Compact and Side Channel Secure Discrete
Gaussian Sampling

Sujoy Sinha Roy, Oscar Reparaz, Frederik Vercauteren, ragvil Verbauwhede

Abstract—Discrete Gaussian sampling is an integral part of vast range of applicability [2] and computational efficigna
many lattice based cryptosystems such as public-key encripn, the present decade, beside significant progress in theytheor
digital signature schemes and homomorphic encryption scimes. of lattice-based cryptography, efficient implementati¢a

In this paper we propose a compact and fast Knuth-Yao sampler .
for sampling from a narrow discrete Gaussian distribution with [41, [5], [6], [7], 8], [9], [10], [11], [12], [13] have inceased

very high precision. The designed samplers have a maximumast Practicality of the schemes.
tistical distance of 27 to a true discrete Gaussian distribution. Sampling from a discrete Gaussian distribution is an essen-

In this paper we investigate various optimization techniqes to tial part in many lattice-based cryptosystems such as @ubli
achieve minimum area and cycle requirement. For the standat key encryption, digital signature and homomorphic endoypt

deviation 3.33, the most area-optimal implementation of thk bit- H fficient d imol tati f di t
scan operation based Knuth-Yao sampler consumes 30 slices o ence an eflicient and secure implementation ot discrete

the Xilinx Virtex 5 FPGAs, and requires on average 17 cycles Gaussian sampling is a key towards achieving practical im-
to generate a sample. We improve the speed of the samplerplementations of these cryptosystems. To achieve effigjenc

by using a precomputed table that directly maps the initial the sampler architecture should be small and fast. At theesam
random bits into samples with very high probability. The fas ime the sampler should be very accurate so that its statisti

sampler consumes 35 slices and spends on average 2.5 cycle . . LT
to generate a sample. However the sampler architectures are distance to a true discrete Gaussian distribution is nieiig

not secure against timing and power analysis based attackgn tO satisfy the security proofs [14].
this paper we propose a random shuffle method to protect the The most commonly used methods for sampling from a

Gaussian distributed polynomial against such attacks. Theside discrete Gaussian distribution are based on the rejectidn a
channel attack resistant sampler architecture consumes 5&lices inversion methods. However these methods are very slow and
and spends on average 420 cycles to generate a polynomial 01! ' . .
256 coefficients. consume a large number of random bits. The first hardware
_ _) implementation of a discrete Gaussian sampler [4] uses a
Keywords. Lattice-based cryptography, Discrete Gaussialsam- Gy ssjan distributed array indexed by a (pseudo)random num
pler, Hardware implementation, Knuth-Yao algorithm, Discrete b tor. H th ler h | . d
distribution generating (DDG) tree, Side channel analysis er gen_era or. OWeV‘?r e Samp erhas a OW p_reCIS_Ion and a
small tail bound 2s) which results in a large statistical distance
to the true discrete Gaussian distribution. A more efficient
. INTRODUCTION sampler in [6] uses an inversion method which compares

Most currently used public-key cryptosystems are based tapdom probabilitigs with a cumulative distribution tablp
difficult number theoretic problems such as integer fagtori e hardware architecture an array of parallel comparasors
tion or discrete logarithm problem. Though these probleny$€d 10 map a random probability into a sample value. To
are difficult to solve using present day digital computereyt Satisfy a negligible statistical distance, the samplemires
can be solved in polynomial time on large quantum computef&y large comparator circuits. This increases area aray aé|

using Shor’s algorithm. Although quantum computing isl stif"€ sampler. The first compact implementation with neglegib
in a primitive stage, significant research is going on to tgve statistical distance was proposed in [7]. The sampler igdbas

powerful quantum computers for military applications sucfil the Knuth-Yao random walk algorithm [15]. The advantage
as cryptanalysis [1]. As a result, the possible appeararﬂ:feth's algorithm is that it requires a near-optimal numbgr o

of powerful quantum computers could bring disaster for ofif"dom bits to generate a sample pointin the average case. Th
present day public-key infrastructure. sampler was designed to attain a statistical distance tess t

Lattice-based cryptography is considered as a strong cardi’’ to a true discrete distribution for the standard deviation
date for public key cryptography in the era of quantum conf. = 3-33: On the Xilinx Virtex V FPGA, the sampler con-
puting. Advantages of lattice-based cryptography oveenthSUMes 47 slices and requires on average 17 cycles to compute a

conventional public key schemes are its strong securitgfgro SaMPple point. Later in [11] a very small-area Bernoulli séenp
architecture was presented. The sampler consumes only 37

The authors are with the ESAT/COSIC and iMinds, KU Leuvenslices and spends on average 144 cycles to generate a sample.

Ka_lsteelpark Arenberg 10, B-3001 Legven-HeverIee, Belgiuﬁmail: In [10] an efficient sampler architecture was proposed for
{firstname.lastnanje@esat.kuleuven.be This work was supported in part bg ling f ider di G . distributi h
the Research Council KU Leuven: TENSE (GOA/11/007), by iléin by ampling from wider discrete Gaussian distributions thvat a

the Flemish Government, FWO G.0213.11N, by the Herculesn@ation Suitable for the lattice based digital signature schemeS3L|
AKUL/11/19, by the European Commission through the ICT paogme [16]. In this paper we focus on designing compact, fast and
under contract FP7-ICT-2011-284833 PUFFIN and FP7-ICI3200-SEP- lers for th di G ian dist
210076296 PRACTICE. Sujoy Sinha Roy is funded by an Erasmusdus S€cure samplers for the narrow discrete Gaussian disoitsut

fellowship. that are normally used in the lattice based encryption selsem

Our contributions: In this paper we propose a compact andefined as follows.

fast discrete Gaussian sampler based on the Knuth-Yaomando 1 2, * 2 902
walk. As the Knuth-Yao random walk is not a constant-tim&7(E = z) = 3¢ “/77 whereS =1+ 226 s
operation, the discrete Gaussian sampler is vulnerabliglés s z=1

channel attacks. In this paper we propose a technique Tioe normalization factof is approximatelyr/27. For most
prevent such attacks. In particular, we make the followirigttice based cryptosystems the meais taken as zero and
contributions: in such cases we usPyz, to representDz .. A discrete

