
Improved Combinatorial Algorithms for the Inhomogeneous Short
Integer Solution Problem

Shi Bai1, Steven D. Galbraith1, Liangze Li2, and Daniel Sheffield1

1 Department of Mathematics, University of Auckland, Auckland, New Zealand.
2 School of Mathematical Sciences, Peking University, Beijing, China.

Abstract. The paper is about algorithms for the inhomogeneous short integer solution problem: Given
(A, s) to find a short vector x such that Ax ≡ s (mod q). We consider algorithms for this problem due
to Camion and Patarin; Wagner; Schroeppel and Shamir; Minder and Sinclair; Howgrave-Graham and
Joux (HGJ); Becker, Coron and Joux (BCJ). Our main results include: Applying the Hermite normal
form (HNF) to get faster algorithms; A heuristic analysis of the HGJ and BCJ algorithms in the case
of density greater than one; An improved cryptanalysis of the SWIFFT hash function; A new method
that exploits symmetries to speed up algorithms for Ring-ISIS.

Keywords: Short integer solution problem (SIS), SWIFFT hash function, subset-sum, knapsacks.

1 Introduction

The subset-sum problem (also called the knapsack problem) is: Given positive integers a1, . . . , am and an
integer s, to compute a vector x = (x1, . . . , xm) ∈ {0, 1}m if it exists, such that

s =

m
∑

i=1

aixi.

It is often convenient to write a = (a1, . . . , am) as a row and x = (x1, . . . , xm)T as a column so that s = ax.
The modular subset-sum problem is similar: Given a modulus q, integer vector a and integer s to find
x ∈ {0, 1}m, if it exists, such that s ≡ ax (mod q).

The vector version of this problem is called the inhomogeneous short integer solution problem (ISIS):
Given a modulus q, a small set B ⊆ Z that contains 0 (e.g., B = {0, 1} or {−1, 0, 1}), an n ×m matrix A
(where typically m is much bigger than n), and a column vector s ∈ Z

n
q to find a column vector x ∈ Bm (if

it exists) such that
s ≡ Ax (mod q). (1)

If we want to be more precise we call this the (m,n, q,B)-ISIS problem. The original short integer solution
problem (SIS) is the case s = 0, in which case it is required to find a solution x ∈ Bm such that x 6= 0. Our
algorithms solve both problems.

We unify the subset-sum and ISIS problems as the (G,m,B)-ISIS problem where G is an abelian group
(written additively), m an integer and B a small subset of Z that contains 0. The three motivating examples
for the group are G = Z, G = Zq and G = Z

n
q . An instance of the problem is a pair (A, s) with A ∈ Gm and

s ∈ G, and a solution is any vector x ∈ Bm (if one exists) such that s = Ax.
We now define the density of an ISIS instance, generalising a standard concept in the subset-sum problem.

Recall that for integer subset-sum the density is defined to be m/ log2(max{ai}).

Definition 1. Let G be a finite group. The density of a (G,m,B)-ISIS instance is δ = (#B)m

#G .

If δ ≤ 1 then δ is the probability, over uniformly chosen elements (A, s) in Gm ×G, that there exists a
solution x ∈ Bm such that s = Ax. If δ ≥ 1 then δ is the average size of the solution set {x ∈ Bm : s = Ax},
over uniformly chosen elements (A, s) in Gm ×G such that s = Ax. If δ ≪ 1 then we say the (G,m,B)-ISIS

problem has low density. If δ ≈ 1 then we say we are in the “density 1” case. If δ ≫ 1 then we are in the
high density case. This informal notion is broadly consistent with the standard notion of density for the
subset-sum problem over Z when B = {0, 1} in the following sense: If one chooses the integers ai uniformly
in an interval {0, 1, . . . , B} ⊂ Z then max{ai} ≈ B, and the density is approximately m/ log2(B). Taking
G = ZB, our definition gives density 2m/B. One sees that the notion of “low density” with both definitions
corresponds to m < log2(B), while “high density” is m > log2(B) and “density 1” is m ≈ log2(B).

The ISIS problem has applications in lattice-based cryptography. For example, inverting the SWIFFT
hash function of Lyubashevsky, Micciancio, Peikert and Rosen [17] is solving (1024, 64, 257, {0, 1})-ISIS. Since
this function is a compression function (mapping 1024 bits to 512 bits) it corresponds to a very high density
instance of ISIS. The security level of SWIFFT claimed in [17] is “to find collisions takes time at least 2106

and requires almost as much space, and the known inversion attacks require about 2128 time and space”.3

Appendix B of [13] (an early version of [12]) gives an improved collision attack, exploiting the birthday
paradox, using lists of size 296 (surprisingly this result is missing in the published version [12]). In fact these
arguments are very rough and do not give precise estimates of the actual running time of these attacks (the
algorithms sketched in [17] actually require around 2148 and 2144 bit operations respectively). We remark
that a stronger variant of this hash function has also been proposed [1], but we do not discuss it further in
this paper.

It is known that one can try to solve both subset-sum and ISIS using lattice methods (for example,
reducing to the closest vector problem or shortest vector problem in a certain lattice of dimension m or
m+1). However, the focus in this paper is on algorithms based on time-memory tradeoffs. It is important to
take into account both lattice algorithms and time-memory tradeoff algorithms when selecting parameters
for lattice-based cryptosystems. For this reason, we assume that the set B is rather small (e.g., B = {0, 1} or
{−1, 0, 1}). Some previous algorithms of this type for the subset-sum and ISIS problems are due to: Schroeppel
and Shamir; Camion and Patarin; Wagner; Minder and Sinclair; Howgrave-Graham and Joux; Becker, Coron
and Joux. The Camion-Patarin/Wagner/Minder-Sinclair (CPW) method is suitable for very high density
instances (such as SWIFFT), while the other methods are more suitable for low density instances. We will
recall the previous algorithms in Section 2.

1.1 Our contributions

Our first contribution is to give a general framework that unifies the subset-sum, modular subset-sum and
ISIS problems. We show that the algorithms by Schroeppel and Shamir, Camion and Patarin, Wagner,
Minder-Sinclair, Howgrave-Graham and Joux, Becker-Coron-Joux can be used to solve these generalised
problems. The four main contributions of our paper are:

1. To develop variants of these algorithms for the approximate-ISIS problem, which itself arises naturally
when one takes the Hermite normal form of an ISIS instance. This problem is related to the binary-LWE
problem. This is done in Section 4.

2. To study the Howgrave-Graham and Joux (HGJ) and Becker-Coron-Joux (BCJ) methods in the case of
instances of density greater than one. We give in Figure 1 of Section 3 a comparison of the HGJ, BCJ
and CPW algorithms as the density grows.

3. To give improved cryptanalysis4 of the SWIFFT hash function [17]. We reduce the collision attack time
from around 2113 to around 2104 bit operations (a speed-up by a factor ≈ 500). We also reduce inverting
time by a factor of ≈ 1000.

4. The SWIFFT hash function and many other cryptographic problems (such as NTRU) are actually
based on the Ring-SIS or Ring-ISIS problems (see Section 6). The previous analysis of these algorithms

3 We remark that generic hash function collision algorithms such as parallel collision search would require at least
2256 bit operations. Hence we do not consider such algorithms further in this paper.

4 We remark that in [5], the authors claimed that finding pseudo-collisions for SWIFFT is comparable to breaking
a 68-bit symmetric cipher. Their method is to reduce to the sublattices of dimension 206. However the pseudo-
collision is not useful to find real collisions for SWIFFT, since in dimension 206 the real collisions for SWIFFT
almost certainly do not exist.

