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Abstract
Authenticated key exchange (AKE) protocols, such as IKE
and SSL/TLS, have been widely used to ensure secure com-
munication over the Internet. We present in this paper a
practical and provably secure AKE protocol from ideal lat-
tices, which is conceptually simple and has similarities to
the Diffie-Hellman based protocols such as HMQV (CRYP-
TO 2005) and OAKE (CCS 2013). Our protocol does not
rely on other cryptographic primitives—in particular, it does
not use signatures—simplifying the protocol and resting the
security solely on the hardness of the ring learning with er-
rors (RLWE) problem. The security is proven in a version
of the Bellare-Rogaway model, with enhancements to cap-
ture weak Perfect Forward Secrecy. We also present concrete
choices of parameters for different security levels. A proof-
of-concept implementation shows our protocol is a practical
candidate post-quantum key exchange protocol.

1. Introduction
Key exchange (KE) is a fundamental cryptographic primi-
tive, allowing two parties to securely generate a common se-
cret key over an insecure network. Because symmetric cryp-
tographic tools (e.g. AES) are reliant on both parties having
a shared key in order to securely transmit data, KE is one of
the most used cryptographic tools in building secure commu-
nication protocols (e.g. SSL/TLS, IPSec, SSH). Following
the introduction of the Diffie-Hellman (DH) protocol [13],
cryptographers have devised a wide selection of KE proto-
cols with various use-cases. One such class is Authenticated
Key Exchange (AKE), a class of KE protocols where each
party is able to verify the other’s identity, so that an adver-
sary cannot impersonate one party in the conversation.

For an AKE protocol, each party has two correspond-
ing static keys: a static secret key and a corresponding stat-
ic public key. The static public key is certified to belong
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to its owner using a public key infrastructure or ID-based
infrastructure. For each run of the protocol, the parties in-
volved generate ephemeral secret keys and use these to gen-
erate ephemeral public keys that they exchange. Then all of
the keys are used along with the transcripts of the session
to create a shared session state, which is then passed to a
key derivation function to obtain the final session key. Intu-
itively, such a protocol is secure if no Probabilistic Polyno-
mial Time (PPT) adversary is able to extract any informa-
tion about the session key from the publicly exchanged mes-
sages. More formally, Bellare and Rogaway [4] introduced
an indistinguishability-based security model for AKE, the
BR model, which captures basic notions such as known key
security and impersonation resistance. In 2001, Canetti and
Krawczyk [7] presented a refined model, the CK model, that
also accounts for scenarios in which the adversary is able to
obtain information about a static secret key or a session s-
tate other than the state of the target session. One common
weakness these models share is their inability to ensure that
a protocol satisfies Perfect Forward Secrecy (PFS), the prop-
erty that an adversary cannot compromise session keys after
a completed session, even if it obtains the parties’ static se-
cret keys (e.g., via a heartbleed attack1). As shown in [30],
no two-pass AKE protocol based on public-key authentica-
tion can achieve PFS. Thus, the notion of weak PFS (wPFs)
is usually considered for two-pass AKE protocols, which s-
tates that the session key of an honestly run session cannot
be compromised if the static keys are compromised after the
session is finished [30].

1.1 Previous Work
Since Diffie and Hellman introduced their celebrated KE
protocol in [13], a number of (A)KE protocols have been
proposed. One approach for achieving authentication in KE
protocols is to explicitly authenticate the exchanged mes-
sages between the involved parities by using some crypto-
graphic primitives (e.g., signatures, MAC etc.), which usu-
ally incurs additional computation and communication cost-
s with respect to the basic KE protocol, and complicates
the understanding of the KE protocol. This includes sever-
al well-known protocols such as IKE [25, 28], SIGMA [29],
SSL [16], TLS [12, 23, 31, 36], and so on. Another line of

1 http://heartbleed.com/



designing AKEs follows the idea of MQV [26, 37] (which
has been standardized by ISO/IEC and IEEE, and recom-
mended by NIST and NSA Suite B) by making good of
the algebraic structure of DH problems to achieve implicit
authentication, e.g., HMQV [30] and OAKE [46]. All the
above AKEs are based on classic hard problems, such as
factoring, the RSA problem, and the computational/decision
DH problem. Since these hard problems are vulnerable to
quantum computers [44] as we are moving into the era of
quantum computing, it is very appealing to find other coun-
terparts based on problems believed to be resistant to quan-
tum attacks. For instance, post-quantum AKE is considered
of high priority by NIST [8]. Due to the potential benefits
of lattice-based construction such as asymptotic efficiency,
conceptual simplicity, worst-case hardness assumptions, it
makes perfect sense to build lattice-based AKEs.

As far as we know, there are four papers focused on
designing (A)KEs from lattices [14, 17, 18, 27, 42]. Katz
and Vaikuntanathan [27] proposed the first password-based
authenticated key exchange that can be proven secure based
on the LWE assumption in the standard model. The three
papers [17, 18, 42] followed generic transformations from
key encapsulation mechanisms to AKEs by explicitly using
signatures to provide authentication, thus suffered additional
overheads. Recently, Ding et al. [14] proposed a simple
KE protocol based on (Ring-)LWE by exploring a similar
commutativity property as for the DH protocol (i.e., (ga)b =
(gb)a in cyclic groups). Like the standard DH protocol, the
protocol in [14] cannot provide authentication—i.e., it is not
an AKE protocol—and is thus weak to man-in-the-middle
attacks. Besides, no papers above provide suggestions on
practical implementations, e.g., estimation of actual security
levels (e.g., 80 bits), choices of concrete parameters etc.

1.2 Our Contribution
In this paper, we propose an efficient AKE protocol based on
the RLWE problem, which in turn is as hard as some hard
problems (e.g., SIVP) in the worst-case on ideal lattices.
Our method avoids introducing extra cryptographic primi-
tives, thus simplifying the design and reducing overhead. In
particular, the communicating parties are not required to ei-
ther encrypt any messages with the other’s public key, nor
sign any of their own messages during key exchange. Fur-
thermore, by having the key exchange as a self-contained
system, we reduce the security assumptions needed, and are
able to rely directly on the hardness of RLWE.

Our protocol has only two-pass messages like Ding
et al.’s KE protocol [14]. We employ some useful proper-
ties of RLWE and discrete Gaussian distributions (on ideal
lattices), and establish an approach to combine both the stat-
ic and ephemeral public/secret keys, in a manner similar to
HMQV [30]. Moreover, as captured by the enhanced BR
model, our protocol achieves weak PFS property, which is
known as the best PFS notion for two-pass protocols [30].

Taking careful considerations on both the correctness of
the protocol and the state of art in solving (Ring-)LWE
problems, we select concrete choices of parameters (ranging
from 80 bits to 256 bits security) together with estimations
on the key sizes and the communication overheads. We also
construct a proof-of-concept implementation to examine the
efficiency of our protocol with the selected parameters. The
results show that our protocol is a practical candidate post-
quantum key exchange protocol. Besides, our implementa-
tion has not undergone any real optimization, and it can be
much improved.

2. Preliminaries
2.1 Notation
Throughout the paper, let n be the natural security param-
eter, and all quantities are implicitly dependent on n. Let
poly(n) denote an unspecified function f(n) = O(nc) for
some constant c. The function log denotes the natural loga-
rithm. We use standard notation O,ω to classify the growth
of functions. If f(n) = O(g(n) · logc n), we denote f(n) =
Õ(g(n)). We say a function f(n) is negligible if for every
c > 0, there exists a N such that f(n) < 1/nc for all n > N .
We use negl(n) to denote a negligible function of n, and we
say a probability is overwhelming if it is 1− negl(n).

The set of real numbers (integers) is denoted by R (Z,
resp.). We use←r to denote randomly choosing an element
from some distribution (or the uniform distribution over
some finite set). Vectors are in column form and denoted by
bold lower-case letters (e.g., x). The ℓ2 and ℓ∞ norms we
designate by ∥·∥ and ∥·∥∞. The ring of polynomials over Z
(Zq = Z/qZ, resp.) we denote by Z[x] (Zq[x], resp.).

2.2 Security Model for AKE
We now recall the BR security model [4], restricted to the
case where each party sends the other only a single message.

Sessions We fix a positive integer N to be the maximum
number of honest parties that use the AKE protocol. Each
party is uniquely identified by an integer i in {1, 2, . . . , N},
and has a static key pair consisting of a static secret key ski
and static public key pki, which is signed by a Certificate
Authority (CA). A single run of the protocol is called a
session. A session is activated at a party by an incoming
message of the form (Π, I, i, j) or the form (Π, R, j, i,Xi),
where Π is a protocol identifier; I and R are role identifiers;
i and j are party identifiers. If party i receives a message
of the form (Π, I, i, j), we say that i is the session initiator.
Party i then outputs the response Xi intended for party j. If
party j receives a message of the form (Π, R, j, i,Xi), we
say that j is the session responder; party j then outputs a
response Yj to send back to party i. After exchanging these
messages, both parties compute a session key.

If a session activated at party i and has i as the initiator,
we associate with it a session identifier sid = (Π, I, i, j,Xi)
or sid = (Π, I, i, j,Xi, Yj). Similarly, if a session activated



at party j and has j as the responder, the session identifier
has the form sid = (Π, R, j, i,Xi, Yj). For a session identi-
fier sid = (Π, ∗, i, j, ∗[, ∗]), the third coordinate—that is, the
first party identifier—is called the owner of the session; the
other party is called the peer of the session. A session is said
to be completed when its owner computes a session key. The
matching session of sid = (Π, I, i, j,Xi, Yj) is the session
with identifier s̃id = (Π, R, j, i,Xi, Yj) and vice versa.

Adversarial Capabilities We model the adversary A as a
probabilistic polynomial time (PPT) Turing machine with
full control over all communications channels between par-
ties, including control over session activations. In particu-
lar, A can intercept all messages, reading them all, and can
delete or modify any desired messages as well as inject its
own messages. We also suppose A is capable of obtaining
hidden information about the parties, including static secret
keys and session keys. We formalize these abilities by giv-
ing A access to the following oracles (we split the Send
query in [7] into Send0, Send1, and Send2 to distinguish
the initial message for activating an initiator, the first and the
second exchanged messages for two-pass protocols):

– Send0(Π, I, i, j): A activates party i as an initiator. The
oracle returns a message Xi intended for party j.

– Send1(Π, R, j, i,Xi): A activates party j as a respon-
der using message Xi. The oracle returns a message Yj

intended for party i.

– Send2(Π, R, i, j,Xi, Yj): A sends party i the mes-
sage Yj to complete a session previously activated with a
Send0(Π, I, i, j) query that returned Xi.

– SessionKeyReveal(sid): The oracle returns the session
key associated with the session sid. This query can only
be made if sid identifies a completed session, since no
session key exists to be returned otherwise.

– Corrupt(i): The oracle returns the static secret key be-
longing to party i. A party whose key is given to A in
this way is called dishonest; a party not compromised in
this way is called honest.

– Test(sid∗): The oracle chooses a bit b ←r {0, 1}. If
b = 0, it returns a key chosen uniformly at random; if
b = 1, it returns the session key associated with sid∗.
Note that we impose some restrictions on this query. We
only allow A to query this oracle once, and only on a
fresh (see Definition 1) session sid∗.

Definition 1 (Freshness). Let sid∗ = (Π, I, i∗, j∗, Xi, Yj)
or (Π, R, j∗, i∗, Xi, Yj) be a completed session with initia-
tor party i∗ and responder party j∗. If the matching session
exists, denote it s̃id

∗
. We say that sid∗ is fresh if the following

conditions all hold:

– A has not made a SessionKeyReveal query on sid∗.
– A has not made a SessionKeyReveal query on s̃id

∗
(if

it exists).

– If s̃id
∗

does not exist, neither party i∗ nor j∗ is dishonest.
I.e., A has not made a Corrupt query on either of them.

Remark 1. Recall that in the original BR model [4], no cor-
ruption query is allowed. In the above freshness definition,
we allow the adversary to corrupt both parties of sid∗ if the
matching session exists in order to capture the weak Perfect
Forward Security (wPFS) [30].

Security Game The security of a two-pass AKE protocol
is defined in terms of the following game. The adversary
A makes any sequence of queries to the oracles above, so
long as only one Test query is made on a fresh session, as
mentioned above. The game ends when A outputs a guess
b′ for b. We say A wins the game if its guess is correct, so
that b′ = b. The advantage of A, AdvΠ,A, is defined as the
probability that A wins minus 1/2.

Definition 2 (Security). We say that an AKE protocol Π is
secure if the following conditions hold:

– If two honest parties complete matching sessions then
they compute the same session key with overwhelming
probability.

– For any PPT adversary A, the advantage AdvΠ,A is
negligible.

