
Improved Exponential-time Algorithms for Inhomogeneous-SIS

Shi Bai1, Steven D. Galbraith1, Liangze Li2, and Daniel Sheffield1

1 Department of Mathematics, University of Auckland, Auckland, New Zealand.
2 School of Mathematical Sciences, Peking University, Beijing, China.

Abstract. The paper is about algorithms for the inhomogeneous short integer solution problem: Given
(A,b) to find a short vector s such that As ≡ b (mod q). We consider algorithms for this problem
due to Camion and Patarin; Wagner; Schroeppel and Shamir; Howgrave-Graham and Joux; Becker,
Coron and Joux. Our main results include: Applying the Hermite normal form (HNF) to get faster
algorithms; A heuristic analysis of the HGJ and BCJ algorithms in the case of density greater than
one; An improved cryptanalysis of the SWIFFT hash function.
Keywords: SIS, subset-sum

1 Introduction

The subset-sum problem (also called the “knapsack problem”) is: Given positive integers a1, . . . , am
and an integer s, to compute a vector x = (x1, . . . , xm) ∈ {0, 1}m if it exists, such that

s =
m
∑

i=1

aixi.

It is often convenient to write a = (a1, . . . , am) as a row and x = (x1, . . . , xm)T as a column so
that s = ax. The modular subset-sum problem is similar: Given a modulus q, integer vector a and
integer s to find x ∈ {0, 1}m, if it exists, such that s ≡ ax (mod q).

The vector version of this problem is called the inhomogenous shortest integer solution problem
(ISIS): Given a modulus q, a small set B ⊆ Z that contains 0 (e.g., B = {0, 1} or {−1, 0, 1}), an
n×m matrix A (where typically m is much bigger than n), and a column vector s ∈ Z

n
q to find a

column vector x ∈ Bm (if it exists) such that

s ≡ Ax (mod q). (1)

If we want to be more precise we call this the (m,n, q,B)-ISIS problem. The original shortest integer
solution problem (SIS) is the case s = 0, in which case it is required to find a solution x ∈ Bm such
that x 6= 0.

We unify the subset-sum and ISIS problems as the (G,m,B)-ISIS problem where G is an abelian
group (written additively), m an integer and B a small subset of Z that contains 0. The three
motivating examples for the group are G = Z, G = Zq and G = Z

n
q . An instance of the problem is

a pair (A, s) with A ∈ Gm and s ∈ G, and a solution is any vector x ∈ Bm (if one exists) such that
s = Ax. We extend the notion of “density” for subset-sum problems, which captures the expected
number of solutions x that exist for a random (A, s) pair.

These computational problems have applications in lattice-based cryptography. For example,
inverting the SWIFFT hash function of Lyubashevsky, Micciancio, Peikert and Rosen [16] is solving
(1024, 64, 257, {0, 1})-ISIS. Since this function is a compression function (mapping 1024 bits to 512
bits) it corresponds to a very high density instance of ISIS. The security level of SWIFFT claimed

1

in [16] is “to find collisions takes time at least 2106 and requires almost as much space, and the known
inversion attacks require about 2128 time and space”.3 Appendix B of an early version of [12] gives
an improved collision attack, exploiting the birthday paradox, using lists of size 296 (surprisingly
this result is missing in the published version [11]). In fact these arguments are very approximate
and do not give precise bounds on that the actual running time of these attacks. We remark that a
stronger variant of this hash function has also been proposed [1], but we do not discuss it further
in this paper.

It is known that one can try to solve both subset-sum and ISIS using lattice methods (for
example, reducing to the closest vector problem or shortest vector problem in a certain lattice of
dimension m or m+ 1). However, the focus in this paper is on algorithms based on time-memory
tradeoffs. It is important to take into account both lattice algorithms and time-memory tradeoff
algorithms when selecting parameters for lattice-based cryptosystems. For this reason, we assume
that the set B is rather small (e.g., B = {0, 1} or {−1, 0, 1}). Some previous algorithms of this type
for the subset-sum and ISIS problems are due to: Schroeppel and Shamir; Camion and Patarin;
Wagner; Minder and Sinclair; Howgrave-Graham and Joux; Becker, Coron and Joux. The Camion-
Patarin/Wagner/Minder-Sinclair (CPW) method is suitable for very high density instances (such
as SWIFFT), while the other methods are more suitable for low density instances. We will recall
the previous algorithms in Section 2.

1.1 Our contributions

Our first contribution is to give a general framework that unifies the subset-sum, modular subset-
sum and ISIS problems. We show that the algorithms by Schroeppel and Shamir, Camion and
Patarin, Wagner, Howgrave-Graham and Joux, Becker-Coron-Joux can be used to solve these gen-
eralised problems. The three main contributions of our paper are:

1. To develop variants of these algorithms for the approximate-ISIS problem, which itself arises
naturally when one takes the Hermite normal form of an ISIS instance. This problem also arises
as the binary-LWE problem. This is done in Section 4.

2. To study the Howgrave-Graham and Joux (HGJ) and Becker-Coron-Joux (BCJ) methods in
the case of instances of density greater than one. We give in Figure 1 of Section 3 a comparison
of the HGJ, BCJ and CPW algorithms as the density grows.

3. To give improved cryptanalysis 4 of the SWIFFT hash function [16]. We reduce the collision
attack time from around 2113 to around 2104 bit operations (a speed-up by a factor ≈ 500). We
also reduce inverting time by a factor of ≈ 1000.

We focus on the general problem (with an arbitrary matrix A, rather than problems coming
from NTRU or Ring-LWE that have a structured matrix). The binary-LWE problem [17] (with both
the “secret” and “errors” chosen to be binary vectors) is a case of the approximate-ISIS problem.
Hence our algorithms can also be applied to this problem. Note that binary-LWE is not usually a
high density problem.

3 We remark that generic hash function collision algorithms such as parallel collision search would require at least
2256 bit operations. Hence we do not consider such algorithms further in this paper.

4 We remark that in [5], the authors claimed that finding pseudo-collisions for SWIFFT is comparable to breaking
a 68-bit symmetric cipher, however the pseudo-collision is not useful to find real collisions for SWIFFT, since they
reduce to the sublattices of dimension 206 in which the real collisions for SWIFFT almost do not exist.

2

1.2 Related literature

There is an extensive literature on the approximate subset-sum problem over Z (to find x such
that s ≈ ax) including polynomial-time algorithms (see Section 35.5 of [7]). These algorithms
exploit properties of the usual ordering on Z and do not seem to be applicable to ISIS. Indeed,
such algorithms cannot be directly applied to the modular subset-sum problem either, though
the modular subset-sum problem can be lifted to polynomially many instances of the subset-sum
problem over Z and then the approximate subset-sum algorithms can be applied. Hence, even
though the algorithms considered in our paper can be applied to the subset-sum and modular
subset-sum problems, our main interest is in the ISIS problem.

2 Algorithms to solve subset-sum/ISIS

2.1 A general framework

We propose the following general framework for discussing the algorithms of Camion and Patarin,
Wagner, Minder and Sinclair, Howgrave-Graham and Joux, Becker, Coron and Joux. Previously
they were always discussed in special cases.

We define the (G,m,B)-ISIS problem where G is an abelian group, m an integer and B a small
subset of Z that contains 0. Our three main examples for the group are G = Z, G = Zq and G = Z

n
q .

An instance of the problem is a pair (A, s) with A ∈ Gm and s ∈ G, and a solution is any vector
x ∈ Bm (if one exists) such that s = Ax.

The weight of a solution x is defined to be wt(x) = #{i : 1 ≤ i ≤ m,ai 6= 0}. One can consider
the weight-ω (G,m,B)-ISIS problem, where the input is (A, s) and where one is asked to compute
a solution x ∈ Bm such that s = Ax in G and wt(x) = ω.

All the algorithms work by reducing to simpler problems of higher density. In our general
framework we express this by taking quotients. Let H be a subgroup of G and write G/H for the
quotient. Since the map G → G/H is a group homomorphism, an instance s = Ax in G reduces to
an instance s ≡ Ax (mod H) in G/H. The density increases since the number of possible targets
s (mod H) is reduced while the number of inputs x remains the same. In practice we will employ
this idea in the following ways: when G = Z then H = MZ and G/H = ZM ; when G = Zq and
M | q then H = MZq and G/H ∼= ZM ; when G = Z

n
q then H = {(0, . . . , 0, gℓ+1, . . . , gn)

T : gi ∈
Zq} ∼= Z

n−ℓ
q so that G/H ∼= Z

ℓ
q.

Now we define density, which is a standard concept in the subset-sum problem but is a little
harder to define for ISIS. Consider the (G,m,B)-ISIS problem where G is now finite. Let δ be the
probability, over uniformly chosen elements (A, s) in Gm ×G, that there exists a solution x ∈ Bm

such that s = Ax. If δ is small then we say the (G,m,B)-ISIS problem has low density. If δ ≈ 1 then
consider the average size (over uniform choices (A, s)) of the set of solutions {x ∈ Bm : s = Ax}. If
this set has average size close to 1 then we say we are in the “density 1” case. If this set is large on
average then we are in the high density case. This informal notion is consistent with the standard
notion of density for the subset-sum problem over Z. (The standard notion can be formulated by
defining the vector/matrix A to have entries in an interval [0, B] ⊂ Z.)

High density instances can always be reduced to smaller dimensional instances having density
one: Choose a suitable integer ℓ and set ℓ entries of x to be zero. Delete the corresponding columns
from A to get an n× (m− ℓ) matrix A′ and let x′ be the corresponding solution vector in Z

m−ℓ.
Then solve the density one problem A′x′ ≡ s (mod q). When evaluating algorithms for high density

3

ISIS we must always compare them against the best low-density algorithms when applied to the
reduced problem.

2.2 Brief survey of previous methods

It is straightforward that one can solve the (G,m, {0, 1})-ISIS problem in Õ(2m/2) time and large
storage using birthday methods. Schroeppel and Shamir [20] showed how to match this running
time but use considerably less space. A simpler description of the Schroeppel-Shamir algorithm was
given by Howgrave-Graham and Joux [11]. We briefly recall some details in Section 2.4.

