
2,j , s

∗
3,j) = F2(Kt∗ , yj).

18

(c) Compute a∗j = EncryptPDE(d∗j , α
∗) and SK∗OB,j = KeyGenOB(k∗j , fj ; s

∗
2,j).

(d) Compute Pfj
← iO(Key-Signal:2[K(t∗), t∗, a∗j ,SK∗OB,j , fj , yj]).

(e) Output the key as (yj , Pfj
).

7. Attacker gives messages m0,m1 ∈M to challenger.

8. Challenger sets the program C∗ ← iO(1λ,CT-Eval:1[K∗t∗ , α̃∗,mb]).

9. The output ciphertext is CT = (t∗, C∗).

10. Phase 2 Queries: Same as Phase 1 in step 6. (These are also changed as described above.)

11. The attacker gives a bit b′ and wins if b′ = b.

Game 5

1. Challenger computes keys K ← KeyF1
(1λ) and randomly chooses the challenge bit b ∈ {0, 1}.

2. Challenger chooses random t∗ ∈ {0, 1}2λ and computes computes K(t∗) = PunctureF (K, t∗).

3. Challenger chooses random K∗t∗ , α
∗.

4. Challenger sets α̃∗ = PRG(α∗).

5. Challenger creates P ← iO(1λ, Initial-Encrypt:2[K(t∗)]) and passes P to attacker.

6. Phase 1 Queries: Let fj be the function of associated with the j-th query.

(a) Choose random yj ∈ {0, 1}λ.

(b) Compute (d∗j , k
∗
j , s
∗
1,j , s

∗
2,j , s

∗
3,j) = F2(Kt∗ , yj).

(c) Compute a∗j = EncryptPDE(d∗j , α
∗) and SK∗OB,j = KeyGenOB(k∗j , fj ; s

∗
2,j).

(d) Compute Pfj
← iO(Key-Signal:2[K(t∗), t∗, a∗j ,SK∗OB,j , fj , yj]).

(e) Output the key as (yj , Pfj
).

7. Attacker gives messages m0,m1 ∈M to challenger.

8. Challenger sets the program C∗ ← iO(1λ,CT-Eval:1[K∗t∗ , α̃∗,mb]).

9. The output ciphertext is CT = (t∗, C∗).

10. Phase 2 Queries: Same as Phase 1 in step 6.

11. The attacker gives a bit b′ and wins if b′ = b.

Game 6

1. Challenger computes keys K ← KeyF1
(1λ) and randomly chooses the challenge bit b ∈ {0, 1}.

2. Challenger chooses random t∗ ∈ {0, 1}2λcomputes computes K(t∗) = PunctureF (K, t∗).

3. Challenger chooses random K∗t∗ , α
∗.

4. Challenger sets α̃∗ = PRG(α∗) and chooses random β̃∗ ∈ {0, 1}2λ.

5. Challenger creates P ← iO(1λ, Initial-Encrypt:2[K(t∗)]) and passes P to attacker.

6. Phase 1 Queries: Let fj be the function of associated with the j-th query.

19

(a) Choose random yj ∈ {0, 1}λ.

(b) Compute (d∗j , k
∗
j , s
∗
1,j , s

∗
2,j , s

∗
3,j) = F2(Kt∗ , yj).

(c) Compute a∗j = EncryptPDE(d∗j , α
∗) and SK∗OB,j = KeyGenOB(k∗j , fj ; s

∗
2,j).

(d) Compute Pfj
← iO(Key-Signal:2[K(t∗), t∗, a∗j ,SK∗OB,j , fj , yj]).

(e) Output the key as (yj , Pfj).

7. Attacker gives messages m0,m1 ∈M to challenger.

8. Challenger sets the program C∗ ← iO(1λ,CT-Eval:2[K∗t∗ , α̃∗, β̃∗,mb,m0]).

9. The output ciphertext is CT = (t∗, C∗).

10. Phase 2 Queries: Same as Phase 1 in step 6.

11. The attacker gives a bit b′ and wins if b′ = b.

Game 7 Same as Game 6 except we change line 4 to:

4. Challenger sets α̃∗ = PRG(α∗), chooses β∗ ∈ {0, 1}λ at random and sets β̃∗ = PRG(β∗).

Game 8, i

1. Challenger computes keys K ← KeyF1
(1λ) and randomly chooses the challenge bit b ∈ {0, 1}.

2. Challenger chooses random t∗ ∈ {0, 1}2λ and computes computes K(t∗) = PunctureF (K, t∗).

3. Challenger chooses random K∗t∗ , α
∗.

4. Challenger sets α̃∗ = PRG(α∗), chooses β∗ ∈ {0, 1}λ at random and sets β̃∗ = PRG(β∗).

5. Challenger creates P ← iO(1λ, Initial-Encrypt:2[K(t∗)]) and passes P to attacker.

6. Phase 1 Queries: Let fj be the function of associated with the j-th query.

(a) Choose random yj ∈ {0, 1}λ.

(b) Compute (d∗j , k
∗
j , s
∗
1,j , s

∗
2,j , s

∗
3,j) = F2(Kt∗ , yj).

(c) If j > i then set a∗j = EncryptPDE(d∗j , α
∗); otherwise if j ≤ i set a∗j = EncryptPDE(d∗j , β

∗).
Let SK∗OB,j = KeyGenOB(k∗j , fj ; s

∗
2,j).

(d) Compute Pfj
← iO(Key-Signal:2[K(t∗), t∗, a∗j ,SK∗OB,j , fj , yj]).

(e) Output the key as (yj , Pfj
).

7. Attacker gives messages m0,m1 ∈M to challenger.

8. Challenger sets the program C∗ ← iO(1λ,CT-Eval:2[K∗t∗ , α̃∗, β̃∗,mb,m0]).

9. The output ciphertext is CT = (t∗, C∗).

10. Phase 2 Queries: Same as Phase 1 in step 6.

11. The attacker gives a bit b′ and wins if b′ = b.

20

Game 9

1. Challenger computes keys K ← KeyF1
(1λ) and randomly chooses the challenge bit b ∈ {0, 1}.

2. Challenger chooses random t∗ ∈ {0, 1}2λ and computes computes K(t∗) = PunctureF (K, t∗).

3. Challenger chooses random K∗t∗ , α
∗.

4. Challenger chooses α̃∗ ∈ {0, 1}2λ at random, chooses β∗ ∈ {0, 1}λ at random and sets β̃∗ = PRG(β∗).

5. Challenger creates P ← iO(1λ, Initial-Encrypt:2[K(t∗)]) and passes P to attacker.

6. Phase 1 Queries: Let fj be the function of associated with the j-th query.

(a) Choose random yj ∈ {0, 1}λ.

