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Abstract
In this paper, we propose an authenticated key exchange
(AKE) protocol from Ideal lattices. The protocol is simple
since it does not involve any other cryptographic primitives
to achieve authentication (e.g., signatures). This allows us
to establish a security proof solely based on the hardness
of the well-known ring-LWE problems, thus on some hard
lattice problems in the worst-case (e.g., SVP and SIVP). We
give the security proof of the proposed AKE protocol in
an enhanced variant of the original Bellare-Rogaway (BR)
model, which additionally captures weak Perfect Forward
Secrecy (wPFS), in the random oracle (RO) model.

1. Introduction
Key Exchange (KE) is a fundamental cryptographic primi-
tive, which allows two parties to generate a common secret
key over insecure networks, namely, where all the commu-
nications are completely controlled by adversaries. Since a
shared-key between parties is essential to protect the trans-
mitted data over public networks by making use of any other
(symmetric) cryptographic tools (e.g., AES), KE has become
one of the most widely used cryptographic tools in build-
ing secure communications (e.g., SSL/TLS, IPSec, SSH,
etc). Following the celebrated Diffie-Hellman (DH) KE pro-
tocol [9], many cryptographic researchers have proposed
plenty of different KE protocols providing various security
goals. Among them, Authenticated Key Exchange (AKE) is
a class of candidate KE protocols for lots of real applica-
tions, which not only allows parties to compute the shared
key but also ensures authenticity of the parties. Namely, two
parties can compute a shared key only if both participants
are the claimed parties known to each other.

In general, each party in AKE usually has a pair of static
public key and corresponding static secret key, where the
static public key and the identity of the party are certified to-
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gether using a public infrastructure such as public key infras-
tructure (PKI), or ID-based infrastructure. During the execu-
tion of the protocol, parties exchange their ephemeral public
keys that are generated using some ephemeral secret keys,
compute a session state from all the keys and exchanged
transcripts, and finally derive a common session key by us-
ing some key derivation function (KDF). Intuitively, security
means that AKE should assure parties that no probabilistic
polynomial time (PPT) adversary can obtain any useful in-
formation about their shared secret key (if there is). Actually,
the first indistinguishability-based security notion of AKE
was proposed by Bellare and Rogaway [3] (known as the BR
model), which captures several basic security goals for AKE
such as known key security and impersonation resilience. In
2001, Canetti and Krawczyk [6] presented a more delicate
security model (i.e., CK model) that captures more compli-
cated situations where the adversary may obtain the leakage
information of the static secret key and session state other
than the target session. However, both models fail to cap-
ture more advanced attacks such as the breaking of perfect
forward secrecy (PFS). Informally, PFS implies that no PPT
adversary can compute a secret key established before the
compromise of the static secret keys of the involved par-
ties. However, as shown by [16], no two-pass AKE protocols
based on public-key authentication can achieve PFS. Thus,
a weak version, called weak PFS (wPFs), is usually consid-
ered for such kind of protocols, which says that no PPT ad-
versary can compute a secret key established in an honestly
run of the protocol even if it obtains the involved static secret
keys later (i.e., after the session has completed).

During the last 30 years, many practical and provably se-
cure AKE protocols have been proposed based on differ-
ent number-theoretic problems such as factoring, RSA and
the computational/decisional Diffie-Hellman problem. How-
ever, as we step into the quantum era, those protocols based
on classic hard problems become vulnerable to quantum
computers [26]. Namely, those protocols may not be able
to provide parties with any security guarantees then. In par-
ticular, as far as we know, there are only two papers consid-
ered constructing AKE protocols based on Code-related and
Lattice-based problems that are believed to be hard for quan-
tum algorithms. Recently, Ding et al. [15] made a big step
in constructing a post-quantum KE protocol, and proposed a
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very simple and efficient protocol based on LWE assumption
(thus, establishing the security of the protocol on the hard-
ness of some lattice problems in the worst-case [23, 25]).
Ding et al.’s protocol is very similar to the well-known DH-
protocol [9], and has only two-pass messages (Unlike the
DH-protocol, the two messages must be exchanged in a
sequential way). Similar to the DH-protocol, the protocol
in [15] can only be proven secure in the passive model,
and suffers from the well-known and practical man-in-the-
middle attack (since it cannot provide authentication, i.e., it
is not an AKE protocol).

1.1 Our Contribution
In this paper, we proposed an efficient AKE from LWE, thus
based on some hard lattice problems in the worst case. For
entity authentication, each party is associated with a pair
of static public key and secret key, which is assumed to be
certified with the party’s identity. As Ding et al.’s original
KE protocol [15], our protocol has two-pass interactions.
However, we derive the session key in a totally different way,
which is inspired by the celebrated HMQV protocol. The
security of our protocol is proven in an enhanced variant of
the BR model that simultaneously captures weakly Perfect
Forward Secrecy (wPFS).

2. Preliminaries
2.1 Notation
The natural security parameter throughout the paper is n, and
all other quantities are implicit functions of n. Let poly(n)
denote an unspecified function f(n) = O(nc) for some
constant c. The function log denotes the natural logarithm.
We use standard notation O,ω to classify the growth of
functions. If f(n) = O(g(n) · logc n), we denote f(n) =
Õ(g(n)). We say a function f(n) is negligible if for every
c > 0, there exists aN such that f(n) < 1/nc for all n > N .
We use negl(n) to denote a negligible function of n, and we
say a probability is overwhelming if it is 1− negl(n).

The set of real numbers (integers) is denoted by R (Z,
resp.). Vectors are in column form and denoted by bold
lower-case letters (e.g., x). Denote the l2 and l∞ norm by
‖ · ‖ and ‖ · ‖∞ respectively. The ring of polynomial over
integers (or Zq for some positive integer q, resp.) is denoted
by Z[x] (or Zq[x], resp.).

2.2 Security Model for AKE
In this section, we recall the BR model [3] restricted to the
two-pass protocols (i.e., the two involved parties only send
one-message to each other as decipted in Fig.1 ).

Sessions. For security parameter k, we fix a positive in-
teger N = N(k) ∈ Z to denote the maximum number of
honest parties in the AKE protocol. For simplicity, a party is
uniquely identified by integers in [N ] := {1, . . . , N}, and
has a pair of static public key and static secret key pairs

Party i Party j

X

Y

Figure 1: Two-pass Protocol.

(pki, ski) which are certified with its identity by a Certifi-
cation Authority (CA). An execution of a protocol is called
a session. Session activation is done by an incoming mes-
sage of the forms (Π, I, i, j) or (Π, R, j, i,Xi), where Π
is the protocol identifier, I and R are role identifiers, and
i, j ∈ [N ] are party identifiers. If party i is activated with
(Π, I, i, j), party i is called the session initiator and will out-
put a message Xi which is intended for party j. If party j is
activated with (Π, R, j, i,Xi), j is called the session respon-
der and will output a message Yj intended for party i. After
exchanging two-pass messages, both party i and j compute
a session key.

If i is the initiator of a session, the session is identi-
fied by sid = (Π, I, i, j) or sid = (Π, I, i, j,Xi, Yj). If
j is the responder of a session, the session is identified by
sid = (Π, R, j, i,Xi, Yj). Fixing a sid = (Π, ∗, i, j, ∗[, ∗]),
the third coordinate i is called the owner of sid, and fourth
coordinate j the peer of sid. We say a session is com-
pleted if its owner computes the session key. The match-
ing session of sid = (Π, I, i, j,Xi, Yj) is session s̃id =
(Π, R, j, i,Xi, Yj) and vice versa.

Adversarial Capabilities. An adversary A is modeled as a
probabilistic polynomial time (PPT) Turing machine, which
controls all communications between parties including ses-
sion activation. In particular,A is able to eavesdrop, modify,
delete any message sent in the protocol, or inject its own
messages. We also suppose A is able to obtain the leakage
information of the session key, and the static secret key of
some party. Formally, the above abilities are captured by al-
lowing the adversary to access the following oracles (note
that we distinguish the Send query in [6] with three nota-
tions: Send0, Send1 and Send2, to represent the initial,
the first and the second message in the context of two-pass
protocols as ours):

- Send0(Π, I, i, j): A activates party i as an initiator, and
obtains a message Xi intended for party j.

- Send1(Π, R, j, i,Xi):A activates party j as a responder
by using message Xi on behalf of party i, and obtains a
message Yj intended for party i.

- Send2(Π, I, i, j,Xi, Yj): A sends a message Yj on be-
half of party j to complete a session of i which has re-
sponded Xi to a Send0 query previously.

- SessionKeyReveal(sid): A obtains the session key
sk for the session sid if the session is completed, else
this query is omitted.
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- Corrupt(i): A obtains the static secret key of party i.
If party i is corrupted by the adversary A, we call party i
dishonest, else we call party i honest.

- Test(sid∗): This query is only restricted to fresh session
sid (formal definition about freshness is given in Defini-
tion 1), and can only be queried once by the adversary
A. Upon receiving this query, a random coin b ← {0, 1}
is chosen. If b = 0, the adversary obtains a random key,
else it obtains the session key of sid∗.

DEFINITION 1 (Freshness). Let sid∗ = (Π, I, i∗, j∗, Xi, Yj)
or (Π, R, j∗, i∗, Xi, Yj) be a completed session between
party i∗ and party j∗. If the matching session exists, then
let s̃id

∗
be the matching session of sid∗. We say session sid∗

is fresh if the following conditions holds:

– sid∗ has not been sent a SessionKeyReveal query.
– s̃id

∗
has not been sent a SessionKeyReveal query if

it exists.
– Both party i∗ and party j∗ have not been sent a Corrupt

query if s̃id
∗

does not exist.

REMARK 1. Recall that in the original BR model [3], no
corruption query is allowed. In our definition, we allow the
adversary to corrupt both parties of sid∗ if the matching
session exists in order to capture the weak Perfect Forward
Security (wPFS) [16].

Security Experiment. In security experiment, the adver-
sary A is given a set of honest parties and makes any se-
quence of the queries described above, but only makes one
Test query with a fresh session sid∗. The experiment con-
tinues until A outputs a guess b′ of b. We say that the ad-
versary A wins the game if the guess of A is correct, i.e.,
b′ = b. The advantage of A in the AKE experiment is de-
fined as AdvAKE

Π,A = Pr[A wins]− 1
2 .

DEFINITION 2 (Security). An AKE protocol Π is secure if
both the following conditions hold:

1. If two honest parties complete matching sessions then,
except with negligible probability, they both compute the
same session key.

2. The advantage AdvAKE
Π,A is negligible for any PPT adver-

sary A.

3. Ring-Learning with errors (RLWE)
For any α ∈ R+, and c ∈ R, let DZ,α,c be the discrete Gaus-
sian distribution which can be sampled by first sampling a
real y ∈ R from the Gaussian of standard deviation α and
center c, and then rounding it to the nearest integer x (i.e.,
x := bye). For any c = (c0, · · · , cn−1) ∈ Rn, let DZn,α,c
be the spherical discrete Gaussian distribution centered at c
with standard deviation α, where the i-th dimension is dis-
tributed over DZ,α,ci .

Let integer n be a power of 2 (i.e., n = 2l for some
l ∈ Z), define f(x) = xn + 1, and R := Z[x]/〈f(x)〉 be

the ring of all the polynomials in Z[x] modulo f(x). For any
positive integer q, the ring Rq := Zq[x]/〈f(x)〉 is defined
analogously. For any polynomial y(x) ∈ R (or Rq), we
simultaneously treat it as a ring element in R (or Rq) or its
coefficient vector in Zn (or Znq ). The norm of a polynomial
y(x) =

∑n−1
i=0 yix

i ∈ R (orRq) is the norm of its coefficient
vector, e.g., ‖y(x)‖∞ = maxi |yi|.