The important paper of Howgrave-Graham and Joux [11] (HGJ) breaks the Õ(2m/2) barrier,
giving a heuristic algorithm to solve subset-sum in Õ(20.337m) operations, and with large storage
(around Õ(20.256m)). Note that [11] presents algorithms for the traditional subset-sum problem,
but Section 6 of [11] mentions that the methods should be applicable to variants of the subset-sum
problem including approximate subset-sum, vector versions of subset-sum (i.e., ISIS), and different
coefficient sets (e.g., xi ∈ {−1, 0, 1}). Our paper thus addresses these predictions from [11]; we give
the details in Section 2.7. Indeed, it is written in [11] that “It would be interesting to re-evaluate
the security of SWIFFT with respect to our algorithm.”

Becker, Coron and Joux [2] gave some improvements to the HGJ method (also restricted to the
setting of subset-sum). We sketch the details in Section 2.8.

Camion and Patarin [6] gave an algorithm for solving high density subset-sum instances, and
similar ideas were used by Wagner [22] for solving the “k-sum problem”. Rather unfairly, these ideas
are now called “Wagner’s algorithm”, but we will call it CPW. Minder and Sinclair [19] explained
how to use these ideas a bit more effectively.

In 2004, Lyubashevsky noted that the CPW algorithm can be applied to solve high density
subset-sum problems. Shallue [21] extended Lyubashevsky’s work. It was noted in Lyubashevsky,
Micciancio, Peikert and Rosen [16] that the CPW algorithm can be applied to solve ISIS in the
high density case (inverting the SWIFFT hash function is a very high density case of ISIS).

All known algorithms are obtained by combining two basic operations (possibly recursively):

1. Compute lists of solutions to some constrained problem obtained by “splitting” the solution
space (i.e., having a smaller set of possible x) in a quotient group G/H. Splitting the solution
space lowers the density, but working in the quotient group G/H compensates by raising the
density again.

2. Merge two lists of solutions to give a new list of solutions in a larger quotient group G/H ′.

The algorithms differ primarily in the way that splitting is done.

2.3 The merge algorithm

We consider one step of the merge algorithm5.

We now introduce the notation to be used throughout. Let X ⊆ Bm be a set of coefficients.
We will always be working with a set of subgroups {Hi : 1 ≤ i ≤ t} of G such that, for each pair
1 ≤ i < j ≤ t we have #(G/(Hi ∩ Hj)) = #(G/Hi) · #(G/Hj). We denote the size of G/Hi by
Mi. Since our main interest is the case G = Z

n
q we will sometimes write Mi as q

ℓi . All algorithms

5 The word “merge” is not really appropriate as we are not computing a union or intersection of lists, but forming
sums x1 + x2 where x1 ∈ L1 and x2 ∈ L2. However, it is the word used by several previous authors.

4

involve splitting the set of coefficients X ⊆ X1 + X2 = {x1 + x2 : x1 ∈ X1,x2 ∈ X2} in some way
(for example, by positions or by weight).

Let H♭,H,H♯ be three subgroups of G. The desired output of the merge algorithm is a set
of solutions to the problem Ax ≡ s (mod H ∩ H♭) for x ∈ X , together with information about
Ax (mod H♯) to be used in future calculations. The input is a pair of lists L1 and L2 that are
“partial solutions” modulo H♭. In other words we are merging modulo H, lists of partial solutions
modulo H♭, that are going to be used for a future computation modulo H♯. The algorithm is given
as Algorithm 1.

Algorithm 1 Basic merge algorithm

Input: L1 = {(x,Ax (mod H)) : Ax ≡ R (mod H♭),x ∈ X1},
L2 = {(x,Ax (mod H)) : Ax ≡ s−R (mod H♭),x ∈ X2}

Output: L = {(x,Ax (mod H♯)) : Ax ≡ s (mod H ∩H♭),x ∈ X}
1: Initialise L = {}
2: Sort L2 with respect to the second coordinate
3: for (x1,u) ∈ L1 do
4: Compute v = s− u (mod H)
5: for (x2,v) ∈ L2 do
6: if x1 + x2 ∈ X then
7: Compute A(x1 + x2) (mod H♯)
8: Add (x1 + x2,A(x1 + x2) (mod H♯)) to L

The running time of the algorithm depends on the cost of sorting L2, which is O(#L2 log2(#L2))
i.e. Õ(#L2). However, the time is often dominated by the total number of pairs (x1,x2) considered
in the algorithm, and this depends on how many values u there are in common between the two lists
L1 and L2. Treating the function from X to G/H given by x 7→ Ax (mod H) as pseudorandom,
the total number of (x1,x2) pairs can be bounded by #L1 ·#L2/M , where M = #(G/H). Hence,
the heuristic running time is Õ(max{#L2,#L1#L2/M}). (Our analysis includes the correction by
May and Meurer to the analysis in [11], as mentioned in Section 2.2 of [2].)

Another remark is that, in many cases, it is non-trivial to bound the size of the output list L.
Instead, this can be bounded by #X/#(G/(H ∩H♭)).

2.4 Schroeppel and Shamir algorithm

Schroeppel and Shamir [20] noted that by using 4 lists instead of 2 one could get an algorithm for
subset-sum over Z with the same running time but with storage growing proportional to (#B)m/4.
(Their presentation is more general than just subset-sum over Z.)

Howgrave-Graham and Joux obtained this result in a much simpler way by using reduction
moduloM and Algorithm 1. Our insight is to interpret reduction moduloM as working in a quotient
group G/H. It immediately follows that the HGJ formulation of the Schroeppel-Shamir algorithm
is applicable to the (G,m,B)-ISIS problem, giving an algorithm that requires time proportional to
(#B)m/2 and space proportional to (#B)m/4. Since our goal is to discuss improved algorithms, we
do not give the details here.

Dinur, Dunkelman, Keller and Shamir [9] have given improvements to the Schroeppel-Shamir
algorithm, in the sense of getting a better time-memory curve. However, their methods always
require time at least (#B)m/2. Since we are primarily concerned with reducing the average running
time, we do not consider their results further.

5

2.5 Camion and Patarin/Wagner algorithm (CPW)

This algorithm is applicable for instances of very high density. It was first proposed by Camion and
Patarin for subset-sum, and then by Wagner in the additive group Z

m
2 (and some other settings).

Section 3 of Micciancio and Regev [18] notes that the algorithm can be used to solve (I)SIS.

Let k = 2t be a small integer such that k | m. Let H1, · · · ,Ht be subgroups of the abelian group
G such that

G ∼= (G/H1)⊕ · · · ⊕ (G/Ht). (2)

Precisely we need that G/(Hi1∩· · ·∩Hiu)
∼= (G/Hi1)⊕· · ·⊕(G/Hiu) andH1∩· · ·∩Ht = {0}. One can

think of this as being like a “Chinese remainder theorem” forG: there is a one-to-one correspondence
between G and the set of t-tuples (g (mod H1), . . . , g (mod Ht)). We usually require that #(G/Hi)
is roughly (#G)1/(t+1) for 1 ≤ i < t and #(G/Ht) ≈ (#G)2/(t+1), although Minder and Sinclair [19]
obtain improvements by relaxing these conditions.

For (I)SIS problem, we have G = Z
n
q . Let ℓ ∈ N be such that ℓ ≈ n/(t + 1). Then we choose

the subgroup H1 = {(0, . . . , 0, gℓ+1, . . . , gn)
T : gi ∈ G} such that G/H1

∼= Z
ℓ
q corresponds to the

first ℓ positions of the vector. Similarly, G/H2 corresponds to the next ℓ positions of the vector (so
H2 = {(g1, . . . , gℓ, 0, . . . , 0, g2ℓ+1, . . . , gn)

T }). Finally, G/Ht corresponds to the last ≈ 2ℓ positions
of the vector.

The “splitting” in the CPW approach is by positions. To be precise, let u = m/k and define
X1 = {(x1, . . . , xu, 0, . . . , 0) ∈ Bm} and

Xj = {(0, . . . , 0, x(j−1)u+1, . . . , xju, 0, . . . , 0) ∈ Bm}

for 2 ≤ j ≤ k. The CPW algorithm works by first constructing k = 2t lists L
(0)
j = {(x,Ax) : x ∈ Xj}

for 1 ≤ j ≤ k − 1 and L
(0)
k = {(x,Ax− s) : x ∈ Xk}. Each list consists of #Xj = (#B)u elements

and can be computed in O((#B)u) = O((#B)m/2t) operations in G. (To optimise the running time

one only computes Ax (mod H1) at this stage.) The aim is to find vectors xj ∈ L
(0)
j for 1 ≤ j ≤ k

such that
∑

j Axj = 0.

The algorithm proceeds by “merging” the lists pairwise. One computes new lists L
(1)
1 , . . . , L

(1)
k/2,

where each L
(1)
j contains pairs (x1,x2) ∈ L

(0)
2j−1×L

(0)
2j such that A(x1+x2) ≡ 0 (mod H1). In other

words, the new lists contain elements x1 +x2 that are “correct” for the quotient G/H1. The merge

can be performed efficiently using Algorithm 1. The next step is to merge the lists L
(1)
2j−1 and L

(1)
2j

to get L
(2)
j by ensuring the solutions are correct modulo H2, and so on.

We refer to [6, 22, 18, 16, 19] for full details and heuristic analysis. The standard argument is
that we want the lists L(1), L(2), . . . to all be roughly the same size, so that they are large enough for
the following stages of the algorithm to succeed. It follows that we desire (#B)2m/k/(#G)1/(t+1) ≈
(#B)m/k and so (#G)1/(t+1) ≈ (#B)m/k. In practice one takes k = 2t to be as large as possible
subject to this constraint, and the size of k is governed by the density of the instance (higher density
means larger k).

The main drawbacks of the CPW algorithm are: it requires very large storage (the time and
memory complexity are approximately equal); it is not amenable to parallelisation; it can only be
used for very high density instances. Some techniques to reduce storage and benefit from parallelism
are given by Bernstein et al [3, 4]. Note that algorithm is completely deterministic, and so always
gives the same solution set, but to obtain other solutions one can apply a random permutation

6

to the problem before running the algorithm. Another remark is that when the density is 1 (i.e.,
(#B)m ≈ qn) then we need to have k = 1 + log2(k) and hence k = 2, and the CPW algorithm
becomes the trivial “meet-in-middle” method.

Our general framework allows to consider the CPW algorithm for subset-sum and modular
subset-sum. However, to have a decomposition as in equation (2) one needs the modulus in the
modular subset-sum problem to have factors of a suitable size. Wagner’s paper mentions an ap-
proach for modular subset-sum using sub-intervals instead of quotients (for further details see
Lyubashevsky [15]). We also mention the work of Shallue [21], which gives a rigorous analysis of
the CPW algorithm for the modular subset-sum problem.