1) The compact Knuth-Yao sampler proposed in [7] iSaussian distri_but.ion.can. also be defined over a Ia_tljcg
composed of mainly a ROM, a scan register and sevef&'- Such a distribution is denoted d3, , and assigns a
small counters. The sampler consumes 47 slices BFpbability proportional to==IXI"/27" to each element € L.
a Xilinx Virtex 5 FPGA for the standard deviationWhenL = Z™, the discrete Gaussian distributidpy, , over
o = 3.33. The area requirement of the sampler is mostly is the product distribution of» independent copies db ..
due to the ROM and the scan-register. In this paper Viée
reduce the total area consumption of the sampler by
reducing the width of the ROM and the scan-register. A discrete Gaussian distribution has an infinitely long tail
We also optimize the control signal generation block t8nd infinitely high precision for the probabilities of thengale
finally achieve an area of only 30 slices for the overaloints. In a real-world application it is not possible to ides
sampler. In this paper we provide a detailed intern& sampler that can support infinite tail and precision. lddee
architecture of the sampler along with the control signd} Practical applications we put an upper bound on the tail
generation block. and the precision of the probabilities. Such bounds obWous

2) The basic Knuth-Yao sampler [7] performs a randofftroduce a non-zero statistical distance to a true discret
walk determined by a sequence of random bits and @aussian distribution. To satisfy the security proofs [1#4¢
the probability bits from the ROM. This bit scanning opSampler should have a negligible statistical distance tue t
eration is sequential and thus the sampler in [7] requirééscrete Gaussian distribution. According to Lemma 4.4 in
on average 17 cycles to obtain a sample point. To achigide]: for anyc > 1 the probability of sampling from Dz .
faster computation time, we increase the speed of tfatisfies the following inequality.
sampler by using a dedicated small lookup table that Pr(|v| > cov/m) < e (1=c) (1)

maps the initial random bits directly into a sample point Similarlv denote th bability of i 7 d
(with large probability) or into an intermediate position 'miiarly denote the probabiiity of samplinge £ accord-
in the random walk Ing to the accurate distributio® , with p.. Assume that

3) The Knuth-Yao random walk is not a constant '[iméhe real-wo_rld sampler_ samplgsvv_ith prob~abilitypz an(_j the
operation and hence it is possible by an adversary Q8rrespond|ng approximate distribution i3, Therells_an
predict the value of the output sample by performin ror-constant > 0 such thatjp, — p?l < c The statistical
timing and simple power analysis. In this paper w istance betweerDz o corresp(_)nd_lng.tOm independent
show how this side channel analysis can be used ﬁgmples fromDz,; and the true distributiozr ;- [18]:
break the ring-LWE encryption scheme. Finally we A(Dzm,U,DZm,U) <27% £ 2mze. (2)
propose a random shuffle method to remove any timiq_gere Pr
information from a Gaussian distributed polynomial.

Tail and precision bounds

(V| > 2¢ : vV + Dzm) < 27F represents the tail
bound.

The remainder of the paper is organized as follows: Sec-In Table | we show the tail boun{t;| and the precision
tion Il provides a brief mathematical background. Implebounde required to satisfy a statistical distance of less than
mentation strategies for the Knuth-Yao sampler architectiz—?° for the Gaussian distribution parameter sets taken from
are described in Section Ill. The hardware architecture fpf]. We first calculate the tail bound;| from Equation 1 for
the discrete Gaussian sampler is presented in Section tNe right-hand side upper boud'°°. Then using Equation 2,

In Section V we describe side channel vulnerability of th@e derive the precisiom for a maximum statistical distance
sampler architecture along with countermeasures. Dedtailef 2= and the value of the tail boun¢t;|. In practice
experimental results are presented in Section VI.

m o |z¢] €
256 | 3.33 84 | 106
320 | 3.192 | 86 | 106

Il. BACKGROUND 512 | 3.195 | 101 | 107
Here we recall the mathematical background required to TABLE |
understand the paper. PARAMETER SETS AND PRECISIONS TO ACHIEVE STATISTICAL DISTANE

LESS THAN2~90

A. Discrete Gaussian Distribution the tail bounds obtained from Equation 1 are quite loose for

A discrete Gaussian distribution defined oZemith stan- the precision values shown in Table I. For all three standard
dard deviationo > 0 and mearc € Z is denoted a9z , .. deviations, the probabilities for the sample points gretitan
Let £ be a random variable distributed as @ef , .. Thisis 39 become zero upto the given precision bounds.

of the DDG tree and one column of the probability matrix at

< column 0

IeveID a time.

D D) @) (D) level 1 A Knuth-Yao traversal from th¢; — 1)th level of the DDG
tree to theith level is shown in Figure 2. Assume that in the
(i — 1)th level, the visited node is thkth intermediate node
and that there aré intermediate nodes to the right side of the
visited node. Now the random walk consumes one random bit
and visits a child node in théh level of the DDG tree. The
visited node ha&d or 2d+ 1 nodes to its right side depending
on whether it is a right or a left child of its parent node. Now
C. The Knuth-Yao Algorithm to discover the terminal nodes in this level of the DDG tree,

)) the ith column of the probability matrix is scanned from the
The Knuth-Yao sampling algorithm performs a random walk,tom. Each ‘1’ bit in the column discovers a terminal node

along a binary tree known as the discrete distribution ggRers.oq the right side of theith level of the DDG tree. The

ing (DDQ) tree. A DDG tree is related to the probabilities 0fa1ye of the terminal node is the corresponding number

the sample points. The binary expansions of the probaslitio, which it was discovered. In this way the visited node will

are written in the form of a binary matrix which we call thesyentyally be discovered as a terminal node if the Hamming

probability matrix Py, In the probability matrix thgth row eight of theith column is larger than the number of nodes

corresponds to the probability of théh sample point. _ present to the right side of the visited node. When the \dsite
A DDG tree consists of two types of nodes : intermediaig,qe is discovered as a terminal node, the sampling operatio

nodes (I) and terminal nodes. A terminal node containssgyns and the corresponding row number of the probability

sample point, whereas an intermediate node generates Wiy is the value of the sample. For the other case, the

child nodes in the next level of the DDG tree. The numbggngom walk continues to th@ + 1)th level of the DDG tree

of terminal nodes in théth level of a DDG is equal to the g then the same process continues until a terminal node is

Hamming weight of theth column of the probability matrix. sited by the random walk.