2.3 Ring Learning with Errors
Let the integer n be a power of 2, and consider the ring R =
Z[x]/(xn + 1). For any positive integer q, we define the
ring Rq = Zq[x]/(x

n + 1) analogously. For any polyno-
mial y(x) in R (or Rq), we identify y with its coefficient
vector in Zn (or Zn

q ). In doing so we also define the norm of
a polynomial to be the norm of its coefficient vector.

Lemma 1. Let R be defined as above. Then, for any s, t ∈
R, we have ∥s · t∥ ≤

√
n · ∥s∥ · ∥t∥ and ∥s · t∥∞ ≤

n · ∥s∥∞ · ∥t∥∞.

For any α ∈ R+ and c ∈ R, denote DZ,α,c as the 1-
dimensional discrete Gaussian distribution centered at c with
standard deviation α. To sample an element from DZ,α,c,
one can first sample an element Y according to a Gaussian
distribution with standard deviation α centered on c and set
X = ⌊Y ⌉, where ⌊·⌉ represents rounding to the nearest in-
teger [6]. For c = (c0, . . . , cn−1) ∈ Rn, we also define the
spherical discrete Gaussian distribution DZn,α,c over Zn as
the distribution where the ith coordinate is distributed ac-
cording to DZ,α,ci . If the center c is zero, we write the dis-
tribution DZn,α,0 as χα. We now adopt the following nota-
tional convention: since bold-face variables denote vectors,
x ←r χα means we sample the vector x from the distri-
bution χα; for normal weight variables (e.g. y ←r χα) we
sample an element of R whose coefficient vector is distribut-
ed according to χα. We have the following useful facts:

Lemma 2 ([22, 38]). For any real number α = ω(
√
log n),

we have Prx←rχα [∥x∥ > α
√
n] ≤ 2−n+1.



Lemma 3 ([6, 24]). For any real number α = ω(
√
log n)

and any y ∈ Zn, the statistical distance between the distri-
butions χα and χα + y is at most ∥y∥/α.

The following lemma is implicit in Lemma 2.10 of [45],
which states that for an appropriate γ, elements sampled
from χγ are invertible except with negligible probability.

Lemma 4 ([45]). Let q = 2ω(logn) be a prime such that
q mod 2n = 1, let Rq be defined as above, and let real
γ >

√
n · ω(log n) · q1/n. Then, for element d ←r χγ , d is

invertible in Rq with overwhelming probability. In particu-
lar, if d1, d2 ←r χγ , then d = d1−d2 is invertible with over-
whelming probability since d follows the distribution χ√2γ .

Now we come to the statement of the Ring-LWE assump-
tion; we will use a special case detailed in [34]. Let Rq as
defined above, and s←r Rq . We define As,χα to be the dis-
tribution of the pair (a, as+x) ∈ Rq ×Rq , where a←r Rq

is uniformly chosen and x←r χα is independent of a.

Definition 3 (Ring-LWE Assumption). Let Rq, χα be de-
fined as above, and let s ←r Rq . The Ring-LWE assump-
tion RLWEq,α states that it is hard for any PPT algo-
rithm to distinguish As,χα from the uniform distribution
on Rq ×Rq with only polynomial samples.

One can also modify the above definition by requiring
the PPT algorithm to find s rather than distinguish the two
distributions, giving a search problem rather than a decision
problem. For certain parameter choices, the two forms are
polynomially equivalent [34].

Proposition 5 (A special case of [34]). Let n be a pow-
er of 2, let α be a real number in (0, 1), and q a prime
such that q mod 2n = 1 and αq > ω(

√
log n). Define

R = Z[x]/⟨xn+1⟩ as above. Then there exists a polynomial
time quantum reduction from Õ(

√
n/α)-SIVP (Short Inde-

pendent Vectors Problem) in the worst case to average-case
RLWEq,β with ℓ samples, where β = αq · (nℓ/ log(nℓ))1/4.

It has been proven that the Ring-LWE assumption still
holds even if the secret s is chosen according to the error
distribution χβ rather than uniformly [1, 34]. This variant is
known as the normal form, and is preferable for controlling
the size of the error term [5, 6]. The underlying Ring-LWE
assumption also holds when scaling the error by a constant t
relatively prime to q, i.e., using the pair (ai, ais + txi)
rather than (ai, ais+xi). Several lattice-based cryptographic
schemes have been constructed based on this variant [5, 6].

3. Authenticated Key Exchange from RLWE
We now introduce some notation before presenting our pro-
tocol. For odd prime q > 2, denote Zq = {− q−1

2 , . . . , q−1
2 }

and define the subset E := {−⌊ q4⌋, . . . , ⌊
q
4⌉} as the mid-

dle half of Zq . We also define Cha to be the characteristic
function of the complement of E, so Cha(v) = 0 if v ∈ E
and 1 otherwise. It is easy to verify that for any v in Zq ,

v + Cha(v) · q−12 mod q belongs to E. We define an auxil-
iary modular function, Mod2 : Zq × {0, 1} → {0, 1}:

Mod2(v, w) = (v + w · q − 1

2
) mod q mod 2.

The following two useful lemmas on Mod2 are used for
the security and correctness of our AKE protocol.

Lemma 6. Let n be the security parameter, and let q =
2ω(logn) be an odd prime, and v ←r Zq . For any b ∈ {0, 1}
and any v′ ∈ Zq , the output distribution of Mod2(v + v′, b)
given Cha(v) is statistically close to uniform on {0, 1}.

Proof. We condition on Cha(v):

– If Cha(v) = 0, then v + v′ + b · q−1
2 is uniformly

sampled from v′ + b · q−12 + E mod q. This shifted set
has (q + 1)/2 elements, which are either consecutive
integers—if the shift is small enough—or two sets of
consecutive integers—if the shift is large enough to cause
wrap-around. Thus, we must distinguish a few cases:

If |E| is even and no wrap-around occurs, then the
result of Mod2(v+ v′, b) is clearly uniform on {0, 1}.
If |E| is odd and no wrap-around occurs, then we
can assume without loss of generality that there are
t0 = (|E|+ 1)/2 even integers and t1 = (|E| − 1)/2
odd integers that we sample uniformly from. Then the
statistical distance between the distribution of Mod2

and uniform is

d =

(
t0
|E|
− 1

2

)
+

(
1

2
− t1
|E|

)
=

2

2|E|
=

1

|E|
.

If |E| is odd and wrap-around does occur, then we
have split our sample space into two parts, one with
an even number of elements, and one with an odd
number of elements. This situation leads to the same
calculations as with no wrap-around.

If |E| is even and wrap-around occurs, then our sam-
ple space is split into either two even-sized sets, or two
odd sized sets. If both are even, then once again our
distribution is uniform. If both are odd, then we have
t0 = (|E|−3)/2 and t1 = (|E|+3)/2 as the number
of even and odd integers, respectively, in our sample
space. Then the same calculation as before gives a s-
tatistical distance of 3/|E|.

Thus, the statistical distance between these two distribu-
tions is at most 3

|E| <
6
q . With q = 2ω(logn), this is neg-

ligible in n.

– If Cha(v) = 1, then our sample set is instead Ẽ =
Zq \ E, shifted as appropriate. Now |Ẽ| = |E| − 1,
so by splitting into the same cases as Cha(v) = 0,
the statistical distance is at most 3

|E|−1 , which is still
negligible for the given q. �



Party i

Public Key: pi = asi + 2ei ∈ Rq

Secret Key: si ∈ Rq

where si, ei ←r χα

xi = ari + 2fi ∈ Rq

where ri, fi ←r χβ

ki = (pjd + yj)(sic + ri) + 2gi

where gi ←r χβ

σi = Mod2(ki, wj) ∈ {0, 1}
n

ski = H2(i, j, xi, yj, wj , σi)

Party j

Public Key: pj = asj + 2ej ∈ Rq

Secret Key: sj ∈ Rq

where sj , ej ←r χα

yj = arj + 2fj ∈ Rq

kj = (pic + xi)(sjd + rj) + 2gj

where rj , fj , gj ←r χβ

wj = Cha(kj) ∈ {0, 1}
n

σj = Mod2(kj , wj ) ∈ {0, 1}
n

skj = H2(i, j, xi, yj , wj , σj)

xi

yj , wj

c = H1(i, j, xi) ∈ R, d = H1(j, i, yj , xi) ∈ R

Figure 1: Efficient AKE based on RLWE.

Lemma 7. Let q be an odd prime, v ∈ Zq and e ∈ Zq

such that |e| < q/8. Then, for w = v + 2e, we have
Mod2(v,Cha(v)) = Mod2(w,Cha(v)).

Proof. Note that w+Cha(v) q−12 mod q = v+Cha(v) q−12 +

2e mod q. Now, v + Cha(v) q−12 mod q is in E as we s-
tated above; that is, −⌊ q4⌋ ≤ v + Cha(v) q−12 mod q ≤
⌊ q4⌉. Thus, since −q/8 < e < q/8, we have −⌊ q2⌋ ≤
v + Cha(v) q−12 mod q + 2e ≤ ⌊ q2⌉. Therefore, we have
v + Cha(v) q−12 mod q + 2e = v + Cha(v) q−12 + 2e mod

q = w + Cha(v) q−12 mod q. Thus, Mod2(w,Cha(v)) =
Mod2(v,Cha(v)).

We further extend the definitions of Cha and Mod2 to Zn
q

by applying them entry-wise to vectors. By a standard hybrid
argument, the statistical distance between the uniform distri-
bution on {0, 1}n and the distribution of Mod2(x,Cha(x))
given Cha(x) is also negligible, assuming x is uniformly
chosen from Zn

q . A similar claim holds for coefficient vec-
tors of ring elements in Rq .

3.1 The Protocol
We now describe our protocol in detail. Let n be a power
of 2, and q = 2ω(logn) be an odd prime such that q mod
2n = 1. Take R = Z[x]/(xn+1) and Rq = Zq[x]/(x

n+1)
as above. For γ ∈ R+, let H1 : {0, 1}∗ → χγ = DZn,γ

be a hash function with output distribution χγ ( In practice,
one can take a function such as SHA-2 to obtain a uniform-
ly random string, and then use that to sample from DZn,γ).
Let H2 : {0, 1}∗ → {0, 1}κ be the key derivation function,
where κ is the bit-length of the final shared key. We mod-
el both functions as random oracles [3]. Let χα, χβ be two
discrete Gaussian distributions with parameters α, β ∈ R+.
Let a ∈ Rq be the global public parameter uniformly chosen
from Rq at random. Let pi = asi + 2ei ∈ Rq be party i’s
static public key, where si is the corresponding static secret
key; both si and ei are taken from the distribution χα. Simi-
larly, party j has static public key pj = asj + 2ej and static

secret key sj . Our protocol consists of the following steps,
illustrated in Figure 1:

Initiation Party i randomly samples ri, fi, gi ←r χβ and
computes xi = ari + 2fi, which he sends to party j.

Response Party j receives xi from party i, randomly sam-
ples rj , fj , gj ←r χβ and computes yj = arj + 2fj ,
similar to xi. Party j also computes c = H1(i, j, xi),
d = H1(j, i, yj , xi), and kj = (pic+xi)(sjd+rj)+2gj
using xi. Note c and d are both distributed according
to χγ . Next, party j computes wj = Cha(kj) ∈ {0, 1}n
and sends the pair (kj , wj) to party i. Lastly, party j com-
putes σj = Mod2(kj , wj) and derives the session key
skj = H2(i, j, xi, yj , wj , σj).

Finish Party i receives the pair (yj , wj), and uses it com-
pute c = H1(i, j, xi), d = H1(j, i, yj , xi), and ki =
(pjd + yj)(sic + ri) + 2gi. The quantities c and d are
the same as computed by party j. Finally, party i com-
putes σi = Mod2(ki, wj) and derives the session key
ski = H2(i, j, xi, yj , wj , σi).