2

has ignored the ring structure. In Section 6 we sketch how to speed up the algorithms by exploiting
symmetries. Our main insight is to choose a suitable eigenbasis that allows to include symmetries into
our general framework for the algorithms. These ideas do not seem to be compatible with the use of
the Hermite normal form, and so do not give further improvements to our attacks on the SWIFFT hash
function.

The binary-LWE problem [18] (with both the “secret” and “errors” chosen to be binary vectors) is a
case of the approximate-ISIS problem. Hence our algorithms can also be applied to this problem. Note that
binary-LWE is not usually a high density problem.

1.2 Related literature

There is an extensive literature on the approximate subset-sum problem over Z (given s ∈ Z to find x
such that s ≈ ax) including polynomial-time algorithms (see Section 35.5 of [7]). These algorithms exploit
properties of the usual ordering on Z and do not seem to be applicable to ISIS. Indeed, such algorithms cannot
be directly applied to the modular subset-sum problem either, though the modular subset-sum problem can
be lifted to polynomially many instances of the subset-sum problem over Z and then the approximate subset-
sum algorithms can be applied. Hence, even though the algorithms considered in our paper can be applied
to the subset-sum and modular subset-sum problems, our main interest is in the ISIS problem.

2 Algorithms to solve subset-sum/ISIS

2.1 A general framework

We propose the following general framework for discussing the algorithms of Camion and Patarin, Wagner,
Minder and Sinclair, Howgrave-Graham and Joux, Becker, Coron and Joux. Previously they were always
discussed in special cases.

Definition 2. Let G be an abelian group, m an integer and B a small subset of Z that contains 0. The
(G,m,B)-ISIS problem is defined as follows. An instance of the problem is a pair (A, s) with A ∈ Gm and
s ∈ G, and a solution is any vector x ∈ Bm (if one exists) such that s = Ax.

The weight of a solution x is defined to be wt(x) = #{i : 1 ≤ i ≤ m,xi 6= 0}. Let ω ∈ N. The weight-ω
(G,m,B)-ISIS problem is: Given (A, s), to compute a solution x ∈ Bm such that s = Ax in G and wt(x) = ω.

Our three main examples for the group are G = Z, G = Zq and G = Z
n
q .

All the algorithms work by reducing to simpler problems (meaning, smaller solution space) of higher
density. In our general framework we express this by taking quotients. Indeed, the main conceptual idea of
all these algorithms is that high-density instances are easier to solve using brute-force/meet-in-middle ideas,
so we always try to reduce the problem to a simpler problem of high density.

Let H be a subgroup of G and write G/H for the quotient. Since the map G → G/H is a group
homomorphism, an instance s = Ax in G reduces to an instance s ≡ Ax (mod H) in G/H . The density

increases from (#B)m

#G to (#B)m

#(G/H) , since the number of possible targets s (mod H) is reduced while the number

of inputs x remains the same. In practice we will employ this idea in the following ways: when G = Z then
H = MZ and G/H = ZM ; when G = Zq and M | q then H = MZq and G/H ∼= ZM ; when G = Z

n
q then

H = {(0, . . . , 0, gℓ+1, . . . , gn)
T : gi ∈ Zq} ∼= Z

n−ℓ
q so that G/H ∼= Z

ℓ
q.

High density instances can always be reduced to smaller dimensional instances having density one: Choose
a suitable integer ℓ (i.e., so that (#B)m−ℓ ≈ #G) and set ℓ entries of x to be zero. Delete the corresponding
columns from A to get an n× (m − ℓ) matrix A′ and let x′ be the corresponding solution vector in Z

m−ℓ.
Then solve the density one problem A′x′ = s in G. Since the number of possible targets remains the same

while the number of inputs x′ is reduced to (#B)m−ℓ, now the density δ = (#B)m−ℓ

#G ≈ 1. When evaluating
algorithms for high density ISIS we must always compare them against the best low-density algorithms when
applied to the reduced problem.

3

2.2 Brief survey of previous methods

It is straightforward that one can solve the (G,m, {0, 1})-ISIS problem in Õ(2m/2) time and large storage
using birthday methods.

Schroeppel and Shamir [21] showed how to match this running time but use considerably less space. A
simpler description of the Schroeppel-Shamir algorithm was given by Howgrave-Graham and Joux [12]. We
briefly recall some details in Section 2.4.

The important paper of Howgrave-Graham and Joux [12] (HGJ) broke the Õ(2m/2) barrier, giving a
heuristic algorithm to solve subset-sum in Õ(20.337m) operations, and with large storage (around Õ(20.256m)).
Note that [12] presents algorithms for the traditional subset-sum problem, but Section 6 of [12] mentions that
the methods should be applicable to variants of the subset-sum problem including approximate subset-sum,
vector versions of subset-sum (i.e., ISIS), and different coefficient sets (e.g., xi ∈ {−1, 0, 1}). Our paper thus
addresses these predictions from [12]; we give the details in Section 2.7. Indeed, it is written in [12] that “It
would be interesting to re-evaluate the security of SWIFFT with respect to our algorithm.”

Becker, Coron and Joux [2] gave some improvements to the HGJ method (also restricted to the setting
of subset-sum). We sketch the details in Section 2.8.

Camion and Patarin [6] gave an algorithm for solving high density subset-sum instances, and similar ideas
were later used by Wagner [23] for solving the “k-sum problem”. Rather unfairly, these ideas are now often
called “Wagner’s algorithm”, but we will call it CPW and present it in Section 2.5. Minder and Sinclair [20]
explained how to use these ideas a bit more effectively (we sketch the details in Section 2.6).

Lyubashevsky [16] noted that the CPW algorithm can be applied to solve high density subset-sum
problems. Shallue [22] extended Lyubashevsky’s work. Lyubashevsky, Micciancio, Peikert and Rosen [17]
explain that the CPW algorithm can be applied to solve ISIS in the high density case (inverting the SWIFFT
hash function is a very high density case of ISIS).

All known algorithms are obtained by combining two basic operations (possibly recursively):

1. Compute lists of solutions to some constrained problem obtained by “splitting” the solution space (i.e.,
having a smaller set of possible x) in a quotient group G/H . Splitting the solution space lowers the
density, but working in the quotient group G/H compensates by raising the density again.

2. Merge two lists of solutions to give a new list of solutions in a larger quotient group G/H ′.

The algorithms differ primarily in the way that splitting is done.

2.3 The merge algorithm

We now introduce the notation to be used throughout. Let X ⊆ Bm be a set of coefficients. We will always
be working with a set of subgroups {Hi : 1 ≤ i ≤ t} of G such that, for each pair 1 ≤ i < j ≤ t
we have #(G/(Hi ∩ Hj)) = #(G/Hi) · #(G/Hj). All algorithms involve splitting the set of coefficients
X ⊆ X1 + X2 = {x1 + x2 : x1 ∈ X1,x2 ∈ X2} in some way (for example, by positions or by weight).

We consider one step of the merge algorithm5. Let H♭, H,H♯ be subgroups of G that denote subgroups
used in the CPW/HGJ/BCJ algorithms. We are merging modulo H a pair of lists L1 and L2 that are “partial
solutions” modulo H♭. In other words, the output is a set of solutions to the problem Ax ≡ s (mod H ∩H♭)
for x ∈ X . For future processing, the output includes information about Ax (mod H♯). The details are
given as Algorithm 1.