LEMMA 1. Let f(x) = xn + 1 and R = Z[x]/〈f(x)〉 be
defined as above. For any s, t ∈ R, we have ‖s · t‖ ≤√
n · ‖s‖ · ‖t‖ and ‖s · t‖∞ ≤ n · ‖s‖∞ · ‖t‖∞, where

the operations are performed in R (i.e., modulo f(x)).

For any α ∈ R+, let χα := DZn,α. If a bold case
x ← χα is used, we mean to sample a vector x from Zn.
Otherwise, we mean to sample a ring element from Rq ,
whose coefficient vector has distribution χα (i.e., y ← χα).
We have the following two useful facts:

LEMMA 2 ([13, 20]). For any real number α = ω(
√

log n),
we have Prx←χα [‖x‖ > α

√
n] ≤ 2−n+1.

LEMMA 3 ([5, 14]). For any real number α = ω(
√

log n)
and vector y ∈ Zn, the statistical distance between the
distributions χα and χα + y is at most ‖y‖/α.

The following lemma is implicit in Lemma 10 of [27],
which informally says that for appropriate parameter, almost
all the ring element sampled from χγ are invertible in Rq .

LEMMA 4 ([27]). Let n be a power of 2, f(x) = xn+1, and
q = 2ω(logn) be prime such that q mod 2n = 1. Let Rq =

Zq[x]/〈f(x)〉, and real γ >
√
n · ω(log n) · q1/n. Then the

probability that Prd←χγ [d /∈ R×q ] is negligible in n, where
R×q is the set of invertible elements of Rq . In particular, we
have Prd1,d2←χγ [d1 − d2 /∈ R×q ] ≥ 1 − negl(n), since
d1 − d2 ∈ χγ′ for γ′ =

√
2γ according to the property

of Gaussian distribution.

For simplicity, we describe a special case of the general
ring-LWE assumption [18], which we are most interested in
this paper, and refer a more details to the original paper [18].
Formally, let s ← Rq be uniformly random ring element.
define As,χα ⊆ Rq × Rq as the distribution of variable
(a, as + x), where a and x are uniformly chosen from Rq
and χα respectively, and all operations are performed in Rq .

DEFINITION 3 (Ring-LWE Assumption). LetRq, χα be de-
fined as in the above paragraphs. The (special case) ring-
LWE assumption RLWEq,α says that, given only polynomial
samples, it is hard for any PPT algorithm to distinguish
the distribution As,χα from the uniform distribution over
Rq ×Rq , where s is randomly chosen from Rq .

The above definition gives the decisional ring-LWE as-
sumption, one can also define the search assumption which
asks an algorithm to output s. For some choices of parame-
ter, the search version ring-LWE and the decisional one are
polynomially equivalent [18].
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PROPOSITION 5 (A special case of [18]). Let n be a power
of 2, real α = α(n) ∈ (0, 1) and prime q = q(n) ≥
2 such that q mod 2n = 1, and αq > ω(

√
log n). Let

f(x) = xn + 1 and R = Z[x]/〈f(x)〉. Then, there exists
a polynomial time quantum reduction from Õ(

√
n/α)-SIVP

(or SVP) in the worst-case to the average-case RLWEq,β
given only ` samples, where β = αq · (n`/ log(n`))1/4.

It has been proven that the ring-LWE assumption still
holds even if the secret s is chosen from the error distribu-
tion χβ [1, 18]. This important variant of the general LWE
assumption is known as the “normal form”, which is prefer-
able when one tries to control the size of the “error” term,
e.g., [4, 5].

Scaling the noise. If t and q are relatively prime, then
the ring-LWE assumption still holds if one scale the noise t
times, i.e., (ai, ais+txi). This variant of ring-LWE has been
used to construct several lattice-based cryptographic scheme
such as fully homomorphic encryption (FHE) [4, 5] (where
t = 2 is usually chosen).

4. Authenticated Key Exchange from RLWE
Before presenting our AKE protocol, we first introduce
some notations. For odd prime q > 2, denote Zq =
{− q−1

2 , . . . , q−1
2 }. Let E := {−b q4c, . . . , b

q
4e}, define its

associated characteristic function Cha from Zq to {0, 1}:

Cha(v) :=

{
0 if v ∈ E,
1 otherwise.

For any v ∈ Zq , it is easy to check that v + Cha(v) · q−1
2

mod q belongs to E. In addition, we define the modular
function Mod2 from Zq × {0, 1} to {0, 1}:

Mod2(v, w) = (v + w · q − 1

2
) mod q mod 2,

where v ∈ Zq, w ∈ {0, 1}. For large enough q, we have the
following lemma.

LEMMA 6. Let n be the security parameter, and odd prime
q = 2ω(logn). For any b ∈ {0, 1} and v′ ∈ Zq , the output
distribution of Mod2(v + v′, b) conditioned on Cha(v) ∈
{0, 1} is statistically close to uniform distribution over
{0, 1}, where the probability is taken over the uniform and
independent choice of v ∈ Zq .

Proof. We distinguish the proof in two cases:

– If Cha(v) = 0, we have that v + v′ + b · q−1
2 mod q

is uniformly distributed over v′ + b · q−1
2 + E mod q.

A standard calculation shows that the statistical distance
between the output distribution of Mod2(v + v′, b) (con-
ditioned on Cha(v)) and the uniform distribution over
{0, 1} is at most 1

|E| <
2
q .

– If Cha(v) = 1, we have that v + v′ + b · q−1
2 mod q

is uniformly distributed over v′ + (b − 1) · q−1
2 + Ẽ

mod q, where Ẽ := E\{b q4e}. A standard calculation
shows that the statistical distance between the output
distribution of Mod2(v, b) (conditioned on Cha(v)) and
uniform distribution over {0, 1} is at most 1

|E|−1 ≤
3
q .

In all, we have the statistical distance between the output
distribution of Mod2(v + v′, b) conditioned on Cha(v) and
the uniform distribution over {0, 1} is at most 3/q, which is
negligible in n for q = 2ω(logn). �

The next lemma will be used to guarantee the correctness
of our scheme. Informally, it says that for sufficiently close
v, w = v + 2e ∈ Zq , one can compute Mod2(v,Cha(v)) by
only using the information of w and Cha(v).

LEMMA 7. For odd prime q > 2, if w = v + 2e mod q
for some v ∈ Zq and |e| < q/8, then the value of
Mod2(v,Cha(v)) is equal to Mod2(w,Cha(v)).

Proof. Note thatw+Cha(v) q−1
2 mod q = v+Cha(v) q−1

2 +

2e mod q. Using the fact that v + Cha(v) q−1
2 mod q ∈

E = {−b q4c, . . . , b
q
4e}, and − q8 < e < q

8 , we have
w + Cha(v) q−1

2 mod q = (v + Cha(v) q−1
2 mod q) + 2e

hold over Z. In other words, we have Mod2(w,Cha(v)) =
v + Cha(v) q−1

2 + 2e mod q mod 2 = Mod2(v,Cha(v)).
This completes the proof. �

For any element x ∈ Znq , one can apply both functions
Cha and Mod2 to x in an entry-wise way. By a standard
hybrid argument, the statistical distance between the output
distribution of Mod2(x,Cha(x)) conditioned on Cha(x) ∈
{0, 1}n and the uniform distribution over {0, 1}n is at most
3n
q , where x is uniformly chosen from Znq . A similar claim

holds if one applies the two operations to the coefficient
vector of the ring element in Rq .

4.1 The Protocol
In this subsection, we present the full description of our ef-
ficient AKE scheme. Let n be a power of 2, and f(x) =
xn + 1. Let q = 2ω(logn) be an odd prime such that q
mod 2n = 1. Let R = Zq/〈f(x)〉 and Rq = Zq[x]/〈f(x)〉
defined as in Section 3. For γ ∈ R+, let H1 : {0, 1}∗ →
χγ = DZn,γ , which projects a string into a sample in
DZn,γ

1. Let H2 : {0, 1}∗ → {0, 1}k for some integer k
(i.e., the bit-size of the final shared session key) be the Key
derivation function (KDF). Both functions are modeled as
random oracles (RO). Let χα, χβ be two Gaussian distribu-
tions with parameter α, β ∈ R+. Let pi = ati + 2ei ∈ Rq
and ti be the static public key and secret key of party i, where
both si, ei are chosen from the distribution χα. Similarly, let
pj = atj + 2ej ∈ Rq and tj be the static public key and
secret key of party j. Our protocol between party i and party

1 For instantiation, one can first hash the inputs to a random string by using
SHA-2, and then use it as the randomness to sample a vector (or a ring
element) from DZn,γ , which possibly needs the use of a cryptographic
pseudorandom generator such as in [24].
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Party i

Public Key: pi = asi + 2ei ∈ Rq
Secret Key: si ∈ Rq
where si, ei ← χα

xi = ari + 2fi ∈ Rq
where ri, fi ← χβ

ki = (pjd + yj)(sic + ri) + 2gi

where gi ← χβ

σi = Mod2(ki, wj) ∈ {0, 1}
n

ski = H2(i, j, xi, yj, wj, σi)

Party j

Public Key: pj = asj + 2ej ∈ Rq
Secret Key: sj ∈ Rq
where sj, ej ← χα

yj = arj + 2fj ∈ Rq
kj = (pic + xi)(sjd + rj) + 2gj

where rj, fj , gj ← χβ

wj = Cha(kj) ∈ {0, 1}
n

σj = Mod2(kj, wj) ∈ {0, 1}
n

skj = H2(i, j, xi, yj, wj, σj)

xi

yj , wj

c = H1(i, j, xi) ∈ R, d = H1(j, i, yj , xi) ∈ R

Figure 2: Efficient AKE from Lattices.

j (depicted in Figure 2) works as follows.

Initiation: Party i randomly chooses ri, fi, gi ← χβ , com-
putes xi = ari + 2fi, and sends xi to party j.

Response: After receiving xi from party i, party j randomly
chooses rj , fj , gj ← χβ , and computes yj = arj + 2fj
and kj = (pic + xi)(sjd + rj) + 2gj , where c =
H1(i, j, xi), d = H1(j, i, yj , xi) ∈ χγ . Then, it com-
putes wj = Cha(kj) ∈ {0, 1}n, and sends (yj , wj)
to party i. Finally, it computes σj = Mod2(kj , wj) ∈
{0, 1}n, and derives skj = H2(i, j, xi, yj , wj , σj) as the
session key.

Finish: After obtaining (yj , wj), party i computes ki =
(pjd + yj)(sic + ri) + 2gi, where c = H1(i, j, xi),
and d = H1(j, i, yj , xi) ∈ χγ . Finally, it computes
σi = Mod2(ki, wj) ∈ {0, 1}n, and derives the session
key ski = H2(i, j, xi, yj , wj , σi).

4.2 Correctness
To show the correctness of our AKE protocol, it is enough
to show that σi = σj . Note that both σi and σj are output
by Mod2 with the same second input Cha(kj). According to
Lemma 7, we only have to show that the entries in ki and kj
are sufficiently close. Note that both parties will compute ki
and kj as follows:

ki = (pjd+ yj)(sic+ ri) + 2gi
= a(sjd+ rj)(sic+ ri)

+(2ejd+ 2fj)(sic+ ri) + 2gi
= a(sic+ ri)(sjd+ rj) + 2g̃i

kj = (pic+ xi)(sjd+ rj) + 2gj
= a(sic+ ri)(sjd+ rj)

+(2eic+ 2fi)(sjd+ rj) + 2gj
= a(sic+ ri)(sjd+ rj) + 2g̃j

where g̃i = (ejd + fj)(sic + ri) + gi, and g̃j = (eic +
fi)(sjd + rj) + gj . This shows that ki = kj + 2(g̃i − g̃j).
Thus, the correctness follows if ‖g̃i − g̃j‖∞ < q/8.