(b) Compute (d∗j , k
∗
j , s
∗
1,j , s

∗
2,j , s

∗
3,j) = F2(Kt∗ , yj).

(c) Set a∗j = EncryptPDE(d∗j , β
∗). Let SK∗OB,j = KeyGenOB(k∗j , fj ; s

∗
2,j).

(d) Compute Pfj
← iO(Key-Signal:2[K(t∗), t∗, a∗j ,SK∗OB,j , fj , yj]).

(e) Output the key as (yj , Pfj
).

7. Attacker gives messages m0,m1 ∈M to challenger.

8. Challenger sets the program C∗ ← iO(1λ,CT-Eval:2[K∗t∗ , α̃∗, β̃∗,mb,m0]).

9. The output ciphertext is CT = (t∗, C∗).

10. Phase 2 Queries: Same as Phase 1 in step 6.

11. The attacker gives a bit b′ and wins if b′ = b.

Game 10 Is the same as Game 9 except line 8 is set to:
8. Challenger sets the program C∗ ← iO(1λ,CT-Eval:1[K∗t∗ , β̃∗,m0]).

We observe at this stage the interaction with the challenger is completely independent of b — note the
message m0 is encrypted regardless of b — and thus the attacker’s advantage is 0 in this final game.

Initial-Encrypt:2

Constants: Puncturable PRF key K(t∗).
Input: Randomness r.

1. Let t = PRG(r).

2. Compute (Kt, α) = F1(K(t∗), t).

3. Output: (t,Kt, α).

Figure 8: Program Initial-Encrypt:2

6.2 Indistinguishability Proofs Between Games

We now establish via a sequence of lemmas that the difference of the attacker’s advantage between each
adjacent game is neglgible. Most of the lemmas of indistinguishability are straightforward once the hybrid
games are laid out. The exception is in proving the indistinguishability of Game 8, i from Game 8, i+ 1. We
handle this separately in its own subsection.

We let AdvA,i = Pr[b′ = b]− 1
2 denote the advantage of algorithm A in Game i of guessing the bit b.

21

Key-Signal:2

Constants: PRF key K(t∗), t∗, a∗, SK∗OB, function description f , tag y ∈ {0, 1}λ.
Input: t ∈ {0, 1}2λ.

1. If t = t∗ output a∗, SK∗OB.

2. Compute (Kt, α) = F1(K(t∗), t).

3. Compute (d, k, s1, s2, s3) = F2(Kt, y).

4. Compute and output a = EncryptPDE(d, α) and SKOB = KeyGenOB(k, f ; s2)

Figure 9: Program Key-Signal:2

CT-Eval:2

Constants: PRF key Kt, α̃, β̃ ∈ {0, 1}2·λ, messages m,mfixed ∈M.
Input: (a, y).

1. Compute (d, k, s1, s2, s3) = F2(Kt, y).

2. Compute e = DecryptPDE(d, a).

3. If PRG(e) = α̃ output EncryptOB(k,m; s1).

4. If PRG(e) = β̃ output EncryptOB(k,m; s3).

5. Else output a rejecting ⊥.

Figure 10: Program CT-Eval:2

Lemma 6. If our pseudo random generator PRG is secure then for all PPTA we have that AdvA,1−AdvA,2 =
negl(λ) for some negligible function negl.

Proof. We describe and analyze a PPT reduction algorithm B that plays the pseudo random generator
security game. B first receives a PRG game challenge T ∈ {0, 1}2λ. It then runs the attacker and runs the
security game as described in Game 1 with the exception that in step 2 it lets t∗ = T . If the attacker wins
(i.e. b′ = b), then B guesses ‘1’ to indicate that T was in the image of PRG(·); otherwise, it outputs ‘0’ to
that T was chosen randomly.

We observe that when T is generated as T = PRG(r), then B gives exactly the view of Game 1 to A.
Otherwise if T is chosen randomly the view is of Game 2. Therefore if AdvA,1 − AdvA,2 is non-negligble, B
must also have non-neglgible advantage against the pseudo random generator.

Lemma 7. If iO is a secure indistinguishability obfuscator then for all PPTA we have that AdvA,2−AdvA,3 =
negl(λ) for some negligible function negl.

Proof. We describe and analyze a PPT reduction algorithm B that plays the indistinguishability obfus-
cation security game with A. B runs steps 1-4 as in Game 2. Next it creates two circuits as C0 =
Initial-Encrypt:1[K] and C1 = Initial-Encrypt:2[K(t∗)]. It submits both of these to the IO chal-
lenger and receives back a program P which it passes to the attacker in step 5. It executes steps 6-10 as in
Game 2. If the attacker wins (i.e. b′ = b), then B guesses ‘0’ to indicate that P was and obfuscation of C0;
otherwise, it guesses ‘1’ to indicate it was an obfuscation of C1.

We observe that when P is generated as and obfuscation of C0, then B gives exactly the view of Game 2
to A. Otherwise if P is chosen as an obfuscation of C1 the view is of Game 2. In addition, the programs are
functionally equivalent with all but negligible probability. The reason is that t∗ is outside the image of the
pseudo random generator with probability at least 1− 2λ. Therefore if AdvA,2 − AdvA,3 is non-negligble, B
must also have non-neglgible advantage against the indisguishability obfuscation game.

22

Lemma 8. If iO is a secure indistinguishability obfuscator then for all PPTA we have that AdvA,3−AdvA,4 =
negl(λ) for some negligible function negl.

Proof. To prove this claim we will consider a hybrid argument. Let Q = Q(λ) be the number of private key
queries issued by some attacker A. These include both Phase 1 and Phase 2 queries — that is the number
of Phase 1 plus Phase 2 queries sums to Q. For i ∈ [0, Q] we define Game 3, i to be the same as Game 3
except that the first i private key queries are handled as in Game 4 and the last Q − i are handled as in
Game 3. We observe that Game 3, 0 is the same as Game 3 and that Game 3, Q is the same as Game 4. Thus,
to prove security we need to establish that no attacker can distinguish between Game 3, i and Game 3, i+ 1
for i ∈ [0, Q− 1] with non negligible advantage.