An example of a DDG tree corresponding to a probability g yrayersal can be implemented using a counter which we

distribu_ti_o_n consisting of three sample poir{®, 1,2} with call distance counteand a register to scan a column of the
probabilitiespy = 0.01110, p; = 0.01101 andpz = 0.00101 ,opapility matrix. For each jump to a new level of the DDG

is shown in Figure 1. During a sampling operation a randoffhe the counter is initialized t2d or 2d+1 depending on the

walk is pe_rformed starting from the root of the DDG tre€.anqom pit. Then the corresponding column of the probabilit
For every jump from one level of the DDG tree to the ne

o : : fhatrix is scanned from the bottom using the bit-scan registe
level, a random_blt is uged to determine a child node. _T ch ‘1’ bit read from the bit-scanning operation decrement
sampling operation terminates when the random walk hitsy@, gistance counter. The visited node is discovered as a

terminal node. The value of the terminal node is the value gfimina| node when the distance counter becomes negative
the output sample point. for the first time.
A naive implementation of a DDG tree requiré€X z;c)

storage space where the probability matrix has a dimension

(zt + 1) x e. However in practice much smaller space ig. Optimized storage of the probability bits

required as a DDG tree can be constructed on-the-fly from) _
the corresponding probability matrix. In the last subsection we have seen that during the Knuth-

Yao random walk probability bits are read from a column of
the probability matrix. For a fixed distribution the probléipi
values can be stored in a cheap memory such as a ROM. The
way in which probability bits are stored in the ROM affects

In this section we present a simple hardware implementatigfe number of ROM accesses and hence also influences the
friendly construction of the Knuth-Yao sampling algorithnperformance of the sampler. Since the probability bits aselr
from our previous paper [7]. However this basic construttidrom a single column during the runtime construction of a
is slow due to its sequential bit-scanning operation. Inethé |evel in the DDG tree, the number of ROM accesses can be
of this section we propose a fast sampler architecture wsingninimized if the columns of the probability matrix are stbre
precomputed lookup table. in the ROM words.

row0 —-[0111
Pmat = (01101
00101

oo\
22 o/

Fig. 1. Probability matrix and corresponding DDG-tree

IIl. EFFICIENT IMPLEMENTATION OF THE KNUTH-YAO
ALGORITHM

A. Construction of the DDG tree at runtime

The Knuth-Yao random walk travels from one level of the
DDG tree to the next level after consuming a random bit.
During a random walk, theth level of the DDG tree is
constructed from théi — 1)th level using theith column of =5
the probability matrix. Hence in an efficient implementatadf
the sampling algorithm, we need to work with only one levélig. 2. DDG Tree Construction

Discover Terminal Nodes
< —

000111111111010111000101110101

001111001101110110011011001101 The lower bound on the number of random bits required
001101001000110011101100011010
001010010010001110000011001110 per sampling operation in the average case is given by the
000111010011001101100110100000 - . . .

009100101100101100100011010010 entropy of the probability distribution [19]. The entropy @
000§10101111011110010010001110 e
000091011100110110001001011000 continuous normal distribution with a standard deviatiois
000000910012011000000110100010 1 log(2meo?). For a discrete Gaussian distribution, the entropy
800000003010101210412012001001 is approximately close to entropy of the normal distribatio
000000000000111000101110001100 H H H

00000000000A010000101011010101 : with the same standard deviation. A more accurate entropy ca
SO0 gonA 00000010 | D be computed from the probability values as per the following
0000000000000000 #l = = ;

00000000000000000000p010111111 #0[001110_1110111_110 equation.

Part of Probability Matrix First two ROM word:

o0

Fig. 3. Storing Probability Matrix = ;pz log pi (3)
The Knuth-Yao sampling algorithm was developed to consume

A straightforward storage of the columns would result ithe minimum number of random bits on average [15]. It was
a redundant memory consumption as most of the columnsshown that the sampling algorithm requires at mast- 2
the probability matrix contains a chain of Os in the bottom. Irandom bits per sampling operation in the average case.
an optimized storage these 0s can be compressed. However iror a Gaussian distribution, the entropy increases with
such a storage we also need to store the lengths of the colurtires standard deviatiomr, and thus the number of random
as the columns will have variable lengths after trimmingits required in the average case also increases avitRor
off the bottom Os. If the column lengths are stored naivelgpplications such as the ring-LWE based public key enapypti
then it would cost[log z;0] bits per column and hence inscheme and homomorphic encryption, smeals used. Hence
total ¢[logto] bits. By observing a special property of thdfor such applications the number of random bits requiretién t
Gaussian distributed probability values, we can indeeivelar average case are small. Based on this observation we cah avoi
much simpler and optimized encoding scheme for the colurtite costly bit-scanning operation using a small precontpute
lengths. In the probability matrix we see that for most of thtable that directly maps the initial random bits into a sanpl
consecutive columns, the difference in the column lengshsvalue (with large probability) or into an intermediate node
either zero or one. Based on this observation we use one-dgteghe DDG tree (with small probability). During a sampling
differential encoding scheme for the column lengths : when v@peration, first a table lookup operation is performed using
move from one column to its right consecutive column, thethe initial random bits. If the table lookup operation retsir
column length either increases by one or remains the sardesample value, then the sampling algorithm terminates. For
Such a differential encoding scheme requires only one it gbe other case, bit scanning operation is initiated from the
column length. In Figure 3 we show how the bottom zerdstermediate node. For example, when = 3.33, if we
are trimmed using one-step partition line. In the ROM wase a precomputed table that maps the first eight random
store only the portion of the probability matrix that is abovbits, then the probability of getting a sample value aftex th
the partition line. Along with the columns, we also store thtable lookup is 0.973. Hence using the lookup table we can
encoded column-length bit. Each column starts with a column
length bit : if this bit is ‘1’, then the column is larger by one
bit compared to its left consecutive column; otherwise theyAlgorithm 1: Knuth-Yao Sampling in Hardware Platform
are of equal |ength5_ Input: Probability matrix P

We take Algorithm 1 from [7] to summarize the steps of the E);é?nu“ sample values
Knuth-Yao sampling operation. The ROM has a word size &f d < 0; [* Distance between the visited and the rightmost intenuale */