Finally, we mention the work of Minder and Sinclair [19] that allows a finer balancing of pa-
rameters. This allows the CPW algorithm to be used for larger values of k than the density might
predict. We sketch some details in Section 2.6.

2.6 Minder and Sinclair refinement of CPW

Minder and Sinclair [19] proposed the extended k-tree algorithm. In the previous section we divided
the problem into k lists, and divided the group G = Z

n
q into t sections using subgroups H1, . . . ,Ht

such that #(G/Hi) = qℓ for 1 ≤ i < t and #(G/Ht) ≈ q2ℓ. The new idea is to choose integers
ℓ1, ℓ2, · · · , ℓt and subgroups Hi so that #(G/Hi) = qℓi .

Denote by L(i) any of the lists at the i-th stage of the algorithm. Recall that we want to minimise
max0≤i≤t(#L(i)) and that we have

#L(i) ≤ #L(i−1)#L(i−1)/qℓi . (3)

Since #L(0) = (#B)m/k we can write #L(i) = 2bi where b0 = (m/k) log2(#B). It is usually the
case that equation (3) is an equality, and hence get bi = 2bi−1 − log2(q)ℓi. So to minimize the time
complexity the ℓi should be a solution of the following integer program:

minimize bmax = max
0≤i≤t

bi

subject to 0 ≤ bi, 0 ≤ i ≤ t

b0 = (m/k) log2(#B),
bi = 2bi−1 − log2(q)ℓi,

ℓi ≥ 0, 0 ≤ i ≤ t
t
∑

i=1

ℓi = n.

If (#B)m/k ≈ (#G)1/(t+1), the solution to the above integer program is ℓ1 = · · · = ℓt ≈ n/(1+t),
and the extended k-tree algorithm in this case is the original CPW algorithm. When (#B)m/k <
(#G)1/(t+1) then it is not possible to use k lists in the CPW algorithm. However, the extended
k-tree algorithm may still be useful with k lists, if one chooses appropriate values for ℓi.

2.7 The algorithm of Howgrave-Graham and Joux (HGJ)

We now present the HGJ algorithm, that can be applied even for density 1 instances of the (G,m,B)-
ISIS problem and heuristically improves on the square-root time complexity of Schroeppel-Shamir.

7

For simplicity we focus on the case B = {0, 1}. Section 6 of [11] notes that a possible extension is to
develop the algorithm for “vectorial knapsack problems”. Our formulation contains this predicted
extension.

The first crucial idea of Howgrave-Graham and Joux [11] is to split the vector x by weight
rather than by positions. The second crucial idea is to reduce to a simpler problem and then apply
the algorithm recursively. The procedures in [11] use reduction modulo M , which we generalise as
a map into a quotient group G/H. It follows that the HGJ algorithm can be applied to a more
general class of problems.

Suppose we wish to solve s = Ax in G where x ∈ Bm has weight wt(x) = ω. Write X for the
set of weight ω vectors in Bm, and write X1,X2 for the set of weight ω/2 vectors in Bm. Then there
are

(ω
ω/2

)

ways to write x as x1 + x2 where x1 ∈ X1,x2 ∈ X2.

The procedure is to choose a suitable subgroupH so that there is a good chance that a randomly
chosen element R ∈ G/H can be written as Ax1 for one of the

(

ω
ω/2

)

choices for x1. Then the

procedure solves the two subset-sum instances in the group G/H (recursively) to generate lists of
solutions

L1 = {x1 ∈ Bm : Ax1 = R (mod H),wt(x1) = ω/2}
and

L2 = {x2 ∈ Bm : Ax2 = s−R (mod H),wt(x2) = ω/2}.
We actually store pairs of values (x1,Ax1 (mod H ′)) ∈ Bm×(G/H ′) for a suitably chosen subgroup
H ′. One then applies Algorithm 1 to merge the lists to get solutions x = x1 + x2 ∈ X satisfying
the equation in G/(H ∩H ′). The paper [11] gives several solutions to this problem of merging lists,
including a 4-list merge. But the main algorithm in [11] exploits Algorithm 1.

The subgroup H is chosen to trade-off the probability that a random value R corresponds to
some splitting of the desired original solution x (this depends on the size of the quotient group
G/H), while also ensuring that the lists L1 and L2 are not too large.

One inconvenience is that we may not exactly know the weight of the desired solution x. If we
can guess that the weight of x lies in [ω − 2ǫ, ω + 2ǫ] then we can construct lists {x1 : Ax1 = R
(mod H),wt(x1) ∈ [ω/2 − ǫ, ω/2 + ǫ]}. A similar idea can be used at the bottom level of the
recursion, when we apply the Schroeppel-Shamir method and so need to split into vectors of half
length and approximately half the weight.

The improvement in complexity for finding the solutions in L1 and L2 is due to the lowering
of the weight from ω to ω/2. This is why the process is amenable to recursive solution. At some
point one terminates the recursion and solves the problem by a more elementary method (e.g.
Schroeppel-Shamir).

One must pay attention to the relationship between the group G/H and the original group
G. For example, when solving modular subset-sum in G = Zq where q does not have factors of a
suitable size then, as noted in [11], “we first need to transform the problems into (polynomially
many instances of) integer knapsacks”. For the case G = Z

n
q this should not be necessary.

Complexity analysis: The final algorithm is a careful combination of these procedures, performed
recursively. We limit our discussion to recursion of 3 levels. In terms of the subgroups, the recursive
nature of the algorithm requires a sequence of subgroups H1,H2,H3 (of the same form as in
Section 2.5) so that the quotient groups G/(H1 ∩H2 ∩H3), G/(H2 ∩H3), G/H3 become smaller
and smaller. (The “top level” of the recursion turns an ISIS instance in G to two lower-weight ISIS

8

instances in G′ = G/(H1∩H2∩H3); to solve these sub-instances using the same method we need to
choose a quotient of G′ by some proper subgroup H2 ∩H3, which is the same as taking a quotient
of G by the subgroup H2 ∩H3.)

In [11], for subset-sum over Z, this tower of subgroups is manifested by taking moduli M that
divide one another (“For the higher level modulus, we choose M = 4194319 · 58711 · 613”, meaning
H3 = 613Z,H2 = 58711Z, H1 = 4194319Z, H2 ∩H3 = (58711 · 613)Z and H1 ∩H2 ∩H3 = MZ). In
the case of modular subset-sum in Zq when q does not split appropriately one can lift to Z (giving
a polynomial number of instances) and reduce each of them by a new composite modulus.

We do not reproduce all the analysis from [11], since it is superseded by the method of Becker et
al. But the crucial aspect is that the success of the algorithm depends on the probability that there
is a splitting x = x1 + x2 of the solution into equal weight terms such that Ax1 = R (mod H).
This depends on the number

(ω
ω/2

)

(#B − 1)ω/2 of splittings of the weight ω vector x and on the

size M = #(G/H) of the quotient group. Overall, the heuristic running time for the HGJ method
(as stated in Section 2.2 of [2]) is Õ(20.337m).

2.8 The algorithm of Becker, Coron and Joux

Becker, Coron and Joux [2] present an improved version of the HGJ algorithm (again, their paper
is in the context of subset-sum, but easily generalises to our setting). The idea is to allow larger
coefficient sets. Precisely, suppose B = {0, 1} and let X ⊂ Bn be the set of weight ω vectors. The
HGJ idea is to split X by taking X1 = X2 to be the set of weight ω/2 vectors in Bm. Becker et al
suggest to take X1 = X2 to be the set of vectors in Z

m having ω/2 + αm entries equal to +1 and
αm entries equal to −1, and the remaining entries equal to 0. This essentially increases the density
of the sub-problems, and leads to a better choice of parameters. The organisation of the algorithm,
and its analysis, are the same as HGJ. The HGJ algorithm is simply the case α = 0 of the BCJ
algorithm.

We briefly sketch the heuristic analysis from [2] for the case of 3 levels of recursion, B = {0, 1},
balanced solution of weight m/2, and instances of density 1 (so that 2m ≈ qn). Let

Xa,b = {x ∈ {−1, 0, 1}m : #{i : xi = 1} = am,#{i : xi = −1} = bm}.

A good approximation to #Xa,b is 2mH(a,b) where H(x, y) = −x log2(x) − y log2(y) − (1 − x −
y) log2(1− x− y).

Fix α = 0.0267, β = 0.0168 and γ = 0.0029 and also integers ℓ1, ℓ2, ℓ3 such that qℓ1 ≈
20.267m, qℓ2 ≈ 20.291m and qℓ3 ≈ 20.241m. Choose subgroups H1,H2,H3 such that #(G/Hi) = qℓi .

Theorem 1. (Becker-Coron-Joux) With notation as above, and assuming heuristics about the
pseudorandomness of Ax, the BCJ algorithm runs in time Õ(20.291m).

Proof. (Sketch) The first level of recursion splits X = Bm into X1 + X2 where X1 = X2 =

X1/4+α,α. We compute two lists L
(1)
1 = {(x,Ax) : x ∈ X1,Ax ≡ R1 (mod H1 ∩ H2 ∩ H3)}

and L
(1)
2 , which is the same except Ax ≡ s − R1 (mod H1 ∩ H2 ∩ H3). The expected size of

the lists is 2H(1/4+α,α)m/qℓ1+ℓ2+ℓ3 = 20.217m and merging requires Õ((20.217m)2/qn−ℓ1−ℓ2−ℓ3) =
Õ(2(2·0.217−0.201)m) = Õ(20.233m) time.

The second level of recursion computes each of L
(1)
1 and L

(1)
2 , by splitting into further lists. For

example, L
(1)
1 is split into L

(2)
1 = {(x,Ax) : x ∈ X1/8+α/2+β,α/2+β ,Ax ≡ R2 (mod H2 ∩H3)} and

9

L
(2)
2 is similar except the congruence is Ax ≡ R1 − R2 (mod H2 ∩H3). Again, the size of lists is

approximately 2H(1/8+α/2+β,α/2+β)m/qℓ2+ℓ3 = 20.278m and the cost to merge is Õ(2(2·0.278−0.267)m) =
Õ(20.289m).