We describe and analyze a PPT reduction algorithm B that plays the indistinguishability obfuscation se-
curity game with A. B runs steps 1-5 as in Game 3. For the first i private key queries it answers as in Game 4.
Let f be the function associated with the i+ 1-th key query. For query i+ 1 it will creates two circuits. The
first is created as C0 = Key-Signal:1[K, fi+1, yi+1]. Next, it computes (d∗i+1, k

∗
i+1, s

∗
1,i+1, s

∗
2,i+1, s

∗
3,i+1) =

F2(Kt∗ , yi+1), a∗i+1 = EncryptPDE(d∗i+1, α
∗) and SK∗OB,i+1 = KeyGenOB(k∗i+1, fi+1; s∗2,i+1). Then in creates

the second circuit as C1 = Key-Signal:2[K(t∗), t∗, a∗i+1,SK∗OB,i+1, fi+1, yi+1]).
It submits both of these to the IO challenger and receives back a program P which it passes to the

attacker as Pf . It answers the rest of the queries of step 6 as in Game 3 and completes steps 7-9 and 11. If
the attacker wins (i.e. b′ = b), then B guesses ‘0’ to indicate that P was and obfuscation of C0; otherwise,
it guesses ‘1’ to indicate it was an obfuscation of C1.

We observe that when P is generated as and obfuscation of C0, then B gives exactly the view of Game 3, i
to A. Otherwise if P is chosen as an obfuscation of C1 the view is of Game 3, i+ 1. In addition, the programs
are functionally equivalent with all but negligible probability. The only difference in the programs is that
the response is hardwired in for one input. Therefore if AdvA,3,i − AdvA,3,i+1 is non-negligble, B must also
have non-neglgible advantage against the indisguishability obfuscation game.

Lemma 9. If F is a selectively secure puncturable PRF then for all PPT A we have that AdvA,4−AdvA,5 =
negl(λ) for some negligible function negl.

Proof. We describe and analyze a PPT reduction algorithm B that plays the selective puncturable PRF
security game. B first runs step 1. In step 2 it chooses t∗ and submits it to the punctured PRF challenger.
It receives back a punctured key K(t∗) and a challenge value (z1, z2). In step 3 it sets (K∗t∗ , α

∗) = (z1, z2). It
then runs step 4-10 as in Game 4. We note that in steps 5 and 6 that the punctured key K1(t∗) is sufficient to
create all programs. If the attacker wins (i.e. b′ = b), then B guesses ‘1’ to indicate that (z1, z2) = F (K, t∗);
otherwise, it outputs ‘0’ to that (z1, z2) was chosen randomly.

We observe that when (z1, z2) is generated as F (K, t∗), then B gives exactly the view of Game 4 to A.
Otherwise if z is chosen randomly the view is of Game 4′. Therefore if AdvA,4 − AdvA,5 is non-negligble, B
must also have non-neglgible advantage against the security of the puncturable PRF.

Lemma 10. If iO is a secure indistinguishability obfuscator then for all PPT A we have that AdvA,5 −
AdvA,6 = negl(λ) for some negligible function negl.

Proof. We describe and analyze a PPT reduction algorithm B that plays the indistinguishability obfus-
cation security game with A. B runs steps 1-7 as in Game 6. Next it creates two circuits as C0 =
CT-Eval:1[K∗t∗ , α̃∗,mb] and C1 = CT-Eval:2[K∗t∗ , α̃∗, β̃∗,mb,m0]. In step 8 it submits both of these
to the IO challenger and receives back a program P which it passes to the attacker in step 9 as C∗. It
executes steps 9-11 as in Game 6. If the attacker wins (i.e. b′ = b), then B guesses ‘0’ to indicate that P was
and obfuscation of C0; otherwise, it guesses ‘1’ to indicate it was an obfuscation of C1.

We observe that when P is generated as and obfuscation of C0, then B gives exactly the view of Game 5
to A. (Note that simply choosing β̃∗ and doing nothing with it is equivalent to Game 5 from the attacker’s
view.) Otherwise if P is chosen as an obfuscation of C1 the view is of Game 6. In addition, the programs are
functionally equivalent with all but negligible probability. The reason is that β̃∗ is outside the image of the

23

pseudo random generator with probability at least 1 − 2λ. And in this case the CT-Eval:2 program will
behave the same as the CT-Eval:1 program since it only adds a dead branch. Therefore if AdvA,5−AdvA,6
is non-negligble, B must also have non-neglgible advantage against the indisguishability obfuscation game.

Lemma 11. If our pseudo random generator PRG is secure, then for all PPT A we have that AdvA,6 −
AdvA,7 = negl(λ) for some negligible function negl.

Proof. We describe and analyze a PPT reduction algorithm B that plays the pseudo random generator
security game. B first receives a PRG game challenge T ∈ {0, 1}2λ. It then runs the attacker and runs the
security game as described in Game 6 with the exception that in step 4 it lets β̃∗ = T . If the attacker wins
(i.e. b′ = b), then B guesses ‘1’ to indicate that T was in the image of PRG(); otherwise, it outputs ‘0’ to
that T was chosen randomly.

We observe that when T is generated as T = PRG(r), then B gives exactly the view of Game 6 to A.
Otherwise if T is chosen randomly the view is of Game 7. Therefore if AdvA,6 − AdvA,7 is non-negligble, B
must also have non-neglgible advantage against the pseudo random generator.

We next observe that Game 7 is identical to Game 8, 0. We also skip over the lemma dealing with Game 8, i
to Game 8, I + 1 and defer it to the next subsection.

Lemma 12. If our pseudo random generator PRG is secure, then for all PPT A we have that AdvA,(8,Q(λ))−
AdvA,9 = negl(λ) for some negligible function negl.

Proof. We describe and analyze a PPT reduction algorithm B that plays the pseudo random generator
security game. B first receives a PRG game challenge T ∈ {0, 1}2λ. It then runs the attacker and runs the
security game as described in Game 8, Q with the exception that in step 4 it lets α̃∗ = T . We emphasize
that in Game 8, Q anon of the a∗j encrypt α. If the attacker wins (i.e. b′ = b), then B guesses ‘1’ to indicate
that T was in the image of PRG(); otherwise, it outputs ‘0’ to that T was chosen randomly.

We observe that when T is generated as T = PRG(r), then B gives exactly the view of Game 8, Q to A.
(We note that step 6b is already the same between these two games.) Otherwise if T is chosen randomly the
view is of Game 9. Therefore if AdvA,8,Q−AdvA,9 is non-negligble, B must also have non-neglgible advantage
against the pseudo random generator.