4.3 Concrete Choices of Parameter
Following [8, 12, 18], we make use of the canonical em-
bedding in the analysis of our scheme. Formally, for our
choices of n (i.e., a power of 2) andR, the canonical embed-
ding of a ∈ R into Cn is the n-vector of complex numbers
σ(a) = (a(ζim)), where m = 2n, ζm is a complex primitive
m-th root of unity and the indexes i range over all of Z∗m.
We call the norm of σ(a) the canonical embedding norm of
a, and denote it by

‖a‖can
∞ = ‖σ(a)‖∞.

We will use the following useful properties [8, 12, 18] of
‖ · ‖can

∞ :

– For all a, b ∈ R, ‖a · b‖can
∞ ≤ ‖a‖can

∞ · ‖b‖can
∞ .

– For all a ∈ R, ‖a‖∞ ≤ ‖a‖can
∞ .

Note that the evaluation a(ζm) is the inner product be-
tween the coefficient vector of a and the vector zm =
(1, ζm, ζ

2
m, . . . , ζ

n−1
m ). Thus, if the coefficient vector of a is

chosen from Gaussian distribution DZn,α with standard de-
viation α, the random variable a(ζm) is distributed to a com-
plex Gaussian random variable with variance δ = r2n (note
that zm has Euclidean norm exactly n). Following [12], we
use 6δ as a high-probability bound on the size of a(ζm) (note
that the complementary error function erfc(6) ≈ 2−55). For
a product of two random variables with variance δ2

1 and δ2
2 ,

respectively, we use 16δ1δ2 as our high probability bound.
Since efrc(4) ≈ 2−25, the probability that both variables
exceeds four times of their standard deviation is about 2−50.

We now estimate the size of the error term of our proto-
col, i.e., ‖g̃i−g̃j‖∞. Note that g̃i = (ejd+fj)(sic+ri)+gi,
and g̃j = (eic + fi)(sjd + rj) + gj , where the coefficient
vectors of ei, ej , are chosen from χα, the coefficient vec-

5 2014/7/30



tors of c, d are chosen from χγ , and the coefficient vec-
tors of fi, fj , ri, rj , gi, gj are chosen from χγ . Using the
bounds in previous paragraph, we have ‖ejd‖can

∞ , ‖sic‖can
∞ ≤

16αγn, and ‖fj‖can
∞ , ‖ri‖can

∞ , ‖gi‖can
∞ ≤ 6β

√
n. Thus, we

have ‖g̃i‖can
∞ ≤ (16αγn + 6β

√
n)2 + 6β

√
n, and the same

bound hold for ‖g̃j‖can
∞ . Considering α/β = 2−ω(logn) is

required in our security proof (see Section 6), we will set

β � 16αγn (1)

to guarantee a small statistical distance according to Lemma
3. Thus, with high probability, we have both ‖g̃j‖can

∞ and
‖g̃j‖can

∞ are smaller than 37β2n. Thus, for correctness, it is
enough to set q such that

16 ∗ 37β2n < q (2)

Though the ring-LWE problem enjoys a worst-case con-
nection to some hard problems on ideal lattices such as
Shortest Vector Problem (SVP) [18], the connection as sum-
marized in Proposition 5 seems less powerful to estimate the
actual security for concrete choices of parameter. For this,
several works [7, 11, 12, 21, 22] took account experimental
results to estimate the hardness of (R)LWE. In our setting,
we use the result in [12], which showed how to set integer
n (i.e., the rank of the underlying lattice), given the modu-
lus q, the Gaussian parameter α (i.e., the error distribution
is DZn,α), and the concrete security parameter k (i.e., the
time/advanatage ratio is of at least 2k):

n ≥ log(q/α)(k + 110)

7.2
(3)

As recommended in [12, 17], it is enough to set the Gaus-
sian parameter α ≥ 3.2 so that the discrete Gaussian DZn,α
approximates the continuous Gaussian Dα extremely well2.
In our case, we fix α = 3.397 for a better performance
when using the Gaussian sampling algorithm [10]. As for
the choices of γ, we set γ ≈ n2/3 for the use of Lemma 4
in our security proof. In Table 2, we set all other parame-
ters β, n, q to satisfies the correctness condition (2) and the
security condition (3) for each expected security level. We
also take account of equation (3) in the choices of security
parameter, and consider log β

α as an “index of confidence”
for corresponding security level. Note that n is required to
be a power of 2 in our protocol (i.e., it is very sparsely dis-
tributed)3, we can simply tries several possible values of n.
In Table 2, we present several candidate choices of parame-
ters, and estimate the sizes of public keys, secret keys, and
communication costs.

2 Note that the Gaussian parameter s = α
√
2π (> 8.0) is used in [17] due

to notation difference.
3 We remark such a choice of n is not necessary, but it gives a simple
analysis and implementation. In practice, one might use the techniques for
Ring-LWE cryptography in [19] to give a tighter choice of parameter for
desired security levels.

5. Implementations and Benchmarks
In this section, we present the details of our proof-of-concept
implementations, and give the timings for concrete choices
of parameters.

5.1 Ring Representations and Operations
Recall that we are working on a ring Rq := Zq[x]/(xn + 1),
i.e., the ring of polynomials in x with integer coefficients,
modulo p and xn + 1. An element in Rq can be natural
written as a polynomial of degree less than n with coef-
ficients in Zp, e.g., g(x) =

∑n−1
i=0 gix

i ∈ Rq (thus it is
enough to identity an element by using its coefficient vec-
tor (g0, · · · , gn−1) ∈ Rq). The addition operation of two
elements g, h ∈ Rq can be done by taking a

5.2 Gaussian Sampling
5.3 Hashing to DZn,γ

5.4 Timings

6. Security
At first, we would like give some intuitions on the security
of our AKE protocol. Note that in the protocol, the public
element a and the static public key of each party actually
consists of a standard RLWE tuple with Gaussian parame-
ter α. Thus, under the RLWE assumption, the static public
key of each party is computationally indistinguishable from
a random element in Rq . Similarly, both the interchanged
messages xi and yj are also computationally indistinguish-
able from a random element in Rq under the LWE assump-
tion with Gaussian parameter β.

To show the randomness of the session key, we take party
j as an example, since the session key of party i should
be equal to that of party j by the correctness. Note that if
kj is random over Rq , we have σj is statistically close to
{0, 1}n even conditioned on wj by Lemma 6. Since H2

is a random oracle, we have that skj is uniformly over
{0, 1}k as expected. Now, let’s check the randomness of
kj = (pic + xi)(sjd + rj) + 2gj . As one can imagine, we
also want to establish the randomness of kj on the hardness
of the (decisional) RLWE problem, since it is actually a
RLWE instance with public element pic + xi, the secret
sjd + rj , as well as error gj . Informally, we will prove that
kj is statistically close to a real RLWE instance with both the
secret and the error chosen from χβ by using the following
two facts: 1) pic + xi is random over Rq whenever pi or xi
is random (if c is invertible in Rq , which is guaranteed by
Lemma 4); 2) sjd + rj has distribution statistically close to
χβ , since α/β = 2−ω(logn), the distribution of rj ← χβ
statistically hides the term sjd according to Lemma 3 (note
that sj ← χα, and d ∈ χγ).

Formally, let N be the maximum number of parties, and
m be maximum number of sessions for each party. We sep-
arate the security proof for the initiator and responder in the
next two subsections, respectively.
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n Security (expt.) α γ log β
α

log q (bits)
size (kb)

pk sk (expt.) init. msg resp. msg
1024 80 bits 3.397 101.919 8.5 40 5 kb 0.75 kb 5 kb 5.125 kb
2048 80 bits 3.397 161.371 27 78 19.5 kb 1.5 kb 19.5 kb 19.75 kb
2048 128 bits 3.397 161.371 19 63 15.75 kb 1.5 kb 15.75 kb 16 kb
4096 128 bits 3.397 256.495 50 125 62.5 kb 3 kb 62.5 kb 63 kb
4096 192 bits 3.397 256.495 36 97 48.5 kb 3 kb 48.5 kb 49 kb
4096 256 bits 3.397 256.495 28 81 40.5 kb 3 kb 40.5 kb 41 kb

Table 1: Choices of Parameters (we set γ ≈ n2/3 for the use of Lemma 4), and the bound 6α with erfc(6) ≈ 2−55 is used to estimate the
secret key size as we’ve done before.)

n Security (expt.) log q log(β/α) Initiation. (ms) Response. (ms) Finish. (ms)
1024 80 bits 40 8 () () ()
2048 80 bits 78 27 () () ()
2048 128 bits 63 19 () () ()
4096 128 bits 125 50 () () ()
4096 192 bits 97 36 () () ()
4096 256 bits 81 28 () () ()

Table 2: Timings of Proof-of-Concept Implementations (The figures in the bracket indicates the timings with pre-computing.)

6.1 Security for the Initiator
In this subsection, we prove the security of our protocol
when the initiator is the owner of test session. Let sid∗ =
(Π, I, i∗, j∗, xi∗ , (yj∗ , wj∗)) be the test session, chosen by
the adversary A. We distinguish the following two types of
adversaries:

Type I: yj∗ is output by a session of j∗ activated by a
Send1(Π, R, j∗, i∗, xi∗).

Type II: yj∗ is not output by any session of j∗ activated by
a Send1(Π, R, j∗, i∗, xi∗).

Type I and Type II give a complete partition of all the
adversaries that choose sid∗ as the test session. It is easy to
see that if the adversary is a Type II one, then the test session
has no matching session. However, it does not mean that
sid∗ matches an existing session if the adversary is of Type
I, since the pair (yj∗ , wj∗) may not be output by any session
of party j∗ activated by a Send1(Π, R, j∗, i∗, xi∗). In our
security proof, we allow the Type I adversary to obtain
the static secret keys of both party i∗ and j∗ by corrupting
both parties, to capture the security of weak perfect forward
secrecy (wPFS) (but no corruption to either party i∗ or party
j∗ is allowed for a Type II adversary).

6.1.1 Type I Adversary
In this subsection, we prove that our AKE is secure against
any PPT Type I adversary A.

LEMMA 8. If α/β = 2−ω(logn) and LWEq,n,α is hard, the
proposed AKE is secure against any PPT Type I adversary
A in the random oracle model.

Proof. We prove this lemma via a sequence of games G1,l

for 0 ≤ l ≤ 4. We use boxes to highlight the changes of each
game with respect to its previous game.

Game G1,0. S randomly chooses i∗, j∗ ← {1, . . . , N}
and si∗ , sj∗ ← {1, . . . ,m}, and hopes that the adversary
will choose sid∗ = (Π, I, i∗, j∗, xi∗ , (yj∗ , wj∗)) as the test
session, where xi∗ is output by the si∗ -th session of party i∗,
and yj∗ is output by the s∗j -th session of party j∗ activated
by a Send1(Π, R, j∗, i∗, xi∗). Then, S randomly chooses
a← Rq , honestly generates static public keys for all parities
(by randomly choosing si and ei from χα), and simulates
the attack environment for A. Specifically, S maintains two
tables L1, L2 for the random oracles H1, H2 respectively,
and answers the queries from A as follows:

– H1(in): If there doesn’t exist a tuple (in, out) in the L1

list, randomly chooses out ∈ χγ , and add (in, out) to the
L1 list. Then, return out to A.