3.2 Correctness
To show the correctness of our AKE protocol, i.e. that both
parties compute the same session key ski = skj , it suffices
to show that σi = σj . Now, σi and σj are both the output of
Mod2 with Cha(kj) as the second argument. By Lemma 7,
we need only to show that ki and kj are sufficiently close.
Now, the two parties will compute ki and kj as follows:

ki = (pjd+ yj)(sic+ ri) + 2gi
= a(sjd+ rj)(sic+ ri)

+(2ejd+ 2fj)(sic+ ri) + 2gi
= a(sic+ ri)(sjd+ rj) + 2g̃i

kj = (pic+ xi)(sjd+ rj) + 2gj
= a(sic+ ri)(sjd+ rj)

+(2eic+ 2fi)(sjd+ rj) + 2gj
= a(sic+ ri)(sjd+ rj) + 2g̃j



Choice of
n Security (expt.) α γ log β

α
log q (bits)

Size (KB)
Parameters pk sk (expt.) init. msg resp. msg

I∗ 1024 80 bits 3.397 101.919 8.5 40 5 KB 0.75 KB 5 KB 5.125 KB
II 2048 80 bits 3.397 161.371 27 78 19.5 KB 1.5 KB 19.5 KB 19.75 KB
III 2048 128 bits 3.397 161.371 19 63 15.75 KB 1.5 KB 15.75 KB 16 KB
IV 4096 128 bits 3.397 256.495 50 125 62.5 KB 3 KB 62.5 KB 63 KB
V 4096 192 bits 3.397 256.495 36 97 48.5 KB 3 KB 48.5 KB 49 KB
VI 4096 256 bits 3.397 256.495 28 81 40.5 KB 3 KB 40.5 KB 41 KB

Table 1: Choices of Parameters (The bound 6α with erfc(6) ≈ 2−55 is used to estimate the size of secret keys.)

where g̃i = (ejd + fj)(sic + ri) + gi, and g̃j = (eic +
fi)(sjd + rj) + gj . Then ki = kj + 2(g̃i − g̃j). Thus, the
correctness follows if ∥g̃i − g̃j∥∞ < q/8 (by Lemma 7).

3.3 Concrete Choices of Parameters
Following [11, 21, 34], we make use of the canonical em-
bedding in the analysis of our protocol. Formally, for our
choices of n (i.e., a power of 2) and R, the canonical embed-
ding of a ∈ R into Cn is the n-vector of complex numbers
σ(a) = (a(ζim)), where m = 2n, ζm is a complex primitive
m-th root of unity and the indexes i range over all of Z∗m.
We call the norm of σ(a) the canonical embedding norm of
a, and denote it by ∥a∥can

∞ = ∥σ(a)∥∞. There are two useful
properties [11, 21, 34] of ∥ · ∥can

∞ :

– For all a, b ∈ R, ∥a · b∥can
∞ ≤ ∥a∥can

∞ · ∥b∥can
∞ .

– For all a ∈ R, ∥a∥∞ ≤ ∥a∥can
∞ .

Note that the evaluation a(ζm) is the inner product be-
tween the coefficient vector of a and the vector zm =
(1, ζm, ζ2m, . . . , ζn−1m ). Thus, if the coefficient vector of
a is chosen from Gaussian distribution DZn,α with stan-
dard deviation α, the random variable a(ζm) is distribut-
ed to a complex Gaussian random variable with variance
δ2 = α2n (note that zm has Euclidean norm exactly n).
Following [21], we use 6δ as a high-probability bound on
the size of a(ζm) (note that the complementary error func-
tion erfc(6) ≈ 2−55). For a product of two random variables
with variance δ21 and δ22 , respectively, we use 16δ1δ2 as our
high probability bound. Since efrc(4) ≈ 2−25, the probabil-
ity that both variables exceeds four times of their standard
deviation is about 2−50.

We now turn to bounding the size of the error term in our
protocol, i.e., ∥g̃i − g̃j∥∞. Note that g̃i = (ejd+ fj)(sic+
ri)+gi, and g̃j = (eic+fi)(sjd+rj)+gj , where ei, ej ←r

χα, c, d ←r χγ , and fi, fj , ri, rj , gi, gj ←r χβ . Using
the bounds in last paragraph, namely, ∥ejd∥can

∞ , ∥sic∥can
∞ ≤

16αγn, and ∥fj∥can
∞ , ∥ri∥can

∞ , ∥gi∥can
∞ ≤ 6β

√
n, we have that

∥g̃i∥can
∞ ≤ (16αγn + 6β

√
n)2 + 6β

√
n holds with over-

whelming probability, (the same bound holds for ∥g̃j∥can
∞ ).

Considering that α/β = 2−ω(logn) is required in our securi-
ty proof (see Claim 2), we therefore assume that the inequa-

tion 6β ≫ 16αγ
√
n holds2. In this case, both ∥g̃i∥can

∞ and
∥g̃j∥can

∞ are smaller than 37β2n with overwhelming proba-
bility. For correctness, it is enough to set q satisfying

16 ∗ 37β2n < q. (1)

Though the Ring-LWE problem enjoys a worst-case con-
nection to some hard problems (e.g., SIVP [34]) on ideal lat-
tices, the connection as summarized in Proposition 5 seem-
s less powerful to estimate the actual security for concrete
choices of parameters. For this, several works [9, 19, 21, 39,
40] took account experimental results to estimate the dif-
ficulties of solving (R)LWE. Especially, we use the result
in [21], which shows how to set integer n (i.e., the rank of
the underlying lattice), given the modulus q, the Gaussian
parameter α (i.e., the error distribution is DZn,α), and the
concrete security parameter k (i.e., the time/advanatage ra-
tio is of at least 2k):

n ≥ log(q/α)(k + 110)

7.2
. (2)

As recommended in [21, 32], it is enough to set the Gaus-
sian parameter α ≥ 3.2 so that the discrete Gaussian DZn,α

approximates the continuous Gaussian Dα extremely well3.
In our experiment, we fix α = 3.397 for a better perfor-
mance of the Gaussian sampling algorithm in [15]. As for
the choices of γ, we set γ ≈ n2/3 for the use of Lemma 4
in our security proof. In Table 2, we set all other parame-
ters β, n, q to satisfies the correctness condition (1) and the
security condition (2) for each expected security level. We
also take account of log(β/α) as an “index of confidence”
for corresponding security levels in the choices of parame-
ters. Note that n is required to be a power of 2 in our proto-
col (i.e., it is very sparsely distributed4), we can simply tries
several possible values of n. In Table 1, we present several
candidate choices of parameters, and estimate the sizes of
public keys, secret keys, and communication overheads.

2 We clarify that the choice of parameters I in Table 1 does not obey
this assumption, but this does not violate the correctness property of our
protocol for thousands of experimental runs using the parameters.
3 Only α is considered here simply because γ, β ≫ α, and the (R-)LWE
problem becomes harder as α grows bigger (for a fixed modulus q).
4 We remark such a choice of n is not necessary, but it gives a simple
analysis and implementation. In practice, one might use the techniques for
Ring-LWE cryptography in [35] to give a tighter choice of parameters for
desired security levels.



4. Implementation and Timings
In this section, we present the details of our proof-of-concept
implementation, and show the timings of each operation.

4.1 Ring Representations and Operations
Recall that we are working on a ring Rq := Zq[x]/(x

n +1),
i.e., the ring of polynomials in x with integer coefficients,
modulo q and xn+1, where n is a power of 2. An element in
Rq can be natural written as a polynomial of degree less than
n with coefficients in Zq , e.g., g(x) =

∑n−1
i=0 gix

i ∈ Rq , and
its coefficient vector (g0, · · · , gn−1) ∈ Zn

q .
The addition operation of two ring elements g, h ∈ Rq

can be done by taking n coefficient-wise additions over Zq .
But a naive multiplication operation of two ring elements
g, h ∈ Rq needs O(n2) multiplication operations over Zq ,
and then reduce the resulting polynomial modulo xn + 1.
However, it is well-known that one can do the multiplication
in O(n log n) time by using Fast Fourier Transform (FFT)
according to the convolution theorem [10]. Concretely, the
multiplication algorithm first computes the 2n Fourier coef-
ficients G (H , resp.) of g (h, resp.), i.e., the values on all
the 2n-th roots of unity over the complex field C. Then, it
multiplies the 2n Fourier coefficients in a coefficient-wise
way. Finally, it interpolates back to a polynomial d(x) =
g(x)h(x) with degree < 2n by applying an inverse FFT, and
reduces d(x) by the polynomial xn + 1 to Rq .

Since we set prime q such that q mod 2n = 1, the field
Zq actually contains a multiplicative subgroup of order 2n
whose elements are all the 2n-th roots of unity in Zq . In
particular, if w ∈ Zq is an element of order 2n, then the
odd powers w,w3, . . . , w2n−1 are exactly the primitive 2n-
th roots of unity. As in [33], it suffices to compute only the n
primitive Fourier coefficients of g(x), i.e., the values of g(x)
at the points w,w3, . . . , w2n−1. Note that

g(w2k+1) =

i=n−1∑
i=0

gi(w
2k+1)i =

n−1∑
i=0

(gi · wi) · (w2)ik̇,

one can compute all the n coefficients by first taking n
multiplications to compute ĝi = gi ·wi, and then applying an
n-dimensional FFT on the polynomial ĝ(x) =

∑i=n−1
i=0 ĝix

i

with n-th primitive root of unity w2. In this setting, the
Fourier coefficients of an element g(x) ∈ Rq is still a vector
of length n in Zq , which can be stored by using the same
size space for storing the coefficient vector of g(x). Besides,
since {w2k+1}k=0,...,n−1 are actually the roots of xn+1, the
reduction by the polynomial xn + 1 after taking an inverse
FFT operation is saved.

According to the above observations, it is computation-
ally efficient to keep the public parameters a, and the pub-
lic keys in their Fourier representations (thus, one does not
need to compute the Fourier representations of those ele-
ments online). Actually, in our implementation, we always
use the Fourier representations of ring elements during the

execution of the protocol, and only take one inverse FFT op-
eration until we have to compute σi (σj , resp.), where the
coefficient representations of ki (kj , resp.) are needed. This
also means that the exchanged ring elements xi, yi are sent in
their Fourier representations (note that this does not increase
the communication overheads). Table 3 indicates the actual
representations of ring elements, and the online/offline FFT
operations in our implementation.

Ring element Representation FFT operation
a, pi, pj , si, sj Fourier offline FFT
ri, fj , rj , fj , c, d Fourier online FFT

xi, yj Fourier -
ki, kj Fourier and Coefficient online inverse FFT
gi, gj Coefficient -

Table 3: Ring Elements and FFT Operations

4.2 Gaussian Sampling and Hashing to DZn,γ

For any α ∈ R+, there are several algorithms in the litera-
tures, e.g., [15, 22, 41], to sample an element from the dis-
crete Gaussian distribution DZn,α. Gentry et al. [22] gave
a general sampling algorithm by using rejections. Roughly,
the algorithm chooses x ←r [−τα, τα], and only outputs x
with probability exp(−x2/2α2), where τ is a Gaussian “tail-
cut” factor (e.g., τ = 6). This GPV algorithm [22] is general
to handle any standard deviation α > 0, but it needs a large
averaged online time to successfully sample an element.

The other two sampling algorithms in [15, 41] involve s-
toring of pre-computed data. Peikert [41] suggested that one
can efficiently sample elements from DZn,α by using a pre-
computed cumulative distribution table (CDT). This algo-
rithm is very efficient, but it needs to store λτα bits for the
CDT table with λ bits of precision. When the standard de-
viation α is very large, this algorithm might be infeasible
(such as DZn,β for our choices of β in Table 1). In CRYPTO
2013, Ducas et al. [15] gave a new sampling algorithm, D-
DLL, providing a better tradeoff between time and memory,
which is slightly slower than the CDT algorithm, but only
needs a memory about λ log(2.4τα2). For a better online
performance, we will use both the CDT and DDLL algo-
rithms. Concretely, the CDT algorithm is used for sampling
from DZn,α and DZn,γ , and the DDLL algorithm is used for
sampling from DZn,β . The total memory used for storing the
pre-computed tables for both algorithms is less than 51 KB
for the choice of parameters IV in Table 1.

As for the hashing to DZn,γ operation, we first use the
hash algorithm, SHA-256, to compress the inputs to obtain a
256-bit randomness seed, and then take it as input to the NTL
pseudorandomness generator to generate the random coins
used for sampling DZn,γ (by using the CDT algorithm).

4.3 Timings
We implement our AKE protocol by using the NTL library
compiled with the option NTL GMP LIP=on (i.e., building



Parameters FFT operation Sampling DZn,β Hashing to DZn,γ Initiation Response Finish
I 0.92 ms 0.56 ms 0.54 ms 3.22 ms (0.02 ms) 8.50 ms (4.69 ms) 5.23 ms (4.73 ms)
II 2.76 ms 2.90 ms 1.68 ms 12.00 ms (0.04 ms) 29.33 ms (14.64 ms) 17.28 ms (14.61 ms)
III 2.67 ms 2.19 ms 1.42 ms 10.33 ms (0.04 ms) 25.83 ms (13.46 ms) 15.58 ms (13.40 ms)
IV 7.33 ms 33.53 ms 4.85 ms 83.61 ms (0.08 ms) 156.58 ms (39.86 ms) 73.11 ms (39.73 ms)
V 6.02 ms 23.99 ms 3.86 ms 61.74 ms (0.08 ms) 117.81 ms (32.58 ms) 55.64 ms (32.20 ms)
VI 6.01 ms 6.29 ms 3.57 ms 25.42 ms (0.08 ms) 62.31 ms (31.32 ms) 36.80 ms (31.29 ms)

Table 2: Timings of Proof-of-Concept Implementations in ms (The figures in the parentheses indicate the timings with pre-computing. For
comparison, by simply using the “speed” command in openssl on the same machine, the timing for dsa1024 signing algorithm is about 0.7
ms, and for dsa2048 is about 2.3 ms).