The final level of recursion computes each L
(2)
j by splitting into two lists corresponding to

coefficient sets X1/16+α/4+β/2+γ,α/4+β/2+γ . The expected size of the lists is

2H(1/16+α/4+β/2+γ,α/4+β/2+γ)m/qℓ3 ≈ 20.291m

and they can be computed efficiently using the Shroeppel-Shamir algorithm in time

Õ(
√

2H(1/16+α/4+β/2+γ,α/4+β/2+γ)m) = Õ(20.266m).

Merging the lists takes Õ(22∗0.291/qℓ2) = Õ(20.291m) time.

The above theorem does not address the probability that the algorithm succeeds to output
a solution to the problem. The discussion of this issue is complex and takes more than 3 pages
(Section 3.4) of [2]. We give a rough “back-of-envelope” calculation that gives some confidence.

Suppose there is a unique solution x ∈ {0, 1}m of weight m/2 to the ISIS instance. Consider
the first step of the recursion. For the whole algorithm to succeed, it is necessary that there is

a splitting x = x1 + x2 of the solution so that x1 ∈ L
(1)
1 and x2 ∈ L

(1)
2 . We split x so that the

m/2 ones are equally distributed across x1 and x2, and the m/2 zeroes are sometimes expanded as
(−1,+1) or (+1,−1) pairs. Hence, the number of ways to split x in this way is

N1 =

(

m/2

m/4

)(

m/2

αm

)(

(1/2 − α)m

αm

)

=

(

m/2

m/4

)(

m/2

αm,αm, (1/2 − 2α)m

)

.

For randomly chosen R1 ∈ G/(H1 ∩ H2 ∩ H3), there is a good chance to be a valid splitting if
N1 ≈ qℓ1+ℓ2+ℓ3 . Indeed, the expected number of valid splittings should be roughly N1/q

ℓ1+ℓ2+ℓ3 .
For the second stage we assume that we already made a good choice in the first stage, and

indeed that we have N1/q
ℓ1+ℓ2+ℓ3 possible values for x1. The number of ways to further split x1 is

N2 =
((1/4+α)m
(1/8+α/2)m

)(αm
αm/2

)((3/4−2α)m
βm,βm,(3/4−2α−2β)m

)

. Hence, we require (N1/q
ℓ1+ℓ2+ℓ3)(N2/q

ℓ2+ℓ3)2 > 1.

In the final stage (again assuming a good splitting in the second stage), the number of ways

to split is N3 =
((1/8+α/2+β)m
(1/16+α/4+β/2)m

)

·
((β+α/2)m
(β/2+α/4)m

)

·
((7/8−α−2β)m
γm,γm,(7/8−α−2β−2γ)m

)

, which we require to be

≈ qℓ3 . Thus, choosing #G/H3 close to N3, #G/(H2∩H3) close to N2 and #G/(H1∩H2∩H3) close
to N1 then it is believed the success probability of the algorithm is a constant. This argument is
supported in Section 3.4 of [2] by theoretical discussions and numerical experiments. To conclude,
for the algorithm to have a good chance to succeed we require

N1/q
ℓ1+ℓ2+ℓ3 > 1, (N1/q

ℓ1+ℓ2+ℓ3)(N2/q
ℓ2+ℓ3)2 > 1, (N1/q

ℓ1+ℓ2+ℓ3)(N2/q
ℓ2+ℓ3)2(N3/q

ℓ3)4 > 1.

2.9 Summary

Despite the large literature on the topic, summarised above, one sees there are only two basic ideas
that are used by all algorithms:

– Reduce modulo subgroups to create higher density instances. Since the new instances have higher
density one now has the option to perform methods that only find some of the possible solutions.

10

– Splitting solutions. Splitting can be done by length (i.e., positions) or by weight. Either way,
one reduces to two “simpler” problems that can be solved recursively and then “merges” the
solutions back to solutions to the original problem.

The main difference between the methods is that CPW requires large density to begin with,
in which case splitting by positions is fine. Whereas HGJ/BCJ can be applied when the original
instance has low density, in which case it is necessary to use splitting by weight in order to be able
to ignore some potential solutions.

3 Analysis of HGJ/BCJ in high density

The CPW algorithm clearly likes high density problems. However, the analysis of the HGJ and
BCJ algorithms in [11, 2] is in the case of finding a specific solution (and so is relevant to the case
of density at most 1). It is intuitively clear that when the density is higher (and so there is more
than one possible solution), and when we only want a single solution to the problem, then the
success probability of the algorithm should increase. In this section we explain that the parameters
in the HGJ and CPW algorithms can be improved when one is solving instances of density > 1.
This was anticipated in [12]: “further improvements can be obtained if, in addition, we seek one
solution among many”. We give a very approximate heuristic analysis of this situation.

Let the number of the solutions to the original subset-sum problems be Nsol ≥ 1. We consider
at most t levels of recursion. The subgroups H1,H2, · · · ,Ht are chosen to trade-off the probability
of a successful split at each stage and also to ensure the size of the lists to be merged at each stage
is not too large. Using the same notation as Section 2.8, write N1,N2, · · · ,Nt for the number of
ways to split a single valid solution at each level of the recursion.

The standard approach is to choose the subgroups H1,H2, · · · ,Ht such that #G/(Hi ∩Hi+1 ∩
· · ·∩Ht) = qℓi+ℓi+1+···+ℓt ≈ Ni for all 1 ≤ i ≤ t. The success probability is then justified by requiring

N1

qℓ1+···+ℓt

(N2

qℓ2+···+ℓt

)2

· · ·
(Ni

qℓi+···+ℓt

)2i−1

> 1

for all 1 ≤ i ≤ t. We now assume a best-case scenario, that all the splittings of all the Nsol ≥ 1
solutions are distinct (this is clearly unrealistic for large values of Nsol, but it gives a rough idea
of how much speedup one can ask with this approach). Then the success condition changes, for all
1 ≤ i ≤ t, to

Nsol
N1

qℓ1+···+ℓt

(N2

qℓ2+···+ℓt

)2

· · ·
(Ni

qℓi+···+ℓt

)2i−1

> 1 (4)

It follows that when t = 3 the best parameters ℓ1, ℓ2, ℓ3, α, β, γ are chosen by the following linear
program:

11

minimize T = max

(

#(L(1))2

qn−ℓ1−ℓ2−ℓ3
,
#(L(2))2

qℓ1
,
#(L(3))2

qℓ2
,
√

#X1/16+α/4+β/2+γ,α/4+β/2+γ

)

subject to #L(1) =
#X1/4+α,α

qℓ1+ℓ2+ℓ3
,

#L(2) =
#X1/8+α/2+β,α/2+β

qℓ2+ℓ3
,

#L(3) =
#X1/16+α/4+β/2+γ,α/4+β/2+γ

qℓ3
,

equation (4) holds for 1 ≤ i ≤ 3

ℓi ∈ N, 1 ≤ i ≤ 3

α, β, γ ∈ R≥0.

For the ISIS problem B = {0, 1}m given q and n, we can reduce m (i.e., guess some positions of
the solution vector x) to get lower density instances. Let the density be 2c1m and the time complexity
be Õ(2c2m), the time complexity comes from choosing the optimal parameters α, β, γ and ℓ1, ℓ2, ℓ3
for the given density. Figure 1 indicates how the density affects the asymptotic complexity for
CPW, HGJ and BCJ. Thus we can see CPW is the best choice for high density instances, whereas
HGJ/BCJ is suitable for low density instances. Further, it is reasonable to believe that a small
speedup can be obtained with the HGJ and BCJ algorithms when running them on instances of
density > 1. However, our analysis is based on some strong simplifying assumptions, and it should
not be assumed that the HGJ and BCJ algorithms perform exactly this well when the density is
moderate.

To invert the SWIFFT hash function the parameters are B = {0, 1}m, m = 1024, q = 257,
n = 64 and so the density is 20.5m which is a very high density instance. For this problem the CPW
algorithm is the best choice.

4 Hermite normal form

We now give the main idea of the paper. For simplicity, assume that q is prime, G = Z
n
q and

n > 1. We also assume that the matrix A has rank equal to n, which will be true with very high
probability when m ≫ n.

We exploit the Hermite normal form. Given an n×m matrix A over Zq with rank n < m then,
by permuting columns as necessary, we may assume that A = [A1|A2] where A1 is an invertible
n× n matrix and A2 is an n× (m− n) matrix. Then there exists a matrix U = A−1

1 such that

UA = [In|A′]

where In is the n×n identity matrix and A′ is the n× (m−n) matrix UA2. The matrix [In|A′] is
called the Hermite normal form (HNF) of A and it can be computed (together with U) by various
methods. We assume q is prime and hence Gaussian elimination is sufficient to compute the HNF.

Writing x = (x0

x1
) where x0 has length n and x1 has length m− n we have that

s ≡ Ax (mod q) iff s′ = Us ≡ A′x1 + x0 (mod q).

12

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

c 2

c1

CPW
HGJ
BCJ

Fig. 1: Heuristic comparison of the performance of CPW, HGJ and BCJ algorithms on ISIS instances of density ≥ 1.
The horizontal axis is the value c1 such that the density (expected number of solutions) is 2c1m. The vertical axis is
the constant c2 such that the heuristic asymptotic complexity is Õ(2c2m).

Hence, the Hermite normal form converts an ISIS instance to an instance of LWE (learning with
errors) having bounded number of samples n.

It is not the goal of this paper to discuss the learning with errors problem in great detail. As
with ISIS, it can be reduced to the closest vector problem in a lattice and hence solved using lattice
basis reduction/enumeration techniques. There are two other notable algorithms for learning with
errors, due to Arora-Ge and Blum-Kalai-Wasserman. However, since our variant of LWE has a fixed
small number of samples they cannot be applied.

We will now apply the previous algorithms for the ISIS problem to this variant of the problem.
This project was suggested in Section 6 of [11] to be an interesting problem (they called it the
“approximate knapsack problem”). Our approach is to replace exact equality y1 = y2 of elements
in quotient groups G/H = Z

ℓ
q, in certain parts of the algorithms, by an approximate equality

y1 ≈ y2. The definition of y1 ≈ y2 will be that y1 − y2 ∈ E , where E is some neighbourhood of
0. Different choices of E will lead to different relations, and the exact choice depends somewhat on
the algorithm under consideration.

4.1 Approximate merge algorithm

Our main tool is to merge lists using an approximate algorithm. We write Ax ≈ s to mean
Ax+ e = s for some e ∈ E in some set E of permitted errors. We warn the reader that this symbol
≈ is not necessarily an equivalence relation (e.g., it is not necessarily symmetric).