. . - . . 3 Hit 0; /* This is 1 when the sampling process hits a terminal node */
w bits and contains the probability bits along with the column, c;lg;n " INITIAL: I* Column fjenggthpis initialized */

|ength bits. 5 address < 0; [* This variable is the address of a ROM word */
6 i < 0; [* This variable points the bits in a ROM word */
7 while Hit = 0 do

C. Fast sampling using lookup table s L RandomBit()

A Gaussian distribution is concentrated around its centgt. GolLen « GolLen + ROM[address|[i) ;

In the case of a discrete Gaussian distribution with stahdasz i it

deviationo, the probability of sampling a value larger thaf? fi=wthen wddress 1

t- o is less thar2 exp(—t2/2) [17]. In fact this upper bound 15 i 0; '

is not very tight. We use this property of a discrete Gaussi@w Z"f’_ d— ROM{row][i] -

distribution to design a fast sampler architecture satigfyhe 1s if d=—1 then

speed constraints of many real-time applications. As sewn f 1 S row

the previous section, the Knuth-Yao random walk uses randam EwitForLoop() ;

bits to move from one level of the DDG tree to the nexf end end

level. Hence the average case computation time required aer end
sampling operation is determined by the number of randgn__, "™ (%)
bits required in the average case.

avoid the costly bit-scanning operation with probabilit9T3. the control logic and helps in reducing area. The bit-saani
However extra storage space is required for this lookugetablnit is the largest sub-block in the sampler architecture in
When the probability distribution is fixed, the lookup tabléerms of area. Hence this unit should be designed carefully
can be implemented as a ROM which is cheap in terms @f achieve minimum area requirement. In FPGAs a ROM can
area in hardware platforms. In the next section we propoke implemented as a distributed ROM or as a block RAM.
a cost effective implementation of a fast Knuth-Yao sampl&hen the amount of data is small, a distributed ROM is the
architecture. ideal choice. The way a ROM is implemented (its width
and depthh) affects the area requirement of the sampler. Let
us assume that the total number of probability bits to beestor
in the ROM isD and the size of the FPGA LUTs is Then
IV. THE SAMPLER ARCHITECTURE the total number of LUTs required by the ROM is around
The first hardware implementation of a Knuth-Yao samplérﬁw -w along with a small amount of addressing overhead.
was proposed in our previous paper [7]. In this paper wihe scan-register is a shift register of widthand consumes
optimize the previous sampler architecture and also inired aroundw LUTs andw; = w FFs. Hence the total area (LUTs
a lookup table that directly maps input random bits into @hd FFs) required by the ROM and the scan-register can be
sample point or into an intermediate node in the DDG tre@Pproximated by the following equation.

The sampler architecture is composed of 1) a bit-scanning D

unit, 2) counters for column length and row number, and 3) #Area = {—2” cw+ (w + wy)
a subtraction-based down counter for the Knuth-Yao digtanc IZ

in the DDG tree. In addition, for the fast sampler architegtu = [Q—k] cw+ (w+ wy)

a lookup table is also used. A control unit is used to gen-
erate control signals for the different blocks and to maintaFor optimal storage’; should be a multiple o2*. Choosing a
synchronization between the blocks. The control unit used larger value ofi will reduce the width of the ROM and hence
this paper is more decentralized compared to the control utile width of the scan-register. However with the increase in
in [7]. This decentralized control unit has a more simplified, the addressing overhead of the ROM will also increase. In
control logic which reduces the area requirement compar&able Il we compare area of the bit-scan unit for= 3.33
to the previous architecture. We now describe the differewith various widths of the ROM and the scan register using
components of the sampler architecture. Xilinx Virtex V xcvIx30 FPGA. The optimal implementation
is achieved when the width of the ROM is set to six bits.
. . . Though the slice count of the bit-scan unit remains the same
A. The Bit-scanning Unit in both the second and third column of the table due to various
The bit-scanning unit is composed of a ROM, a scasptimizations performed by the Xilinx ISE tool, the actual
register, one ROM-address counter, one counter to recerd #ffect on the overall sampler architecture will be evidemt i
number of bits scanned from a ROM-word and a comparat®ection VI.
The ROM contains the probabilities and is addressed by
the ROM-address counter. During a bit-scanning operation,
a ROM-word (sizew bits) is first fetched and then stored inB- Row-number and Column-length Counters

the scan register. The Scan-register is a Shift-registdrim As described in the previous section, we use a One-step
msb is read as the probability-bit. To count the number &f bigjifferential encoding for the column lengths in the protigbi
scanned from a ROM-word, a counteord-bitis used. When matrix. Thecolumn-lengtftounter in Figure 4 is an up-counter
the word-bit counter reaches — 2 from zero, the output from and is used to represent the lengths of the columns. During
the comparatoComplenables th(ROM-addresounter. In 3 random-walk, this counter increments depending on the
the next cycle theROM-addresscounter addresses the nextolumn-length bit which appears in the starting of a coluthn.
ROM-word. Also in this CyCIe thevord-bit counter reaches the Co|umn_|ength bit is zero, then tl@e'umn_'ength‘;ounter

w — 1 and the output fromComp2enables reloading of the remains in its previous value; otherwise it increments bg.on
bit-scan register with the new ROM-word. In the next CyClQ\t the Starting of a Co|umn_scanning operation' tRew-

the word-bit counter is reset to zero and the bit-scan registBimber counter is first initialized to the value of column-
contains the word addressed by R@M-wordcounter. In this |ength. During the scanning operation this counter decrgsne
way data loading and shifting in the bit-scan register tak@y one in each cycle. A column is completely read when the

place without any loss of cycles. Thus the frequency of th€ow Numbercounter reaches zero.
data loading operation (which depends on the widths of the

ROM) does influence the cycle requirement of the sampler

architecture. This interesting feature of the bit-scar will be width | hewght | LUTs | FRs | Stices
utilized in the next part of this section to achieve optimalaa 12 256 72 23 18
requirement by adjusting the width of the ROM and the bit- 6 512 o7 17 18
scan register. Another point to note in this architecturihig, TABLE Il

most of the control signals are handled locally compared to AREA OF THE BIFSCAN UNIT FOR DIFFERENT WIDTHS AND DEPTHS
the centralized control logic in [7]. This effectively sififfes