NTL using the GNU Multi-Precision package). The imple-
mentations are written in C++ without any parallel compu-
tations or multi-threads programming techniques. The pro-
gram is run on a Dell Optiplex 780 computer with Ubun-
tu 12.04 TLS 64-bit system, equipped with a 2.83GHz Intel
Core 2 Quad CPU and 3.8GB RAM. We use a n-dimensional
FFT as discussed in 4.1 with a pre-computed tables for wi

and w2i, which needs about 94KB memory (i.e., for storing
1.5n elements of Zq) for choice of parameters IV, where w is
the 2n-th primitive roots of unity, and i = {0, . . . , n−1}. We
use the DDLL algorithm [15] for sampling from DZn,β , and
use the CDT algorithm [41] as a tool for hashing to DZn,γ .

In Table 2, we present the timings of each operation, and
the figures represent the averaged timing (in millisecond, m-
s) for 1000 executions. Note that the exchanged ring ele-
ments xi = ari + fi, yj = arj + fj are independent of
other information in a particular execution of the AKE pro-
tocol. Each party can actually pre-compute those values in
advance, e.g., sampling ri, fi, gi (rj , fj , gj , resp.) and com-
puting xi = ari + fi (yj = arj + fj resp.) immediately
after the protocol is started (e.g., each party can do it simul-
taneously during exchanging the necessary messages before
executing the AKE protocol, e.g., at the time of sending the
“Hello” message to the other party). As shown in Table 2,
pre-computing those values will save a lot of online time es-
pecially for choices of parameters IV and V.
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Figure 2: Comparison between different operations

In a complete execution of our AKE protocol (without
pre-computation), one need to do 3 FFT operations and 1
inverse FFT operation (which almost takes about the same

time as an FFT operation), 3 sampling from DZn,β opera-
tions, and 2 hashing to DZn,γ operations. In Figure 2, we
treat the Response time as the total time needed for a party
to execute the protocol, and check the cost of other opera-
tions. Since γ is small and the CDT algorithm is employed,
the hashing to DZn,γ operation takes about 10% of the total
time. As β grows bigger, it becomes significantly slower for
sampling from DZn,β , which takes > 60% of the total time
for parameters choices IV and V. Another heavy operation is
FFT, which takes about 40% of the total time. Note that this
figure for parameters choices IV and V is about 20%, be-
cause sampling from DZn,β takes most of the total time due
to big integer operations involved in the DDLL algorithm-
s. However, the time used for both FFT and sampling from
DZn,β always takes > 60% of the total time, which might
be the bottleneck of our AKE protocol.

Finally, we have not yet really optimized our implemen-
tation, and the performance of our protocol can be great-
ly improved by using better FFT algorithms (e.g., parallel
FFT [10, 43]) and sampling algorithms, or any other op-
timizations. For example, when we switch from the case
log(β/α) = 28 (i.e., parameters choice VI) to the case
log(β/α) = 36 (i.e., parameters choice V), we have to use
the “ZZ” data type in NTL instead of the 64-bit single pre-
cision integer, which makes the DDLL algorithm (i.e., sam-
pling from DZn,β) significantly slower. In addition, paral-
lelization can substantially improve our implementation.

5. Security Proof
Theorem 8. Let n be a power of 2, prime q = 2ω(logn)

satisfying q = 1 mod 2n, α/β = 2−ω(logn), γ ≈ n2/3.
Then, if RLWEq,α is hard, the proposed AKE is secure with
respect to Definition 2 in the random oracle model.

The intuition behind our proof is quite simple. Since the
public element a and the public key of each party (e.g.,
pi = asi + 2ei) actually consist of a RLWEq,α tuple with
Gaussian parameter α (scaled by 2), the parties’ static public
keys are computationally indistinguishable from uniform-
ly distributed elements in Rq under the RLWE assumption.
Similarly, both the exchanged elements xi and yj are also
computationally indistinguishable from uniformly distribut-
ed elements in Rq under the RLWEq,β assumption.



Without loss of generality, we take party j as an example
to check the distribution of the session key. Note that if kj
is uniformly distributed over Rq , we have σj is statistically
close to uniform over {0, 1}n even conditioned on wj by
Lemma 6. Since H2 is a random oracle, we have that skj
is uniformly distributed over {0, 1}κ as expected. Now, let’s
check the distribution of kj = (pic + xi)(sjd + rj) + 2gj .
As one can imagine, we want to establish the randomness
of kj based on pseudorandomness of “RLWE samples” with
public element â = pic+xi, the secret ŝ = sjd+rj , as well
as the error term 2gj . Informally, we will prove that kj is
statistically close to a real RLWEq,β instance with both the
secret and the error chosen from χβ by using the following
two facts: 1) pic + xi is uniformly distributed over Rq

whenever pi or xi is uniform (if c is invertible in Rq , which
is guaranteed by Lemma 4); 2) sjd + rj has distribution
statistically close to χβ , since when α/β = 2−ω(logn), the
distribution of rj ←r χβ statistically hides the term sjd
according to Lemma 3 (recall that sj ←r χα, and d←r χγ).

Formally, let N be the maximum number of parties, and
m be maximum number of sessions for each party. We dis-
tinguish the following five types of adversaries:

Type I: sid∗ = (Π, I, i∗, j∗, xi∗ , (yj∗ , wj∗)) is the test ses-
sion, and yj∗ is output by a session activated at party j by
a Send1(Π, R, j∗, i∗, xi∗) query.

Type II: sid∗ = (Π, I, i∗, j∗, xi∗ , (yj∗ , wj∗)) is the test
session, and yj∗ is not output by a session activated at
party j∗ by a Send1(Π, R, j∗, i∗, xi∗) query.

Type III: sid∗ = (Π, R, j∗, i∗, xi∗ , (yj∗ , wj∗)) is the test
session, and xi∗ is not output by a session activated at
party i∗ by a Send0(Π, I, i∗, j∗) query.

Type IV: sid∗ = (Π, R, j∗, i∗, xi∗ , (yj∗ , wj∗)) is the test
session, and xi∗ is output by a session activated at party
i∗ by a Send0(Π, I, i∗, j∗) query, but i∗ either never
completes the session, or i∗ completes it with exact yj∗ .

Type V: sid∗ = (Π, R, j∗, i∗, xi∗ , (yj∗ , wj∗)) is the test ses-
sion, and xi∗ is output by a session activated at party i∗

by a Send0(Π, I, i∗, j∗) query, but i∗ completes the ses-
sion with another y′j ̸= yj∗ .

The partition of the five adversaries are very similar to
that in [30], and give a complete partition of all the adver-
saries. The weak perfect forward secrecy (wPFS) is captured
by allowing Type I and Type IV adversaries to obtain the
static secret keys of both party i∗ and j∗ by using Corrupt
queries. Since sid∗ definitely has no matching session for
Type II, Type III, and Type IV adversaries, no corruption
to either party i∗ or party j∗ is allowed by Definition 1. The
security proofs for the five types of adversaries are similar,
except the forking lemma [2] is involved for Type II, Type
III, and Type IV adversaries by using the assumption that
H1 is a random oracle. Informally, the adversary must first
“commit” xi (or yj) before seeing c (or d), thus it cannot

determine the value pic + xi (or pjd + yi) in advance (but
the simulator can determine the values by programming H1

when it tries to embed RLWR instances with respect to either
pic+ xi or pjd+ yi as discussed before).

5.1 Type I Adversary
In this subsection, we prove that our AKE is secure against
any PPT Type I adversary A.

Lemma 9. If α/β = 2−ω(logn) and RLWEq,α is hard, the
proposed AKE is secure against any PPT Type I adversary
A in the random oracle model.

Proof. We prove this lemma via a sequence of games G1,l

for 0 ≤ l ≤ 4. Boxes are used to highlight the changes of
each game with respect to its previous game.

Game G1,0 S chooses i∗, j∗ ←r {1, . . . , N}, si∗ , sj∗ ←r

{1, . . . ,m}, and hopes that the adversary will use sid∗ =
(Π, I, i∗, j∗, xi∗ , (yj∗ , wj∗)) as the test session, where
xi∗ is output by the si∗-th session of party i∗, and yj∗
is output by the s∗j -th session of party j∗ activated by a
Send1(Π, R, j∗, i∗, xi∗) query. Then, S chooses a ←r Rq ,
generates static public keys for all parities (by choosing
si, ei ←r χα), and simulates the security game for A.
Specifically, S maintains two tables L1, L2 for the random
oracles H1,H2 respectively, and answers the queries from
A as follows:

– H1(in): If there doesn’t exist a tuple (in, out) in L1,
choose an element out ←r χγ , and add (in, out) into
L1. Then, return out to A.

– H2(in) queries: If there doesn’t exist a tuple (in, out) in
L2, choose a vector out ←r {0, 1}κ, and add (in, out)
into L2. Then, return out to A.

– Send0(Π, I, i, j): A activates a new session of i with
intended party j, S chooses ri, fi ←r χβ , and returns
xi = ari + 2fi ∈ Zn×n

q to A.

– Send1(Π, R, j, i, xi): S chooses rj , fj ←r χβ , and
honestly computes yj = arj + 2fj ∈ Rq , kj , wj , and
skj following the protocol. Finally, return (yj , wj) to A.

– Send2(Π, I, i, j, xi, (yj , wj)): S computes ki and ski by
using ri and si following the protocol.

– SessionKeyReveal(sid): Let sid = (Π, ∗, i, ∗, ∗, ∗, ∗),
S returns ski if the session key of sid has been generated.

– Corrupt(i): Return the static secret key si of i to A.

– Test(sid): Let sid = (Π, I, i, j, xi, (yj , wj)), S aborts if
(i, j) ̸= (i∗, j∗), or xi and yj are not output by the si∗-
th session of i∗ and the s∗j -th session of j∗ respectively.
Else, S chooses b ←r {0, 1}, returns sk′i ←r {0, 1}κ if
b = 0. Otherwise, return the session key ski of sid.

Claim 1. The probability that S will not abort in G1,0 is at
least 1

m2N2 .



Proof. This claim directly follows from the fact that S
randomly chooses i∗, j∗ ←r {1, . . . , N} and si∗ , s

∗
j ←r

{1, . . . ,m} independently from the view of A. �

Game G1,1 S first computes y′j = ar′j + 2f ′j , where

r′j , f
′
j ←r χβ . Then, it behaves almost the same as in G1,0,

except in the following case:

– Send1(Π, R, j, i, xi): If (i, j) ̸= (i∗, j∗), or it is not
the s∗j -th session of j∗, S answers the query as in
Game G1,0. Otherwise, choose d ←r χγ , and compute
yj = y′j − pjd . S aborts the simulation if there is a tu-

ple ((j, i, yj , xi), ∗) in L1. Else, it adds ((j, i, yj , xi), d)

into L1, and computes kj = (pic+ xi)r
′
j + 2gj , where

c = H1(i, j, xi) and gj ←r χβ . Finally, it derives wj and
skj following the protocol, and sends (yj , wj) to A.

In the following, we denote F1,l as the event that A
outputs a guess b′ that equals to b in Game G1,l.

Claim 2. If α/β = 2−ω(logn) and RLWEq,α is hard, then
Pr[F1,l] = Pr[F1,0]− negl(n).

Proof. First, we show that S aborts with negligible proba-
bility in Game G1,1 for the reason that A has made a H1

query with (j, i, yj , xi) before seeing yj . Actually, if A can
make the query before seeing yj with non-negligible prob-
ability, we can construct an algorithm B that breaks the
RLWEq,α assumption. Formally, after giving a challenge
RLWE (u1, v1) tuple with error distribution χα (scaled by
multiplying t = 2), B sets a = u1 and y′j = v1, simu-
lates the attack environment for A as in Game G1,1 until it
computes yj = y′j − pjd. Then, if checks if there is a tuple
((j, i, yj , xi), ∗) in L1. If yes, it returns 1 and aborts, else it
returns 0 and aborts. Note that if (u1, v1) is a LWE tuple, we
have A has the same view as in G1,1 until the point that B
computes yj , thus that probabilityAwill make the H1 query
with (j, i, yj , xi) is non-negligible. While if (u1, v1) is a u-
niformly random tuple in Rq ×Rq , we have yj is uniformly
random over Rq , the probability that A will make the H1

query with (j, i, yj , xi) is non-negligible.
Second, conditioned on that A will not make a H1 query

with (j, i, yj , xi) before seeing yj (i.e., B will not abort for
this reason), we show that G1,1 is statistically close to G1,0.
Since pj = asj + 2ej ∈ Rq with sj , ej ←r χα, we have
yj = a(r′j−sjd)+2(f ′j−ejd). By Lemma 1 and Lemma 2,
each entry in both sjd and ejd has size at most τ = αγn

√
n,

and τ/β = negl(n) (since α/β = 2−ω(logn) and γ ≈ n2/3).
Thus, both r′j−sjd and f ′j−ejd have distribution negligibly
close to χβ by Lemma 3. This implies that the distribution of
yj in Game G1,1 is statistically close to that in Game G1,0.
This shows that G1,1 is statistically close to G1,0.