Claim 1. If iO is a secure indistinguishability obfuscator, then for all PPTA we have that AdvA,9−AdvA,10 =
negl(λ) for some negligible function negl.

Proof. We describe and analyze a PPT reduction algorithm B that plays the indistinguishability obfus-
cation security game with A. B runs steps 1-7 as in Game 9. Next it creates two circuits as C0 =
CT-Eval:2[K∗t∗ , α̃∗, β̃∗,mb,m0] and and C1 = CT-Eval:1[K∗t∗ , β̃∗,m0]. It submits both of these to the
IO challenger and receives back a program P which it passes to the attacker in step 9 as C∗. It executes
steps 9-11 as in Game 9. If the attacker wins (i.e. b′ = b), then B guesses ‘0’ to indicate that P was and
obfuscation of C0; otherwise, it guesses ‘1’ to indicate it was an obfuscation of C1.

We observe that when P is generated as and obfuscation of C0, then B gives exactly the view of Game 9
to A. Otherwise if P is chosen as an obfuscation of C1 the view is of Game 10. In addition, the programs
are functionally equivalent with all but negligible probability. The reason is that α̃∗ is outside the image of
the pseudo random generator with probability at least 1 − 2λ. And in this case the CT-Eval:1 program
will behave the same as the CT-Eval:2 program since it only subtracts a dead branch. Therefore if
AdvA,9 − AdvA,10 is non-negligble, B must also have non-neglgible advantage against the indisguishability
obfuscation game.

24

6.3 Proving Indistinguishability of Game 8, i and Game 8, i + 1

Lemma 13. If iO is a secure indistinguishability obfuscator and our puncturable deterministic encryption
scheme is secure, then for all PPT A and for all i ∈ [0, Q(λ) − 1] we have that AdvA,(8,i) − AdvA,(8,i+1) =
negl(λ) for some negligible function negl.

Proof. The proof of this claim is significantly more complicated than the others and will require the definition
of some more hybrid games. We show these as modifications to lines 6-10 of the security game.

Game 8, i, A Same as Game 8, i with the following modifications.

6. Phase 1 Queries: Let fj be the function of associated with the j-th query.

(a) Choose random yj ∈ {0, 1}λ.

(b) Compute (d∗j , k
∗
j , s
∗
1,j , s

∗
2,j , s

∗
3,j) = F2(Kt∗ , yj).

(c) If j > i then set a∗j = EncryptPDE(d∗j , α
∗); otherwise if j ≤ i set a∗j = EncryptPDE(d∗j , β

∗).

(d) Let SK∗OB,j = KeyGenOB(k∗j , fj ; s
∗
2,j).

(e) Compute Pfj ← iO(Key-Signal:2[K(t∗), t∗, a∗j ,SK∗OB,j , fj , yj]).

(f) Output the key as (yj , Pfj
).

7. Attacker gives messages m0,m1 ∈M to challenger.

8. (a) Choose random γ ∈ {0, 1}. If γ = 0 let c0 = EncryptPDE(d∗i+1, α
∗), c1 = EncryptPDE(d∗i+1, β

∗), CTOB,0

= EncryptOB(k∗i+1,mb; s∗1,i+1) and CTOB,1 = EncryptOB(k∗i+1,m0; s∗3,i+1).
Else if γ = 1 let c0 = EncryptPDE(d∗i+1, β

∗) and let c1 = EncryptPDE(d∗i+1, α
∗). CTOB,0 = EncryptOB(

k∗i+1,m0; s∗3,i+1) and CTOB,1 = EncryptOB(k∗i+1,mb; s∗1,i+1).

(b) Sample K∗t∗(yi+1) as PunctureF (K∗t∗ , yi+1).

(c) Challenger creates C∗ ← iO(1λ,CT-Eval:3[K∗t∗(yi+1), α̃∗, β̃∗,mb,m0, y
∗, c0, c1,CTOB,0,CTOB,1]).

9. The output ciphertext is CT = (t∗, C∗).

10. Phase 2 Queries: Same as Phase 1 in step 6.

Remark 3. One (potentially simpler) alternative to randomizing c0, c1 by γ is to order c0, c1 lexicographically
when creating the program CT-Eval:3.

Game 8, i, B Same as Game 8, i, A with the following modifications.

6. Phase 1 Queries: Let fj be the function of associated with the j-th query.

(a) Choose random yj ∈ {0, 1}λ.

(b) If j = i+ 1 then choose (d∗j , k
∗
j , s
∗
1,j , s

∗
2,j , s

∗
3,j) uniformly at random.

Else compute (d∗j , k
∗
j , s
∗
1,j , s

∗
2,j , s

∗
3,j) = F2(Kt∗ , yj).

(c) If j > i then set a∗j = EncryptPDE(d∗j , α
∗); otherwise if j ≤ i set a∗j = EncryptPDE(d∗j , β

∗).

(d) Let SK∗OB,j = KeyGenOB(k∗j , fj ; s
∗
2,j).

(e) Compute Pfj
← iO(Key-Signal:2[K(t∗), t∗, a∗j ,SK∗OB,j , fj , yj]).

(f) Output the key as (yj , Pfj
).

7. Attacker gives messages m0,m1 ∈M to challenger.

25

8. (a) Choose random γ ∈ {0, 1}. If γ = 0 let c0 = EncryptPDE(d∗i+1, α
∗), c1 = EncryptPDE(d∗i+1, β

∗),
CTOB,0 = EncryptOB(k∗i+1,mb; s∗1,i+1) and CTOB,1 = EncryptOB(k∗i+1,m0; s∗3,i+1).
Else if γ = 1 let c0 = EncryptPDE(d∗i+1, β

∗) and let c1 = EncryptPDE(d∗i+1, α
∗). CTOB,0 =

EncryptOB(k∗i+1,m0; s∗3,i+1) and CTOB,1 = EncryptOB(k∗i+1,mb; s∗1,i+1).

(b) Sample K∗t∗(yi+1) as PunctureF (K∗t∗ , yi+1).

(c) Challenger creates C∗ ← iO(1λ,CT-Eval:3[K∗t∗(yi+1), α̃∗, β̃∗,mb,m0, y
∗, c0, c1,CTOB,0,CTOB,1]).

9. The output ciphertext is CT = (t∗, C∗).

10. Phase 2 Queries: Same as Phase 1 in step 6.

Game 8, i, C Same as Game 8, i, B with the following modifications.