– H2(in) queries: If there doesn’t exist a tuple (in, out) in
the L2 list, randomly chooses a vector out ∈ {0, 1}k, and
add (in, out) to the L2 list. Then, return out to A.

– Send0(Π, I, i, j): A initiates a new session of i with
intended partner j, S randomly chooses ri, fi ← χβ ,
returns xi = ari + 2fi ∈ Zn×nq to A on behalf of i.

– Send1(Π, R, j, i, xi): S randomly chooses rj , fj ← χβ ,
and honestly computes yj = arj+2fj ∈ Rq , kj , wj , and
skj following the protocol. Finally, return (yj , wj) to A.

– Send2(Π, I, i, j, xi, (yj , wj)): S computes ki and ski by
using ri and si following the protocol.

– SessionKeyReveal(sid): Let sid = (Π, ∗, i, ∗, ∗, ∗, ∗),
S returns ski if the session key of sid has been generated.

– Corrupt(i): Return the static secret key si of i to A.
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– Test(sid): Let sid = (Π, I, i, j, xi, (yj , wj)), if (i, j) 6=
(i∗, j∗), or xi and yj are not output by the si∗ -th session
of i∗ and the s∗j -th session of j∗ respectively, S aborts.
Otherwise, S randomly chooses b ← {0, 1} and sk′i ←
{0, 1}k. If b = 0, S returns sk′i, else it returns the real
session ski of sid.

Game G1,1. S first computes y′j = ar′j + 2f ′j , where

r′j , f
′
j ← χβ . Then, it behaves almost the same as in G1,0,

except in the following case:

– Send1(Π, R, j, i, xi): If (i, j) 6= (i∗, j∗), or it is not
the s∗j -th session of j∗, S answers the query as in
Game G1,0. Otherwise, randomly choose d ← χγ ,
and compute yj = y′j − pjd . S aborts if there is a

tuple ((j, i, yj , xi), ∗) in the L1 list. Else, the simu-
lator S adds ((j, i, yj , xi), d) into L1, and computes
kj = (pic+ xi)r

′
j + 2gj , where c = H1(i, j, xi) and

gj ← χβ . Finally, it honestly computes wj and skj fol-
lowing the protocol, and sends (yj , wj) to A.

Game G1,2. S first computes x′i = ar′i + 2f ′i , where
r′i, f

′
i ← χβ . Then, it behaves almost the same as in G1,1,

except for the following cases:

– Send0(Π, I, i, j): If (i, j) 6= (i∗, j∗), or it is not the si∗ -
th session of i∗, S answers the query as in Game G1,1.
Otherwise, S randomly chooses c ← χγ , and computes
xi = x′i − pic . S aborts if there is a tuple ((i, j, xi), ∗)

in L1 list, else it adds ((i, j, xi), c) into L1. Finally, it
returns xi to A.

– Send2(Π, I, i, j, xi, (yj , wj)): If (i, j) 6= (i∗, j∗), or it
is not the si∗ -th session of i∗, S answers the query as in
Game G1,1. Otherwise, if (yj , wj) is output by the s∗j -
th session of party j∗, let skj be the session key of ses-
sion sid = (Π, R, j, i, xi, (yj , wj)), S sets ski = skj .

Else, S computes ki = (pjd+ yj)r
′
i + 2gi , where d =

H1(j, i, yj , xi) and gi ← χβ . Finally, it honestly com-
putes ski following the protocol.

Game G1,3. S randomly chooses x′i ← Rq , and behaves
almost the same as in G1,2 except in the following case:

– Send2(Π, I, i, j, xi, (yj , wj)): If (i, j) 6= (i∗, j∗), or it
is not the si∗ -th session of i∗, or (yj , wj) is output by the
s∗j -th session of party j∗, S behaves the same as in Game

G1,2. Else, it randomly chooses ski ← {0, 1}k as the
session key.

Game G1,4. S randomly chooses y′j ← Rq , and behaves
almost the same as in G1,3 except in the following case:

– Send1(Π, R, j, i, xi): If (i, j) 6= (i∗, j∗), or it is not
the s∗j -th session of j∗, S answers the query as in
Game G1,3. Otherwise, randomly choose d ← χγ ,

and compute yj = y′j − pjd. S aborts if there is
a tuple ((j, i, yj , xi), ∗) in the L1 list. Else, it adds
((j, i, yj , xi), d) into L1. Then, S randomly chooses
kj ← Rq , and computes wj , σj following the protocol.

If A has made a query H2(i, j, xi, yj , wj , σj), S aborts
the simulation. Else, it randomly chooses skj ← {0, 1}k,
and sets H2(i, j, xi, yj , wj , σj) = skj . Finally, it sends
(yj , wj) to A.

To finish the proof, we prove the following claims.

CLAIM 1. The probability that S will not abort in G1,0 is at
least 1

m2N2 .

Proof. This claim directly follows from the fact that S
randomly chooses i∗, j∗ ← {1, . . . , N} and si∗ , s

∗
j ←

{1, . . . ,m} independently from the view of A. �

In the following, we denote F1,l as the event that A
outputs a guess b′ that equals to b in Game G1,l.

CLAIM 2. If α/β = 2−ω(logn) and LWEq,n,α is hard, then
Pr[F1,l] = Pr[F1,0]− negl(n).

Proof. Note that (a, y′j = ar′j + 2f ′j) is actually a LWE tu-
ple with r′j , f

′
j ← χβ , we have that y′j is computationally

indistinguishable from uniform distribution over Rq . Thus,
the probability that A guesses the correct yj = y′j − pjd be-
fore is negligible. Besides, since pj = asj + 2ej ∈ Rq with
sj , ej ← χα, we have yj = a(r′j − sjd) + 2(f ′j − ejd).
As analyzed in Section 4.2, we have that the norm of
each entry in both sjd, and ejd is at most τ = αγn

√
n,

and |τ |/β = 2−ω(logn) (since α/β = 2−ω(logn) and
γ = poly(n)). Thus, both r′j − sjd and f ′j − ejd have distri-
bution negligibly close to χβ by Lemma 3. This implies that
the distribution of yj in Game G1,1 is statistically close to
that in Game G1,0, which completes the proof. �

CLAIM 3. If α/β = 2−ω(logn) and LWEq,n,α is hard, then
Pr[F1,2] = Pr[F1,1]− negl(n).

Proof. The proof that the distribution of xi is statistically
close to that in Game G1,1 is the same as the proof of Claim
2, andA will make aH1 query with xi with negligible prob-
ability, so the probability that S aborts in G1,2 is negligibly
close to that of G1,1. Combining this with the correctness of
our AKE scheme, this claim follows. �

Note that we change the real session key ski in Game
G1,2 with a randomly chosen one in Game G1,3, when
(yj , w

′
j) is output by the s∗j -th session of party j∗ but

wj 6= w′j . Ideally, the adversary will not be aware of such a
difference if does not make a query to H2 with the exact σi
derived from ki, since H2 is a random oracle. However, we
cannot prove this claim immediately for technique reasons.
Instead, we denote Q1,l as the event that in Game G1,l A
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makes a query to H2 with σi for the si∗ -th session of party
i∗, when (yj , w

′
j) is output by the s∗j -th session of party j∗

but wj 6= w′j , where l = 2, 3, 4. Formally, we have the
following claim.

CLAIM 4. If LWEq,n,α is hard, Pr[Q1,3] = Pr[Q1,2] −
negl(n), and Pr[F1,3|¬Q1,3] = Pr[F1,2|¬Q1,2]− negl(n).

Proof. Note that H2 is a random oracle, the event Q1,2

is independent from the distribution of the correspond-
ing ski. Namely, no matter whether or not A obtains ski,
Pr[Q1,2] is the same, which also holds for Pr[Q1,3]. In
particular, under the LWE assumption, we have that the
public information (i.e., static public keys and public tran-
scripts) in G1,2 and G1,3 is computationally indistinguish-
able, and that Pr[Q1,3] = Pr[Q1,2] − negl(n). Besides,
if Pr[Q1,l] for l = 2, 3 does not happen, the distribu-
tion of ski is the same in both games. In other words,
Pr[F1,3|¬Q1,3] = Pr[F1,2|¬Q1,2]− negl(n). �

CLAIM 5. Under the LWEq,n,β assumption, Game G1,3

and G1,4 are computationally indistinguishable. In partic-
ular, we have Pr[Q1,4] = Pr[Q1,3], and Pr[F1,4|¬Q1,4] =
Pr[F1,3|¬Q1,3]− negl(n).

Proof. Let (u1, v1), (u2, v2) be two challenge LWE tuples
with error distribution χβ (scaled by multiplying t = 2).
Assume there is an adversary that distinguishes Game G1,3

and G1,4, we now construct a distinguisher D that solves
the LWE problem. Specifically,D first sets public parameter
a = u1, and x′i = u2 and y′j = v1. Then, it behaves the same
as S in Game G1,3, except for the following:

– Send1(Π, R, j, i, xi): If (i, j) 6= (i∗, j∗), or it is not the
s∗j -th session of j∗, D answers the query as in Game
G1,3. Otherwise, it randomly chooses d ← χγ , com-
putes yj = y′j − pjd , and aborts if there is a tuple

((j, i, yj , xi), ∗) in theL1 list. Else, it adds ((j, i, yj , xi), d)

into L1. Then,D sets kj = v2 , computeswj , σj follow-
ing the protocol, and aborts if A has made a H2 query
H2(i, j, xi, yj , wj , σj). Else, it setsH2(i, j, xi, yj , wj , σj) =
skj with a randomly chosen skj ← {0, 1}k. Finally, it
sends (yj , wj) to A.

Note that if (u1, v1), (u2, v2) are RLWE tuples for some
secret s′, A is in Game G1,3, else it is in Game G1,4, which
completes the proof. �

CLAIM 6. Pr[Q1,4] = negl(n)

Proof. Let (yj , wj) be output by the s∗j -th session of party
j = j∗, (yj , w

′
j) be the message that is used to complete the

test session (i.e., the si∗ -th session of party i = i∗). Note that
inG1,4, kj is randomly chosen from the uniform distribution
overRq , which is independent from both the public keys and

transcripts (exceptwj). This actually holds even if the adver-
sary obtains skj by using a session key reveal query, since
skj is randomly chosen and H2 is a random oracle. Let ki
be the element “computed” by S, by the correctness of the
protocol ki and kj are sufficiently close, namely, ki = kj+ ĝ
for some ĝ with short element. Since both the public keys
and transcripts (except wj) are randomly and independent
from kj , we have ĝ is also independent from kj in the adver-
sary’s view. Note that Mod2(ki, w

′
j) = Mod2(kj + ĝ, w′j),

we have that σ′i = Mod2(ki, w
′
j) conditioned on wj is also

statistically close to {0, 1}n according to Lemma 6. In other
words, the probability that the adversary makes a query
H2(i, j, xi, yj , w

′
j , σ
′
i) is at most 2−n + negl(n), which is

negligible in k. This completes the proof. �

CLAIM 7. Pr[F1,4|¬Q1,4] = 1/2 + negl(n)

Proof. Let (yj , wj) be output by the s∗j -th session of party
j = j∗, (yj , w

′
j) be the message that is used to complete

the test session (i.e., the si∗ -th session of party i = i∗). We
distinguish the following two cases:

– wj = w′j : In this case, we have ski = skj = H2(i, j, xi,
yj , wj , σj), where σj = Mod2(kj , wj). Note that in
G1,4, kj is randomly chosen from the uniform distribu-
tion over Rq , we have σj is statistically close to uniform
distribution over {0, 1}n in the adversary’s view accord-
ing to Lemma 6. Thus, the probability that A has made a
H2 query with σi is less than 2−n + negl(n).