In all, we have G1,1 is computationally indistinguishable
from G1,0, which completes the proof. �

Game G1,2 S first computes x′i = ar′i + 2f ′i , where
r′i, f

′
i ←r χβ . Then, it behaves almost the same as in G1,1,

except for the following cases:

– Send0(Π, I, i, j): If (i, j) ̸= (i∗, j∗), or it is not the
si∗ -th session of i∗, S answers as in Game G1,1. Oth-
erwise, choose c ←r χγ , and compute xi = x′i − pic .
S aborts if there is a tuple ((i, j, xi), ∗) in L1, else it adds
((i, j, xi), c) into L1. Finally, it returns xi to A.

– Send2(Π, I, i, j, xi, (yj , wj)): If (i, j) ̸= (i∗, j∗), or it is
not the si∗-th session of i∗, S behaves as in Game G1,1.
Otherwise, if (yj , wj) is output by the s∗j -th session of
party j∗, S sets ski = skj , where skj is the session
key of sid = (Π, R, j, i, xi, (yj , wj)). Else, S computes
ki = (pjd+ yj)r

′
i + 2gi , and derives ski following the

protocol, where d = H1(j, i, yj , xi) and gi ←r χβ .

Claim 3. If α/β = 2−ω(logn) and RLWEq,α is hard, then
Pr[F1,2] = Pr[F1,1]− negl(n).

Proof. The proof that the distribution of xi is statistically
close to that in Game G1,1 is the same as the proof of Claim
2, andA will make a H1 query with xi with negligible prob-
ability, so the probability that S aborts in G1,2 is negligibly
close to that of G1,1. Combining this with the correctness of
our AKE protocol, this claim follows. �

Game G1,3 S chooses x′i ←r Rq , and behaves almost
the same as in G1,2 except in the following case:

– Send2(Π, I, i, j, xi, (yj , wj)): If (i, j) ̸= (i∗, j∗), or it is
not the si∗-th session of i∗, or (yj , wj) is output by the
s∗j -th session of party j∗, S behaves as in Game G1,2.

Else, choose ski ←r {0, 1}κ as the session key.

Note that we change the real session key ski in Game
G1,2 with a uniformly chosen one in Game G1,3, when
(yj , w

′
j) is output by the s∗j -th session of party j∗ but wj ̸=

w′j . Ideally, the adversary will not be aware of such a dif-
ference if it does not make a query to H2 with the exact σi

derived from ki (since H2 is a random oracle). However, we
cannot prove this claim immediately for technical reason-
s. Instead, we have to employ the “deferred analysis” proof
technique in [20], which informally allows us to proceed the
security games by patiently postponing some tough proba-
bility analysis to a later game, “where it will be much eas-
ier” [20]. Specially, denote Q1,l as the event that in Game
G1,l A makes a query to H2 with σi for the si∗-th session
of party i∗, when (yj , w

′
j) is output by the s∗j -th session of

party j∗ but wj ̸= w′j , where l = 2, 3, 4. For our purpose,
we will show that 1) Pr[Q1,2] ≈ Pr[Q1,3] ≈ Pr[Q1,4], and
2) Pr[Q1,4] is negligible in n.

Claim 4. If RLWEq,α is hard, Pr[Q1,3] = Pr[Q1,2] −
negl(n), and Pr[F1,3|¬Q1,3] = Pr[F1,2|¬Q1,2]− negl(n).



Proof. Note that H2 is a random oracle, the event Q1,2 is
independent from the distribution of the corresponding ski.
Namely, no matter whether or not A obtains ski, Pr[Q1,2]
is the same, which also holds for Pr[Q1,3]. In particular,
under the RLWEq,α assumption we have that the public
information (i.e., static public keys and public transcripts)
in G1,2 and G1,3 is computationally indistinguishable, and
that Pr[Q1,3] = Pr[Q1,2] − negl(n). Besides, if Pr[Q1,l]
for l = 2, 3 does not happen, the distribution of ski is
the same in both games. In other words, Pr[F1,3|¬Q1,3] =
Pr[F1,2|¬Q1,2]− negl(n). �

Game G1,4 S chooses y′j ←r Rq , and behaves almost
the same as in G1,3 except in the following case:

– Send1(Π, R, j, i, xi): If (i, j) ̸= (i∗, j∗), or it is not
the s∗j -th session of j∗, S answers as in Game G1,3.
Otherwise, choose d ←r χγ , and compute yj = y′j −
pjd. S aborts if there is a tuple ((j, i, yj , xi), ∗) in L1.
Else, it adds ((j, i, yj , xi), d) into L1. Then, S chooses
kj ←r Rq , and derives wj , skj following the protocol.

Finally, it returns (yj , wj) to A.

Claim 5. Under the RLWEq,β assumption, Game G1,3 and
G1,4 are computationally indistinguishable. In particular,
we have Pr[Q1,4] = Pr[Q1,3], and Pr[F1,4|¬Q1,4] =
Pr[F1,3|¬Q1,3]− negl(n).

Proof. Let (u1, v1), (u2, v2) be two challenge RLWE tuples
with error distribution χβ (scaled by multiplying t = 2).
Assume there is an adversary that distinguishes Game G1,3

and G1,4, we now construct a distinguisherD that solves the
RLWE problem. Specifically, D first sets public parameter
a = u1, and x′i = u2 and y′j = v1. Then, it behaves the
same as S in Game G1,3, except for the following:

– Send1(Π, R, j, i, xi): If (i, j) ̸= (i∗, j∗), or it is not the
s∗j -th session of j∗, D answers as in Game G1,3. Else,

choose d←r χγ , compute yj = y′j − pjd , and aborts if

there is a tuple ((j, i, yj , xi), ∗) in L1. Otherwise, it adds
((j, i, yj , xi), d) into L1. Then, D sets kj = v2 , and
derives wj , skj following the protocol. Finally, it sends
(yj , wj) to A.

Note that if (u1, v1), (u2, v2) are RLWE tuples for some
secret r′j , i.e., v1 = u1r

′
j+2f ′j = ar′j+2f ′j and v2 = u2r

′
j+

2gj , we have that kj = v2 = x′ir
′
j+2gj = (pic+xi)r

′
j+2gj ,

and the view ofA is the same as in G1,3. Otherwise, the view
of A is the same as in Game G1,4. �
Claim 6. Pr[Q1,4] = negl(n)

Proof. Let (yj , wj) be output by the s∗j -th session of party
j = j∗, (yj , w′j) be the message that is used to complete the
test session (i.e., the si∗ -th session of party i = i∗). Note
that in G1,4, kj ←r Rq is chosen independently of both the
public keys and transcripts (except wj). In particular, it is
also independent of skj (which the adversary might obtain

via a SessionKeyReveal query), since H2 is a random
oracle and skj is randomly chosen. Let ki be the element
“computed” by S. By the correctness of the protocol, we
have ki = kj + ĝ for some ĝ with small coefficients in
Game G1,3. Since the adversary cannot distinguish the ways
how S “computes” kj in Game G1,3 and Game G1,4 by
Claim 5, we can assume that the equation ki = kj + ĝ still
holds in Game G1,4 in the adversary’s view. Note that kj is
randomly chosen from Rq , and the adversary can only obtain
the information of kj from the public wj , the dependence of
ĝ on kj should be totally determined by the information of
wj . Thus, we have that σ′i = Mod2(ki, w

′
j) = Mod2(kj +

ĝ, w′j) conditioned on wj is statistically close to {0, 1}n
according to Lemma 6. In other words, the probability that
the adversary makes a query H2(i, j, xi, yj , w

′
j , σ
′
i) is at

most 2−n+negl(n), which is negligible in n. This completes
the proof. �
Claim 7. Pr[F1,4|¬Q1,4] = 1/2 + negl(n)

Proof. Let (yj , wj) be output by the s∗j -th session of party
j = j∗, (yj , w′j) be the message that is used to complete
the test session (i.e., the si∗-th session of party i = i∗). We
distinguish the following two cases:

– wj = w′j : In this case, we have ski = skj = H2(i, j, xi,
yj , wj , σj), where σj = Mod2(kj , wj). Note that in
G1,4, kj is randomly chosen from the uniform distribu-
tion over Rq , we have σj (conditioned on wj) is statis-
tically close to uniform distribution over {0, 1}n in the
adversary’s view according to Lemma 6. Thus, the prob-
ability that A has made a H2 query with σi is less than
2−n + negl(n).

– wj ̸= w′j : By assumption that Q1,4 does not happen, we
have A will never make a H2 query with σi.

In all, the probability that A has made a H2 query with
σi is negligible. This claim follows from the fact that if
the adversary doesn’t make a query with σi exactly, the
distribution of ski is uniform over {0, 1}k due to the random
oracle property of H2. Combining the result in Claim 1∼7,
we have that Lemma 9 follows. �

5.2 Type II Adversary
In this subsection, we prove that our AKE is secure against
any PPT Type II adversary A.

Lemma 10. If α/β = 2−ω(logn) and LWEq,n,α is hard, the
proposed AKE is secure against any PPT Type II adversary
A in the random oracle model.

Proof. We prove this lemma via a sequence of games G2,l

for 0 ≤ l ≤ 6.

Game G2,0. S chooses i∗, j∗ ←r {1, . . . , N} and si∗ ←r

{1, . . . ,m}, and hopes that the adversary will choose sid∗ =
(Π, I, i∗, j∗, xi∗ , (yj∗ , wj∗)) as the test session, where xi∗

is output by the si∗-th session of party i∗ with intended



party j∗ (note that sid∗ has no matching session for Type II
adversary). Then, S chooses a ←r Rq , honestly generates
static public keys for all parities (by randomly choosing si
and ei from χα), and simulates the attack environment forA.
Specifically, S maintains two tables L1, L2 for the random
oracles H1, H2 respectively, and answers the queries fromA
as follows:

– H1(in): If there doesn’t exist a tuple (in, out) in the L1

list, choose an element out ←r χγ , and add (in, out) to
the L1 list. Then, return out to A.

– H2(in) queries: If there doesn’t exist a tuple (in, out) in
the L2 list, choose an element out ←r {0, 1}k, and add
(in, out) to the L2 list. Then, return out to A.

– Send0(Π, I, i, j): A initiates a new session of i with
intended partner j, S chooses ri, fi ←r χβ , returns
xi = ari + 2fi ∈ Zn×n

q to A on behalf of i.

– Send1(Π, R, j, i, xi): S chooses rj , fj ←r χβ , and
honestly computes yj = arj + 2fj ∈ Rq , kj , wj , and
skj following the protocol. Finally, return (yj , wj) to A.

– Send2(Π, I, i, j, xi, (yj , wj)): S computes ki and ski by
using ri and si following the protocol.

– SessionKeyReveal(sid): Let sid = (Π, ∗, i, ∗, ∗, ∗, ∗),
S returns ski if the session key of sid has been generated.

– Corrupt(i): Return the static secret key si of i to A.

– Test(sid): Let sid = (Π, I, i, j, xi, (yj , wj)), if (i, j) ̸=
(i∗, j∗), or xi and yj are not output by the si∗-th session
of i∗ and the s∗j -th session of j∗ respectively, S aborts.
Otherwise, S chooses b ←r {0, 1} and sk′i ←r {0, 1}k.
If b = 0, S returns sk′i, else it returns the real session ski
of sid.

Claim 8. The probability that S will not abort in G2,0 is at
least 1

mN2 .

Proof. This claim directly follows from the fact that S
randomly chooses i∗, j∗ ←r {1, . . . , N} and si∗ ←r

{1, . . . ,m} without A knowing it. �

Game G2,1. S behaves almost the same as in G2,0, except
in the following cases:

– Send0(Π, I, i, j): If i ̸= j∗, S answers the query as in
Game G2,1. Else, S computes x′i = ar′i + 2f ′i , where
r′i, f

′
i ←r χβ . Then, it chooses c ←r χγ , and computes

xi = x′i − pic . If there is a tuple ((i, j, xi), ∗) in L1 list,
S aborts the simulation. Else, it adds ((i, j, xi), c) into
L1, and returns xi to A.