6. Phase 1 Queries: Let fj be the function of associated with the j-th query.

(a) Choose random yj ∈ {0, 1}λ.

(b) If j = i+ 1 then choose (d∗j , k
∗
j , s
∗
1,j , s

∗
2,j , s

∗
3,j) uniformly at random.

Else compute (d∗j , k
∗
j , s
∗
1,j , s

∗
2,j , s

∗
3,j) = F2(Kt∗ , yj).

(c) If j > i then set a∗j = EncryptPDE(d∗j , α
∗); otherwise if j ≤ i set a∗j = EncryptPDE(d∗j , β

∗).

(d) Let SK∗OB,j = KeyGenOB(k∗j , fj ; s
∗
2,j).

(e) Compute Pfj
← iO(Key-Signal:2[K(t∗), t∗, a∗j ,SK∗OB,j , fj , yj]).

(f) Output the key as (yj , Pfj).

7. Attacker gives messages m0,m1 ∈M to challenger.

8. (a) Choose random γ ∈ {0, 1}. If γ = 0 let c0 = EncryptPDE(d∗i+1, α
∗), c1 = EncryptPDE(d∗i+1, β

∗),
CTOB,0 = EncryptOB(k∗i+1,m0; s∗1,i+1) and CTOB,1 = EncryptOB(k∗i+1,m0; s∗3,i+1).
Else if γ = 1 let c0 = EncryptPDE(d∗i+1, β

∗) and let c1 = EncryptPDE(d∗i+1, α
∗). CTOB,0 =

EncryptOB(k∗i+1,m0; s∗3,i+1) and CTOB,1 = EncryptOB(k∗i+1,m0; s∗1,i+1).

(b) Sample K∗t∗(yi+1) as PunctureF (K∗t∗ , yi+1).

(c) Challenger creates C∗ ← iO(1λ,CT-Eval:3[K∗t∗(yi+1), α̃∗, β̃∗,mb,m0, y
∗, c0, c1,CTOB,0,CTOB,1]).

9. The output ciphertext is CT = (t∗, C∗).

10. Phase 2 Queries: Same as Phase 1 in step 6.

Game 8, i,D Same as Game 8, i, C with the following modifications.

6. Phase 1 Queries: Let fj be the function of associated with the j-th query.

(a) Choose random yj ∈ {0, 1}λ.

(b) If j = i+ 1 then choose (d∗j , k
∗
j , s
∗
1,j , s

∗
2,j , s

∗
3,j) uniformly at random.

Else compute (d∗j , k
∗
j , s
∗
1,j , s

∗
2,j , s

∗
3,j) = F2(Kt∗ , yj).

(c) If j > i+ 1 then set a∗j = EncryptPDE(d∗j , α
∗); otherwise if j ≤ i+ 1 set a∗j = EncryptPDE(d∗j , β

∗).

(d) Let SK∗OB,j = KeyGenOB(k∗j , fj ; s
∗
2,j).

(e) Compute Pfj
← iO(Key-Signal:2[K(t∗), t∗, a∗j ,SK∗OB,j , fj , yj]).

(f) Output the key as (yj , Pfj).

7. Attacker gives messages m0,m1 ∈M to challenger.

26

8. (a) Choose random γ ∈ {0, 1}. If γ = 0 let c0 = EncryptPDE(d∗i+1, α
∗), c1 = EncryptPDE(d∗i+1, β

∗),
CTOB,0 = EncryptOB(k∗i+1,m0; s∗1,i+1) and CTOB,1 = EncryptOB(k∗i+1,m0; s∗3,i+1).
Else if γ = 1 let c0 = EncryptPDE(d∗i+1, β

∗) and let c1 = EncryptPDE(d∗i+1, α
∗). CTOB,0 =

EncryptOB(k∗i+1,m0; s∗3,i+1) and CTOB,1 = EncryptOB(k∗i+1,m0; s∗1,i+1).

(b) Sample K∗t∗(yi+1) as PunctureF (K∗t∗ , yi+1).

(c) Challenger creates C∗ ← iO(1λ,CT-Eval:3[K∗t∗(yi+1), α̃∗, β̃∗,mb,m0, y
∗, c0, c1,CTOB,0,CTOB,1]).

9. The output ciphertext is CT = (t∗, C∗).

10. Phase 2 Queries: Same as Phase 1 in step 6.

Now that the signal has been changed we reverse out of the modifications we have been making.

Game 8, i, E Same as Game 8, i,D with the following modifications.

6. Phase 1 Queries: Let fj be the function of associated with the j-th query.

(a) Choose random yj ∈ {0, 1}λ.

(b) If j = i+ 1 then choose (d∗j , k
∗
j , s
∗
1,j , s

∗
2,j , s

∗
3,j) uniformly at random.

Else compute (d∗j , k
∗
j , s
∗
1,j , s

∗
2,j , s

∗
3,j) = F2(Kt∗ , yj).

(c) If j > i+ 1 then set a∗j = EncryptPDE(d∗j , α
∗); otherwise if j ≤ i+ 1 set a∗j = EncryptPDE(d∗j , β

∗).

(d) Let SK∗OB,j = KeyGenOB(k∗j , fj ; s
∗
2,j).

(e) Compute Pfj
← iO(Key-Signal:2[K(t∗), t∗, a∗j ,SK∗OB,j , fj , yj]).

(f) Output the key as (yj , Pfj
).

7. Attacker gives messages m0,m1 ∈M to challenger.

8. (a) Choose random γ ∈ {0, 1}. If γ = 0 let c0 = EncryptPDE(d∗i+1, α
∗), c1 = EncryptPDE(d∗i+1, β

∗),
CTOB,0 = EncryptOB(k∗i+1,mb; s∗1,i+1) and CTOB,1 = EncryptOB(k∗i+1,m0; s∗3,i+1).
Else if γ = 1 let c0 = EncryptPDE(d∗i+1, β

∗) and let c1 = EncryptPDE(d∗i+1, α
∗). CTOB,0 =

EncryptOB(k∗i+1,m0; s∗3,i+1) and CTOB,1 = EncryptOB(k∗i+1,mb; s∗1,i+1).

(b) Sample K∗t∗(yi+1) as PunctureF (K∗t∗ , yi+1).

(c) Challenger creates C∗ ← iO(1λ,CT-Eval:3[K∗t∗(yi+1), α̃∗, β̃∗,mb,m0, y
∗, c0, c1,CTOB,0,CTOB,1]).