– wj 6= w′j : By assumption that Q1,4 does not happen, we
have A will never make a H2 query with σi.

In all, the probability that A has made a H2 query with σi
is negligible. This claim follows from the fact that H2 is a
random oracle. If the adversary doesn’t make a query with
σi exactly, the distribution of ski is uniform over {0, 1}k in
the adversary’s view. �

In all, we have Pr[F1,0] = Pr[F1,2] + negl(n) by
claim 2 and 3. By claim 4, 5 and 6, we have Pr[Q1,2] =
Pr[Q1,4] + negl(n) = negl(n), and Pr[F1,2|¬Q1,2] =
Pr[F1,4|¬Q1,4] + negl(n). By the law of total probabil-
ity, we have Pr[F1,2] = Pr[F1,2|¬Q1,2](1 − Pr[Q1,2]) +
Pr[F1,2|Q1,2] Pr[Q1,2], thus Pr[F1,2] = Pr[F1,2|¬Q1,2] −
negl(n). Combining this with claim 7, we have Pr[F1,0] =
Pr[F1,2] + negl(n) = 1/2 + negl(n). �

6.1.2 Type II Adversary
In this subsection, we prove that our AKE is secure against
any PPT Type II adversary A.

LEMMA 9. If α/β = 2−ω(logn) and LWEq,n,α is hard, the
proposed AKE is secure against any PPT Type II adversary
A in the random oracle model.
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Proof. As before, we prove this lemma via a sequence of
games G2,l for 0 ≤ l ≤ 6.

Game G2,0. S randomly chooses i∗, j∗ ← {1, . . . , N}
and si∗ ← {1, . . . ,m}, and hopes that the adversary will
choose sid∗ = (Π, I, i∗, j∗, xi∗ , (yj∗ , wj∗)) as the test ses-
sion, where xi∗ is output by the si∗ -th session of party
i∗ with intended party j∗ (note that sid∗ has no matching
session for Type II adversary). Then, S randomly chooses
a← Rq , honestly generates static public keys for all parities
(by randomly choosing si and ei from χα), and simulates the
attack environment for A. Specifically, S maintains two ta-
bles L1, L2 for the random oracles H1, H2 respectively, and
answers the queries from A as follows:

– H1(in): If there doesn’t exist a tuple (in, out) in the L1

list, randomly chooses out ∈ χγ , and add (in, out) to the
L1 list. Then, return out to A.

– H2(in) queries: If there doesn’t exist a tuple (in, out) in
the L2 list, randomly chooses a vector out ∈ {0, 1}k, and
add (in, out) to the L2 list. Then, return out to A.

– Send0(Π, I, i, j): A initiates a new session of i with
intended partner j, S randomly chooses ri, fi ← χβ ,
returns xi = ari + 2fi ∈ Zn×nq to A on behalf of i.

– Send1(Π, R, j, i, xi): S randomly chooses rj , fj ← χβ ,
and honestly computes yj = arj+2fj ∈ Rq , kj , wj , and
skj following the protocol. Finally, return (yj , wj) to A.

– Send2(Π, I, i, j, xi, (yj , wj)): S computes ki and ski by
using ri and si following the protocol.

– SessionKeyReveal(sid): Let sid = (Π, ∗, i, ∗, ∗, ∗, ∗),
S returns ski if the session key of sid has been generated.

– Corrupt(i): Return the static secret key si of i to A.

– Test(sid): Let sid = (Π, I, i, j, xi, (yj , wj)), if (i, j) 6=
(i∗, j∗), or xi and yj are not output by the si∗ -th session
of i∗ and the s∗j -th session of j∗ respectively, S aborts.
Otherwise, S randomly chooses b ← {0, 1} and sk′i ←
{0, 1}k. If b = 0, S returns sk′i, else it returns the real
session ski of sid.

Game G2,1. S behaves almost the same as in G2,0, except
in the following cases:

– Send0(Π, I, i, j): If i 6= j∗, S answers the query
as in Game G2,1. Else, S computes x′i = ar′i + 2f ′i ,
where r′i, f

′
i ← χβ . Then, it randomly chooses c ←

χγ , and computes xi = x′i − pic . If there is a tuple
((i, j, xi), ∗) in L1 list, S aborts the simulation. Else, it
adds ((i, j, xi), c) into L1, and returns xi to A.

– Send1(Π, R, j, i, xi): If j 6= j∗, S answers the query
as in Game G2,0. Else, S computes y′j = ar′j + 2f ′j ,

where r′j , f
′
j ← χβ . Then, it randomly chooses d ←

χγ , and computes yj = y′j − pjd . If there is a tu-

ple ((j, i, yj , xi), ∗) in the L1 list, S aborts. Else, S

adds ((j, i, yj , xi), d) into the L1 list, and computes
kj = (pic+ xi)r

′
j + 2gj , where c = H1(i, j, xi) and

gj ← χβ . Finally, it computes wj and skj following the
protocol, and sends (yj , wj) to A.

– Send2(Π, I, i, j, xi, (yj , wj)): If i 6= j∗, S answers
the query as in Game G2,1. Otherwise, let xi = x′i −
pic for x′i = ar′i + 2f ′i , the simulator S computes
ki = (pjd+ yj)r

′
i + 2gi , where gi ← χβ . Finally, S

computes ski following the protocol.

Game G2,2. S behaves almost the same as in G2,1, except
it replaces the public key for party j∗ with a uniformly
chosen pj∗ ← Rq .

Game G2,3. S first computes x′i = ar′i + 2f ′i , where
r′i, f

′
i ← χβ . Then, it behaves almost the same as in G2,2,

except in the following cases:

– Send0(Π, I, i, j): If (i, j) 6= (i∗, j∗), or it is not the si∗ -
th session of i∗, S answers the query as in Game G2,2.
Otherwise, S randomly chooses c ← χγ , and computes
xi = x′i − pic . If there is a tuple ((i, j, xi), ∗) in L1 list,
S aborts the simulation. Else, it adds ((i, j, xi), c) into
L1, and returns xi to A.

– Send2(Π, I, i, j, xi, (yj , wj)): If (i, j) 6= (i∗, j∗), or
it is not the si∗ -th session of i∗, S answers the query
as in Game G2,2. Otherwise, the simulator S computes
ki = (pjd+ yj)r

′
i + 2gi , where d = H1(j, i, yj , xi)

and gi ← χβ . Finally, it computes ski following the
protocol.

Game G2,4. S first computes v1 = ar′i + 2f̃ ′i , v2 =

pjr
′
i + tẽ′i where r′i ← χβ , and f̃ ′i , ẽ

′
i ← χα. Then, it

computes x′i = v1 + 2f ′i = ar′i + 2(f̃ ′i + f ′i) where f ′i ←
χβ . Finally, it behaves almost the same as in G2,3 except in
the following case:

– Send2(Π, I, i, j, xi, (yj , wj)): If (i, j) 6= (i∗, j∗), or
it is not the si∗ -th session of i∗, S answers the query
as in Game G2,3. Otherwise, the simulator S computes
ki = dv2 + yjr

′
i + 2gi = (pjd + yj)r

′
i + 2(dẽ′i + gi),

where d = H1(j, i, yj , xi) and gi ← χβ . Finally, it
computes ski following the protocol.

Game G2,5. S behaves almost the same as in G2,4 except
in the following case:

– Send2(Π, I, i, j, xi, (yj , wj)): If (i, j) 6= (i∗, j∗), or it
is not the si∗ -th session of i∗, S answers the query as
in Game G2,4. Else, S randomly chooses ki ← Rq and
computes ski following the protocol.

Game G2,6. S randomly chooses v1, v2 ← Rq , and be-
haves almost the same as in G2,5.

To finish the proof, we prove the following claims.
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CLAIM 8. The probability that S will not abort in G2,0 is at
least 1

mN2 .

Proof. This claim directly follows from the fact that S ran-
domly chooses i∗, j∗ ← {1, . . . , N} and si∗ ← {1, . . . ,m}
without A knowing it. �

In the following, let F2,l denote the event that A outputs
a guess b′ that equals to b in Game G2,l.

CLAIM 9. If α/β = 2−ω(logn) and LWEq,n,α is hard, then
Pr[F2,1] = Pr[F2,0]− negl(n).

Proof. The proof is similar to Claim 2, we omit the details. �

CLAIM 10. If LWEq,n,α is hard, then Pr[F2,2] = Pr[F2,1]−
negl(n).

Proof. Since the only difference between G2,1 and G2,2 is
that S replaces pj∗ = asj∗ + 2ej∗ in G2,1 with a randomly
chosen over Rq in G2,2, an adversary that can distinguish
the difference between G2,1 and G2,2 could be directly used
to solve the LWEq,n,α problem. �

CLAIM 11. If α/β = 2−ω(logn) and LWEq,n,α is hard, then
Pr[F2,3] = Pr[F2,2]− negl(n).

Proof. The proof is similar to Claim 2, we omit the details. �

CLAIM 12. If α/β = 2−ω(logn) and LWEq,n,α is hard, then
Pr[F2,4] = Pr[F2,3]− negl(n).

Proof. In Game G2,4, we have x′i = ar′i + 2(f̃ ′i + f ′i) and
ki = (pjd + yj)r

′
i + 2(dẽ′i + gi), where ẽ′i, f̃

′
i ← χα and

f ′i , gi ← χβ . By Lemma 3, the distributions of both f̃ ′i + f ′i
and dẽ′i + gi are statistically close to χβ . This claim follows.

�

Note that the only difference between G2,4 and G2,5 is
that S replaces the real ki = dv2 + yjr

′
i + 2gi in Game G2,4

with a randomly chosen ki ∈ Rq in GameG2,5. Considering
H2 is a random oracle, such a difference will not affect the
view of A until it makes a H2 query with σi derived from
ki. Formally, denote Q2,l for l = 4, 5, 6 as the event that A
makes a H2 query with σi derived from ki.

CLAIM 13. Pr[Q2,5] = Pr[Q2,4], and Pr[F2,4|¬Q2,4] =
Pr[F2,5|¬Q2,5] = 1/2 + negl(n).

Proof. Since H2 is a random oracle, the event Q2,4 is in-
dependent from the distribution of the corresponding ski.
Namely, no matter whether or not A obtains ski, Pr[Q2,4]
is the same, which also holds for Pr[Q2,5]. Besides, if Q2,l

for l = 4, 5 does not happen, G2,5 is actually the same as
G2,4 in the adversary’s view. Especially, the distribution of
ski is random and uniform over {0, 1}k, which means that

the advantage ofA in guessing b is negligible, given that the
event Q2,5 does not happen. �

Note that if Pr[Q2,5] ≤ negl(n), we have already com-
pleted the proof. However, it is highly non-trivial to prove
such a claim. Actually, though v2 is pseudorandom in the
adversary’s view (under the RLWE assumption), we cannot
immediately obtain that ki = dv2 + yjr

′
i + 2gi is pseudo-

random since yjr′i is correlated with v2. Fortunately, such a
correlation can somehow be removed by the use of the ran-
dom oracle H1, which guarantees that the adversary must
first commit yj before seeing the random element d (i.e.,
by making a corresponding random oracle query). In par-
ticular, if we program the corresponding H1 query with an-
other randomly chosen d̃ and obtain k′i = d̃v2 + yjr

′
i + 2gi,

we have k′i = ki + (d̃ − d)v2. In other words, we have
(d̃−d)v2 = (k′i−ki). Intuitively, if the adversary can distin-
guish ki (and k′i) from a uniformly chosen one, it can distin-
guish v2 (which is computationally hidden under the RLWE
assumption) from a random chosen from Rq .