The running time of the algorithm depends on the cost of sorting L2 and searching v in L2 for every
u in L1, which is O(#L2 log2(#L2) + #L1 log2(#L2)) i.e., Õ(max(#L1,#L2)). However, the time is often
dominated by the total number of pairs (x1,x2) considered in the algorithm, and this depends on how
many values u give rise to matches between the two lists L1 and L2. Treating the function from X to
G/H given by x 7→ Ax (mod H) as pseudorandom, the total number of (x1,x2) pairs can be bounded by

5 The word “merge” is not really appropriate as we are not computing a union or intersection of lists, but forming
sums x1 +x2 where x1 ∈ L1 and x2 ∈ L2. However, it is the name used by several previous authors so we continue
to use it.

4

Algorithm 1 Basic merge algorithm

Input: L1 = {(x,Ax (mod H)) : Ax ≡ R (mod H♭),x ∈ X1},
L2 = {(x,Ax (mod H)) : Ax ≡ s−R (mod H♭),x ∈ X2}

Output: L = {(x,Ax (mod H♯)) : Ax ≡ s (mod H ∩H♭),x ∈ X}
1: Initialise L = {}
2: Sort L2 with respect to the second coordinate
3: for (x1,u) ∈ L1 do
4: Compute v = s− u (mod H)
5: for (x2,v) ∈ L2 do
6: if x1 + x2 ∈ X then
7: Compute A(x1 + x2) (mod H♯)
8: Add (x1 + x2,A(x1 + x2) (mod H♯)) to L

#L1 · #L2/#(G/H). Hence, the heuristic running time is Õ(max{#L1,#L2,#L1#L2/#(G/H)}). (This
analysis includes the correction by May and Meurer to the analysis in [12], as mentioned in Section 2.2
of [2].)

Another remark is that, in many cases, it is non-trivial to bound the size of the output list L. Instead,
this can be bounded by #X/#(G/(H ∩H♭)).

2.4 Schroeppel and Shamir algorithm

Schroeppel and Shamir [21] noted that by using 4 lists instead of 2 one could get an algorithm for subset-
sum over Z with the same running time (#B)m/2 but with storage growing proportional to (#B)m/4. (Their
presentation is more general than just subset-sum over Z.)

Howgrave-Graham and Joux obtained this result in a much simpler way by using reduction modulo M
and Algorithm 1. Our insight is to interpret reduction modulo M as working in a quotient group G/H .
It immediately follows that the HGJ formulation of the Schroeppel-Shamir algorithm is applicable to the
(G,m,B)-ISIS problem, giving an algorithm that requires time proportional to (#B)m/2 and space propor-
tional to (#B)m/4. Since our goal is to discuss improved algorithms, we do not give the details here.

Dinur, Dunkelman, Keller and Shamir [9] have given improvements to the Schroeppel-Shamir algorithm,
in the sense of getting a better time-memory curve. However, their methods always require time at least
(#B)m/2. Since we are primarily concerned with reducing the average running time, we do not consider their
results further.

2.5 Camion and Patarin/Wagner algorithm (CPW)

The CPW algorithm is applicable for instances of very high density. It was first proposed by Camion and
Patarin for subset-sum, and then by Wagner in the additive group Z

m
2 (and some other settings). Section 3

of Micciancio and Regev [19] notes that the algorithm can be used to solve (I)SIS. We will explain that this
algorithm also can be used to solve the (G,m,B)-ISIS problem.

Let k = 2t be a small integer such that k | m. Let H1, · · · , Ht be subgroups of the abelian group G such
that

G ∼= (G/H1)⊕ · · · ⊕ (G/Ht). (2)

Precisely we need that G/(Hi1 ∩ Hi2)
∼= (G/Hi1) ⊕ (G/Hi2) for any 1 ≤ i1 < i2 ≤ t and H1 ∩ · · · ∩

Ht = {0}. One can think of this as being like a “Chinese remainder theorem” for G: there is a one-to-
one correspondence between G and the set of t-tuples (g (mod H1), . . . , g (mod Ht)). We usually require
that #(G/Hi) is roughly (#G)1/(t+1) for 1 ≤ i < t and #(G/Ht) ≈ (#G)2/(t+1), although Minder and
Sinclair [20] obtain improvements by relaxing these conditions.

For the (I)SIS problem, we have G = Z
n
q . Let ℓ ∈ N be such that ℓ ≈ n/(t + 1). Then we choose

the subgroup H1 = {(0, . . . , 0, gℓ+1, . . . , gn)
T : gi ∈ Zq} such that G/H1

∼= Z
ℓ
q corresponds to the first

5

ℓ positions of the vector. Similarly, G/H2 corresponds to the next ℓ positions of the vector (so H2 =
{(g1, . . . , gℓ, 0, . . . , 0, g2ℓ+1, . . . , gn)

T : gi ∈ Zq}). Finally, G/Ht corresponds to the last ≈ 2ℓ positions of
the vector. The “splitting” in the CPW approach is by positions. To be precise, let u = m/k and define
X1 = {(x1, . . . , xu, 0, . . . , 0) ∈ Bm} and

Xj = {(0, . . . , 0, x(j−1)u+1, . . . , xju, 0, . . . , 0) ∈ Bm}

for 2 ≤ j ≤ k.

Level 0: The CPW algorithm works by first constructing k = 2t lists L
(0)
j = {(x,Ax (mod H1)) : x ∈ Xj}

for 1 ≤ j ≤ k− 1 and L
(0)
k = {(x,Ax− s (mod H1)) : x ∈ Xk}. Each list consists of #Xj = (#B)u elements

and can be computed in O((#B)u) = O((#B)m/2t) operations in G. (To optimise the running time one only
computes Ax (mod H1) at this stage.)

Level 1: Use Algorithm 1 to merge the lists from level 0 to compute the k/2 new lists L
(1)
1 , . . . , L

(1)
k/2, where

for 1 ≤ j ≤ k/2 − 1 each L
(1)
j contains pairs (x1,x2) ∈ L

(0)
2j−1 × L

(0)
2j such that A(x1 + x2) ≡ 0 (mod H1)

and L
(1)
k/2 contains pairs (x1,x2) ∈ L

(0)
k−1 × L

(0)
k such that A(x1 + x2) − s ≡ 0 (mod H1). In other words,

the new lists L
(1)
j for 1 ≤ j ≤ k/2 contain elements x1 + x2 that are “correct” for the quotient G/H1.

To optimise the running time one only computes A(x1 + x2) (mod H2) at this level; the merge can be
performed efficiently using Algorithm 1. The output of the algorithm is k/2 new lists, for 1 ≤ j ≤ k/2− 1,

L
(1)
j = {(x1 + x2,A(x1 + x2) (mod H2)) : A(x1 + x2) ≡ 0 (mod H1),x1 ∈ L

(0)
2j−1,x2 ∈ L

(0)
2j }, and L

(1)
k/2 =

{(x1 + x2,A(x1 + x2) (mod H2)) : A(x1 + x2)− s ≡ 0 (mod H1),x1 ∈ L
(0)
k−1,x2 ∈ L

(0)
k }.