9. The output ciphertext is CT = (t∗, C∗).

10. Phase 2 Queries: Same as Phase 1 in step 6.

Game 8, i, F Same as Game 8, i, E with the following modifications.

6. Phase 1 Queries: Let fj be the function of associated with the j-th query.

(a) Choose random yj ∈ {0, 1}λ.

(b) Compute (d∗j , k
∗
j , s
∗
1,j , s

∗
2,j , s

∗
3,j) = F2(Kt∗ , yj).

(c) If j > i+ 1 then set a∗j = EncryptPDE(d∗j , α
∗); otherwise if j ≤ i+ 1 set a∗j = EncryptPDE(d∗j , β

∗).

(d) Let SK∗OB,j = KeyGenOB(k∗j , fj ; s
∗
2,j).

(e) Compute Pfj
← iO(Key-Signal:2[K(t∗), t∗, a∗j ,SK∗OB,j , fj , yj]).

(f) Output the key as (yj , Pfj
).

7. Attacker gives messages m0,m1 ∈M to challenger.

27

8. (a) Choose random γ ∈ {0, 1}. If γ = 0 let c0 = EncryptPDE(d∗i+1, α
∗), c1 = EncryptPDE(d∗i+1, β

∗),
CTOB,0 = EncryptOB(k∗i+1,mb; s∗1,i+1) and CTOB,1 = EncryptOB(k∗i+1,m0; s∗3,i+1).
Else if γ = 1 let c0 = EncryptPDE(d∗i+1, β

∗) and let c1 = EncryptPDE(d∗i+1, α
∗). CTOB,0 =

EncryptOB(k∗i+1,m0; s∗3,i+1) and CTOB,1 = EncryptOB(k∗i+1,mb; s∗1,i+1).

(b) Sample K∗t∗(yi+1) as PunctureF (K∗t∗ , yi+1).

(c) Challenger creates C∗ ← iO(1λ,CT-Eval:3[K∗t∗(yi+1), α̃∗, β̃∗,mb,m0, y
∗, c0, c1,CTOB,0,CTOB,1]).

9. The output ciphertext is CT = (t∗, C∗).

10. Phase 2 Queries: Same as Phase 1 in step 6.

Game 8, i, G Same as Game 8, i, F with the following modifications.

6. Phase 1 Queries: Let fj be the function of associated with the j-th query.

(a) Choose random yj ∈ {0, 1}λ.

(b) Compute (d∗j , k
∗
j , s
∗
1,j , s

∗
2,j , s

∗
3,j) = F2(Kt∗ , yj).

(c) If j > i+ 1 then set a∗j = EncryptPDE(d∗j , α
∗); otherwise if j ≤ i+ 1 set a∗j = EncryptPDE(d∗j , β

∗).

(d) Let SK∗OB,j = KeyGenOB(k∗j , fj ; s
∗
2,j).

(e) Compute Pfj
← iO(Key-Signal:2[K(t∗), t∗, a∗j ,SK∗OB,j , fj , yj]).

(f) Output the key as (yj , Pfj
).

7. Attacker gives messages m0,m1 ∈M to challenger.

8. Challenger sets the program C∗ ← iO(1λ,CT-Eval:2[K∗t∗ , α̃∗, β̃∗,mb,m0]).

9. The output ciphertext is CT = (t∗, C∗).

10. Phase 2 Queries: Same as Phase 1 in step 6.

We conclude by observing that Game 8, i, G is identical to Game 8, i+ 1. We now give our indistinguisha-
bility claims.

CT-Eval:3

Constants: PRF key Kt(y
∗), α̃, β̃ ∈ {0, 1}2·λ, messages m,mfixed ∈M, y∗, c0, c1, CTOB,0, CTOB,1.

Input: PDE ciphertext a and y ∈ {0, 1}λ.

1. If y = y∗ AND (a = c0) output CTOB,0.

2. If y = y∗ AND (a = c1) output CTOB,1.

3. If y = y∗ AND (a 6= c0, c1) then output a rejecting ⊥.

4. Else if y 6= y∗ Compute (d, k, s1, s2, s3) = F2(Kt(y
∗), y).

5. Compute e = DecryptPDE(d, a).

6. If PRG(e) = α̃ output EncryptOB(k,m; s1).

7. If PRG(e) = β̃ output EncryptOB(k,m; s3).

8. Else output a rejecting ⊥.

Figure 11: Program CT-Eval:3

28

Game 8, i to Game 8, i, A

Claim 2. If iO is a secure indistinguishability obfuscator, then for all PPT A we have that AdvA,8,i −
AdvA,8,i,A = negl(λ) for some negligible function negl.

We describe and analyze a PPT reduction algorithm B that plays the indistinguishability obfusca-
tion security game with A. B runs steps 1-7 as in Game 8, i, A. Next it creates two circuits as C0 =
CT-Eval:2[K∗t∗ , α̃∗, β̃∗,mb,m0] and and C1 = CT-Eval:3[K∗t∗(yi+1), α̃∗, β̃∗,mb,m0, y

∗, c0, c1,CTOB,0,CTOB,1].
It submits both of these to the IO challenger and receives back a program P which it passes to the attacker
in step 9 as C∗. It turns steps 9-11 as in Game 8, i, A. If the attacker wins (i.e. b′ = b), then B guesses ‘0’ to
indicate that P was and obfuscation of C0; otherwise, it guesses ‘1’ to indicate it was an obfuscation of C1.

We observe that when P is generated as and obfuscation of C0, then B gives exactly the view of Game 8, i
to A. Otherwise if P is chosen as an obfuscation of C1 the view is of Game 8, i, A. In addition, the programs
are functionally equivalent. The reason is that the programs have the same behavior except for the difference
that the CT-Eval:3 program has the CT-Eval:2 program’s behavior hardwired in a two points and uses
a punctured key at another place. The hardwiring is only needed for two points since the PDE system is
deterministic and the PRG is injective. Therefore if AdvA,8,i−AdvA,8,i,A is non-negligble, B must also have
non-neglgible advantage against the indisguishability obfuscation game.

Game 8, i, A to Game 8, i, B

Claim 3. If F is a selectively secure puncturable PRF then for all PPT A we have that AdvA,8,i,A −
AdvA,8,i,B = negl(λ) for some negligible function negl.