Now, we formally show that Q2,5 will happen with neg-
ligible probability, which makes heavy use of the Forking
Lemma [2]. Let sid∗ = (Π, I, i∗, j∗, xi, (yj , wi)) be the
test session. By our assumption that A is a Type II adver-
sary, namely, yj is not output by party j∗ in response to a
Send1(Π, R, j∗, i∗, xi) query. In other words, S does not
make a H1 hash query H1(j∗, i∗, yj , xi) by itself in produc-
ing yj . Given v1 = ar′i + 2f̃ ′i , v2 = pjr

′
i + tẽ′i, and gi ← χβ

in Game G2,5, denote ki = dv2 + yjr
′
i + 2gi (which is the

same as that in Game G2,4), where H1(j∗, i∗, yj , xi) = d.
By our assumption,A will make a H2 query with σi derived
from ki with probability at least Pr[Q2,5].

Now, fixing v1, v2, r′i and gi (note that all those values are
chosen by S, and are independent from the adversary’s be-
haviors), S reprograms the hash query H1(j∗, i∗, yj , xi) =

d̃ 6= d by using another randomly chosen d̃ ← χγ , and sets
k′i = d̃v2+yjr

′
i+2gi = ki+(d̃−d)v2. According to the fork-

ing lemma [2], the adversaryA will use the same yj to com-
plete the test session, and makes a H2 query with σ′i derived
from k′i with probability at least Pr[Q2,5](Pr[Q2,5]/qh −
2−n), where qh is maximum number of H1 queries. Denote
by double-Q2,l such an event that, for l = 5, 6, A in Game
G2,l will make both σi and σ′i in two runs of A, where σi is
derived from ki in the first run of A, and σi is derived from
k′i = ki+ (d̃−d)v2 in the second run ofA. In particular, we
have Pr[double-Q2,5] ≥ Pr[Q2,5](Pr[Q2,5]/qh − 2−n).

CLAIM 14. Under the LWEq,n,α assumption, Game G2,6 is
computationally indistinguishable from G2,5. In particular,
Pr[double-Q2,6] = Pr[double-Q2,5]− negl(n)

Proof. Since the only difference between G2,5 and G2,6 is
that S replaces v1 = ar′i + 2f̃ ′i and v2 = pjr

′
i + tẽ′i with

randomly chosen elements in Rq , an adversary that can dis-
tinguish the difference between G2,5 and G2,6 could be di-
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rectly used to solve the LWEq,n,α problem. �

CLAIM 15. Pr[double-Q2,6] = negl(n)

Proof. Note that in Game G2,6, S does not really compute
ki and k′i. (Actually, it cannot compute the values since v1

and v2 are randomly chosen from Rq .) Here, we denote ki
and k′i (i.e., the values determined before and after S repro-
grams the H1 query) as the target values in the A’s view. In
particular, the condition k′i = ki + (d̃ − d)v2 holds, since
A cannot efficiently distinguish Game G2,6 from G2,5 by
Claim 14. However, since v2 is uniformly distributed over
Rq and is independent from A’s view (thus is independent
from both ki and k′i), we have σ′i = Mod2(k′i, w

′
i) is sta-

tistically close to uniform over {0, 1}n even conditioned
on σi = Mod2(ki, wi) by Lemma 6. (Note that (d̃ − d)
is invertible with overwhelming probability by Lemma 4).
Thus, the probability that A will make a H2 query with σ′i
is at most 2−n + negl(n). In other words, the probability
Pr[double-Q2,6] ≤ 2−n+negl(n), which is negligible in n.
This completes the proof. �

In summary, by Claim 14 and 15, we have Pr[double-Q2,5]
= negl(n), which implies that Pr[Q2,5] = negl(n) by the
condition that Pr[double-Q2,5] ≥ Pr[Q2,5](Pr[Q2,5]/qh −
1/2n

2

). Combining this with Claim 13, we have Pr[F2,4] =
1/2 + negl(n). A simple calculation shows that Pr[F2,0] =
1/2 + negl(n). This completes the proof. �

6.2 Security for the Responder
In this subsection, we prove the security of our protocol,
where the responder is the owner of test session. Let sid∗ =
(Π, R, j∗, i∗, xi∗ , (yj∗ , wj∗)) be the test session, as before
we distinguish the following three types of adversaries:

Type III: xi∗ is not output by any session of i∗ activated by
a Send0(Π, I, i∗, j∗).

Type IV: xi∗ is output by a session of i∗ activated by a
Send0(Π, I, i∗, j∗), but i∗ never completes the session,
or it completes the session with exact yj∗ .

Type V: xi∗ is output by a session of i∗ activated by a
Send0(Π, I, i∗, j∗), but i∗ completes the session with
another y′j 6= yj∗ .

Type III, Type IV and Type V give a complete partition
of all the adversaries that choose sid∗ as the test session. It
is easy to see that if the adversary is a Type III or Type V
one, then the test session has no matching session. In our
security proof, we allow a Type IV adversary A to obtain
the static secret keys of both party i∗ and j∗ by corrupting
both parties, to capture the security of weak perfect forward
secrecy (wPFS) (but no corruption to either party i∗ or party
j∗ is allowed for a Type III or Type V adversary).

6.2.1 Type III Adversary
In this subsection, we prove that our AKE is secure against
any PPT Type III adversary A.

LEMMA 10. If α/β = 2−ω(logn) and LWEq,n,α is hard, the
proposed AKE is secure against any PPT Type III adversary
A in the random oracle model.

Proof. We prove this lemma via a sequence of games G3,l

for 0 ≤ l ≤ 7.

Game G3,0. S randomly chooses i∗, j∗ ← {1, . . . , N}
and sj∗ ← {1, . . . ,m}, and hopes that the adversary will
choose sid∗ = (Π, R, j∗, i∗, xi∗ , (yj∗ , wj∗)) as the test
session, where (yj∗ , wj∗) is output by the s∗j -th session of
party j∗ activated by a Send0(Π, R, j∗, i∗, xi∗) for some
xi∗ . Then, S randomly chooses a← Rq , honestly generates
static public keys for all parities (by randomly choosing si
and ei from χα), and simulates the attack environment forA.
Specifically, S maintains two tables L1, L2 for the random
oraclesH1, H2 respectively, and answers the queries fromA
as follows:

– H1(in): If there doesn’t exist a tuple (in, out) in the L1

list, randomly chooses out ∈ χγ , and add (in, out) to the
L1 list. Then, return out to A.

– H2(in) queries: If there doesn’t exist a tuple (in, out) in
the L2 list, randomly chooses a vector out ∈ {0, 1}k, and
add (in, out) to the L2 list. Then, return out to A.

– Send0(Π, I, i, j): A initiates a new session of i with
intended partner j, S randomly chooses ri, fi ← χβ ,
returns xi = ari + 2fi ∈ Zn×nq to A on behalf of i.

– Send1(Π, R, j, i, xi): S randomly chooses rj , fj ← χβ ,
and honestly computes yj = arj+2fj ∈ Rq , kj , wj , and
skj following the protocol. Finally, return (yj , wj) to A.

– Send2(Π, I, i, j, xi, (yj , wj)): S computes ki and ski by
using ri and si following the protocol.

– SessionKeyReveal(sid): Let sid = (Π, ∗, i, ∗, ∗, ∗, ∗),
S returns ski if the session key of sid has been generated.

– Corrupt(i): Return the static secret key si of i to A.

– Test(sid): Let sid = (Π, I, i, j, xi, (yj , wj)), if (i, j) 6=
(i∗, j∗), or xi and yj are not output by the si∗ -th session
of i∗ and the s∗j -th session of j∗ respectively, S aborts.
Otherwise, S randomly chooses b ← {0, 1} and sk′i ←
{0, 1}k. If b = 0, S returns sk′i, else it returns the real
session ski of sid.

Game G3,1. S behaves almost the same as in G3,0, except
in the following cases:

– Send0(Π, I, i, j): If i 6= i∗, S answers the query as in
Game G3,0. Else, S computes x′i = ar′i + 2f ′i , where
r′i, f

′
i ← χβ . Then, it randomly chooses c ← χγ , and

computes xi = x′i − pic . If there is a tuple ((i, j, xi), ∗)
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in L1 list, S aborts, else it adds ((i, j, xi), c) into L1, and
returns xi to A.

– Send1(Π, R, j, i, xi): If j 6= i∗, S answers the query
as in Game G3,0. Else, S computes y′j = ar′j + 2f ′j ,

where r′j , f
′
j ← χβ . Then, it randomly chooses d ←

χγ , and computes yj = y′j − pjd . If there is a tu-

ple ((j, i, yj , xi), ∗) in the L1 list, S aborts. Else, it
adds ((j, i, yj , xi), d) into the L1 list, and computes
kj = (pic+ xi)r

′
j + 2gj , where c = H1(i, j, xi) and

gj ← χβ . Finally, it computes wj and skj following the
protocol, and sends (yj , wj) to A.

– Send2(Π, I, i, j, xi, (yj , wj)): If i 6= i∗, S answers
the query as in Game G3,0. Otherwise, let xi = x′i −
pic for x′i = ar′i + 2f ′i , the simulator S computes
ki = (pjd+ yj)r

′
i + 2gi , where gi ← χβ . Finally, S

computes ski following the protocol.

Game G3,2. S behaves almost the same as in G3,1, except
it replaces the public key for party i∗ with a randomly chosen
pi∗ ← Rq .

Game G3,3. S first computes y′j = ar′j +2f ′j , where

r′j , f
′
j ← χβ . Then, it behaves almost the same as in G3,2,

except in the following cases:

– Send1(Π, R, j, i, xi): If (i, j) 6= (i∗, j∗), or it is not the
s∗j -th session of j∗, S answers the query as in Game
G3,2. Otherwise, S randomly chooses d ← χγ , and
computes yj = y′j − pjd . S aborts if there is a tuple

((j, i, yj , xi), ∗) in the L1 list. Else, it adds ((j, i, yj , xi),

d) into L1 list, and computes kj = (pic+ xi)r
′
j + 2gj ,

where c = H1(i, j, xi) and gj ← χβ . Finally, it com-
putes wj and skj following the protocol, and sends
(yj , wj) to A.

Game G3,4. S first computes v1 = ar′j +2f̃ ′j , v2 = pir
′
j +

tẽ′j where r′j ← χβ , and f̃ ′j , ẽ
′
j ← χα. Then, it computes

y′j = v1 + 2f ′j = ar′j+2(f̃ ′j+f ′j) where f ′j ← χβ . Finally,
it behaves almost the same as inG3,3 except in the following
case:

– Send1(Π, R, j, i, xi): If (i, j) 6= (i∗, j∗), or it is not the
s∗j -th session of j∗, S answers the query as in GameG3,3.
Otherwise, S randomly chooses d ← χγ , and computes
yj = y′j − pjd . If there is a tuple ((j, i, yj , xi), ∗) in the

L1 list, S aborts. Otherwise, it adds ((j, i, yj , xi), d) into
L1 list, and computes kj = cv2 + xir

′
j + 2gj = (pic +

xi)r
′
j+2(cẽ′j+gj), where c = H1(i, j, xi) and gj ← χβ .

Finally, it computes wj and skj following the protocol,
and sends (yj , wj) to A.