Level i ≥ 2: Use Algorithm 1 to merge the lists L
(i−1)
2j−1 and L

(i−1)
2j from level i−1. The output of the algorithm

is k/2i lists L
(i)
j containing elements that are “correct” for the quotientG/(H1∩· · ·∩Hi). Precisely, for 1 ≤ j ≤

k/2i−1, L
(i)
j = {(x1+x2,A(x1+x2) (mod Hi+1)) : A(x1+x2) ≡ 0 (mod Hi),x1 ∈ L

(i−1)
2j−1 ,x2 ∈ L

(i−1)
2j } and

L
(i)
k/2i = {(x1 + x2,A(x1 + x2) (mod Hi+1)) : A(x1 + x2)− s ≡ 0 (mod Hi),x1 ∈ L

(i−1)
k/2i−1−1,x2 ∈ L

(i−1)
k/2i−1}.

Level t: Merge the two lists L
(t−1)
1 and L

(t−1)
2 to get one list L

(t)
1 by ensuring the solutions are correct modulo

Ht. In other words the list contains elements that are “correct” for G/(H1 ∩ · · · ∩Ht) = G. The output of

Algorithm 1 at this stage is the list L
(t)
1 = {x1+x2 : A(x1+x2)−s ≡ 0 (mod Ht),x1 ∈ L

(t−1)
1 ,x2 ∈ L

(t−1)
2 }.

Success Probability. The heuristic analysis of the success probability is as follows.

If L
(t)
1 is not empty, the CPW algorithm succeeds to find a solution for (I)SIS. The expected size of the

lists on each level is:

#L(0) ≈ (#B)m/2t ,

#L(i) ≈ #L(i−1)#L(i−1)/qℓ, 1 ≤ i ≤ t− 1,

#L(t) ≈ #L(t−1)#L(t−1)/q2ℓ.

To keep #L
(t)
1 ≈ 1, the standard argument is that we want the lists L(1), . . . , L(t−1) to all be roughly the

same size. It follows that we desire ℓ ≈ n/(t+ 1), (#B)2m/k/(#G)1/(t+1) ≈ (#B)m/k and so (#G)1/(t+1) ≈
(#B)m/k (i.e., 2t/(t + 1) ≈ log2((#B)m)/ log2(#G)). Then the final list at level t has expected size ≈ 1.
We refer to [6, 23, 19, 17, 20] for full details and heuristic analysis. The time complexity of CPW is Õ(k ·
(#B)m/k) = Õ(2t ·(#B)m/2t). Lyubashevsky [16] and Minder and Sinclair [20] provide some rigorous analysis
of success probability of the CPW algorithm that supports the validity of the heuristic analysis.

6

Running Time. In practice for a given (I)SIS instance, one takes k = 2t to be as large as possible subject

to the constraint (#B)m/2t ≥ (#G)1/(t+1), in other words t is the largest integer such that 2t/(t + 1) ≤
log2((#B)m)/ log2(#G) (recall that the density was defined to be (#B)m/(#G)). Hence the size of k is
governed by the density of the instance (higher density means larger k). When the density is 1 (i.e., (#B)m ≈
(#G)) then we need to have k = 1 + log2(k) and hence k = 2, and the CPW algorithm becomes the trivial
“meet-in-middle” method.

Assume that for some integer t, the density for the (I)SIS instance (we have G = Z
n
q) satisfies the

constraint:
2t−1

t
<

log2((#B)m)

log2(q
n)

<
2t

t+ 1
,

since log2((#B)m)
log2(q

n) < 2t

t+1 the largest k we can choose is 2t−1. Directly using the CPW algorithm the time

complexity is Õ(2t · (#B)m/2t−1

). However, since 2t−1

t < log2((#B)m)
log2(q

n) , the density is higher than what CPW

using 2t−1 lists needs to find a solution. Hence, one can reduce the density: Choose an integer ℓ0 such

that log2((#B)m−ℓ0)
log2(q

n) ≈ 2t−1

t . In other words, (#B)(m−ℓ0)/2
t−1 ≈ qn/t. Then set ℓ0 entries of x to be zero. In

other words, delete the corresponding ℓ0 columns of A to get an n× (m − ℓ0) matrix A′ and let x′ be the
corresponding vector in Z

m−ℓ0 . One can use the CPW algorithm with k = 2t−1 to solve A′x′ = s in G. The
time complexity is reduced to Õ(2t · (#B)(m−ℓ0)/2

t−1

) = Õ(2t · qn/t).

Remarks. The main drawbacks of the CPW algorithm are: it requires very large storage (the time and
memory complexity are approximately equal); it is not amenable to parallelisation; it can only be used for
very high density instances. Some techniques to reduce storage and benefit from parallelism are given by
Bernstein et al [3, 4]. Note that the algorithm is completely deterministic, and so always gives the same
solution set, but to obtain different solutions one can apply a random permutation to the problem before
running the algorithm.

Our general framework allows to consider the CPW algorithm for subset-sum and modular subset-sum.
However, to have a decomposition as in equation (2) one needs the modulus in the modular subset-sum
problem to have factors of a suitable size. Wagner’s paper mentions an approach for modular subset-sum
using sub-intervals instead of quotients (for further details see Lyubashevsky [16]). We also mention the work
of Shallue [22], which gives a rigorous analysis of the CPW algorithm for the modular subset-sum problem.

2.6 Minder and Sinclair refinement of CPW

In this section, we introduce the work of Minder and Sinclair [20] that allows a finer balancing of parameters.
This allows the CPW algorithm to be used for larger values of k than the density of the (I)SIS instance
might predict. Assume the density for a (I)SIS instance (G = Z

n
q) satisfies the constraint

2t−1

t
<

log2((#B)m)

log2(q
n)

<
2t

t+ 1
(3)

for some integer t.
Instead of reducing the density as described in the previous section, Minder and Sinclair proposed

the “extended k-tree” algorithm to make use of the extra density. When the density satisfies (3), Min-
der and Sinclair use k = 2t (In the previous section, the CPW algorithm chooses k = 2t−1) by choosing
appropriate subgroups Hi. Let ℓi ≥ 1 be chosen later, subject to ℓ1 + ℓ2 + · · · + ℓt = n. The subgroup
H1 = {(0, · · · , 0, gℓ1+1, · · · , gn)T : gi ∈ Zq} such that G/H1

∼= Z
ℓ1
q corresponds to the first ℓ1 positions

of the vector. Similarly, H2 = {(g1, · · · , gℓ1 , 0, · · · , 0, gℓ1+ℓ2+1, · · · , gn) : gi ∈ Zq} such that G/H2
∼= Z

ℓ2
q

corresponds to the next ℓ2 positions of the vector. Finally, Ht = {(g1, · · · , gℓ1+···+ℓt−1
, 0, · · · , 0) : gi ∈ Zq}

corresponds to the last ℓt positions of the vector. Denote by L(i) any of the lists at the i-th stage of the
algorithm. The time complexity for Minder and Sinclair’s algorithm is Õ(2t ·max0≤i≤t(#L

(i))). To minimise
the running time, one needs to minimise max0≤i≤t(#L

(i)). The expected size of the lists on each level is

#L(0) = (#B)m/2t ,

7

#L(i) = #L(i−1)#L(i−1)/qℓi, 1 ≤ i ≤ t.

Write #L(i) = 2bi where b0 = m log2(#B)/2t, bi = 2bi−1 − log2(q)ℓi. To minimize the time complexity, one
computes the optimal values ℓi by solving the following integer program.

minimize bmax = max
0≤i≤t

bi

subject to 0 ≤ bi, 0 ≤ i ≤ t

b0 = m log2(#B)/2t,
bi = 2bi−1 − ℓi log2(q),

ℓi ≥ 0, 0 ≤ i ≤ t
t

∑

i=1

ℓi = n.