Proof. We describe and analyze a PPT reduction algorithm B that plays the selective puncturable PRF
security game. B begins by choosing yi+1 ∈ {0, 1}λ at step 3. It then chooses submits this to the punctured
PRF challenger for function F2. It receives back a punctured key K∗t∗(yi+1) and a challenge value z ∈ {0, 1}5λ.
It runs steps 2 onward for A as in Game 8, i. When making private key i + 1 (in either Phase 1 or 2) the
challenger sets (d∗j , k

∗
j , s
∗
1,j , s

∗
2,j , s

∗
3,j) = z. All other steps are simulated by the reduction with the exception

that we abort if yj = yi+1 for j 6= i + 1. This abort condition occurs with negligible probability so we can
ignore it. We emphasize that in step 8, the CT-Eval:3 program is parameterized by the punctured key
K∗t∗(yi+1). If the attacker wins (i.e. b′ = b), then B guesses ‘1’ to indicated that z = F (K, t∗); otherwise, it
outputs ‘0’ to that z was chosen randomly.

We observe that when z is generated as F (K, t∗), then B gives exactly the view of Game 8, i, A to A.
Otherwise if z is chosen randomly the view is of Game 8, i, B. Therefore if AdvA,8,i,A − AdvA,8,i,B is non-
negligble, B must also have non-neglgible advantage against the security of the puncturable PRF.

Game 8, i, B to Game 8, i, C

Claim 4. If (KeyGenOB,EncryptOB,DecryptOB) is an adaptively secure 1-bounded functional encryption
system with master key encryption, then then for all PPT A we have that AdvA,8,i,B −AdvA,8,i,C = negl(λ)
for some negligible function negl.

Proof. We describe and analyze a PPT reduction algorithm B that plays the 1-bounded functional encryption
security game. We begin by noting that an attacker can only have a non-zero difference in advantage between
the two games when the bit b = 1. Otherwise, they appear identical. So we condition the reduction on setting
the bit b = 1.

Suppose that the i + 1-th query is in Phase 1. The reduction algorithm runs the experiment through
step 5. For step 6 it creates all secret keys itself except for the i + 1 key. For this the reduction algorithm
queries the FE challenger with fi+1 and receives back SK∗OB,i+1.

We now move to step in creating the challenge ciphertext. The reduction algorithm flips a coin γ ∈ {0, 1}
as in step 8a. It then queries the encryption oracle for an encryption of m0. It sets the reply (which is not

29

the one-bounded challenge ciphertext) to be CTOB,1−γ . Next it submits (m0,m1) to the FE challenger and
receives back the one bounded challenge ciphertext. It sets this to be be CTOB,γ . The values c0, c1 are set
according to γ as in step 8a. The reduction algorithm then runs the rest of the experiment itself.

If the attacker wins (i.e. b′ = b), then B guesses ‘1’ to indicated that the challenge ciphertext was an
encryption of m1; otherwise, it outputs ‘0’ to indicate that m0 was encrypted.

In the case that the i + 1-th query was in Phase 2, the reduction is the same except that the challenge
ciphertext is queried before the key. Either order is okay since the 1-bounded scheme is assumed to be
adaptively secure. We emphasize that our reduction only makes a single key query.

We observe that when the challenge ciphertext encrypts m1, then B gives exactly the view of Game 8, i, B
to A. Otherwise if m0 were encrypted, then the view is of Game 8, i, C. Therefore if AdvA,8,i,B − AdvA,8,i,C
is non-negligble, B must also have non-neglgible advantage against the security of the 1-bounded FE scheme.

Game 8, i, C to Game 8, i,D

Claim 5. If our puncturable deterministic encryption scheme is secure then for all PPT A we have that
AdvA,8,C − AdvA,8,D = negl(λ) for some negligible function negl.

Proof. We describe and analyze a PPT reduction algorithm B that plays the pseudo random generator
security game. Suppose that query i+ 1 is in Phase 1.
B first executes steps 1-5 as in Game 8, C as well as answer key queries j for all j 6= i + 1. Then it

submits messages (α∗, β∗) to the PDE challenger and receives back (T0, T1). In step 6 it sets a∗i+1 = T0. It
then runs until step 8, where it chooses random γ and sets c0 = Tγ and c1 = T1−γ . The reduction algorithm
simulates the rest of the game. If the attacker wins (i.e. b′ = b), then B guesses ‘0’ to indicated that c∗ was
an encryption of α∗; otherwise, it outputs ‘1’ to that c∗ was an encryption of β∗.

We make two important observations. The first is that it is in this security proof where choosing a
random γ (i.e. randomizing the assignment of c0 and c1 is important. In addition, the security proof also
works because at this point both of the hardwired one-bounded encryptions are of the same message m0.

When T0 is generated as EncryptPDE(k∗, α∗) then B gives exactly the view of Game 8, C. Otherwise
when T0 is generated as EncryptPDE(k∗, β∗) the view is of Game 8, D. Therefore if AdvA,8,C − AdvA,8,D is
non-negligble, B must also have non-neglgible advantage against the puncturable deterministic encryption
system.

Game 8, i,D to Game 8, i, E

Claim 6. If (KeyGenOB,EncryptOB,DecryptOB) is an adaptively secure 1-bounded functional encryption
system with master key encryption, then then for all PPT A we have that AdvA,8,i,D −AdvA,8,i,E = negl(λ)
for some negligible function negl.

The proof of this claim is analogous to that of Claim 4.

Game 8, i, E to Game 8, i, F

Claim 7. If F is a selectively secure puncturable PRF then for all PPT A we have that AdvA,8,i,E −
AdvA,8,i,F = negl(λ) for some negligible function negl.

The proof of this claim is analogous to that of Claim 3.

30

Game 8, i, F to Game 8, i, G

Claim 8. If iO is a secure indistinguishability obfuscator, then for all PPT A we have that AdvA,8,i,F −
AdvA,8,i,G = negl(λ) for some negligible function negl.

The proof of this claim is analogous to that of Claim 2.

To wrap things up we observe that Lemma 13 follows from a hybrid argument using the claims above.
Finally, our main security Theorem 4 follows via hybrid argument from the established lemmas.

7 Using Non-Injective Pseudo Random Generators

Our adaptive construction required the use of an injective pseudo random generator. In this section we
informally sketch how to modify our construction to handle non-injective PRGs. We describe the modification
in two main steps.