We use similar notation to Section 2.3: X ⊆ Bm is a set of vectors, symbols H denote suitably
chosen subgroups of G such that #(G/Hi) = qℓi . We split the set of vectors X ⊆ X1 + X2 =
{x1 + x2 : x1 ∈ X1,x2 ∈ X2} in some way.

13

We also have a set of errors E and its splittings E1, E2. For example, we might take E = E1 =
E2 = {0, 1}n. Recall that we are trying to solve s ≡ Ax+ e with x ∈ X and e ∈ E . We also define
the error sets E(i) restricted to the quotient groups G/Hi, so that E(i) = {0, 1}ℓi or {−1, 0, 1}ℓi .

Let H♭,H,H♯ be subgroups of G, the desired output of the merge algorithm is a set of solutions
to the problem Ax+ e ≡ s (mod H ∩H♭) for x ∈ X and e ∈ E , together with information about
Ax (mod H♯) to be used in future calculations. The input is a pair of lists L1 and L2 that are
“partial solutions” modulo H♭. The details are given in Algorithm 2.

Algorithm 2 Approximate merge algorithm

Input: L1 = {(x,Ax (mod H)) : Ax+ e ≡ R (mod H♭),x ∈ X1, e ∈ E1},
L2 = {(x,Ax (mod H)) : Ax+ e ≡ s−R (mod H♭),x ∈ X2, e ∈ E2}

Output: L = {(x,Ax (mod H♯)) : Ax+ e ≡ s (mod H ∩H♭),x ∈ X , e ∈ E}
1: Initialise L = {}
2: Sort L2 with respect to the second coordinate
3: for (x1,u) ∈ L1 do
4: Compute v = s− u (mod H)
5: for (x2,u

′) ∈ L2 with v ≈ u′ do
6: if x1 + x2 ∈ X and A(x1 + x2) ≈ s (mod H ∩H♭) then
7: Compute A(x1 + x2) (mod H♯)
8: Add (x1 + x2,A(x1 + x2) (mod H♯)) to L

The detection of values u′ in the sorted list such that v ≈ u′ (meaning v + e ≈ u′ for some
e ∈ E(i) can be done in several ways. One is to try all possible error vectors e and look up each
candidate value v+ e. Another is to “hash” using most significant bits. We give the details below.
The running time of the algorithm depends on this choice.

Let qℓ = #(G/H), for each pair (x1,u) ∈ L1 and each e ∈ E ⊆ Z
ℓ
q, the expected number of

“matches” (x2,u+ e) in L2 is #L2/q
ℓ. In the case where all values for e ∈ E are chosen and then

each candidate for u′ is looked up in the table, then the running time is proportional to

#L1#E
⌈

#L2

qℓ

⌉

.

In the BCJ application in Section 4.3 we will take #E = 3ℓ and we will always have #L2 ≥ qℓ.
Hence the running time will be Õ(#L1#L2/(q/3)

ℓ).
As previously, it is non-trivial to bound the size of the output list L. Instead, this can be

bounded by #X#E/#(G/(H ∩H♭)).
Note that different choices for E , E1, E2 can lead to different organisation in the algorithm. For

example, line 6 of Algorithm 2 involves a computation (mod H∩H♭), whereas this can be simplified
to (mod H) if the errors are chosen appropriately – this is what we will do when adapting the
CPW algorithm to this case.

4.2 The CPW algorithm

Recall that our problem is (taking the HNF and then renaming (A′, s′) as (A, s)): Given A, q, s
to solve Ax1 + x0 = s in G = Z

n
q , where x1 has length m − n and x0 has length n. We assume

the problem has high density, in the sense that there are many pairs (x0,x1) ∈ Bm that solve the
system.

14

As we have seen, the CPW algorithm is most suitable for problems with very high density, since
higher density means more lists can be used and so the running time is lower. Hence, it may seem
that reducing m to m − n will be unhelpful for the CPW algorithm. However, we actually get a
very nice tradeoff. In some sense, the high density is preserved by our transform while the actual
computations are reduced due to the reduction in the size of m.

As noted, we define a (not-necessarily symmetric or transitive) relation ≈ on vectors in G = Z
n
q

as v ≈ w if and only if v − w ∈ Bn. One can then organise a CPW-style algorithm: compute

the lists L
(i)
j as usual, but merge them using ≈. However, we need to be a bit careful. Consider

the case of 4 lists. Lists L
(0)
j contain pairs (x,Ax) (in the case of L

(0)
4 it is (x,Ax − s)). Merging

L
(0)
1 and L

(0)
2 gives a list L

(1)
1 of pairs (x1,x2) such that A(x1 + x2) ≈ 0 (mod H1), which means

A(x1+x2) = e for some e ∈ Bn/3. Similarly, L
(1)
2 is a list of pairs (x3,x4) such that A(x3+x4) = e′

for some e′ ∈ Bn/3. The problem is that e+ e′ does not necessarily lie in Bn/3 and so the merge at
the final stage will not necessarily lead to a solution to the problem.

There are several ways to avoid this issue. One would be to “weed out” these failed matches
at the later stages. However, our approach is to constrain the relation ≈ further during the merge
operations. Specifically (using the notation of the previous paragraph) we require the possible
non-zero positions in e and e′ to be disjoint.

The details To be precise, let k = 2t be the number of lists. We define u = (m − n)/k to
be the number of entries in each xj and let Xj = {(0, . . . , 0, x(j−1)u+1, . . . , xju, 0, . . . , 0) ∈ Bm}
for 1 ≤ j ≤ k. In turns out to be better to not have all merges using quotient groups of the
same size, so we choose integers ℓi > 0 such that ℓ1 + ℓ2 + · · · + ℓt = n. We will choose the
subgroups Hi so that G/Hi

∼= Z
ℓi
q for 1 ≤ i ≤ t. So H1 = {(0, 0, · · · , 0, gℓ1+1, · · · , gn) ∈ Z

n
q },

H2 = {(g1, . . . , gℓ1 , 0, . . . , 0, gℓ1+ℓ2+1, . . . , gn)} and so on.
For parameters k′ ∈ N, γ we define error sets in Bk′γ for 1 ≤ j ≤ k′ as

Eγ,j = {(0, . . . , 0, e(j−1)γ+1, . . . , ejγ , 0, 0, . . . , 0) ∈ Bk′γ}.

Note that #Eγ,j = (#B)γ .
Level 0: Compute lists L

(0)
j = {(x,Ax (mod H1)) ∈ Xj × Z

ℓ1
q } for 1 ≤ j ≤ k − 1 and L

(0)
k =

{(x,Ax − s (mod H1)) ∈ Xk × Z
ℓ1
q }. Note that #L

(0)
j = #Bu = #B(m−n)/k. The cost to compute

the initial k lists is approximately k ·#L
(0)
j ·C, where C is the number of bit operations to compute

a sum of at most u vectors in Z
ℓ1
q i.e. C = (m− n) log2(q

ℓ1)/k.
Level 1: We now merge the k = 2t lists in pairs to get k/2 = 2t−1 lists. Let γ1 = ℓ1/(k/2). The sets
Eγ1,j specify the positions that are allowed to contain errors. In other words, for j = 1, 2, · · · , k/2
we construct the new lists

L
(1)
j = {(x1,x2,A(x1 + x2) (mod H2)) : x1 ∈ L

(0)
2j−1,x2 ∈ L

(0)
2j ,A(x1 + x2) (mod H1) ∈ Eγ1,j}.

The probability that two random vectors in Z
ℓ1
q have sum in Eγ1,j is #Eγ1,j/qℓ1 = #Bγ1/qℓ1 , and

so the expected size of the lists L
(1)
j is #L

(0)
2j−1#L

(0)
2j #Bγ1/qℓ1 ≈ #B2(m−n)/k+γ1/qℓ1 , which we will

want to be roughly #B(m−n)/k again.
Level i ≥ 2: The procedure continues in the same way. We are now merging k/2i−1 lists to get
k/2i lists. We do this by checking ℓi coordinates and so will allow errors for each merge in only

15

γi = ℓi/(k/2
i) positions. Hence, for j = 1, 2, · · · , k/2i we construct the new lists

L
(i)
j = {(x1,x2,A(x1+x2) (mod Hi+1)) : x1 ∈ L

(i−1)
2j−1 ,x2 ∈ L

(i−1)
2j ,A(x1+x2) (mod Hi) ∈ Eγi,j}.

As before, the expected size of L
(i)
j is #L

(i−1)
2j−1#L

(i−1)
2j #Bγi/qℓi .

It remains to explain how to perform the merging of the lists. The problem is that we cannot
simply do the usual “sort and match” process as this will only find exact matches rather than
matches up to an error. We are seeking a match on vectors in Z

ℓi
q that are equal on all but γi

coordinates, and that are “close” on those γi coordinates. The natural solution is to detect matches
using the most significant bits of the coordinates (this approach was used in a similar situation
by Howgrave-Graham, Silverman and Whyte [10]). Precisely, let v be a parameter (indicating the
number of most significant bits being used). Represent Zq as {0, 1, . . . , q − 1} and define a hash
function F : Zq → Z2v by F (x) = ⌊ x

q/2v ⌋. We can then extend F to Z
γi
q (and to the whole of

Z
ℓi
q by taking the identity map on the other coordinates). We want to detect a match of the form

Ax1 +Ax2 + e = 0, which we will express as Ax1 = −Ax2 − e. The idea is to compute F (Ax1)
for all x1 in the first list and store these in a sorted list. For each value of x2 in the second list one
computes all possible values for F (−Ax2 − e) and checks which of them are in the sorted list.

For example, consider q = 23 = 8 and suppose we use a single most significant bit (so F :
Zq → {0, 1}). Suppose Ax1 = (7, 2, 3, 5, 6, 4, 0, 7)T and that we are only considering errors on
the first γ = 4 coordinates. Then we have F (Ax1) = (1, 0, 0, 1, 6, 4, 0, 7). Suppose now −Ax2 =
(7, 3, 4, 5, 6, 4, 0, 7). Then F (−Ax2) = (1, 0, 1, 1, 6, 4, 0, 7). By looking at the “borderline” entries of
−Ax2 we know that we should also check (1, 0, 0, 1, 6, 4, 0, 7). There is no other value to check, since
F ((7, 3, 4, 5) − (1, 1, 1, 1)) = F (6, 2, 3, 4) = (1, 0, 0, 1) and so the only possible values for the first 4
entries of F (−Ax2 − e) are {(1, 0, 0, 1), (1, 0, 1, 1)}.