Theorem 3.1 in [20] shows that the solution to the above linear program (i.e., removing the constraint

ℓi ∈ Z) is ℓ2 = · · · = ℓt−1 = (n − ℓ1)/t and ℓt = 2(n − ℓ1)/t where ℓ1 satisfies (#B)m/2t · (#B)m/2t/qℓ1 =
q(n−ℓ1)/t. This gives max0≤i≤t(#L

(i)) = q(n−ℓ1)/t. From (3), we have 0 < ℓ1 < n/(t+1). The time complexity

of Minder and Sinclair’s algorithm is Õ(2t ·max0≤i≤t(#L
(i))) = Õ(2t · q(n−ℓ1)/t).6 It follows that

(#B)m/2t < max
0≤i≤t

(#L(i)) = q(n−ℓ1)/t < (#B)m/2t−1

.

At a high level, Minder and Sinclair make use of the extra density in the instance to add one more level
that eliminates ℓ1 coordinates. The time complexity for Minder and Sinclair’s refinement of CPW is better
than the original version described in the previous section since Õ(2t · q(n−ℓ1)/t) < Õ(2t · (#B)m/2t−1

) and
Õ(2t · q(n−ℓ1)/t) < Õ(2t · qn/t).

2.7 The algorithm of Howgrave-Graham and Joux (HGJ)

We now present the HGJ algorithm, that can be applied even for instances of the (G,m,B)-ISIS problem of
density ≤ 1. The algorithm heuristically improves on the square-root time complexity of Schroeppel-Shamir.
For simplicity we focus on the case B = {0, 1}. Section 6 of [12] notes that a possible extension is to develop
the algorithm for “vectorial knapsack problems”. Our formulation contains this predicted extension.

The first crucial idea of Howgrave-Graham and Joux [12] is to split the vector x by weight rather than by
positions. The second crucial idea is to reduce to a simpler problem and then apply the algorithm recursively.
The procedures in [12] use reduction modulo M , which we generalise as a map into a quotient group G/H .
It follows that the HGJ algorithm can be applied to a more general class of problems.

Suppose s = Ax in G where x ∈ Bm has weight wt(x) = ω. Our goal is to compute x. Write X for the
set of weight ω vectors in Bm, and write X1,X2 for the set of weight ω/2 vectors in Bm. Then there are

(

ω
ω/2

)

ways to write x as x1 + x2 where x1 ∈ X1,x2 ∈ X2.
The procedure is to choose a suitable subgroup H so that there is a good chance that a randomly chosen

element R ∈ G/H can be written as Ax1 for one of the
(

ω
ω/2

)

choices for x1. Then the procedure solves the

two subset-sum instances in the group G/H (recursively) to generate lists of solutions

L1 = {x1 ∈ Bm : Ax1 = R (mod H),wt(x1) = ω/2}

and
L2 = {x2 ∈ Bm : Ax2 = s−R (mod H),wt(x2) = ω/2}.

6 In practice, we want ℓi to be integers, good parameter choices can be obtained by using ⌈ℓi⌉, see [20] for details.
The time complexity can be a little bit worse, however we believe this rounding does not affect the asymptotic
complexity.

8

We actually store pairs of values (x1,Ax1 (mod H ′)) ∈ Bm × (G/H ′) for a suitably chosen subgroup H ′.
One then applies Algorithm 1 to merge the lists to get solutions x = x1 + x2 ∈ X satisfying the equation in
G/(H ∩H ′). The paper [12] gives several solutions to the problem of merging lists, including a 4-list merge.
But the main algorithm in [12] exploits Algorithm 1.

The subgroup H is chosen to trade-off the probability that a random value R corresponds to some
splitting of the desired original solution x (this depends on the size of the quotient group G/H), while also
ensuring that the lists L1 and L2 are not too large.

The improvement in complexity for finding the solutions in L1 and L2 is due to the lowering of the weight
from ω to ω/2. This is why the process is amenable to recursive solution. At some point one terminates the
recursion and solves the problem by a more elementary method (e.g. Schroeppel-Shamir).

One inconvenience is that we may not know exactly the weight of the desired solution x. If we can guess
that the weight of x lies in [ω − 2ǫ, ω + 2ǫ] then we can construct lists {x1 : Ax1 = R (mod H),wt(x1) ∈
[ω/2 − ǫ, ω/2 + ǫ]}. A similar idea can be used at the bottom level of the recursion, when we apply the
Schroeppel-Shamir method and so need to split into vectors of half length and approximately half the
weight.

One must pay attention to the relationship between the group G/H and the original group G. For
example, when solving modular subset-sum in G = Zq where q does not have factors of a suitable size then,
as noted in [12], “we first need to transform the problems into (polynomially many instances of) integer
knapsacks”. For the case G = Z

n
q this should not be necessary.

Complexity analysis The final algorithm is a careful combination of these procedures, performed recursively.
We limit our discussion to recursion of 3 levels. In terms of the subgroups, the recursive nature of the
algorithm requires a sequence of subgroups H1, H2, H3 (of similar form to those in Section 2.5, but we now
require H1 ∩ H2 ∩H3 6= {0}) so that the quotient groups G/(H1 ∩H2 ∩H3), G/(H2 ∩H3), G/H3 become
smaller and smaller. The “top level” of the recursion turns an ISIS instance in G to two lower-weight ISIS
instances in G′ = G/(H1 ∩H2 ∩H3); to solve these sub-instances using the same method we need to choose
a quotient of G′ by some proper subgroup H2 ∩ H3, which is the same as taking a quotient of G by the
subgroup H2 ∩H3 etc.

In [12], for subset-sum over Z, this tower of subgroups is manifested by taking moduli M that divide one
another (“For the higher level modulus, we choose M = 4194319 · 58711 · 613”, meaning H3 = 613Z, H2 =
58711Z, H1 = 4194319Z, H2 ∩ H3 = (58711 · 613)Z and H1 ∩ H2 ∩ H3 = MZ). In the case of modular
subset-sum in Zq when q does not split appropriately one can lift to Z (giving a polynomial number of
instances) and reduce each of them by a new composite modulus.

We do not reproduce all the analysis from [12], since it is superseded by the method of Becker et al. But
the crucial aspect is that the success of the algorithm depends on the probability that there is a splitting
x = x1 + x2 of the solution into equal weight terms such that Ax1 = R (mod H). This depends on the
number

(

ω
ω/2

)

of splittings of the weight ω vector x and on the size M = #(G/H) of the quotient group.

Overall, the heuristic running time for the HGJ method to solve the (I)SIS problem when ω = m/2 (as
stated in Section 2.2 of [2]) is Õ(20.337m).

2.8 The algorithm of Becker, Coron and Joux

Becker, Coron and Joux [2] present an improved version of the HGJ algorithm (again, their paper is in
the context of subset-sum, but easily generalises to our setting). The idea is to allow larger coefficient sets.
Precisely, suppose B = {0, 1} and let X ⊂ Bm be the set of weight ω vectors. The HGJ idea is to split X by
taking X1 = X2 to be the set of weight ω/2 vectors in Bm. Becker et al suggest to take X1 = X2 to be the
set of vectors in Z

m having ω/2 + αm entries equal to +1 and αm entries equal to −1, and the remaining
entries equal to 0. This essentially increases the density of the sub-problems, and leads to a better choice of
parameters. The organisation of the algorithm, and its analysis, are the same as HGJ. The HGJ algorithm
is simply the case α = 0 of the BCJ algorithm.