Carry W E done
4’{ Control FSM L
SCAN-UNIT !

scan-bit

dout shifted data COLUMN-ROW DISTANCE

ROM —J Ji
N
Carry ____
scan-bit _|enable 1= iimn Leng
Row_is_Zero_reg random bit
rst_internal
Comp3 Lookup_
0 Y sell

st|internal
——| Distance ‘

rst_internal

ROM-Addres:

rst_internal

enable enable]

Row Numher

Row_is_zero|

M

Rowilsizeroireéf

comp2_true

Fig. 4. Hardware Architecture for Knuth-Yao Sampler

C. The Distance Counter steps. For example, we use a first lookup table that maps the

A subtraction-based countefistanceis used to keep the first eight random bits into a sample point or an intermediate
distance d between the visited node and the right-mogfistance (three bit wide for = 3.33). In case of a lookup
intermediate node in the DDG tree. The regististance failure, the next step of the random walk from the obtained
is first initialized to zero. During each column jump, théntermediate_distance will be determined by the next secgien
row_zero reg is set and thus the subtrahend becomes zefj.random bits. Hence, we can extend the lookup operation
In this step, thedistanceregister is updated with the valzel 0 Speedup the sampling operation. For example, the thitee-b
or 2d + 1 depending on the input random bit. As described jyide distance can be combined with ano.ther f|ye random bits
the previous section, a terminal node is visited by the randd® address a (thsecondl lookup table. Using this two small
walk when the distance becomes negative for the first timl@0kup tables, we achieve a success probability of 0.999 for
This event is detected by the control FSM using the carfy = 3-33. An architecture for a two stage lookup table is
generated from the subtraction operation. shown in Figure 5.

After completion of a random walk, the value present in
Row Numberis the magnitude of the sample output. One

random bit is used as a sign of the value of the sample outputThe Knuth-Yao sampler presented in this paper is not a
constant time architecture. Hence this property of the $amp

leads to side channel vulnerability. Before we describs thi

in detail, we first describe the ring-LWE encryption scheme
Which requires discrete Gaussian sampling from a narrow
distribution.

V. TIMING AND SIMPLE POWER ANALYSIS

D. The Lookup Table for Fast Sampling

The output from the Knuth-Yao sampling algorithm is dete
mined by the probability distribution and by the input seaee
of random bits. For a given fixed probability distributiongw
can precompute a table that maps all possible _random S_tri'%g.SThe fing-LWE Encryption Scheme
of bit-width s into a sample point or into an intermediate))))
distance in the DDG tree. The precomputed table consists off € [iNg-LWE encryption scheme was introduced in the full
2% entries for each of the® possible random numbers. version of [20] and uses special structured ideal lattiteesal

On FPGAs, this precomputed table is implemented as a
distributed ROM using LUTs. The ROM contair?§ words Sample Sample
and is addressed by random numberssobit width. The
success probability of a table lookup operation can be in-
creased by increasing the size of the lookup table. For ebeamp Lookup Lookup
wheno = 3.33, the probability of success is 0.973 when the Tablel | g | Table 2 Initial Distance
lookup table maps the eight random bits; whereas the success
probability increases to 0.999 when the lookup table maps
13 random bits. However with a larger mapping, the size ;
of precomputed table increases exponentially figfirto 213, Randorm Bits
Additionally each lookup operation requires 13 random.bits
A more efficient approach is to perform lookup operations ifig. 5. Hardware Architecture for two stage Lookup

LU1 Distance’

lattices are a generalization of cyclic lattices and cquoasl to Analysis (SPA) patterns, and hence gain some information
ideals in ring<Z[x]/(f), wheref is an irreducible polynomial about the secret polynomials, e; andes. In the worst case,
of degreen. For efficient computation, the underlying ringthis provides the adversary with enough information to krea
is taken asR, = Z,[x]/(f) with the irreducible polynomial the cryptosystem.
f(z) = 2™ + 1, wheren is a power of two and the prime To verify to what extent the instantaneous power consump-
q is taken as¢ = 1 mod 2n. The ring-LWE distribution tion provides information about the sampling operation, we
over the ringR, x R, consists of tuplega,t) wherea is performed a SPA attack on the unprotected design running
chosen uniformly fromk, andt = as + e € R,. Heres is a on a Xilinx Spartan-1ll at 40 MHz. The instantaneous power
fixed secret polynomial ik, ande is an error polynomial consumption is measured with a Langer RF5-2 magnetic pick-
consisting of small coefficients sampled from the discretg coil on top of the FPGA package (without decapsulation),
Gaussian distribution. The resulting distribution & will amplified ¢-50 dB), low-pass filtered (cutoff frequency d8
also be denoted’,. Key generation, encryption and decryptiotMHz). In Figure 6 we show the instantaneous power consump-
are as follows: tion of two different sampling operations. The horizonteika
1) KeyGen(a) : Choose two polynomials,,r, € R, denotes time, and both sampling operations are triggered on
from X, and compute =, —a -7, € R,. The public the beginning of the sampling operation. One can distifguis
key is (a,p) and the private key is,. The polynomial enough SPA features (presumably due to register updates)
r1 is simply noise and is no longer required after ke{p infer that theblue graph corresponds to a sampling that
generation. requires small number of cycles (7 cycles exactly) whereas t
2) Enc(a,p,m) : The messagen is first encoded ton € red graph represents a sampling operation that requires more
Rq- In the Simp|est type of encoding scheme a messa@@les (21 CyCleS). From this SPA attaCk, the adversary can
bit is encoded agg — 1)/2 iff the message bit ig and predict the values of each coefficient of the secret polyatsni
0 otherwise. Three noise polynomials, e;,es € R, €1, €2 andes that appear during the encryption operation in
are sampled from a discrete Gaussian distribution witAe ring-LWE cryptosystem, effectively breaking the ségur
standard deviation. The ciphertext then consists of twoby infering the secret message (since the polynomiap is
polynomialse; = a-e;+ez andey = p-e;+ez+m € R,. publicly known). We recall that in the encryption operation
3) Dec(c1,ca,m2) : Computem’ = ¢, -7 + o € R, and In the ring-LWE cryptosystem, the encoded messages
recover the original messagefrom m’ using a decoder. masked ag; = p-e; +e3 +m using two Gaussian distributed
In the simplest decoding scheme the coefficients Noise polynomialg; andes. As the polynomiap is publicly
of m' are decodes ag if they are in the interval known, any Ieakage about the CoefficientSeiLnand es will
(—q/2,q/2], and as) otherwise. eventually leak information about the secret message