To be precise we define Flips(v) = {F (v − e) : e ∈ Eγ,j}, where j and γi are clear in any given
iteration of the algorithm. In other words, it is the set of all patterns of most significant bits that
would arise by adding valid errors to the corresponding coordinates of v. The set Flips(v) is not
likely to be large, since it only arises when the vector has some coordinates that are exactly on the
borderline. Let pflip be the probability that a randomly chosen element of Zq has hash value that
flips when subtracting an error.

1. If B = {0, 1} then pflip = 2v/q. Thus, on average, #Flips(v) = 2γi2
v/q.

2. If B = {−1, 0, 1} then pflip = 2v+1/q. Thus, on average, #Flips(v) = 2γi2
v+1/q.

To summarise the “approximate 2-merge” algorithm: First compute F (v) for every v = Ax1 in

the list L
(i−1)
2j−1 , and sort these values. Note that there may be multiple different values x1 in the list

with the same hash value F (Ax1). Then, for every v = −Ax2 for x2 in the list L
(i−1)
2j we compute

Flips(v) and search for a match in the sorted list. Finally, for each match, we go through all values
x1 in the first list with the given hash value F (Ax1) and, for each of them, check if it really is
true that A(x1 + x2) is in the correct error set (since a match of the hash values does not imply
correctness). The number of possible hash values on vectors in Z

ℓi
q , with γi positions reduced to

the v most significant bits, is 2vγiqℓi−γi . Hence, the average number of values in the list L
(i−1)
2j−1 that

take a given hash value is #L
(i−1)
2j−1 /(2

vγiqℓi−γi). Finally, for all good matches we need to compute
A(x1 + x2) (mod Hi).

The average total time for the approximate merge algorithm is therefore (cost of sorting plus
cost of searching plus cost of consistency check plus cost of recomputing)

16

#L
(i−1)
2j−1

(

C1 + log2(#L
(i−1)
2j−1) log2(q

ℓi)
)

+ #L
(i−1)
2j

(

C2 + 2γipflip
[

log2(#L
(i−1)
2j−1) log2(q

ℓi) +

(#L
(i−1)
2j−1 /(2

vγiqℓi−γi))C3

])

+ #L
(i)
j (2 log2(q

ℓi+1))
(5)

where C1 and C2 are the cost of computing F for the γi positions which allow errors, and C3 is the
cost of checking that x1 + x2 ∈ Bm and that A(x1 + x2) ∈ E (we only need to check γi positions

of the error). Larger values for v increase pflip but reduce #L
(i−1)
2j−1 /(2

vγiqℓi−γi). So we choose v to

balance the costs 2γipflip and #L
(i−1)
2j−1 /(2

vγiqℓi−γi). Hence, the time to do “approximate 2-merge”

can be proportional to #L
(i−1)
2j−1 log2(#L

(i−1)
2j−1). When γi = 0, actually it’s the basic merge algorithm

and so C1 = 0, C2 = 0, C3 = u, v = log2(q), 2
γipflip = 1,#L

(i−1)
2j−1 /(2

vγiqℓi−γi) = #L
(i−1)
2j−1 /q

ℓi .

To make sure the algorithm can find one solution at the bottom level, we require #L
(t)
1 to have

expected size at least one. Denote by L(i) any of the lists at the i-th stage of the algorithm. Recall
that we want to minimise max0≤i≤t(#L(i)) and that we have

#L(i) ≤ #L(i−1)#L(i−1)#Bγi/qℓi . (6)

Since #L(0) = (#B)(m−n)/k we can write #L(i) = 2bi where b0 = m−n
k log2(#B). It is usually the

case that equation (6) is an equality, and hence get bi = 2bi−1 − log2(q)ℓi + γi log2(#B). So to
minimize the time complexity the ℓi should be a solution of the following integer program:

minimize bmax = max
0≤i≤t

bi

subject to 0 ≤ bi ≤ bmax, 0 ≤ i ≤ t

b0 = (m− n) log2(#B)/k,
bi = 2bi−1 − log2(q)ℓi + γi log2(#B),
ℓi ≥ 0, 0 ≤ i ≤ t
t
∑

i=1

ℓi = n.

Given m,n, q, to reduce the time and space complexity we want k to be as large as possible.
However, as with the original Wagner algorithm, to make sure the expected number of solutions
found is non-zero, k can’t be too large. In practice, the algorithm chooses the largest k = 2t that

guarantees #L
(t)
1 ≈ 1. Note that the higher the density of the (I)SIS problem, the larger k can be

chosen.

4.3 HGJ and BCJ for approximate-ISIS problem

The HGJ and BCJ algorithms can be implemented to solve the approximate-ISIS problemAx+e ≡
s (mod q), (where A is a n×m′ matrix, x ∈ {0, 1}m′

, e ∈ {0, 1}n) by using Algorithm 2. Assume
for simplicity that the density is approximately 1 i.e. 2m

′+n/qn ≈ 1. Since HGJ is a special case of
BCJ, we discuss the general case.

17

In the context of the Hermite normal form of an (m,n)-ISIS instance, the best outcome we could
expect would be an algorithm with heuristic complexity Õ(20.291m

′

) where m′ = m−n. We believe
one can get close to this by choosing suitable parameters, but there are a number of complications
in the analysis. We give a possible choice of the parameters to realize this time complexity, however
the success probability is hard to analyse.

We use the BCJ algorithm with 3 levels of recursion. Recall that Xa,b denotes vectors in
{−1, 0, 1}m′

with am′ entries equal to 1 and bm′ entries equal to −1. Recall that we are trying
to solve s ≡ Ax+ e with x ∈ X and e ∈ {0, 1}n. Write coordinates of e as ei, using BCJ’s idea to
split the error, if coordinate ei = 0 then it can be split in three ways as −1 + 1, 0 + 0 or 1 + −1,
while if ei = 1 then it can only be split in two ways 1 + 0 and 0 + 1. For example, the first level
of recursion splits X = X1/2,1/2 ⊂ Bm′

into X1 + X2 where X1 = X2 = X1/4+α,α, and also split
the error sets {0, 1}n into two sets E1 = E2 = {−1, 0, 1}n. In other words, we consider splitting
x = x1+x2 and e = e1+e2 with xi ∈ Xi and ei ∈ Ei = {−1, 0, 1}n. Note that not every value in Ei
arises as a possible splitting of the target solution (x, e). So we define the error sets E(i) restricted
to the quotient groups G/Hi, so that E(i) = {−1, 0, 1}ℓi using the notation from Section 4.1. Define
the error set E(0) = {0, 1}n restricted to the group G. Further, we define E(i→t) = {−1, 0, 1}ℓi+···+ℓt

restricted to the quotient groups G/(Hi ∩ · · ·Ht). To use Algorithm 2, the simplest choice here is
to take E1 = E2 = {−1, 0, 1}ℓi when solving equations modulo Hi then“weed out” the inconsistent
errors at later stages.

In the first level of recursion, we compute two lists L
(1)
1 = {(x,Ax) : x ∈ X1,Ax + e ≡ R1

(mod H1 ∩H2 ∩H3) for some e ∈ {−1, 0, 1}ℓ1+ℓ2+ℓ3} and L
(1)
2 which is that same except Ax+ e ≡

s− R1 (mod H1 ∩H2 ∩H3). The expected size of the lists is #L(1) = #X1#E(1→3)/(q)ℓ1+ℓ2+ℓ3 ≈
2H(1/4+α,α)m′

/(q/3)ℓ1+ℓ2+ℓ3 and merging requires Õ(#L(1)#L(1)(2/q)n/(3/q)ℓ1+ℓ2+ℓ3) time.

The second level of recursion computes each of L
(1)
1 and L

(1)
2 , by splitting into further lists. We

split X to X1 = X2 = X1/8+α/2+β,α/2+β and use error vectors e ∈ E(2→3) = {−1, 0, 1}ℓ2+ℓ3 .

For example, L
(1)
1 is split into L

(2)
1 = {(x,Ax) : x ∈ X1,Ax+e ≡ R2 (mod H2∩H3)} and L

(2)
2 is

similar except the congruence is Ax+e ≡ R1−R2 (mod H2∩H3). Again, the size of lists is approx-
imately #L(2) = 2H(1/8+α/2+β,α/2+β)m′

/(q/3)ℓ2+ℓ3 and the cost to merge is Õ(#L(2)#L(2)/(q/3)ℓ1).

The final level of recursion computes each L
(2)
j by splitting into two lists corresponding to

coefficient sets X1/16+α/4+β/2+γ,α/4+β/2+γ , and again error vectors e ∈ {−1, 0, 1}ℓ3 . The expected

size of the lists is #L(3) = 2H(1/16+α/4+β/2+γ,α/4+β/2+γ)m′

/(q/3)ℓ3 and they can be computed using

the Shroeppel-Shamir algorithm in time Õ(
√
2H(1/16+α/4+β/2+γ,α/4+β/2+γ)m′). Merging the lists

takes Õ(#L(3)#L(3)/(q/3)ℓ2) time.

Let, as before, α = 0.0267, β = 0.0168 and γ = 0.0029, and take integers ℓ1, ℓ2, ℓ3 such that
(q/3)ℓ1 ≈ 20.267m

′

, (q/3)ℓ2 ≈ 20.291m
′

and (q/3)ℓ3 ≈ 20.241m
′

. Choose subgroups H1,H2,H3 such
that #(G/Hi) = qℓi . Then the time complexity is Õ(20.291m

′

).

The algorithm succeeds if there is a splitting of the desired solution (x, e) to Ax+ e = s in Z
n
q

(assumed now to be unique) that satisfies all the “approximate” congruences in the recursion. In
this case, we need to work out how many ways there are to split (x, e) in each level of recursion.
Counting the ways to split x is similar to BCJ’s analysis in Section 2.8, while the counting the
ways to split e is harder to work out exactly. For example, to analyse the ways to split in the first
level of the recursion e ≡ e1 + e2 (mod H1 ∩H2 ∩H3), we need to know the numbers of 0 and 1
in the ℓ1 + ℓ2 + ℓ3 coordinates of e ∈ {0, 1}n. Since 0 can be split in three ways as −1 + 1, 0 + 0,
or 1 +−1, while 1 only can be split in two ways as 1 + 0 and 0 + 1. Now consider the second level

18

of the recursion e1 ≡ e11 + e12 (mod H2 ∩ H3), we need to know the numbers of −1, 0 and 1 in
the ℓ2 + ℓ3 coordinates of e1 ∈ {−1, 0, 1}ℓ1+ℓ2+ℓ3 . Since 0 has three ways to split, while −1 and 1
only have two ways to split. In other words, when considering the later level of recursion, we should
know the probability distribution from the earlier level of recursion. So, it is hard to give a general
analysis.