– Send1(Π, R, j, i, xi): If j ̸= j∗, S answers the query
as in Game G2,0. Else, S computes y′j = ar′j + 2f ′j ,

where r′j , f
′
j ←r χβ . Then, choose d ←r χγ , and com-

pute yj = y′j − pjd . If there is a tuple ((j, i, yj , xi), ∗)
in the L1 list, S aborts. Else, S adds ((j, i, yj , xi), d) in-

to the L1 list, and computes kj = (pic+ xi)r
′
j + 2gj ,

where c = H1(i, j, xi) and gj ←r χβ . Finally, it
computes wj and skj following the protocol, and sends
(yj , wj) to A.

– Send2(Π, I, i, j, xi, (yj , wj)): If i ̸= j∗, S answer-
s the query as in Game G2,1. Otherwise, let xi =
x′i − pic for x′i = ar′i + 2f ′i , the simulator S computes
ki = (pjd+ yj)r

′
i + 2gi , where gi ←r χβ . Finally, S

computes ski following the protocol.

In the following, let F2,l denote the event that A outputs
a guess b′ that equals to b in Game G2,l.

Claim 9. If α/β = 2−ω(logn) and LWEq,n,α is hard, then
Pr[F2,1] = Pr[F2,0]− negl(n).

Proof. The proof is similar to Claim 2, we omit the details.
�

Game G2,2. S behaves almost the same as in G2,1, except
it replaces the public key for party j∗ with a uniformly
chosen pj∗ ←r Rq .

Claim 10. If LWEq,n,α is hard, then Pr[F2,2] = Pr[F2,1]−
negl(n).

Proof. Since the only difference between G2,1 and G2,2 is
that S replaces pj∗ = asj∗ + 2ej∗ in G2,1 with a randomly
chosen over Rq in G2,2, an adversary that can distinguish the
difference between G2,1 and G2,2 could be directly used to
solve the LWEq,n,α problem. �

Game G2,3. S first computes x′i = ar′i + 2f ′i , where
r′i, f

′
i ←r χβ . Then, it behaves almost the same as in G2,2,

except in the following cases:

– Send0(Π, I, i, j): If (i, j) ̸= (i∗, j∗), or it is not the
si∗ -th session of i∗, S answers the query as in Game
G2,2. Otherwise, S chooses c ←r χγ , and computes
xi = x′i − pic . If there is a tuple ((i, j, xi), ∗) in L1 list,
S aborts the simulation. Else, it adds ((i, j, xi), c) into
L1, and returns xi to A.

– Send2(Π, I, i, j, xi, (yj , wj)): If (i, j) ̸= (i∗, j∗), or
it is not the si∗-th session of i∗, S answers the query
as in Game G2,2. Otherwise, the simulator S computes
ki = (pjd+ yj)r

′
i + 2gi , where d = H1(j, i, yj , xi)

and gi ←r χβ . Finally, it computes ski following the
protocol.

Claim 11. If α/β = 2−ω(logn) and LWEq,n,α is hard, then
Pr[F2,3] = Pr[F2,2]− negl(n).

Proof. The proof is similar to Claim 2, we omit the details.
�

Game G2,4. S first computes v1 = ar′i + 2f̃ ′i , v2 =

pjr
′
i + tẽ′i where r′i ←r χβ , and f̃ ′i , ẽ

′
i ← χα. Then, it com-

putes x′i = v1 + 2f ′i = ar′i + 2(f̃ ′i + f ′i) where f ′i ←r χβ .



Finally, it behaves almost the same as in G2,3 except in the
following case:

– Send2(Π, I, i, j, xi, (yj , wj)): If (i, j) ̸= (i∗, j∗), or
it is not the si∗ -th session of i∗, S answers the query
as in Game G2,3. Otherwise, the simulator S computes
ki = dv2 + yjr

′
i + 2gi = (pjd + yj)r

′
i + 2(dẽ′i + gi),

where d = H1(j, i, yj , xi) and gi ←r χβ . Finally, it
computes ski following the protocol.

Claim 12. If α/β = 2−ω(logn) and LWEq,n,α is hard, then
Pr[F2,4] = Pr[F2,3]− negl(n).

Proof. In Game G2,4, we have x′i = ar′i + 2(f̃ ′i + f ′i) and
ki = (pjd + yj)r

′
i + 2(dẽ′i + gi), where ẽ′i, f̃

′
i ← χα and

f ′i , gi ←r χβ . By Lemma 3, the distributions of both f̃ ′i + f ′i
and dẽ′i+ gi are statistically close to χβ . This claim follows.

�
Game G2,5. S behaves almost the same as in G2,4 except
in the following case:

– Send2(Π, I, i, j, xi, (yj , wj)): If (i, j) ̸= (i∗, j∗), or it
is not the si∗-th session of i∗, S answers the query as in
Game G2,4. Else, S chooses ki ←r Rq and computes
ski following the protocol.

Note that the only difference between G2,4 and G2,5 is
that S replaces the real ki = dv2 + yjr

′
i +2gi in Game G2,4

with a randomly chosen ki ∈ Rq in Game G2,5. Considering
H2 is a random oracle, such a difference will not affect the
view of A until it makes a H2 query with σi derived from
ki. Formally, denote Q2,l for l = 4, 5, 6 as the event that A
makes a H2 query with σi derived from ki.

Claim 13. Pr[Q2,5] = Pr[Q2,4], and Pr[F2,4|¬Q2,4] =
Pr[F2,5|¬Q2,5] = 1/2 + negl(n).

Proof. Since H2 is a random oracle, the event Q2,4 is in-
dependent from the distribution of the corresponding ski.
Namely, no matter whether or not A obtains ski, Pr[Q2,4]
is the same, which also holds for Pr[Q2,5]. Besides, if Q2,l

for l = 4, 5 does not happen, G2,5 is actually the same as
G2,4 in the adversary’s view. Especially, the distribution of
ski is random and uniform over {0, 1}k, which means that
the advantage ofA in guessing b is negligible, given that the
event Q2,5 does not happen. �

Note that if Pr[Q2,5] ≤ negl(n), we have already com-
pleted the proof. However, it is highly non-trivial to prove
such a claim. Actually, though v2 is pseudorandom in the
adversary’s view (under the RLWE assumption), we cannot
immediately obtain that ki = dv2 + yjr

′
i + 2gi is pseudo-

random since yjr′i is correlated with dv2. Fortunately, such a
correlation can somehow be removed by the use of the ran-
dom oracle H1, which guarantees that the adversary must
first commit yj before seeing the random element d (i.e., by
making a corresponding random oracle query). In particu-
lar, if we program the corresponding H1 query with anoth-
er randomly chosen d̃ and obtain k′i = d̃v2 + yjr

′
i + 2gi,

we have k′i = ki + (d̃ − d)v2. In other words, we have
(d̃−d)v2 = (k′i−ki). Intuitively, if the adversary can distin-
guish ki (and k′i) from a uniformly chosen one, it can distin-
guish v2 (which is computationally hidden under the RLWE
assumption) from a randomly chosen element in Rq .

Now, we formally show that Q2,5 will happen with neg-
ligible probability, which makes use of the Forking Lem-
ma [2]. Let sid∗ = (Π, I, i∗, j∗, xi, (yj , wi)) be the test
session. By our assumption that A is a Type II adver-
sary, namely, yj is not output by party j∗ in response to
a Send1(Π, R, j∗, i∗, xi) query. In other words, S does not
make a H1 hash query H1(j

∗, i∗, yj , xi) by itself in produc-
ing yj . Given v1 = ar′i+2f̃ ′i , v2 = pjr

′
i+tẽ′i, and gi ←r χβ

in Game G2,5, denote ki = dv2 + yjr
′
i + 2gi (which is the

same as that in Game G2,4), where H1(j
∗, i∗, yj , xi) = d.

By our assumption,A will make a H2 query with σi derived
from ki with probability at least Pr[Q2,5].

Now, fixing v1, v2, r′i and gi (note that all those values are
chosen by S, and are independent from the adversary’s be-
haviors), S reprograms the hash query H1(j

∗, i∗, yj , xi) =

d̃ ̸= d by using another randomly chosen d̃←r χγ , and sets
k′i = d̃v2+yjr

′
i+2gi = ki+(d̃−d)v2. According to the fork-

ing lemma [2], the adversaryA will use the same yj to com-
plete the test session, and makes a H2 query with σ′i derived
from k′i with probability at least Pr[Q2,5](Pr[Q2,5]/qh −
2−n), where qh is maximum number of H1 queries. Denote
by double-Q2,l such an event that, for l = 5, 6, A in Game
G2,l will make both σi and σ′i in two runs of A, where σi is
derived from ki in the first run of A, and σ′i is derived from
k′i = ki+(d̃−d)v2 in the second run ofA. In particular, we
have Pr[double-Q2,5] ≥ Pr[Q2,5](Pr[Q2,5]/qh − 2−n). In
the following, we will again employ the “deferred analysis”
technique [20] and show that Pr[double-Q2,5] is negligible.

Game G2,6. S chooses v1, v2 ←r Rq , and behaves al-
most the same as in G2,5.

Claim 14. Under the LWEq,n,α assumption, Game G2,6 is
computationally indistinguishable from G2,5. In particular,
Pr[double-Q2,6] = Pr[double-Q2,5]− negl(n)

Proof. Since the only difference between G2,5 and G2,6 is
that S replaces v1 = ar′i + 2f̃ ′i and v2 = pjr

′
i + tẽ′i

with randomly chosen elements in Rq , an adversary that can
distinguish the difference between G2,5 and G2,6 could be
directly used to solve the LWEq,n,α problem. �
Claim 15. Pr[double-Q2,6] = negl(n)

Proof. Note that in Game G2,6, S does not really compute
ki and k′i. (Actually, it cannot compute the values since v1
and v2 are uniformly chosen from Rq at random.) Here, we
denote ki and k′i (i.e., the values determined before and after
S reprograms the H1 query) as the target values in the A’s
view. In particular, the condition k′i = ki + (d̃− d)v2 holds,
since A cannot efficiently distinguish Game G2,6 from G2,5

by Claim 14. However, since v2 is uniformly distributed over



Rq and is independent from A’s view (thus is independent
from both ki and k′i), we have σ′i = Mod2(k

′
i, w
′
i) is

statistically close to uniform over {0, 1}n even conditioned
on σi = Mod2(ki, wi) by Lemma 6. (Note that (d̃ − d)
is invertible with overwhelming probability by Lemma 4).
Thus, the probability that A will make a H2 query with σ′i
is at most 2−n + negl(n). In other words, the probability
Pr[double-Q2,6] ≤ 2−n+negl(n), which is negligible in n.
This completes the proof. �

Combining the result in Claim 8∼15, we have that Lem-
ma 10 follows. �

5.3 Type III Adversary
In this subsection, we prove that our AKE is secure against
any PPT Type III adversary A.

Lemma 11. If α/β = 2−ω(logn) and LWEq,n,α is hard, the
proposed AKE is secure against any PPT Type III adversary
A in the random oracle model.

Proof. We prove this lemma via a sequence of games G3,l

for 0 ≤ l ≤ 6.

Game G3,0. S chooses i∗, j∗ ←r {1, . . . , N} and sj∗ ←r

{1, . . . ,m}, and hopes that the adversary will choose sid∗ =
(Π, R, j∗, i∗, xi∗ , (yj∗ , wj∗)) as the test session, where
(yj∗ , wj∗) is output by the s∗j -th session of party j∗ acti-
vated by a Send0(Π, R, j∗, i∗, xi∗) for some xi∗ . Then, S
chooses a ←r Rq , honestly generates static public keys
for all parities (by randomly choosing si and ei from χα),
and simulates the attack environment for A. Specifically, S
maintains two tables L1, L2 for the random oracles H1,H2

respectively, and answers the queries from A as follows:

– H1(in): If there doesn’t exist a tuple (in, out) in the L1

list, choose an element out ←r χγ , and add (in, out) to
the L1 list. Then, return out to A.

– H2(in) queries: If there doesn’t exist a tuple (in, out) in
the L2 list, choose an element out ←r {0, 1}k, and add
(in, out) to the L2 list. Then, return out to A.

– Send0(Π, I, i, j): A initiates a new session of i with
intended partner j, S chooses ri, fi ←r χβ , returns
xi = ari + 2fi ∈ Zn×n

q to A on behalf of i.

– Send1(Π, R, j, i, xi): S chooses rj , fj ←r χβ , and
honestly computes yj = arj + 2fj ∈ Rq , kj , wj , and
skj following the protocol. Finally, return (yj , wj) to A.

– Send2(Π, I, i, j, xi, (yj , wj)): S computes ki and ski by
using ri and si following the protocol.

– SessionKeyReveal(sid): Let sid = (Π, ∗, i, ∗, ∗, ∗, ∗),
S returns ski if the session key of sid has been generated.

– Corrupt(i): Return the static secret key si of i to A.