130

B. Side Channel Vulnerability of the Sampling Operation ol “ﬁ
It

In the ring-LWE encryption scheme, the key generation and

the encryption require discrete Gaussian sampling. The key . MWW Jﬂﬂfm\j‘,umﬂ FLJU’\ | UﬂlfﬂwwmJ‘J\Pﬂﬁv\f\f\m‘ﬂﬁb\jv’
generation operation is performed only to generate long-te | I

keys and hence can be performed in a secure environment. sor ‘]
However, this is not the case for the encryption operation. 5o

It should be noted that in a public key encryption scheme,
the plaintext is normally considered secret informatioor F 1 fi'r‘"1/1‘H’l“lfﬁ:f’f\“ﬁr 1"~J'l~f‘\f‘\f‘1'rx'l'\’A‘Hﬂ\ﬁif‘f.f'\;"{,'g"‘f\m [,\ \
example, it is common practice to use a public-key cryptosys S A AL
tem to encrypt a symmetric key that is subsequently used for sor L Y
fast, bulk encryption (this construction is commonly named w0l
“hybrid cryptosystems”). Hence, from the perspective desi

channel analysis, any leak of information during the enttoyp Fig. 6. Two instantaneous power consumption measurementssponding

: : : : : to two different sampling operations. Horizontal axis imei vertical axis
operation about the plamteXt (Symmemc key) is considere is electromagnetic field intensity. The different timing fine two different

a valid security threat. sampling operations is evident.
The basic Knuth-Yao sampler uses a bit scanning operation
in which the sample generated is related to the number of
probability-bits scanned during a sampling operation. ¢égn
the number of cycles of a sampling operations provides sorffe
information to an attacker about the value of the sample. Weln this paper we propose an efficient and cost effective
recall that in a ring-LWE encryption operation, the Gaussisscheme to protect the Gaussian sampler from simple timing
sampler is used as a building block, and it is called in aand power analysis based attacks. Our proposal is based on
iterative fashion to generate an array of samples. An attackhe fact that the encryption scheme remains secure as long as
that monitors the instantaneous power consumption of ttiee attacker has no information about the relative posstioi
discrete Gaussian sampler architecture can easily retaiesu- the samples (i.e. the coefficients) in the noise polynomials
rate timings for each sampling information via Simple Poweshould be noted that, as the Gaussian distribution usecein th

I I L
500 1000 1500 2000 2500 3000

Strategies to mitigate the side-channel leakage

,,,

encryption scheme is a publicly known parameter, any one can
guess the number of a particular sample point in an array of !
samples. Similar arguments also apply for other cryptesyst
where the key is a uniformly distributed random string ogbit |
of some length (say). For such a random key, one has the—
information that almost half of the bits in the key are one |

din_sel

{

enable
rand_bits

Gaussian
Sampler

RAM

rand_bit_gen done lookup_success ram_buffer

and the rest are zero. In other words, the Hamming weight + address_sel
around!/2. Even if the exact value of the Hamming weight is Random Index
revealgd to thel adv_ersary (on average, s@) the key st_|II S I !
mantains Iog(l/Q) bits of entropy €& 124 bits for a 128 bit coine =[5 amen Wea
key). It is the random positions of the bits that make a key 2 deo— "L adress_sel
secure. enableA wea din_sel :

When the coefficients of the noise polynomial are generated : e |
using the sequential bit-scan, a side channel attacker gets L
information about both the value and position of the sample i g—’ o f dtne
the polynomial. Hence, such leakages will make the enagpti o gen n-1 - |
scheme vulnerable. Our simple timing and power analysis | o o»-

resistant sampler is described below:

1) Use of a lookup : The table lookup operation is constahig. 7. Sampler with shuffling
time and has a very large success probability. Hence with

this lookup approach, we protect most of the samples
from leaking any information about the value of thoperation are stored in the memory locations starting from

sample from which an attacker can perform simplg ull (Ql — 1); whereas th? blt-scan.generated samples are
o - stored in the memory locations starting from address 1
power and timing analysis. " O Aft " f th les. the bit
2) Use of a random permutation : The table lookup opeg-owrl on _t' 2. Aler gtegera |or|1 ot then saamp ?es, € '(; ith
ation succeeds in most events, but fails with a smajf2" t(r)]pera lon Igenerge Afam_[:‘[)hes gre randomly Swapped wi
probability. For a failure, the sequential bit scannin i\?} edr samp ei.ijsnsg fgotr;] m " i
operation leaks information about the samples. For ex- har ware sr c |ec7urtla Otrh € se(r:]L_Jtre i:orgec_u Ve-Sagpl
ample, whernr = 3.33 and the lookup table maps initial'S_SNOWN 1N Figure 7. 1n the -architecture€;, 1S an up-

eight random bits, the bit scanning operation is requir gunter andC is an up-down-counter. When thenable

for seven samples out of 256 samples in the avera |gnal is high, the Gaussian sampler generates samples in
case. To protect against SPA, we perform a rando iterative way. After generation of each sample, the signa
) ! donegoes high and the type of the sample is indicated by the

shuffle after generating an entire array of samples. The
random shuffle operation swaps all bit-scan 0perati§r'1gnaI lookup successin the case when the sample has been

generated samples with other random samples in t gnerated l_JSing asucc_essful lookup operattkup success
array. This random shuffling operation removes a gcomes high. D_ependlng on the value_of Ithekup success
timing information which an attacker can exploit. In th e control machine stores the sample in the memory address

next section we will describe an efficient implementatiog1 or (n._CQ) and also increments the cor_refqunding counter.
of the random shuffling operation. ompletion of then sampling operations is indicated by the

output fromComparator2
In the random-shuffling phase, a random address is gen-
D. Efficient Implementation of the Random Shuffling erated and then compared with — C,). If the random-