5 Improved attacks on SWIFFT

We propose improved attacks for both inversion and collision of SWIFFT. The standard SWIFFT
problem uses parameters m = 1024, n = 64, q = 257 and binary secrets. The best previously known
attacks for SWIFFT inversion and collision problem have asymptotic time 2148 bit operations and
2113 bits operations. In summary, our improved attacks solve the SWIFFT inversion and collision
problems in asymptotic running time 2138 bit operations and 2104 bit operations.

5.1 Inverting SWIFFT.

Lyubashevsky, Micciancio, Peikert and Rosen [16] discussed solving the (1024, 64, 257, {0, 1})-SIS
problem using the original CPW algorithm: “it is also possible to mount an inversion attack using
time and space approximately 2128”. They choose k = 8 to break up the 1024 column vectors of
matrix A into 8 groups of 128 column vectors each. For each group create a list of size 2128, then
choose ℓ1 = 16, ℓ2 = 16, ℓ3 = 32, at each level the size of the lists is around 2128, so the required
storage is 8 · 2128 log2(q16) bits. Using the formula (5), we predict the total running time to be
approximately 2148 bit operations.

We now show that using the HNF trick and our approximate CPW algorithm from section 4.2
gives a 210 speed-up. First, we reduce the dimension from 1024 to 1000 by setting 24 entries of x to
be zero and deleting the corresponding columns from A. Then compute the Hermite normal form,
to reduce A to a 64×936 matrix. We then use k = 8 to break split {0, 1}936 into 8 groups of length
117. Let ℓ1 = 15, ℓ2 = 16, ℓ3 = 33. Construct 8 initial lists of size 2117. At each step, we merge two
lists in a similar way to the original CPW algorithm. However, to find approximate collisions we
use the “approximate merge” algorithm described in Algorithm 2.

Level 1, we merge the initial 8 lists of size 2117 by checking the first ℓ1 = 15 coordinates of the
vectors. We allow errors in γ1 = 4, 4, 3, 4 positions for each merge. The expected size of the three
new lists corresponding to γ1 = 4 is 22·117·24

25715 ≈ 2117.92, and the expected size of the other list is
22·117·23

25715
≈ 2116.92.

For the hashing, we take v = 7 most significant bits of each value in Z257. The probability
pflip ≈ 0.5, 2γ1pflip ≤ 4 and 2117

2vγ1qℓ1−γ1
≤ 2.

Level 2, we merge the 4 lists on level 1 of sizes 2117.92, 2117.92, 2116.92, 2117.92 by checking the
next ℓ2 = 16 coordinates of the vectors. We allow errors in γ2 = 8 positions for each merge. The
expected sizes of the 2 new lists is 2117.92+117.92 ·28

25716
≈ 2115.75 and 2116.92+117.92 ·28

25716
≈ 2114.75. For the

hashing of each merge, we use v = 7.
Level 3, we now merge the 2 lists on level 2 of size 2114.75 and 2115.75 by checking the remaining

ℓ3 = 33 coordinates of the vectors, allowing γ3 = 33 positions to have errors. The expected size of
the solution set6 is 2114.75+115.75233

25733 ≈ 2−0.7, we use v = 4 for the hashing.

6 It’s possible to tune certain constraints of the integer program in section 4.2 to get a better attack. Here we tune
the constraint bt ≥ 0 to be bt ≥ −1, which means we expect to run the whole algorithm two times.

19

As a conclusion, the maximum size of the lists on each level is 2117.92, and using formula (5) we
estimate the total time to be around 2138 bit operations.

5.2 Finding collisions for SWIFFT.

Finding collisions for SWIFFT is equivalent to solving the (1024, 64, 257, {−1, 0, 1})-SIS problem.
Lyubashevsky, Micciancio, Peikert and Rosen [16] give an analysis using the CPW algorithm and
choosing k = 16. They break up the 1024 column vectors of A into 16 groups of 64 vectors each,
for each group create an initial list of 364 ≈ 2102 vectors. They choose ℓ1 = ℓ2 = ℓ3 = ℓ4 = 13 to
perform the merges. They very optimistically assume that, at each level, the lists have 2102 vectors,
and at the final level they end up with a list of ≈ 2102 elements whose first 52 coordinates are all
zero. Since 2102 > 25712 ≈ 296, it is expected that there exists an element whose last 12 coordinates
are also zero, they say “the space is at least 2102, the running time is at least 2106”.

However, the assumption in [16] that the lists have 2102 elements at each level is implausible
(but this is permitted in their context, since their goal is a lower bound on the running time). In
fact the lists get smaller and smaller (sizes 2102 → 2100 → 296 → 288 → 272) and so one does not
have a list of 2102 vectors at the final level. Indeed, the success probability of their algorithm is only
around 2−24, and so running the algorithm 223 times brings the running time to be about 2144 bit
operations.

One can resolve the success probability issue by using Minder and Sinclair’s refinement of
CPW [19]. For k = 16 lists one can take ℓ1 = 12, ℓ2 = 14, ℓ3 = 12, ℓ4 = 26 and the maximum size of
the lists at all the levels is around 2107. Using formula (5) we estimate the total time to be about
2126 bit operations.

Howgrave-Graham and Joux described an improved collision attack in Appendix B of an early
version of [12]. The idea is to attack the original {0, 1}-SIS problem directly: first using the original
CPW algorithm to get a list of elements with a certain subset of their coordinates equal to 0, then
exploit the birthday paradox using the elements in this list to find a collision between the remaining
coordinates. They choose k = 16 and create 16 initial lists of size 264, choosing ℓ1 = 4, ℓ2 = 12, ℓ3 =
12, ℓ4 = 12, then the size of the lists on each level is 296. At the final step they obtain a list of 296

elements with the first 40 coordinates equal to zero. Since (296)2 ≈ 25724, the birthday paradox
shows one can find a collision between the remaining 24 = n− (ℓ1+ ℓ2+ ℓ3+ ℓ4) coordinates in this
list. In other words, we have Ax1 ≡ Ax2 where x1,x2 ∈ {0, 1}m and so we have found a collision for
SWIFFT. The space requirement is about 296 and the time is predicted in [12] to be proportional
to 2100. Formula (5) suggests the total time is about 2113 bit operations; a speedup by 213 from the
Minder-Sinclair method.

We now describe a better collision attack, by using our HNF trick and our approximate-CPW
algorithm from Section 4.2. We apply the Hermite normal form to have an n×m′ instance, where
m′ = m−n = 960. We then apply the CPW algorithm to construct a list of x ∈ {0, 1}960 such that
Ax has a fraction of coordinates lying in {−1, 0}. Finally we exploit the birthday paradox to find
a near collision between the remaining coordinates (here “near collision” means that the difference
of the coordinates lies in {−1, 0, 1}).

Let k = 16 and break up the matrix into 16 groups of 60 vectors each. For each group create
an initial list. We can control the size of the initial lists, as long as they are smaller than 260. The
initial lists don’t need to have the same size. We choose ℓ1 = 5, ℓ2 = 10, ℓ3 = 11, ℓ4 = 12 to perform
our approximate merge. These values can be obtained by solving the integer program described in
Section 4.2, we only need to change the constraint bt >= 0 (one solution survives at the bottom

20

level) of the integer program in Section 4.2 to be 2bt+log2(3) ·(n−
∑t

i=1 ℓi) ≥ log2(q) ·(n−
∑t

i=1 ℓi),
i.e. on the last level we want the size of the list is large enough to exploit birthday paradox. As
long as this size is sufficiently large, there exist two elements (a near collision) x1,x2 such that
A(x1 − x2) has its remaining coordinates all coming from {−1, 0, 1}. Figure 2 shows the size of
the lists in each level and other parameters. We eventually obtain a list of 283.45 elements with 38
coordinates equal to {−1, 0}. Since 283.45+83.45326 ≈ 25726, obtaining a list of size 283.45 in the final
step of CPW is large enough to exploit the birthday paradox.

In summary, the maximum size of the lists is 283.88, then the space is proportional to 284. By
formula (5) the total running time is estimated to be 2104 bit operations; a 29 speed-up over the
previous best method.

83.45

83.76

82.94

79.03

59.06

γ1 = 0

60

γ2 = 4

79.97

60

γ1 = 0

60

γ3 = 6

82.88

79.97

60

γ1 = 0

60

γ2 = 3

79.97

60

γ1 = 0

60

γ4 = 12

83.76

82.94

81.03

59.06

γ1 = 2

60

γ2 = 0

81.97

60

γ1 = 2

60

γ3 = 5

83.88

80.97

60

γ1 = 1

60

γ2 = 3

79.97

60

γ1 = 0

60 ℓ1 = 5, v = 8

ℓ2 = 10, v = 8

ℓ3 = 11, v = 7

ℓ4 = 12, v = 7

Fig. 2: Parameter choices and list sizes for the approximate-CPW algorithm for finding collisions in SWIFFT. The
numbers in the dotted box denote the log2 size of the list; the γi is used in the approximate-merge algorithm; v is
the number of most significant bits we use for the hash in the cases when γi 6= 0.

6 Experimental results

The purpose of this section is two-fold: (1) to show our size and complexity estimate is robust: the
actual running-time of the algorithm follows from the bit complexity (and hence size) estimate; (2)
to show that our improved algorithms achieve the predicted speed-up in practice. To simulate and
compare the algorithms described previously, we consider two scenarios: the SIS inversion problem
with B = {0, 1}; and the SIS collision problem with B = {0, 1}. These experiments simulate the
SWIFFT inversion and collision problems, but with smaller parameters.

ISIS inversion B = {0, 1}. The parameters we used here are n = 16, q = 11 and m ranges
from 96 to 176. We compare the extended k-tree algorithm (Minder-Sinclair variant of CPW) with
our HNF improvement. We try 5000 instances for each set of parameters starting with different
random seeds. Table 1 shows the running-time comparison of algorithms in six sets of parameters.
As expected, the problems get easier as the density increases.