9

We briefly sketch the heuristic analysis from [2] for the case of 3 levels of recursion, B = {0, 1}, G = Z
n
q ,

and where we solve ISIS instances of density 1 (so that 2m ≈ qn) with a solution of weight m/2. Let

Xa,b = {x ∈ {−1, 0, 1}m : #{i : xi = 1} = am,#{i : xi = −1} = bm}.

A good approximation to #Xa,b is 2
H(a,b)·m whereH(x, y) = −x log2(x)−y log2(y)−(1−x−y) log2(1−x−y).

Choose subgroups H1, H2, H3 (of the similar form to Section 2.6) such that #(G/Hi) = qℓi . Fix α =
0.0267, β = 0.0168 and γ = 0.0029 and also integers ℓ1, ℓ2, ℓ3 such that qℓ1 ≈ q0.2673n = 20.2673m, qℓ2 ≈
20.2904m and qℓ3 ≈ 20.2408m. Note that #(G/(H1 ∩H2 ∩H3)) ≈ q0.2015n ≈ 20.2015m.

Theorem 1. (Becker-Coron-Joux) With notation as above, and assuming heuristics about the pseudoran-
domness of Ax, the BCJ algorithm runs in time Õ(20.2912m).

Proof. (Sketch) The first level of recursion splits X = Bm into X1 + X2 where X1 = X2 = X1/4+α,α. We

compute two lists L
(1)
1 = {(x,Ax) : x ∈ X1,Ax ≡ R1 (mod H1 ∩ H2 ∩ H3)} and L

(1)
2 , which is the same

except Ax ≡ s−R1 (mod H1∩H2∩H3). The expected size of the lists is 2H(1/4+α,α)m/qℓ1+ℓ2+ℓ3 = 20.2173m

and merging requires Õ((20.2173m)2/qn−ℓ1−ℓ2−ℓ3)= Õ(20.2331m) time.

The second level of recursion computes each of L
(1)
1 and L

(1)
2 , by splitting into further lists. For ex-

ample, L
(1)
1 is split into L

(2)
1 = {(x,Ax) : x ∈ X1/8+α/2+β,α/2+β ,Ax ≡ R2 (mod H2 ∩ H3)} and L

(2)
2 is

similar except the congruence is Ax ≡ R1 − R2 (mod H2 ∩ H3). Again, the size of lists is approximately
2H(1/8+α/2+β,α/2+β)m/qℓ2+ℓ3 = 20.2790m and the cost to merge is Õ(22·0.2790m/qℓ1) = Õ(2(2·0.2790−0.2673)m) =
Õ(20.2907m).

The final level of recursion computes each L
(2)
j by splitting into two lists corresponding to coefficient sets

X1/16+α/4+β/2+γ,α/4+β/2+γ . The expected size of the lists is

2H(1/16+α/4+β/2+γ,α/4+β/2+γ)m/qℓ3 ≈ 20.2908m

and they can be computed efficiently using the Shroeppel-Shamir algorithm in time

Õ(
√

2H(1/16+α/4+β/2+γ,α/4+β/2+γ)m) = Õ(20.2658m).

Merging the lists takes Õ(22·0.2908/qℓ2) = Õ(20.2912m) time. Thus the time complexity of the BCJ algorithm
is Õ(20.2912m). �

The above theorem does not address the probability that the algorithm succeeds to output a solution to
the problem. The discussion of this issue is complex and takes more than 3 pages (Section 3.4) of [2]. We
give a rough “back-of-envelope” calculation that gives some confidence.

Suppose there is a unique solution x ∈ {0, 1}m of weight m/2 to the ISIS instance. Consider the first
step of the recursion. For the whole algorithm to succeed, it is necessary that there is a splitting x = x1+x2

of the solution so that x1 ∈ L
(1)
1 and x2 ∈ L

(1)
2 . We split x so that the m/2 ones are equally distributed

across x1 and x2, and the m/2 zeroes are sometimes expanded as (−1,+1) or (+1,−1) pairs. We call such
splittings “valid”. Hence, the number of ways to split x in this way is

N1 =

(

m/2

m/4

)(

m/2

αm

)(

(1/2− α)m

αm

)

=

(

m/2

m/4

)(

m/2

αm,αm, (1/2− 2α)m

)

. (4)

For randomly chosen R1 ∈ G/(H1 ∩ H2 ∩ H3), there is a good chance that a valid splitting exists if N1 ≥
qℓ1+ℓ2+ℓ3 . Indeed, the expected number of valid splittings should be roughly N1/q

ℓ1+ℓ2+ℓ3 . Hence, we choose
N1 ≈ qℓ1+ℓ2+ℓ3 to make sure a valid splitting exists at this stage with significant probability.

For the second stage we assume that we already made a good choice in the first stage, and indeed that
we have N1/q

ℓ1+ℓ2+ℓ3 possible values for x1. The number of ways to further split x1 is

N2 =

(

(1/4 + α)m

(1/8 + α/2)m

)(

αm

αm/2

)(

(3/4− 2α)m

βm, βm, (3/4− 2α− 2β)m

)

.

10

The expected number of valid splittings at this stage should be roughly (N1/q
ℓ1+ℓ2+ℓ3)(N2/q

ℓ2+ℓ3)2. For ran-
domly chosenR2 ∈ G/(H2∩H3), there is a good chance to have a valid splitting if (N1/q

ℓ1+ℓ2+ℓ3)(N2/q
ℓ2+ℓ3)2 ≥

1 (remember that this stage requires splitting two solutions from the first stage). Hence, we choose N1 ≈
qℓ1+ℓ2+ℓ3 ,N2 ≈ qℓ2+ℓ3 .

In the final stage (again assuming good splittings in the second stage), the number of ways to split is

N3 =

(

(1/8 + α/2 + β)m

(1/16 + α/4 + β/2)m

)(

(β + α/2)m

(β/2 + α/4)m

)(

(7/8− α− 2β)m

γm, γm, (7/8− α− 2β − 2γ)m

)

.

The expected number of valid splittings is (N1/q
ℓ1+ℓ2+ℓ3)(N2/q

ℓ2+ℓ3)2(N3/q
ℓ3)4, which we require to be ≥ 1.

Hence, we choose N1 ≈ qℓ1+ℓ2+ℓ3 ,N2 ≈ qℓ2+ℓ3 ,N3 ≈ qℓ3 . Thus, choosing #G/H3 close to N3, #G/(H2∩H3)
close to N2 and #G/(H1 ∩H2 ∩H3) close to N1 then it is believed the success probability of the algorithm
is significantly larger than 0. This argument is supported in Section 3.4 of [2] by theoretical discussions and
numerical experiments. To conclude, for the algorithm to have a good chance to succeed we require

N1/q
ℓ1+ℓ2+ℓ3 ≥ 1, (N1/q

ℓ1+ℓ2+ℓ3)(N2/q
ℓ2+ℓ3)2 ≥ 1,

(N1/q
ℓ1+ℓ2+ℓ3)(N2/q

ℓ2+ℓ3)2(N3/q
ℓ3)4 ≥ 1.

2.9 Summary

Despite the large literature on the topic, summarised above, one sees there are only two fundamental ideas
that are used by all these algorithms:

– Reduce modulo subgroups to create higher density instances. Since the new instances have higher density
one now has the option to perform methods that only find some of the possible solutions.