We use a modified version of the Fisher and Yates shuffiéldress is smaller tham — C) then it is used for the swap
which is also known as th&nuth shuffle[21] to perform operation; otherwise another random-address is generated
random shuffling of the bit-scan operation generated sanpltlow the memory content of addregs— C-) is swapped with
The advantages of this shuffling algorithm are its simpjjcitthe memory content of random-address usingrtre_buffer
uniformness, inplace data handling and linear time conifylex register. After this swap operation, the countgrdecrements
In the original shuffling algorithm, all the indexes of the@ut by one. The last swap operation happens wieris zero.
array are processed one after another. However in our case we
can restrict the shuffling operation to only those samples th VI. EXPERIMENTAL RESULTS
were generated using the sequential bit scanning operationWe have evaluated the Knuth-Yao discrete Gaussian sampler
This operation is implemented in the following way. architecture foro = 3.33 using the Xilinx Virtex V FPGA

Assume thatn samples are generated and then store@vIx30 with speed grade 3. The results shown in Table Il
in a RAM with addresses in the range 0 (o — 1). We are obtained from the Xilinx ISE12.2 tool after place andteou
use two counters’; and Cy to represent the number ofanalysis. In the table we show area and timing results of our
samples generated through successful lookup and bit-sganrarchitecture for various configurations and modes of ojerat
operations respectively. The total number of samples g¢aeér and compare the results with other existing architecturbs.
is given by (C; + C2). The samples generated using lookupesults do not include the area of the random bit generator.

[Sampler Architecture | ROM-width [ROM-depth | LU-depth [LUTs | FFs [Slices | BRAM [Delay (ns) | Cycles |

Basic Sampler 24 128 - 101 81 38 2.9 17
Basic Sampler 12 256 - 105 60 32 - 25 17
Basic Samplex 6 512 - 102 48 30 - 2.6 17
Fast Sampler 6 512 8 118 48 35 - 3 ~2.5
Knuth-Yao[7] 32 96 - 140 - a7 - 3 17
Bernoulli[11] - - - 132 40 37 - 7.3 144
Polynomial Sampler—1] 6 512 8 135 56 44 1 3.1 392
Polynomial Sampler—2 6 512 8 176 66 52 1 3.3 420
TABLE Il
PERFORMANCE OF THE DISCRETESAUSSIAN SAMPLER ON XCG5VLX 30
Algorithm 2: Random swap of samples number generator is able to generate only one random bit per
Input: Sample vector stored in RAM[] with timing information cycle, then additional eight cycles are required per samgpli
L g);gt?nut: Sample vector stored in RAM[] without timing information operation. However generating many (pseudo)random bits is
2 while C > 0 do not a problem using light-weight pseudo random number
2 #Lagg;‘ioz—;:fj& T“gd)":’;é%? generators such as the trivium steam cipher which is used in
— e - 2 . . .
5 goto L1 ; [11]. The results in Table Il show that by spending addiéibn
3 ;’,‘VipRAM[n Cs] & RAM[random_index] | five slices, we can reduce the average case cycle requirement
/A - 2 — , . .
8 Cy 4+ Cy—1; per sampling operation to almost two cycles from 17 cycles.
1?) end end As the sampler architecture is extremely small even with the

lookup table, the acceleration provided by the fast sargplin
architecture will be useful in designing fast cryptosystem

) o) The Polynomial Sampler—1 architecture in the seventh
Area requirements for the basic bit-scan operation basgglumn of Table Ill generates a polynomial af = 256

Knuth-Yao sampler for different ROM-widths and depths argpefficients sampled from the discrete Gaussian distabuti
shown in the first three columns of the table. The optimgl, ysing the fast sampler iteratively. The samples are dtore
area is achieved when the ROM-width is set to 6 bits. As thg the RAM from address O ta, — 1. During the consecutive
width of the ROM does not affect the cycle requirement afampling operations, the state-machine jumps to the next
the sampler architecture, all different configurationsehsame sampling operation immediately after completing a sangplin
clock cycle requirement. The average case cycle requirEmgBeration_ In this consecutive mode of sampling operafities
of the sampler is determined by the number of bits scanned @3 nsition to the end state’ cycle is not spent for the il
average per sampling operation. A C program simulation mpling operations. As the probability of a successfukigo
the Knuth-Yao random walk in [7] shows that the number Qfperation is 0.973, in the average case 249 out of the 256
memory-bits scanned on average is 13.5. Before starting §inples are generated using successful lookup operations;
bit-scanning operation, the sampler performs two colummiu \yhereas the seven samples are obtained through the sequenti
operations for the first two all-zero columns of the prohiapil bit-scanning operation. In this consecutive mode of samgpli
matrix (for o = 3.33). This initial operation requires two each lookup operation generated sample consumes one cycle.
cycles. After this, the bit scan operation requires 14 &y/éte Hence in the average case 249 cycles are spent for generating
scan 14 memory-bits and the final transition to the completigpe majority of the samples. The seven sampling operations
state of the FSM requires one cycle. Thus, on average thit perform bit scanning starting from the ninth column of
cycles are spent per sampling operation. The most areeabtithe probability matrix require on average a total of 143 egcl
instance of the Knuth-Yao sampler is smaller by 17 slices thgpys in total 392 cycles are spent on average to generate a
the Knuth-Yao sampler architecture proposed in [7]. Theaff gayssian distributed polynomial.
of the bit-scan unit and decentralized control logic is thus The Polynomial Sampler—2 architecture includes the random
evident from the comparison. The compact Bernoulli samplghuffiing operation on a Gaussian distributed polynomial of
proposed in [11] consumes 37 slices and spends on avergge 256 coefficients. The architecture is thus secure against
144 cycles to generate a sample point. simple time and power analysis attacks. However this sicuri
The fast sampler architecture in the fourth column of Tablgymes at the cost of an additional eight slices due to the
Il uses a lookup table that maps eight random bits. Th@quirement of additional counter and comparator circiite
sampler consumes additional five slices compared to the bagichitecture first generates a polynomial in 392 cycles hed t
bit-scan based architecture. The probability that a tail&up performs seven swap operations in 28 cycles in the average
operation returns a sample is 0.973. Due to this high succegge. Thus in total the proposed side channel attack nesista

rate of the lookup operation, the average case cycle requiggmpler spends 420 cycles to generate a secure Gaussian
ment of the fast sampler is slightly larger than 2 cycles whth gjstributed polynomial of 256 coefficients.