21

Experiment E1 denotes the extended k-tree (CPW) algorithm of Minder and Sinclair (see
Section 2.6). Experiment E2 denotes the same algorithm, but with the HNF improvement and
using approximate merge (see Section 4.2). Column “max size E” is a theoretical estimate of the
maximum number of bits of storage used at any stage of the algorithm during experiment E. The
value m̃ in Column “m̃, ℓi of E” denotes the actual dimension we used (since for a given dimension
m, it is sometimes better to reduce the dimension to get a faster attack).7 The notation ℓi denotes
the constraints for each level in the computation; when there are 3 (respectively 4) values ℓi listed
it means we are performing an 8-list (respectively 16-list) algorithm. Column “time E” denotes
the average observed running-time (using a sage implementation run on cores of an Intel 2.7GHz
cluster) over 5000 trials for each set of parameters for experiment E.

Table 1: Comparison of algorithms for ISIS inversion B = {0, 1}.

Given m m̃ and ℓi of E1 m̃ and ℓi of E2 max. size E1 max. size E2 time E1/E2

96 96, (2, 5, 9) 96, (2, 5, 9) 17.08 14.08 99.87s/8.30s

104 104, (3, 5, 8) 104, (4, 2, 10) 15.62 12.41 30.68s/3.38s

112 112, (4, 4, 8) 112, (4, 4, 8) 14.49 12.00 24.63s/3.39s

128 128, (4, 4, 8) 128, (1, 4, 2, 9) 14.70 11.57 15.78s/2.05s

160 160, (2, 4, 4, 6) 160, (3, 2, 3, 8) 13.08 10.33 8.43s/1.36s

176 176, (3, 3, 4, 6) 160, (3, 2, 3, 8) 12.87 10.33 8.37s/1.36s

The actual running-time follows roughly from the size bound, but not exactly. For instance in
algorithm E1, dimension m = 128 can be reduced to m̃ = 112 which gives a better size bound
(from 14.70 to 14.49). However, the actual running-time for keeping m̃ = 128 is better than after
reducing to 112. To get a more accurate estimate, one can use the bit complexity estimate mentioned
in previous sections. To make the comparison fair, we also choose the parameters such that the
success probability for our improved algorithm E2 is comparable to that of E1.

Collision on B = {0, 1}. We now consider the collision problem for the set B = {0, 1}. This
simulates the SWIFFT collision problem. Experiment E3 is the Howgrave-Graham-Joux “birthday
attack” variant of the Minder-Sinclair CPW algorithm. In other words, we do the CPW algo-
rithm using parameters ℓ1, . . . , ℓt and then apply birthday paradox to the final list of entries in

Z
n−(ℓ1+···+ℓt)
q . Experiment E4 is the same, but applying the HNF and using approximate merge.

The parameters are n = 16, q = 17, and m ranges from 96 to 176. The notation used in Table 2 is
analogous to that used in Table 1.

7 When the dimension can be reduced to an instance which has been investigated previously, we do not repeat the
experiment but just reproduce the experimental results from the previous instance. e.g. m = 176 in experiment
E2 can be reduced to the case m̃ = 160.

22

Table 2: Comparison of algorithms for ISIS inversion B = {0, 1}.

Given m m̃ and ℓi of E3 m̃ and ℓi of E4 max. size E3 max. size E4 time E3/E4

96 88, (2, 3, 4) 96, (3, 2, 3) 15.39 10.34 23.58s/1.43s

128 128, (1, 3, 2, 4) 96, (3, 2, 3) 14.95 10.34 17.97s/1.43s

144 144, (1, 4, 3, 2) 144, (2, 2, 2, 3) 13.91 10.29 16.21s/1.57s

160 160, (2, 3, 3, 2) 160, (3, 1, 2, 3) 12.85 9.94 8.32s/1.62s

176 176, (3, 2, 3, 2) 176, (1, 1, 2, 2, 3) 12.50 9.59 7.38s/1.46s

7 Conclusions and further work

We have explained how the Hermite normal form reduces the ISIS problem to an “approximate
subset-sum” problem, and we have given a variant of the CPW algorithm than can solve such
problems. As a result, we have given improved algorithms for inverting and finding collisions for the
SWIFFT hash function. Our new methods are approximately 500-1000 times faster than previous
methods.

In Section 3 we have analysed the HGJ and BCJ algorithms for ISIS instances of density > 1.
Figure 1 illustrates how these algorithms behave as the density grows. While these results are not
of interest for the SWIFFT hash function (as it has very high density), they may be relevant to
the study of other ISIS problems with small coefficient sets.

Section 4.3 discusses adapting the BCJ algorithm to the case of approximate ISIS. The basic
ideas can be applied, but we explain why it seems to be hard to give a general analysis of this case.
Nevertheless, we believe these ideas will be of interest to studying ISIS instance with low density
and small coefficient set (such as binary LWE and NTRU).

Finally, Section 6 reports on extensive experiments with the CPW algorithm. These results
confirm our theoretical analysis, and demonstrate that applying the Hermite normal form to ISIS
gives a significant speedup in practice.

There are several questions remaining for future work. One is to determine exact running times
for the approximate-BCJ algorithm. Another important challenge is to develop algorithms with
lower storage requirements and that can be parallelised or distributed. We note that Pollard-rho-
style random walks do not seem to be useful as they lead to running times proportional to

√
qn,

which is usually much worse than the running times considered in this paper.
One final remark: Our general formulation of the HGJ/BCJ/CPW algorithms in terms of taking

quotient groups G/H suggests an explanation of why these algorithms cannot be applied to solve
the elliptic curve discrete logarithm problem. If G = E(Fq) is an elliptic curve group of prime order
then there are no suitable subgroups H to apply quotients.

References

1. Yuriy Arbitman, Gil Dogon, Vadim Lyubashevsky, Daniele Micciancio, Chris Peikert and Alon Rosen, SWIFFTX:
A Proposal for the SHA-3 Standard. Submitted to NIST SHA-3 Competition.

2. Anja Becker, Jean-Sébastien Coron and Antoine Joux, Improved Generic Algorithms for Hard Knapsacks, in K.
G. Paterson (ed.), EUROCRYPT 2011, Springer LNCS 6632 (2011) 364–385.

3. Daniel J. Bernstein, Better price-performance ratios for generalized birthday attacks, in Workshop Record of
SHARCS07, (2007) http://cr.yp.to/papers.html#genbday

4. Daniel J. Bernstein, Tanja Lange, Ruben Niederhagen, Christiane Peters and Peter Schwabe, FSBday: Imple-
menting Wagner’s generalized birthday attack against the SHA-3 round-1 candidate FSB, in B. K. Roy and N.
Sendrier (eds.), INDOCRYPT 2009, Springer LNCS 5922 (2009) 18–38.

23

5. Johannes Buchmann and Richard Lindner, Secure Parameters for SWIFFT, in B. Roy and N. Sendrier (eds.),
INDOCRYPT 2009, LNCS 5922 (2009) 1–17.

6. Paul Camion and Jacques Patarin, The Knapsack Hash Function proposed at Crypto’89 can be broken, in D.
W. Davies (ed.), EUROCRYPT 1991, Springer LNCS 547 (1991) 39–53.

7. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein, Introduction to algorithms, 2nd
ed., MIT press, 2001.

8. Matthijs J. Coster, Antoine Joux, Brian A. LaMacchia, Andrew M. Odlyzko, Claus-Peter Schnorr, and Jacques
Stern, Improved low-density subset sum algorithms, Computational Complexity, 2:111-128, 1992.

9. Itai Dinur, Orr Dunkelman, Nathan Keller and Adi Shamir, Efficient Dissection of Composite Problems, with
Applications to Cryptanalysis, Knapsacks, and Combinatorial Search Problems, in R. Safavi-Naini and R. Canetti,
CRYPTO 2012, Springer LNCS 7417 (2012) 719–740.

10. Nick Howgrave-Graham, Joseph H. Silverman and William Whyte, A meet-in-the-middle attack on an NTRU
private key, Technical Report 004, NTRU Cryptosystems, Jun 2003.

11. Nick Howgrave-Graham and Antoine Joux, New Generic Algorithms for Hard Knapsacks, in H. Gilbert (ed.),
EUROCRYPT 2010, Springer LNCS 6110 (2010) 235–256.

12. Nick Howgrave-Graham and Antoine Joux, New Generic Algorithms for Hard Knapsacks (preprint), 17 pages
(undated). Available from www.joux.biz/publications/Knapsacks.pdf

13. Nick Howgrave-Graham, A Hybrid Lattice-Reduction and Meet-in-the-Middle Attack Against NTRU, in A.
Menezes (ed.), CRYPTO 2007, Springer LNCS 4622 (2007) 150–169.

14. Jeffrey C. Lagarias and Andrew M. Odlyzko, Solving low-density subset sum problems, J. ACM, 32(1):229-246,
1985.

15. Vadim Lyubashevsky, On Random High Density Subset Sums, Electronic Colloquium on Computational Com-
plexity (ECCC) 007 (2005)

16. Vadim Lyubashevsky, Daniele Micciancio, Chris Peikert and Alon Rosen, SWIFFT: A Modest Proposal for FFT
Hashing, in K. Nyberg (ed.), FSE 2008, Springer LNCS 5086 (2008) 54–72.

17. Daniele Micciancio and Chris Peikert, Hardness of SIS and LWE with Small Parameters, in R. Canetti and J. A.
Garay (eds.), CRYPTO 2013, Springer LNCS 8042 (2013) 21–39.

18. Daniele Micciancio and Oded Regev, Lattice-based cryptography, in D. J. Bernstein, J. Buchmann and E. Dahmen
(eds.), Post Quantum Cryptography, Springer (2009) 147–191.

19. Lorenz Minder and Alistair Sinclair, The Extended k-tree Algorithm, J.Cryptol. 25 (2012) 349–382.
20. Richard Schroeppel and Adi Shamir, A T = O(2n/2), S = O(2n/4) Algorithm for Certain NP-Complete Problems,

SIAM J. Comput. No. 3 (1981) 456–464.
21. Andrew Shallue, An Improved Multi-set Algorithm for the Dense Subset Sum Problem, in A. J. van der Poorten

and A. Stein (eds.), ANTS 2008, Springer LNCS 5011 (2008) 416–429.
22. David Wagner, A Generalized Birthday Problem, in M. Yung (ed.), CRYPTO 2002, Springer LNCS 2442 (2002)

288–303.

24