Game G3,5. S behaves almost the same as in G3,4 except
in the following case:

– Send1(Π, R, j, i, xi): If (i, j) 6= (i∗, j∗), or it is not
the s∗j -th session of j∗, S answers the query as in Game
G3,4. Otherwise, S randomly chooses d← χγ , and com-
putes yj = y′j − pjd. If there is a tuple ((j, i, yj , xi), ∗)
in the L1 list, S aborts, else it adds ((j, i, yj , xi), d) into
L1. Then, it randomly chooses kj ← Rq , computes wj
and σj as described in the protocol. If A has made a H2

query H2(i, j, xi, yj , wj , σj), S aborts. Else, it randomly

chooses skj ← {0, 1}k , and sets H2(i, j, xi, yj , wj ,

σj) = skj . Finally, it sends (yj , wj) to A.

Game G3,6. S randomly chooses v1, v2 ← Rq , and be-
haves almost the same as in G3,5.

To finish the proof, we prove the following claims.

CLAIM 16. The probability that S will not abort in G3,0

with probability at least 1
mN2 .

Proof. This claim directly follows from the fact that S ran-
domly chooses i∗, j∗ ← {1, . . . , N} and s∗j ← {1, . . . ,m}
independently from the view of A. �

In the following, we use F3,l to denote the event that A
outputs a guess b′ that equals to b in Game G3,l.

CLAIM 17. If α/β = 2−ω(logn) and LWEq,n,α is hard, then
Pr[F3,1] = Pr[F3,0]− negl(n).

Proof. The proof is similar to Claim 2, we omit the details. �

CLAIM 18. If LWEq,n,α is hard, then Pr[F3,2] = Pr[F3,1]−
negl(n).

Proof. The proof is similar to Claim 11, we omit the details.
�

CLAIM 19. If α/β = 2−ω(logn) and LWEq,n,α is hard, then
Pr[F3,3] = Pr[F3,2]− negl(n).

Proof. The proof is similar to Claim 2, we omit the details. �

CLAIM 20. If α/β = 2−ω(logn) and LWEq,n,α is hard, then
Pr[F3,4] = Pr[F3,3]− negl(n).

Proof. The proof is similar to Claim 2, we omit the details. �

Note that the only difference between G3,4 and G3,5 is
that S replaces the real kj = cv2 +xir

′
j + 2gj in Game G3,4

with a randomly chosen kj ∈ Rq in GameG3,5. Considering
H2 is a random oracle, such a difference will not affect the
view of A until it makes a H2 query with σj derived from
kj . Formally, denote Q3,l for l = 4, 5, 6 as the event that A
makes a H2 query with σj derived from kj .
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CLAIM 21. Pr[Q3,4] = Pr[Q3,5] and Pr[F3,4|¬Q3,4] =
Pr[F3,5|¬Q3,5] = 1/2 + negl(n).

Proof. Since H2 is a random oracle, the event Q3,4 is in-
dependent from the distribution of the corresponding ski.
Namely, no matter whether or not A obtains ski, Pr[Q2,5]
is the same, which also holds for Pr[Q3,5]. Besides, if Q3,l

for l = 4, 5 does not happen, G3,5 is actually the same as
G3,4 in the adversary’s view. Especially, the distribution of
skj is random and uniform over {0, 1}k, which means that
the advantage ofA in guessing b is negligible, given that the
event Q3,5 does not happen. �

Similarly, let sid = (Π, R, j∗, i∗, xi, (yj , wi)) be the test
session. By our assumption that A is a Type III adversary,
xi is not output by party i∗. In other words, S itself does not
make a H1 hash query H1(i∗, j∗, xi) in producing xi. Given
v1 = ar′j + 2f̃ ′j , v2 = pir

′
j + tẽ′j , and gj ← χβ in Game

G3,5, we denote kj = cv2 + xir
′
j + 2gj as the target key

in adversary A’s view (which is the same as in Game G3,4),
where H1(i∗, j∗, xi) = c. By our assumption, A will make
a H2 query with σj derived from kj with probability at least
Pr[Q3,5].

Now, fixing v1, v2, r′j and gj (note that all those values are
determined by S, and are independent from the adversary’s
behaviors), S reprograms the hash query H1(i∗, j∗, xi) =
c̃ 6= c by using another randomly chosen c̃ ← χγ , and sets
k′j = c̃v2 + xir

′
j + 2gj = kj + (c̃− c)v2. According to the

forking lemma [2], the adversary A will use the same xi in
the test session, and and makes a H2 query with σ′j derived
from k′j with probability at least Pr[Q3,5](Pr[Q3,5]/qh −
2−n), where qh is maximum number of H1 queries. Denote
by double-Q3,l such an event that, for l = 5, 6, A in Game
G3,l will make both σi and σ′i in two runs of A, where σj is
derived from kj in the first run of A, and σ′j is derived from
k′j = kj + (c̃− c)v2 in the second run ofA. In particular, we
have Pr[double-Q3,5] ≥ Pr[Q3,5](Pr[Q3,5]/qh − 2−n).

CLAIM 22. Under the LWEq,n,α assumption, Game G3,6 is
computationally indistinguishable from G3,5. In particular,
Pr[double-Q3,6] = Pr[double-Q3,5]− negl(n).

Proof. Since the only difference between G3,5 and G3,6 is
that S replaces v1 = ar′i + 2f̃ ′i and v2 = pjr

′
i + tẽ′i with

randomly chosen elements in Rq , and an adversary that can
distinguish the difference between G3,5 and G3,6 could be
used to solve the LWEq,n,α problem. �

CLAIM 23. Pr[double-F3,6] = negl(n).

Proof. Note that in Game G3,6, S does not really compute
kj and k′j . (Actually, it cannot compute the values since v1

and v2 are randomly chosen from Rq .) Here, we denote kj
and k′j (i.e., the values determined before and after S repro-
grams the H1 query) as the target values in the A’s view. In
particular, the condition k′j = kj + (d̃ − d)v2 holds, since

A cannot efficiently distinguish Game G3,6 from G3,5 by
Claim ??. However, since v2 is uniformly distributed over
Rq and is independent from the A’s view (thus is indepen-
dent from both kj and k′j), we have σ′j = Mod2(k′j , w

′
j) is

statistically close to uniform over {0, 1}n even conditioned
on σj = Mod2(kj , wj) by Lemma 6. (Note that (c̃ − c)
has full-rank). Thus, the probability that A will make a H2

query with σ′i is at most 2−n + negl(n). In other words,
the probability Pr[double-F3,6] ≤ 2−n + negl(n), which is
negligible in n. This completes the proof. �

In summary, by Claim 22 and 23, we have Pr[double-Q3,5]
= negl(n), which implies that Pr[Q3,5] = negl(n) by the
inequality that Pr[double-Q3,5] ≥ Pr[Q3,5](Pr[Q3,5]/qh −
2−n). Combining this with Claim 21, we have Pr[F3,4] =
1/2 + negl(n). A simple calculation shows that Pr[F3,0] =
1/2 + negl(n). This completes the proof. �

6.2.2 Type IV Adversary
In this subsection, we prove that our AKE is secure against
any PPT Type IV adversary A.

LEMMA 11. If α/β = 2−ω(logn) and LWEq,n,α is hard, the
proposed AKE is secure against any PPT Type IV adversary
A in the random oracle model.

Proof. We prove this lemma via a sequence of games G4,l

for 0 ≤ l ≤ 4.

Game G4,0. S randomly chooses i∗, j∗ ← {1, . . . , N}
and si∗ , sj∗ ← {1, . . . ,m}, and hopes that the adversary
will choose sid∗ = (Π, R, j∗, i∗, xi∗ , (yj∗ , wj∗)) as the test
session, where xi∗ is output by the si∗ -th session of party
i∗, and (yj∗, wj∗) is output by the s∗j -th session of party j∗

activated by a Send1(Π, R, j∗, i∗, xi∗). Then, S randomly
chooses a ← Rq , honestly generates static public keys
for all parities (by randomly choosing si and ei from χα),
and simulates the attack environment for A. Specifically, S
maintains two tables L1, L2 for the random oracles H1, H2

respectively, and answers the queries from A as follows:

– H1(in): If there doesn’t exist a tuple (in, out) in the L1

list, randomly chooses out ∈ χγ , and add (in, out) to the
L1 list. Then, return out to A.

– H2(in) queries: If there doesn’t exist a tuple (in, out) in
the L2 list, randomly chooses a vector out ∈ {0, 1}k, and
add (in, out) to the L2 list. Then, return out to A.

– Send0(Π, I, i, j): A initiates a new session of i with
intended partner j, S randomly chooses ri, fi ← χβ ,
returns xi = ari + 2fi ∈ Zn×nq to A on behalf of i.

– Send1(Π, R, j, i, xi): S randomly chooses rj , fj ← χβ ,
and honestly computes yj = arj+2fj ∈ Rq , kj , wj , and
skj following the protocol. Finally, return (yj , wj) to A.

– Send2(Π, I, i, j, xi, (yj , wj)): S computes ki and ski by
using ri and si following the protocol.
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– SessionKeyReveal(sid): Let sid = (Π, ∗, i, ∗, ∗, ∗, ∗),
S returns ski if the session key of sid has been generated.

– Corrupt(i): Return the static secret key si of i to A.

– Test(sid): Let sid = (Π, I, i, j, xi, (yj , wj)), if (i, j) 6=
(i∗, j∗), or xi and yj are not output by the si∗ -th session
of i∗ and the s∗j -th session of j∗ respectively, S aborts.
Otherwise, S randomly chooses b ← {0, 1} and sk′i ←
{0, 1}k. If b = 0, S returns sk′i, else it returns the real
session ski of sid.

Game G4,1. S first computes y′j = ar′j +2f ′j , where

r′j , f
′
j ← χβ . Then, it behaves almost the same as in G4,0,

except in the following case:

– Send1(Π, R, j, i, xi): If (i, j) 6= (i∗, j∗), or it is not the
s∗j -th session of j∗, S answers the query as in GameG4,0.
Otherwise, S randomly chooses d ← χγ , and computes
yj = y′j − pjd . If there is a tuple ((j, i, yj , xi), ∗) in

the L1 list, S aborts. Else, it adds ((j, i, yj , xi), d) into
L1 list, and computes kj = (pic+ xi)r

′
j + 2gj , where

c = H1(i, j, xi) and gj ← χβ . Finally, it computes wj
and skj following the protocol, and sends (yj , wj) to A.

Game G4,2. S first computes x′i = ar′i + 2f ′i , where
r′i, f

′
i ← χβ . Then, it behaves almost the same as in G4,1,

except for the following cases:

– Send0(Π, I, i, j): If (i, j) 6= (i∗, j∗), or it is not the si∗ -
th session of i∗, S answers the query as in Game G4,1.
Otherwise, S randomly chooses c ← χγ , and computes
xi = x′i − pic . S aborts if there is a tuple ((i, j, xi), ∗)

in L1 list, else it adds ((i, j, xi), c) into L1. Finally, it
returns xi to A.

– Send2(Π, I, i, j, xi, (yj , wj)): If (i, j) 6= (i∗, j∗), or it
is not the si∗ -th session of i∗, S answers the query as in
Game G4,1. Otherwise, if (yj , wj) is output by the s∗j -th
session of party j∗, let skj be the session key of session
sid = (Π, R, j, i, xi, (yj , wj)), S sets ski = skj . Oth-

erwise, it computes ki = (pjd+ yj)r
′
i + 2gi , where

d = H1(j, i, yj , xi) and gi ← χβ . Finally, it computes
ski following the protocol.