– Test(sid): Let sid = (Π, I, i, j, xi, (yj , wj)), if (i, j) ̸=
(i∗, j∗), or xi and yj are not output by the si∗-th session
of i∗ and the s∗j -th session of j∗ respectively, S aborts.
Otherwise, S chooses b ←r {0, 1} and sk′i ←r {0, 1}k.

If b = 0, S returns sk′i, else it returns the real session ski
of sid.

Claim 16. The probability that S will not abort in G3,0 with
probability at least 1

mN2 .

Proof. This claim directly follows from the fact that S ran-
domly chooses i∗, j∗ ←r {1, . . . , N} and s∗j ←r {1, . . . ,m}
independently from the view of A. �

Game G3,1. S behaves almost the same as in G3,0, except
in the following cases:

– Send0(Π, I, i, j): If i ̸= i∗, S answers the query as in
Game G3,0. Else, S computes x′i = ar′i + 2f ′i , where
r′i, f

′
i ←r χβ . Then, it chooses c ←r χγ , and computes

xi = x′i − pic . If there is a tuple ((i, j, xi), ∗) in L1 list,
S aborts, else it adds ((i, j, xi), c) into L1, and returns xi

to A.

– Send1(Π, R, j, i, xi): If j ̸= i∗, S answers the query
as in Game G3,0. Else, S computes y′j = ar′j + 2f ′j ,

where r′j , f
′
j ←r χβ . Then, choose d ←r χγ , and com-

pute yj = y′j − pjd . If there is a tuple ((j, i, yj , xi), ∗)
in the L1 list, S aborts. Else, it adds ((j, i, yj , xi), d) in-
to the L1 list, and computes kj = (pic+ xi)r

′
j + 2gj ,

where c = H1(i, j, xi) and gj ←r χβ . Finally, it
computes wj and skj following the protocol, and sends
(yj , wj) to A.

– Send2(Π, I, i, j, xi, (yj , wj)): If i ̸= i∗, S answer-
s the query as in Game G3,0. Otherwise, let xi =
x′i − pic for x′i = ar′i + 2f ′i , the simulator S computes
ki = (pjd+ yj)r

′
i + 2gi , where gi ←r χβ . Finally, S

computes ski following the protocol.

In the following, we use F3,l to denote the event that A
outputs a guess b′ that equals to b in Game G3,l.

Claim 17. If α/β = 2−ω(logn) and LWEq,n,α is hard, then
Pr[F3,1] = Pr[F3,0]− negl(n).

Proof. The proof is similar to Claim 2, we omit the details.
�

Game G3,2. S behaves almost the same as in G3,1, except
it replaces the public key for party i∗ with a randomly chosen
pi∗ ←r Rq .

Claim 18. If LWEq,n,α is hard, then Pr[F3,2] = Pr[F3,1]−
negl(n).

Proof. The proof is similar to Claim 11, we omit the details.
�

Game G3,3. S first computes y′j = ar′j +2f ′j , where

r′j , f
′
j ←r χβ . Then, it behaves almost the same as in G3,2,

except in the following cases:



– Send1(Π, R, j, i, xi): If (i, j) ̸= (i∗, j∗), or it is not
the s∗j -th session of j∗, S answers the query as in Game
G3,2. Otherwise, S chooses d ←r χγ , and computes
yj = y′j − pjd . S aborts if there is a tuple ((j, i, yj , xi), ∗)

in the L1 list. Else, it adds ((j, i, yj , xi), d) into L1

list, and computes kj = (pic+ xi)r
′
j + 2gj , where

c = H1(i, j, xi) and gj ←r χβ . Finally, it computes
wj and skj following the protocol, and sends (yj , wj) to
A.

Claim 19. If α/β = 2−ω(logn) and LWEq,n,α is hard, then
Pr[F3,3] = Pr[F3,2]− negl(n).

Proof. The proof is similar to Claim 2, we omit the details.
�

Game G3,4. S first computes v1 = ar′j +2f̃ ′j , v2 = pir
′
j +

tẽ′j where r′j ←r χβ , and f̃ ′j , ẽ
′
j ← χα. Then, it computes

y′j = v1 + 2f ′j = ar′j+2(f̃ ′j+f ′j) where f ′j ←r χβ . Finally,
it behaves almost the same as in G3,3 except in the following
case:

– Send1(Π, R, j, i, xi): If (i, j) ̸= (i∗, j∗), or it is not the
s∗j -th session of j∗, S answers the query as in Game
G3,3. Otherwise, S chooses d ←r χγ , and computes
yj = y′j − pjd . If there is a tuple ((j, i, yj , xi), ∗) in the

L1 list, S aborts. Otherwise, it adds ((j, i, yj , xi), d) into
L1 list, and computes kj = cv2 + xir

′
j + 2gj = (pic +

xi)r
′
j + 2(cẽ′j + gj), where c = H1(i, j, xi) and gj ←r

χβ . Finally, it computes wj and skj following the proto-
col, and sends (yj , wj) to A.

Claim 20. If α/β = 2−ω(logn) and LWEq,n,α is hard, then
Pr[F3,4] = Pr[F3,3]− negl(n).

Proof. The proof is similar to Claim 2, we omit the details.
�

Game G3,5. S behaves almost the same as in G3,4 except
in the following case:

– Send1(Π, R, j, i, xi): If (i, j) ̸= (i∗, j∗), or it is not the
s∗j -th session of j∗, S answers the query as in Game
G3,4. Otherwise, S chooses d ←r χγ , and computes
yj = y′j − pjd. If there is a tuple ((j, i, yj , xi), ∗) in
the L1 list, S aborts, else it adds ((j, i, yj , xi), d) in-
to L1. Then, it chooses kj ←r Rq , computes wj and
σj as described in the protocol. If A has made a H2

query H2(i, j, xi, yj , wj , σj), S aborts. Else, it choos-

es skj ←r {0, 1}k , and sets H2(i, j, xi, yj , wj , σj) =

skj . Finally, it sends (yj , wj) to A.

Note that the only difference between G3,4 and G3,5 is
that S replaces the real kj = cv2+xir

′
j +2gj in Game G3,4

with a randomly chosen kj ∈ Rq in Game G3,5. Considering
H2 is a random oracle, such a difference will not affect the
view of A until it makes a H2 query with σj derived from

kj . Formally, denote Q3,l for l = 4, 5, 6 as the event that A
makes a H2 query with σj derived from kj .

Claim 21. Pr[Q3,4] = Pr[Q3,5] and Pr[F3,4|¬Q3,4] =
Pr[F3,5|¬Q3,5] = 1/2 + negl(n).

Proof. Since H2 is a random oracle, the event Q3,4 is in-
dependent from the distribution of the corresponding ski.
Namely, no matter whether or not A obtains ski, Pr[Q2,5]
is the same, which also holds for Pr[Q3,5]. Besides, if Q3,l

for l = 4, 5 does not happen, G3,5 is actually the same as
G3,4 in the adversary’s view. Especially, the distribution of
skj is random and uniform over {0, 1}k, which means that
the advantage ofA in guessing b is negligible, given that the
event Q3,5 does not happen. �

Similarly, let sid = (Π, R, j∗, i∗, xi, (yj , wi)) be the test
session. By our assumption that A is a Type III adversary,
xi is not output by party i∗. In other words, S itself does not
make a H1 hash query H1(i

∗, j∗, xi) in producing xi. Given
v1 = ar′j + 2f̃ ′j , v2 = pir

′
j + tẽ′j , and gj ←r χβ in Game

G3,5, we denote kj = cv2 + xir
′
j + 2gj as the target key

in adversary A’s view (which is the same as in Game G3,4),
where H1(i

∗, j∗, xi) = c. By our assumption, A will make
a H2 query with σj derived from kj with probability at least
Pr[Q3,5].

Now, fixing v1, v2, r′j and gj (note that all those values are
determined by S, and are independent from the adversary’s
behaviors), S reprograms the hash query H1(i

∗, j∗, xi) =
c̃ ̸= c by using another randomly chosen c̃ ←r χγ , and sets
k′j = c̃v2 + xir

′
j + 2gj = kj + (c̃− c)v2. According to the

forking lemma [2], the adversary A will use the same xi in
the test session, and and makes a H2 query with σ′j derived
from k′j with probability at least Pr[Q3,5](Pr[Q3,5]/qh −
2−n), where qh is maximum number of H1 queries. Denote
by double-Q3,l such an event that, for l = 5, 6, A in Game
G3,l will make both σi and σ′i in two runs of A, where σj is
derived from kj in the first run of A, and σ′j is derived from
k′j = kj +(c̃− c)v2 in the second run ofA. In particular, we
have Pr[double-Q3,5] ≥ Pr[Q3,5](Pr[Q3,5]/qh − 2−n).

Game G3,6. S chooses v1, v2 ←r Rq , and behaves al-
most the same as in G3,5.

Claim 22. Under the LWEq,n,α assumption, Game G3,6 is
computationally indistinguishable from G3,5. In particular,
Pr[double-Q3,6] = Pr[double-Q3,5]− negl(n).

Proof. Since the only difference between G3,5 and G3,6 is
that S replaces v1 = ar′i + 2f̃ ′i and v2 = pjr

′
i + tẽ′i with

randomly chosen elements in Rq , and an adversary that can
distinguish the difference between G3,5 and G3,6 could be
used to solve the LWEq,n,α problem. �
Claim 23. Pr[double-F3,6] = negl(n).

Proof. Note that in Game G3,6, S does not really compute
kj and k′j . (Actually, it cannot compute the values since v1
and v2 are randomly chosen from Rq .) Here, we denote



kj and k′j (i.e., the values determined before and after S
reprograms the H1 query) as the target values in the A’s
view. In particular, the condition k′j = kj + (d̃ − d)v2
holds, since A cannot efficiently distinguish Game G3,6

from G3,5 by Claim 22. However, since v2 is uniformly
distributed over Rq and is independent from the A’s view
(thus is independent from both kj and k′j), we have σ′j =
Mod2(k

′
j , w

′
j) is statistically close to uniform over {0, 1}n

even conditioned on σj = Mod2(kj , wj) by Lemma 6.
(Note that (c̃−c) is invertible with overwhelming probability
by Lemma 4). Thus, the probability that A will make a H2

query with σ′i is at most 2−n + negl(n). In other words,
the probability Pr[double-F3,6] ≤ 2−n + negl(n), which is
negligible in n. This completes the proof. �

Combining the result in Claim 16∼23, we have that Lem-
ma 11 follows. �

5.4 Type IV Adversary
In this subsection, we prove that our AKE is secure against
any PPT Type IV adversary A.

Lemma 12. If α/β = 2−ω(logn) and LWEq,n,α is hard, the
proposed AKE is secure against any PPT Type IV adversary
A in the random oracle model.

Proof. We prove this lemma via a sequence of games G4,l

for 0 ≤ l ≤ 4.

Game G4,0. S first chooses i∗, j∗ ←r {1, . . . , N} and
si∗ , sj∗ ←r {1, . . . ,m}, and hopes that the adversary will
choose sid∗ = (Π, R, j∗, i∗, xi∗ , (yj∗ , wj∗)) as the test ses-
sion, where xi∗ is output by the si∗ -th session of party i∗,
and (yj∗, wj∗) is output by the s∗j -th session of party j∗

activated by a Send1(Π, R, j∗, i∗, xi∗). Then, S chooses
a ←r Rq , honestly generates static public keys for all par-
ities (by randomly choosing si and ei from χα), and simu-
lates the attack environment forA. Specifically, S maintains
two tables L1, L2 for the random oracles H1,H2 respective-
ly, and answers the queries from A as follows:

– H1(in): If there doesn’t exist a tuple (in, out) in the L1

list, choose an element out ←r χγ , and add (in, out) to
the L1 list. Then, return out to A.

– H2(in) queries: If there doesn’t exist a tuple (in, out) in
the L2 list, choose an element out ←r {0, 1}k, and add
(in, out) to the L2 list. Then, return out to A.

– Send0(Π, I, i, j): A initiates a new session of i with
intended partner j, S chooses ri, fi ←r χβ , returns
xi = ari + 2fi ∈ Zn×n

q to A on behalf of i.

– Send1(Π, R, j, i, xi): S chooses rj , fj ←r χβ , and
honestly computes yj = arj + 2fj ∈ Rq , kj , wj , and
skj following the protocol. Finally, return (yj , wj) to A.

– Send2(Π, I, i, j, xi, (yj , wj)): S computes ki and ski by
using ri and si following the protocol.

– SessionKeyReveal(sid): Let sid = (Π, ∗, i, ∗, ∗, ∗, ∗),
S returns ski if the session key of sid has been generated.

– Corrupt(i): Return the static secret key si of i to A.