– Splitting solutions. Splitting can be done by length (i.e., positions) or by weight. Either way, one reduces
to two “simpler” problems that can be solved recursively and then “merges” the solutions back to
solutions to the original problem.

The main difference between the methods is that CPW requires large density to begin with, in which case
splitting by positions is fine. Whereas HGJ/BCJ can be applied when the original instance has low density,
in which case it is necessary to use splitting by weight in order to be able to ignore some potential solutions.

3 Analysis of HGJ/BCJ in high density

The CPW algorithm clearly likes high density problems. However, the analysis of the HGJ and BCJ algo-
rithms in [12, 2] is in the case of finding a specific solution (and so is relevant to the case of density at most
1). It is intuitively clear that when the density is higher (and so there is more than one possible solution),
and when we only want to compute a single solution to the problem, then the success probability of the
algorithm should increase. In this section we explain that the parameters in the HGJ and BCJ algorithms
can be improved when one is solving instances of density > 1. This was anticipated in [13]: “further improve-
ments can be obtained if, in addition, we seek one solution among many”. We now give a very approximate
heuristic analysis of this situation. We focus on the case B = {0, 1}m and G = Z

n
q . As with previous work,

we are not able to give general formulae for the running time as a function of the density, as the parameters
in the algorithms depend in subtle ways on each other. Instead, we fix some reference instances, compute
optimal parameters for them, and give the running times.

Let the number of solutions to the original (I)SIS instance be Nsol ≥ 1. We consider at most t levels of
recursion. The subgroups H1, H2, · · · , Ht, where #(G/Hi) = qℓi , are chosen to trade-off the probability of
a successful split at each stage and also to ensure the size of the lists to be merged at each stage is not too
large. Using the same notation as Section 2.8, write N1,N2, · · · ,Nt for the number of ways to split a single
valid solution at each level of the recursion.

11

The standard approach is to choose the subgroups H1, H2, · · · , Ht such that #G/(Hi∩Hi+1∩· · ·∩Ht) =
qℓi+ℓi+1+···+ℓt ≈ Ni for all 1 ≤ i ≤ t. The success probability is then justified by requiring

N1

qℓ1+···+ℓt

(N2

qℓ2+···+ℓt

)2

· · ·
(Ni

qℓi+···+ℓt

)2i−1

≥ 1

for all 1 ≤ i ≤ t. We now assume a best-case scenario, that all the splittings of all the Nsol ≥ 1 solutions
are distinct. This assumption is clearly unrealistic for large values of Nsol, but it gives a rough idea of how
much speedup one can ask with this approach. We address this assumption in Section 3.1. Then the success
condition changes, for all 1 ≤ i ≤ t, to

Nsol
N1

qℓ1+···+ℓt

(N2

qℓ2+···+ℓt

)2

· · ·
(Ni

qℓi+···+ℓt

)2i−1

≥ 1. (5)

It follows that, for example when t = 3 the best parameters ℓ1, ℓ2, ℓ3, α, β, γ are chosen by the following
integer linear program.

minimize T = max

(

#(L(1))2

qn−ℓ1−ℓ2−ℓ3
,
#(L(2))2

qℓ1
,
#(L(3))2

qℓ2
,
√

#X1/16+α/4+β/2+γ,α/4+β/2+γ

)

subject to #L(1) =
#X1/4+α,α

qℓ1+ℓ2+ℓ3
,

#L(2) =
#X1/8+α/2+β,α/2+β

qℓ2+ℓ3
,

#L(3) =
#X1/16+α/4+β/2+γ,α/4+β/2+γ

qℓ3
,

equation (5) holds for all 1 ≤ i ≤ 3

ℓi ∈ N, 1 ≤ i ≤ 3

α, β, γ ∈ R≥0.

For the ISIS problem B = {0, 1}m given q and n, the density is 2m/qn. For a given density 2c1m one can
estimate the time complexity as Õ(2c2m) by solving the above linear program and choosing the optimal
parameters α, β, γ and ℓ1, ℓ2, ℓ3. We use LINGO 11.0 to do the optimization and obtain Table 2 and 3 giving
calculations for HGJ/BCJ. For comparison we recall in Table 1 the results of Sections 2.5 and 2.6 on the time
complexity of CPW. We draw Figure 1, which indicates how the density affects the asymptotic complexity
for CPW7, HGJ and BCJ.

Table 1. Time complexity of CPW for different density.

t 2c1m Õ(2c2m)

1 1 Õ(20.5m)

2 20.25m Õ(20.25m)

3 20.5m Õ(20.125m)

4 20.6875m Õ(20.0625m)

7 We remark that [10] contains a similar figure regarding the complexity of the CPW algorithm.

12

Table 2. Time complexity of HGJ for different density.

t 2c1m Õ(2c2m) qℓ1 qℓ2 qℓ3

2 20 = 1 Õ(20.3371m) 20.25m 20.25m –

2 20.025m Õ(20.3121m) 20.275m 20.25m –

2 20.045m Õ(20.2928m) 20.2928m 20.2507m –

2 20.055m Õ(20.2878m) 20.2878m 20.2557m –

2 20.085m Õ(20.2728m) 20.2728m 20.2707m –

3 20.15m Õ(20.2535m) 20.2617m 20.1711m 20.125m

3 20.2m Õ(20.2368m) 20.2617m 20.1878m 20.125m

3 20.3m Õ(20.2070m) 20.2670m 20.2070m 20.1303m

3 20.5m Õ(20.1887m) 20.2677m 20.1879m 20.1669m

Table 3. Time complexity of BCJ for different density.

t 2c1m Õ(2c2m) qℓ1 qℓ2 qℓ3 α β γ

3 20 = 1 Õ(20.2912m) 20.2673m 20.2904m 20.2408m 0.0267 0.0168 0.0029

3 20.025m Õ(20.2829m) 20.2463m 20.2802m 20.2829m 0.02578 0.01973 0.00534

3 20.045m Õ(20.2794m) 20.2604m 20.2794m 20.2770m 0.02818 0.01833 0.00453

3 20.055m Õ(20.2765m) 20.2634m 20.2765m 20.2649m 0.02651 0.01705 0.00391

3 20.085m Õ(20.2579m) 20.2404m 20.2564m 20.1818m 0.01082 0.00888 0.00131

3 20.15m Õ(20.2499m) 20.2430m 20.2499m 20.1554m 0.00102 0.00971 0.00023

3 20.2m Õ(20.2357m) 20.2357m 20.2358m 20.2036m 0.00231 0.01171 0.00206

3 20.3m Õ(20.2070m) 20.2670m 20.2070m 20.1303m 0 0 0

3 20.5m Õ(20.1887m) 20.2677m 20.1879m 20.1669m 0 0 0

These results demonstrate that, although CPW is the best choice for very high density instances, the
HGJ/BCJ algorithms do perform better when the density is increased and they are better than CPW for
quite a large range of densities. The final rows of Table 3 show that the BCJ algorithm becomes exactly the
HGJ algorithm once the density is sufficiently high.

To invert the SWIFFT hash function the parameters are B = {0, 1}m, G = Z
n
q , m = 1024, q = 257,

n = 64 and so the density is 20.5m. Figure 1 therefore confirms that, for this problem, the CPW algorithm
is the right choice.

3.1 Heuristic Justification of Assumption

The above analysis is based on the strong simplifying assumption that all the splittings of all the Nsol = 2c1m

solutions are distinct, and it should not be assumed that the HGJ and BCJ algorithms perform exactly this
well. However, we believe the assumption is reasonable when the density is moderate. The reason is given as
follows.