Game G4,3. S first randomly chooses x′i ← Rq . Then, it
behaves almost the same as in G4,2, except for the following
cases:

– Send2(Π, I, i, j, xi, (yj , wj)): If (i, j) 6= (i∗, j∗), or it
is not the si∗ -th session of i∗, or (yj , wj) is output by the
s∗j -th session of party j∗, S behaves the same as in Game

G4,2. Else, it randomly chooses ski ← {0, 1}k as the
session key.

Game G4,4. S randomly chooses y′j ← Rq , and behaves
almost the same as in G4,3, except in the following case:

– Send1(Π, R, j, i, xi): If (i, j) 6= (i∗, j∗), or it is not the
s∗j -th session of j∗, S answers the query as in GameG4,3.
Otherwise, S randomly chooses d ← χγ , and computes
yj = y′j − pjd . If there is a tuple ((j, i, yj , xi), ∗) in

the L1 list, S aborts, else it adds ((j, i, yj , xi), d) into
L1. Then, S randomly chooses kj ← Rq , and com-
putes wj , σj following the protocol. If A has made a H2

query H2(i, j, xi, yj , wj , σj), S aborts. Else, it randomly

chooses skj ← {0, 1}k , and setsH2(i, j, xi, yj , wj , σj)

= skj . Finally, it sends (yj , wj) to A.

To finish the proof, we prove the following claims.

CLAIM 24. The probability that S will not abort in G4,0 is
at least 1

m2N2 .

Proof. This claim directly follows from the fact that S
randomly chooses i∗, j∗ ← {1, . . . , N} and si∗ , s

∗
j ←

{1, . . . ,m} independently from the view of A. �

In the following, we define F4,l as the event that A out-
puts a guess b′ that equals to b in Game G4,l.

CLAIM 25. If α/β = 2−ω(logn) and LWEq,n,α is hard, then
Pr[F4,l] = Pr[F4,0]− negl(n).

Proof. The proof is similar to Claim 2, we omit the details. �

CLAIM 26. If α/β = 2−ω(logn) and LWEq,n,α is hard, then
Pr[F4,2] = Pr[F4,l]− negl(n).

Proof. The proof is similar to Claim 3, we omit the details. �

Denote Q4,l be event that in Game G4,l for l = 2, 3, 4, A
makes a H2 query with σi for the si∗ -th session of party i∗,
when (yj , w

′
j) is output by the s∗j -th session of party j∗ but

wj 6= w′j .

CLAIM 27. If LWEq,n,α is hard, Pr[Q4,3] = Pr[Q4,2] −
negl(n), and Pr[F4,3|¬Q4,3] = Pr[F4,2|¬Q4,2]− negl(n).

Proof. The proof is similar to Claim 4, we omit the details. �

CLAIM 28. Under the LWEq,n,β assumption, Game G4,3

and G4,4 is computationally indistinguishable. In particu-
lar, we have Pr[Q4,4] = Pr[Q4,3], and Pr[F4,4|¬Q4,4] =
Pr[F4,3|¬Q4,3]− negl(n).

Proof. The proof is similar to Claim 5, we omit the details. �

CLAIM 29. Pr[Q4,4] = negl(n).

Proof. The proof is similar to Claim 6, we omit the details. �

CLAIM 30. Pr[F4,4|¬Q4,4] = 1/2 + negl(n).

15 2014/7/30



Proof. The proof is similar to Claim 7, we omit the details. �

In all, we have Pr[F4,0] = Pr[F4,2] + negl(n) by claim
25 and 26. By claim 28 and 29, we have Pr[Q4,3] =
Pr[Q4,4] = negl(n), and Pr[F4,3] = Pr[F4,4] + negl(n).
Since Pr[F4,3] = Pr[F4,3|Q4,3] Pr[Q4,3] + Pr[F4,3|¬Q4,3]
(1 − Pr[Q4,3]), we have Pr[F4,3] = Pr[F4,3|¬Q4,3] −
negl(n). Combining this with claim 27 and claim 30, we
have Pr[F4,0] = Pr[F4,2] + negl(n) = 1/2 + negl(n). �

6.2.3 Type V Adversary
In this subsection, we prove that our AKE is secure against
any PPT Type V adversary A.

LEMMA 12. If α/β = 2−ω(logn) and LWEq,n,α is hard, the
proposed AKE is secure against any PPT Type V adversary
A in the random oracle model.

Proof. We prove this lemma via a sequence of games G5,l

for 0 ≤ l ≤ 4.

Game G5,0. S randomly chooses i∗, j∗ ← {1, . . . , N}
and si∗ , sj∗ ← {1, . . . ,m}, and hopes that the adversary
will choose sid∗ = (Π, R, j∗, i∗, xi∗ , (yj∗ , wj∗)) as the test
session, where xi∗ is output by the si∗ -th session of party
i∗, and (yj∗, wj∗) is output by the s∗j -th session of party j∗

activated by a Send1(Π, R, j∗, i∗, xi∗). Then, S randomly
chooses a ← Rq , honestly generates static public keys
for all parities (by randomly choosing si and ei from χα),
and simulates the attack environment for A. Specifically, S
maintains two tables L1, L2 for the random oracles H1, H2

respectively, and answers the queries from A as follows:

– H1(in): If there doesn’t exist a tuple (in, out) in the L1

list, randomly chooses out ∈ χγ , and add (in, out) to the
L1 list. Then, return out to A.

– H2(in) queries: If there doesn’t exist a tuple (in, out) in
the L2 list, randomly chooses a vector out ∈ {0, 1}k, and
add (in, out) to the L2 list. Then, return out to A.

– Send0(Π, I, i, j): A initiates a new session of i with
intended partner j, S randomly chooses ri, fi ← χβ ,
returns xi = ari + 2fi ∈ Zn×nq to A on behalf of i.

– Send1(Π, R, j, i, xi): S randomly chooses rj , fj ← χβ ,
and honestly computes yj = arj+2fj ∈ Rq , kj , wj , and
skj following the protocol. Finally, return (yj , wj) to A.

– Send2(Π, I, i, j, xi, (yj , wj)): S computes ki and ski by
using ri and si following the protocol.

– SessionKeyReveal(sid): Let sid = (Π, ∗, i, ∗, ∗, ∗, ∗),
S returns ski if the session key of sid has been generated.

– Corrupt(i): Return the static secret key si of i to A.

– Test(sid): Let sid = (Π, I, i, j, xi, (yj , wj)), if (i, j) 6=
(i∗, j∗), or xi and yj are not output by the si∗ -th session
of i∗ and the s∗j -th session of j∗ respectively, S aborts.

Otherwise, S randomly chooses b ← {0, 1} and sk′i ←
{0, 1}k. If b = 0, S returns sk′i, else it returns the real
session ski of sid.

Game G5,1. S first computes y′j = ar′j + 2f ′j , where

r′j , f
′
j ← χβ . Then, it behaves almost the same as in G5,0,

except in the following case:

– Send1(Π, R, j, i, xi): If (i, j) 6= (i∗, j∗), or it is not the
s∗j -th session of j∗, S answers the query as in GameG5,0.
Otherwise, S randomly chooses d ← χγ , and computes
yj = y′j − pjd . If there is a tuple ((j, i, yj , xi), ∗) in

the L1 list, S aborts. Else, it adds ((j, i, yj , xi), d) into
L1. Then, S computes kj = (pic+ xi)r

′
j + 2gj , where

c = H1(i, j, xi) and gj ← χβ . Finally, it computes wj
and skj following the protocol, and sends (yj , wj) to A.

Game G5,2. S first computes x′i = ar′i + 2f ′i , where
r′i, f

′
i ← χβ . Then, it behaves almost the same as in G5,1,

except for the following cases:

– Send0(Π, I, i, j): If (i, j) 6= (i∗, j∗), or it is not the si∗ -
th session of i∗, S answers the query as in Game G5,1.
Otherwise, S randomly chooses c ← χγ , and computes
xi = x′i − pic . If there is a tuple ((i, j, xi), ∗) in L1 list,
S aborts, else it adds ((i, j, xi), c) into L1. Finally, it
returns xi to A.

– Send2(Π, I, i, j, xi, (yj , wj)): If (i, j) 6= (i∗, j∗), or it
is not the si∗ -th session of i∗, S answers the query as in
Game G5,1. Otherwise, if (yj , wj) is output by the s∗j -
th session of party j∗, let skj be the session key of ses-
sion sid = (Π, R, j, i, xi, (yj , wj)), S sets ski = skj .

Else, S computes ki = (pjd+ yj)r
′
i + 2gi , where d =

H1(j, i, yj , xi) and gi ← χβ . Finally, it computes ski
following the protocol.

Game G5,3. S randomly chooses x′i ← Rq , and behaves
almost the same as in G5,2, with the following exception:

– Send2(Π, I, i, j, xi, (yj , wj)): If (i, j) 6= (i∗, j∗), or it
is not the si∗ -th session of i∗, or (yj , wj) is output by the
s∗j -th session of party j∗, S answers the query as in Game

G5,2. Else, it randomly chooses ski ← {0, 1}k .

Game G5,4. S randomly chooses y′j ← Rq , and behaves
almost the same as in G5,3, except in the following case:

– Send1(Π, R, j, i, xi): If (i, j) 6= (i∗, j∗), or it is not
the s∗j -th session of j∗, S answers the query as in Game
G5,3. Otherwise, S randomly chooses d← χγ , and com-
putes yj = y′j − pjd . If there is a tuple ((j, i, yj , xi), ∗)
in the L1 list, S aborts. Else, it adds ((j, i, yj , xi), d)

intoL1, and randomly chooses kj ← Rq , and computes
wj , σj following the protocol. S aborts the simulation
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if A has made a H2 query H2(i, j, xi, yj , wj , σj). Oth-

erwise, it randomly chooses skj ← {0, 1}k , and sets
H2(i, j, xi, yj , wj , σj) = skj . Finally, it sends (yj , wj)
to A.

To finish the proof, we prove the following claims.

CLAIM 31. The probability that S will not abort in G5,0

with probability at least 1
m2N2 .

Proof. This claim directly follows from the fact that S
randomly chooses i∗, j∗ ← {1, . . . , N} and si∗ , s

∗
j ←

{1, . . . ,m} independently from the view of A. �

In the following, let F5,l denote the event that A outputs
a guess b′ that equals to b in Game G5,l.

CLAIM 32. If α/β = 2−ω(logn) and LWEq,n,α is hard, then
Pr[F5,l] = Pr[F5,0]− negl(n).

Proof. The proof is similar to Claim 2, we omit the details. �

CLAIM 33. If α/β = 2−ω(logn) and LWEq,n,α is hard, then
Pr[F5,2] = Pr[F5,l]− negl(n).

Proof. The proof is similar to Claim 3, we omit the details. �

CLAIM 34. Pr[F5,3] = Pr[F5,2]− negl(n).

Proof. The claim can be proved via a sequence of Games as
we have done from Game G2,4 to G2,6. We omit the details
here. �

CLAIM 35. Under the LWEq,n,β assumption, we have that
Pr[F5,4] = Pr[F5,3]− negl(n).

Proof. The proof is similar to Claim 5, we omit the details. �

CLAIM 36. Pr[F5,4] = 1/2 + negl(n).

Proof. The proof is similar to Claim 7, we omit the details. �

In all, we have Pr[F5,0] = Pr[F5,2] + negl(n) by claim
32 and 33. By claim 35, we have Pr[F5,3] = Pr[F5,4] +
negl(n). Combining this with claim 34 and claim 36, we
have Pr[F5,0] = Pr[F5,2] + negl(n) = 1/2 + negl(n). �
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