– Test(sid): Let sid = (Π, I, i, j, xi, (yj , wj)), if (i, j) ̸=
(i∗, j∗), or xi and yj are not output by the si∗ -th session
of i∗ and the s∗j -th session of j∗ respectively, S aborts.
Otherwise, S chooses b ←r {0, 1} and sk′i ←r {0, 1}k.
If b = 0, S returns sk′i, else it returns the real session ski
of sid.

Claim 24. The probability that S will not abort in G4,0 is at
least 1

m2N2 .

Proof. This claim directly follows from the fact that S
randomly chooses i∗, j∗ ←r {1, . . . , N} and si∗ , s

∗
j ←r

{1, . . . ,m} independently from the view of A. �

Game G4,1. S first computes y′j = ar′j +2f ′j , where

r′j , f
′
j ←r χβ . Then, it behaves almost the same as in G4,0,

except in the following case:

– Send1(Π, R, j, i, xi): If (i, j) ̸= (i∗, j∗), or it is not the
s∗j -th session of j∗, S answers the query as in Game
G4,0. Otherwise, S chooses d ←r χγ , and computes
yj = y′j − pjd . If there is a tuple ((j, i, yj , xi), ∗) in

the L1 list, S aborts. Else, it adds ((j, i, yj , xi), d) into
L1 list, and computes kj = (pic+ xi)r

′
j + 2gj , where

c = H1(i, j, xi) and gj ←r χβ . Finally, it computes wj

and skj following the protocol, and sends (yj , wj) to A.

In the following, we define F4,l as the event that A out-
puts a guess b′ that equals to b in Game G4,l.

Claim 25. If α/β = 2−ω(logn) and LWEq,n,α is hard, then
Pr[F4,l] = Pr[F4,0]− negl(n).

Proof. The proof is similar to Claim 2, we omit the details.
�

Game G4,2. S first computes x′i = ar′i + 2f ′i , where
r′i, f

′
i ←r χβ . Then, it behaves almost the same as in G4,1,

except for the following cases:

– Send0(Π, I, i, j): If (i, j) ̸= (i∗, j∗), or it is not the
si∗ -th session of i∗, S answers the query as in Game
G4,1. Otherwise, S chooses c ←r χγ , and computes
xi = x′i − pic . S aborts if there is a tuple ((i, j, xi), ∗)

in L1 list, else it adds ((i, j, xi), c) into L1. Finally, it
returns xi to A.

– Send2(Π, I, i, j, xi, (yj , wj)): If (i, j) ̸= (i∗, j∗), or it
is not the si∗-th session of i∗, S answers the query as in
Game G4,1. Otherwise, if (yj , wj) is output by the s∗j -th
session of party j∗, let skj be the session key of session
sid = (Π, R, j, i, xi, (yj , wj)), S sets ski = skj . Oth-

erwise, it computes ki = (pjd+ yj)r
′
i + 2gi , where



d = H1(j, i, yj , xi) and gi ←r χβ . Finally, it computes
ski following the protocol.

Claim 26. If α/β = 2−ω(logn) and LWEq,n,α is hard, then
Pr[F4,2] = Pr[F4,l]− negl(n).

Proof. The proof is similar to Claim 3, we omit the details.
�

Game G4,3. S first chooses x′i ←r Rq . Then, it behaves
almost the same as in G4,2, except for the following cases:

– Send2(Π, I, i, j, xi, (yj , wj)): If (i, j) ̸= (i∗, j∗), or it
is not the si∗-th session of i∗, or (yj , wj) is output by the
s∗j -th session of party j∗, S behaves the same as in Game

G4,2. Else, choose ski ←r {0, 1}k as the session key.

Denote Q4,l be event that in Game G4,l for l = 2, 3, 4, A
makes a H2 query with σi for the si∗-th session of party i∗,
when (yj , w

′
j) is output by the s∗j -th session of party j∗ but

wj ̸= w′j .

Claim 27. If LWEq,n,α is hard, Pr[Q4,3] = Pr[Q4,2] −
negl(n), and Pr[F4,3|¬Q4,3] = Pr[F4,2|¬Q4,2]− negl(n).

Proof. The proof is similar to Claim 4, we omit the details.
�

Game G4,4. S chooses y′j ←r Rq , and behaves almost
the same as in G4,3, except in the following case:

– Send1(Π, R, j, i, xi): If (i, j) ̸= (i∗, j∗), or it is not
the s∗j -th session of j∗, S answers the query as in Game
G4,3. Otherwise, S chooses d ←r χγ , and computes
yj = y′j − pjd . If there is a tuple ((j, i, yj , xi), ∗) in

the L1 list, S aborts, else it adds ((j, i, yj , xi), d) in-
to L1. Then, S chooses kj ←r Rq , and computes
wj , σj following the protocol. If A has made a H2

query H2(i, j, xi, yj , wj , σj), S aborts. Else, choose

skj ←r {0, 1}k , and set H2(i, j, xi, yj , wj , σj) = skj .
Finally, it sends (yj , wj) to A.

Claim 28. Under the LWEq,n,β assumption, Game G4,3

and G4,4 is computationally indistinguishable. In particu-
lar, we have Pr[Q4,4] = Pr[Q4,3], and Pr[F4,4|¬Q4,4] =
Pr[F4,3|¬Q4,3]− negl(n).

Proof. The proof is similar to Claim 5, we omit the details.
�

Claim 29. Pr[Q4,4] = negl(n).

Proof. The proof is similar to Claim 6, we omit the details.
�

Claim 30. Pr[F4,4|¬Q4,4] = 1/2 + negl(n).

Proof. The proof is similar to Claim 7, we omit the details.
�

Combining the result in Claim 24∼30, we have that Lem-
ma 12 follows.

�

5.5 Type V Adversary
In this subsection, we prove that our AKE is secure against
any PPT Type V adversary A.

Lemma 13. If α/β = 2−ω(logn) and LWEq,n,α is hard, the
proposed AKE is secure against any PPT Type V adversary
A in the random oracle model.

Proof. We prove this lemma via a sequence of games G5,l

for 0 ≤ l ≤ 4.

Game G5,0. S chooses i∗, j∗ ←r {1, . . . , N} and si∗ , sj∗ ←r

{1, . . . ,m}, and hopes that the adversary will choose sid∗ =
(Π, R, j∗, i∗, xi∗ , (yj∗ , wj∗)) as the test session, where xi∗

is output by the si∗ -th session of party i∗, and (yj∗, wj∗)
is output by the s∗j -th session of party j∗ activated by a
Send1(Π, R, j∗, i∗, xi∗). Then, S chooses a ←r Rq , hon-
estly generates static public keys for all parities (by random-
ly choosing si and ei from χα), and simulates the attack en-
vironment forA. Specifically, S maintains two tables L1, L2

for the random oracles H1,H2 respectively, and answers the
queries from A as follows:

– H1(in): If there doesn’t exist a tuple (in, out) in the L1

list, choose an element out ←r χγ , and add (in, out) to
the L1 list. Then, return out to A.

– H2(in) queries: If there doesn’t exist a tuple (in, out) in
the L2 list, choose an element out ←r {0, 1}k, and add
(in, out) to the L2 list. Then, return out to A.

– Send0(Π, I, i, j): A initiates a new session of i with
intended partner j, S chooses ri, fi ←r χβ , returns
xi = ari + 2fi ∈ Zn×n

q to A on behalf of i.

– Send1(Π, R, j, i, xi): S chooses rj , fj ←r χβ , and
honestly computes yj = arj + 2fj ∈ Rq , kj , wj , and
skj following the protocol. Finally, return (yj , wj) to A.

– Send2(Π, I, i, j, xi, (yj , wj)): S computes ki and ski by
using ri and si following the protocol.

– SessionKeyReveal(sid): Let sid = (Π, ∗, i, ∗, ∗, ∗, ∗),
S returns ski if the session key of sid has been generated.

– Corrupt(i): Return the static secret key si of i to A.

– Test(sid): Let sid = (Π, I, i, j, xi, (yj , wj)), if (i, j) ̸=
(i∗, j∗), or xi and yj are not output by the si∗ -th session
of i∗ and the s∗j -th session of j∗ respectively, S aborts.
Otherwise, S chooses b ←r {0, 1} and sk′i ←r {0, 1}k.
If b = 0, S returns sk′i, else it returns the real session ski
of sid.

Claim 31. The probability that S will not abort in G5,0 with
probability at least 1

m2N2 .

Proof. This claim directly follows from the fact that S
randomly chooses i∗, j∗ ←r {1, . . . , N} and si∗ , s

∗
j ←r

{1, . . . ,m} independently from the view of A. �



Game G5,1. S first computes y′j = ar′j + 2f ′j , where

r′j , f
′
j ←r χβ . Then, it behaves almost the same as in G5,0,

except in the following case:

– Send1(Π, R, j, i, xi): If (i, j) ̸= (i∗, j∗), or it is not the
s∗j -th session of j∗, S answers the query as in Game
G5,0. Otherwise, S chooses d ←r χγ , and computes
yj = y′j − pjd . If there is a tuple ((j, i, yj , xi), ∗) in

the L1 list, S aborts. Else, it adds ((j, i, yj , xi), d) into
L1. Then, S computes kj = (pic+ xi)r

′
j + 2gj , where

c = H1(i, j, xi) and gj ←r χβ . Finally, it computes wj

and skj following the protocol, and sends (yj , wj) to A.

In the following, let F5,l denote the event that A outputs
a guess b′ that equals to b in Game G5,l.

Claim 32. If α/β = 2−ω(logn) and LWEq,n,α is hard, then
Pr[F5,l] = Pr[F5,0]− negl(n).

Proof. The proof is similar to Claim 2, we omit the details.
�

Game G5,2. S first computes x′i = ar′i + 2f ′i , where
r′i, f

′
i ←r χβ . Then, it behaves almost the same as in G5,1,

except for the following cases:

– Send0(Π, I, i, j): If (i, j) ̸= (i∗, j∗), or it is not the
si∗-th session of i∗, S answers the query as in Game
G5,1. Otherwise, S chooses c ←r χγ , and computes
xi = x′i − pic . If there is a tuple ((i, j, xi), ∗) in L1

list, S aborts, else it adds ((i, j, xi), c) into L1. Finally, it
returns xi to A.

– Send2(Π, I, i, j, xi, (yj , wj)): If (i, j) ̸= (i∗, j∗), or it
is not the si∗-th session of i∗, S answers the query as in
Game G5,1. Otherwise, if (yj , wj) is output by the s∗j -
th session of party j∗, let skj be the session key of ses-
sion sid = (Π, R, j, i, xi, (yj , wj)), S sets ski = skj .

Else, S computes ki = (pjd+ yj)r
′
i + 2gi , where d =

H1(j, i, yj , xi) and gi ←r χβ . Finally, it computes ski
following the protocol.

Claim 33. If α/β = 2−ω(logn) and LWEq,n,α is hard, then
Pr[F5,2] = Pr[F5,l]− negl(n).

Proof. The proof is similar to Claim 3, we omit the details.
�

Game G5,3. S chooses x′i ←r Rq , and behaves almost
the same as in G5,2, with the following exception:

– Send2(Π, I, i, j, xi, (yj , wj)): If (i, j) ̸= (i∗, j∗), or it
is not the si∗-th session of i∗, or (yj , wj) is output by the
s∗j -th session of party j∗, S answers the query as in Game

G5,2. Else, it chooses ski ←r {0, 1}k .

Claim 34. Pr[F5,3] = Pr[F5,2]− negl(n).

Proof. The claim can be proved via a sequence of Games as
we have done from Game G2,4 to G2,6. We omit the details
here. �

Game G5,4. S chooses y′j ←r Rq , and behaves almost
the same as in G5,3, except in the following case:

– Send1(Π, R, j, i, xi): If (i, j) ̸= (i∗, j∗), or it is not the
s∗j -th session of j∗, S answers the query as in Game
G5,3. Otherwise, S chooses d ←r χγ , and computes
yj = y′j − pjd . If there is a tuple ((j, i, yj , xi), ∗) in

the L1 list, S aborts. Else, it adds ((j, i, yj , xi), d) into
L1, and chooses kj ←r Rq , and computes wj , σj fol-
lowing the protocol. S aborts the simulation if A has
made a H2 query H2(i, j, xi, yj , wj , σj). Otherwise, it

chooses skj ←r {0, 1}k , and sets H2(i, j, xi, yj , wj ,

σj) = skj . Finally, it sends (yj , wj) to A.

Claim 35. Under the LWEq,n,β assumption, we have that
Pr[F5,4] = Pr[F5,3]− negl(n).

Proof. The proof is similar to Claim 5, we omit the details.
�

Claim 36. Pr[F5,4] = 1/2 + negl(n).

Proof. The proof is similar to Claim 7, we omit the details.
�

Combining the result in Claim 31∼36, we have that Lem-
ma 13 follows. �
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