consideration that one cycle is consumed for the transiion

the state-machine to the completion state. In this cyclegou VII. CONCLUSION

we assume that the initial eight random bits are availableln this paper we presented an optimized instance of the
in parallel during the table lookup operation. If the randori{nuth-Yao sampling architecture that consumes very small

10

area. We have shown that by properly tuning the width of thgs] N. Dwarakanath and S. Galbraith, “Sampling from Diser&aussians

ROM and the scan register, and by a decentralizing the dontro for Lattice-based Cryptography on a Constrained Deviégplicable
loai d h fth | v 30 sli Algebra in Engineering, Communication and Computingl. 25, no. 3,
ogic, we can reduce the area of the sampler to only 30 slices ,;"159_1g0, 2014.

without affecting the cycle count. Moreover, in this papdn9] L. Devroye, Non-Uniform Random Variate Generation

we proposed a fast sampling method using a very small-area New ~York: Springer-Verlag, = 1986. [Online]. Available:
. http://luc.devroye.org/rnbookindex.html
precomputed table that reduces the cycle requirement kﬂﬁse&o] V. Lyubashevsky, C. Peikert, and O. Regev, “On Idealtitas and

times in the average case. We showed that the basic sampler Learing with Errors over Rings,” irAdvances in Cryptology EU-
architecture can be attacked by exploiting its timing andqem ROCRYPT 2010ser. Lecture Notes in Computer Science, vol. 6110.

. lated leak In th d d Springer Berlin Heidelberg, 2010, pp. 1-23.
consumption related leakages. In the end we proposed a Cfﬁﬁ' D. E. Knuth, The Art of Computer Programming, Volume 2 (3rd

effective counter measure that performs random shuffling of Ed.): Seminumerical Algorithms Boston, MA, USA: Addison-Wesley
the samples. Longman Publishing Co., Inc., 1997.

REFERENCES

[1] S. Rich and B. Gellman, “NSA Seeks to build Quantum Coreput
that could crack most types of Encryption,” The WashingtastP2nd
January, 2014, http://www.washingtonpost.com/worltiémeal-security/.

[2] O. Regeyv, “Lattice-Based Cryptography,” idvances in Cryptology -
CRYPTO 2006ser. LNCS, C. Dwork, Ed., vol. 4117. Springer Berlin,
2006, pp. 131-141.

[8] T. Poppelmann and T. Gineysu, “Towards Efficient Amttic for
Lattice-Based Cryptography on Reconfigurable HardwareProgress
in Cryptology LATINCRYPT 2012er. LNCS, A. Hevia and G. Neven,
Eds., vol. 7533. Springer Berlin, 2012, pp. 139-158.

[4] N. Gottert, T. Feller, M. Schneider, J. Buchmann, andHsss, “On
the Design of Hardware Building Blocks for Modern Latticedgd En-
cryption Schemes,” it€ryptographic Hardware and Embedded Systems
CHES 2012ser. LNCS, vol. 7428. Springer Berlin, 2012, pp. 512-529.

[5] T. Frederiksen, “A Practical Implementation of RegevISWE-
based Cryptosystem,” ihttp://daimi.au.dk/ jot2re/lwe/resources2010.
[Online]. Available: http://daimi.au.dk/ jot2re/lweBseurces/

[6] T. Poppelmann and T. Gilineysu, “Towards Practical itetBased
Public-Key Encryption on Reconfigurable Hardware,"Salected Areas
in Cryptography — SAC 2013er. Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2014, pp. 68-85.

[7] S.S. Roy, F. Vercauteren, and |. Verbauwhede, “High Brec Discrete
Gaussian Sampling on FPGAs,” Belected Areas in Cryptography —
SAC 2013 ser. Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2014, pp. 383-401.

[8] S. S. Roy, F. Vercauteren, N. Mentens, D. D. Chen, and I- Ve
bauwhede, “Compact Ring-LWE based Cryptoprocessor,” ©Olygy
ePrint Archive, Report 2013/866, 2013, http://eprint.ia@/.

[9] A. Aysu, C. Patterson, and P. Schaumont, “Low-cost andalefficient
FPGA Implementations of Lattice-based Cryptography,” HOST
IEEE, 2013, pp. 81-86.

[10] T. Poppelmann, L. Ducas, and T. Glineysu, “EnhancetiiceaBased
Signatures on Reconfigurable Hardware,” Cryptology ePArthive,
Report 2014/254, 2014, http://eprint.iacr.org/.

[11] T. Poppelmann and T. Glineysu, “Area Optimization afHtweight
Lattice-Based Encryption on Reconfigurable Hardware Piac. of the
IEEE International Symposium on Circuits and Systems (SCA)
2014, Preprint.

[12] T. Oder, T. Poppelmann, and T. Guneysu, “Beyond ECEHA RSA:
Lattice-based Digital Signatures on Constrained DevidasProceed-
ings of the The 51st Annual Design Automation Conference esigD
Automation Conferenceser. DAC '14. New York, NY, USA: ACM,
2014, pp. 110:1-110:6.

[13] A. Boorghany and R. Jalili, “Implementation and Conipan of
Lattice-based Identification Protocols on Smart Cards anidravl
controllers,” Cryptology ePrint Archive, Report 2014/072014,
http://eprint.iacr.org/.

[14] L. Ducas and P. Q. Nguyen, “Faster Gaussian Lattice $agfpsing
Lazy Floating-Point Arithmetic,” inAdvances in Cryptology ASI-
ACRYPT 2012ser. LNCS, vol. 7658. Springer Berlin, 2012, pp. 415—
432.

[15] D. E. Knuth and A. C. Yao, “The Complexity of Non-UniforRandom
Number Generation,Algorithms and Complexifypp. 357-428, 1976.

[16] L. Ducas, A. Durmus, T. Lepoint, and V. Lyubashevsky,atlice
Signatures and Bimodal Gaussians,” Cryptology ePrint &eghReport
2013/383, 2013, http://eprint.iacr.org/.

[17] V. Lyubashevsky, “Lattice Signatures without Trapdg®din Proceed-
ings of the 31st Annual international conference on Thearg Appli-
cations of Cryptographic Techniqueser. EUROCRYPT’'12. Berlin:
Springer-Verlag, 2012, pp. 738-755.