We first observe that if PRG is non-injective then there could be multiple pre-images to α̃∗ and β̃∗ in
addition to α∗ and β∗. Therefore we would need to adjust program CT-Eval:3 so that when y = y∗ AND
(a 6= c0, c1) it attempts to decrypt a as opposed to simply outputting ⊥. This can be securely accomplished
by giving the program the punctured PDE key d(α∗, β∗), which can be used to decrypt all ciphertexts except
c0 and c1.

The above modification will allow all lemmas and claims of the existing proof to go through except for
the claim of indistinguishability of Game 8, i, C and Game 8, i,D. The problem with this game is that all
“α̃∗ ciphertexts” are the same since they are encrypted with the same randomness s∗1,i+1. A similar problem
occurs with the “β̃∗ ciphertexts”.

A solution is to modify the scheme such that the randomness for creating the one-bounded ciphertexts
does not come directly out of F2 in the CT-Eval programs. Instead, F2 could output a master key of yet
another puncturable PRF F3. This puncturable PRF would then take in a PDE ciphertext and output the
randomness used for a creating a one-bounded ciphertext. The proof would need to be adjusted with an
additional puncturable PRF step.

We emphasize that the above argument is informal intuition why we believe the system can be adjusted
to handle non-injective PRGs and we do not make any formal claims of such. We choose to pursue using
injective PRGs in our formal construction and proof to help avoid additional complexity in our exposition.

References

[ABG+13] Prabhanjan Ananth, Dan Boneh, Sanjam Garg, Amit Sahai, and Mark Zhandry. Differing-
inputs obfuscation and applications. Cryptology ePrint Archive, Report 2013/689, 2013. http:
//eprint.iacr.org/.

[BCOP04] Dan Boneh, Giovanni Di Crescenzo, Rafail Ostrovsky, and Giuseppe Persiano. Public key
encryption with keyword search. In EUROCRYPT, pages 506–522, 2004.

[BCP14] Elette Boyle, Kai-Min Chung, and Rafael Pass. On extractability obfuscation. In TCC, pages
52–73, 2014.

[BFO08] Alexandra Boldyreva, Serge Fehr, and Adam O’Neill. On notions of security for deterministic
encryption, and efficient constructions without random oracles. In CRYPTO, pages 335–359,
2008.

[BFOR08] Mihir Bellare, Marc Fischlin, Adam O’Neill, and Thomas Ristenpart. Deterministic encryption:
Definitional equivalences and constructions without random oracles. In CRYPTO, pages 360–
378, 2008.

31

[BGI+12] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P. Vadhan,
and Ke Yang. On the (im)possibility of obfuscating programs. J. ACM, 59(2):6, 2012.

[BGI13] Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional signatures and pseudorandom func-
tions. IACR Cryptology ePrint Archive, 2013:401, 2013.

[BSW11] Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption: definitions and challenges.
In Proceedings of the 8th conference on Theory of cryptography, TCC’11, pages 253–273, Berlin,
Heidelberg, 2011. Springer-Verlag.

[BW07] Dan Boneh and Brent Waters. Conjunctive, subset, and range queries on encrypted data. In
Proceedings of the 4th conference on Theory of cryptography, TCC’07, pages 535–554, Berlin,
Heidelberg, 2007. Springer-Verlag.

[BW13] Dan Boneh and Brent Waters. Constrained pseudorandom functions and their applications.
IACR Cryptology ePrint Archive, 2013:352, 2013.

[CJO+13] Angelo De Caro, Vincenzo Iovino Abhishek Jain, Adam O’Neill, Omer Paneth, and Giuseppe
Persiano. On the achievability of simulation-based security for functional encryption. In
CRYPTO, 2013.

[CW14] Jie Chen and Hoeteck Wee. Semi-adaptive attribute-based encryption and improved delegation
for boolean formula. SCN (To appear), 2014. http://eprint.iacr.org/.

[GGH+13] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent Waters.
Candidate indistinguishability obfuscation and functional encryption for all circuits. In FOCS,
2013.

[GGHW14] Sanjam Garg, Craig Gentry, Shai Halevi, and Daniel Wichs. On the implausibility of differing-
inputs obfuscation and extractable witness encryption with auxiliary input. In CRYPTO, pages
518–535, 2014.

[GGM84] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random functions (ex-
tended abstract). In FOCS, pages 464–479, 1984.

[GVW12] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Functional encryption with
bounded collusions via multi-party computation. In CRYPTO, 2012.

[KPTZ13] Aggelos Kiayias, Stavros Papadopoulos, Nikos Triandopoulos, and Thomas Zacharias. Dele-
gatable pseudorandom functions and applications. IACR Cryptology ePrint Archive, 2013:379,
2013.

[KSW08] Jonathan Katz, Amit Sahai, and Brent Waters. Predicate encryption supporting disjunctions,
polynomial equations, and inner products. In Proceedings of the theory and applications of
cryptographic techniques 27th annual international conference on Advances in cryptology, EU-
ROCRYPT’08, 2008.

[KSW14] Dakshita Khurana, Amit Sahai, and Brent Waters. How to generate and use universal parame-
ters. Cryptology ePrint Archive, Report 2014/507, 2014. http://eprint.iacr.org/.

[LOS+10] Allison B. Lewko, Tatsuaki Okamoto, Amit Sahai, Katsuyuki Takashima, and Brent Waters.
Fully secure functional encryption: Attribute-based encryption and (hierarchical) inner product
encryption. In EUROCRYPT, pages 62–91, 2010.

[OT10] Tatsuaki Okamoto and Katsuyuki Takashima. Fully secure functional encryption with general
relations from the decisional linear assumption. In CRYPTO, pages 191–208, 2010.

32

[SS10] Amit Sahai and Hakan Seyalioglu. Worry-free encryption: functional encryption with public
keys. In Proceedings of the 17th ACM conference on Computer and communications security,
CCS ’10, pages 463–472, New York, NY, USA, 2010. ACM.

[SW05] Amit Sahai and Brent Waters. Fuzzy identity-based encryption. In EUROCRYPT, pages 457–
473, 2005.

[SW08] Amit Sahai and Brent Waters. Slides on functional encryption. PowerPoint presentation, 2008.
http://www.cs.utexas.edu/~bwaters/presentations/files/functional.ppt.

[SW14] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: deniable encryption,
and more. In STOC, pages 475–484, 2014.

[Wat09] Brent Waters. Dual system encryption: Realizing fully secure ibe and hibe under simple as-
sumptions. In CRYPTO, pages 619–636, 2009.

33