We have Nsol = 2c1m solutions x ∈ Bm such that Ax = s. We suppose all these solutions look like
independently chosen binary strings of Hamming weight very close to m/2. Consider one solution x. In the
first level of the recursion we split x = x1+x2 where x1,x2 ∈ X1/4+α,α. There are N1 ways to do this, where
N1 is given in equation (4) and all these splittings have, by definition, distinct values for x1. Turning this
around, the probability that a vector x1 ∈ X1/4+α,α appears as a splitting of x should be p1 = N1

#X1/4+α,α
.

Now consider splitting a second solution x′ = x′
1 + x′

2. The probability that a value x′
1 is equal to one of

13

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

c 2

c1

CPW
HGJ
BCJ

Fig. 1. Heuristic comparison of the performance of CPW, HGJ and BCJ algorithms on ISIS instances of density ≥ 1.
The horizontal axis is the value c1 such that the density (expected number of solutions) is 2c1m. The vertical axis is
the constant c2 such that the heuristic asymptotic complexity is Õ(2c2m).

the previous values x1 is p1. Hence, the total number of “new” solutions {x1,x
′
1} is N1 + (1 − p1)N1. The

following Lemma extends this argument.

Lemma 1. Let X be a set. Suppose distinct subsets Xi of X of size N1 are chosen uniformly at random for
1 ≤ i ≤ t. Let p = N1/#X. Then the expected size of ∪t

i=1Xi is (1− (1 − p)t)N1/p.

Proof. The probability that any given x ∈ X1 lies in X2 is p, so the expected size of X1 ∩X2 is p#X1. So
we expect #(X1 ∪X2) = (2− p1)N1 = (1 + (1− p))N1.

The probability that any x ∈ X1 ∪ X2 lies in X3 is p, so the expected size of (X1 ∪ X2) ∩ X3 =
p#(X1∪X2) = p(1+(1−p)). Hence, we expect #(X1∪X2∪X3) = #(X1∪X2)+#X3−#((X1∪X2)∩X3) =
(1+ (1− p) + 1− p(1 + (1− p)))N1 = (1 + (1− p) + (1− p)2)N1. More generally, one can show by induction

that the expected value of #(X1 ∪ · · · ∪Xt) is (1 + (1 − p) + · · ·+ (1− p)t−1)N1 = 1−(1−p)t

p N1. �

Lemma 1 indicates that when we split all Nsol solutions x, the total number of vectors x1 ∈ X1/4+α,α

should be roughly (1−(1−p1)Nsol)N1/p1. If p1Nsol is very small (≪ 1) then one has (1−p1)Nsol ≈ 1−p1Nsol

and so (1 − (1 − p1)
Nsol)/p1 ≈ Nsol. In other words, almost all the splittings of all the Nsol solutions are

distinct. For the values of α listed in Tables 2 and 3, max(p1) = 2−0.2143m, and so if Nsol ≤ 20.2m then
p1Nsol ≤ 2−0.0143m. Hence, the assumption made earlier seems justified when the density is less that 20.2m.
We now assume this is the case.

In the second level of the recursion we haveN ′
sol = Nsol

N1

qℓ1+ℓ2+ℓ3
solutions. Each solution hasN2 splittings

as a sum of vectors in X1/8+α/2+β,α/2+β . Let p2 = N2

#X1/8+α/2+β,α/2+β
be the probability a random vector

appears as such a splitting. Lemma 1 shows that, as long as p2N ′
sol ≪ 1, we again expect almost all the

splittings to be distinct.
For all values α, β listed in Tables 2 and 3 we have max(p2) = 2−0.2469m. Since Nsol

N1

qℓ1+ℓ2+ℓ3
≤ Nsol ≤

20.2m (when Nsol = 1, one chooses qℓ1+ℓ2+ℓ3 ≈ N1, and if Nsol > 1, one chooses qℓ1+ℓ2+ℓ3 > N1 to reduce

14

the time complexity, so qℓ1+ℓ2+ℓ3 ≥ N1) it follows that p2N ′
sol ≤ 2−0.0469m is very small. So the assumption

is again justified in these cases.
Finally consider the third level of the recursion. The argument is the same as above. Let N ′′

sol =

Nsol

(

N1

qℓ1+ℓ2+ℓ3

)(

N2

qℓ2+ℓ3

)2

be the number solutions to be split. Let p3 = N3

#X1/16+α/4+β/2+γ,α/4+β/2+γ
. For

all values α, β, γ listed in Tables 2 and 3 we have max(p3) = 2−0.2123m. Since N ′′
sol ≤ Nsol ≤ 20.2m (when

Nsol = 1, one chooses qℓ1+ℓ2+ℓ3 ≈ N1 and qℓ2+ℓ3 ≈ N2, while if Nsol > 1, one chooses qℓ1+ℓ2+ℓ3 ≥ N1

and qℓ2+ℓ3 ≥ N2 to reduce the time complexity), p3N ′′
sol = 2−0.0123m is very small. Thus 1−(1−p3)

N′′
sol

p3
N3 ≈

N ′′
solN3, i.e., almost all the splittings of all the N ′′

sol solutions at this stage are distinct.
Hence, when the density is ≤ 20.2m, Figure 1 is an accurate view of the complexity of the HGJ and BCJ

algorithms. When the density is greater than 20.2m then the results of Figure 1 are less rigorous, but they at
least give some intuition for how the HGJ and BCJ algorithms behave. In any case, once the density reaches
around 20.3m one would likely switch to the CPW algorithm.

4 Hermite normal form

We now give the main idea of the paper. For simplicity, assume that q is prime, G = Z
n
q and n > 1. We also

assume that the matrix A has rank equal to n, which will be true with very high probability when m≫ n.
We exploit the Hermite normal form. Given an n × m matrix A over Zq with rank n < m then, by

permuting columns as necessary, we may assume that A = [A1|A2] where A1 is an invertible n× n matrix
and A2 is an n× (m− n) matrix. Then there exists a matrix U = A−1

1 such that

UA = [In|A′]

where In is the n× n identity matrix and A′ is the n× (m− n) matrix UA2. The matrix [In|A′] is called
the Hermite normal form (HNF) of A and it can be computed (together with U) by various methods. We
assume q is prime and hence Gaussian elimination is sufficient to compute the HNF.

Writing xT = (xT
0 |xT

1) where x0 has length n and x1 has length m− n we have that

s ≡ Ax (mod q) if and only if s′ = Us ≡ A′x1 + x0 (mod q).

Hence, the Hermite normal form converts an ISIS instance to an instance of LWE (learning with errors)
having an extremely small number of samples (n < m) and with errors chosen from B rather than from
a discrete Gaussian distribution on Z. We rename (A′, s′,x0,x1) as (A, s, e,x) so the problem becomes
s = Ax+ e.

It is not the goal of this paper to discuss the learning with errors problem in great detail. As with
ISIS, it can be reduced to the closest vector problem in a lattice and hence solved using lattice basis re-
duction/enumeration techniques. There are two other notable algorithms for learning with errors, due to
Arora-Ge and Blum-Kalai-Wasserman. However, since our variant of LWE has a fixed small number of
samples they cannot be applied.

We will now apply the previous algorithms for the ISIS problem to this variant of the problem. This
project was suggested in Section 6 of [12] to be an interesting problem (they called it the “approximate
knapsack problem”). Our approach is to replace exact equality of elements in quotient groups G/H = Z

ℓ
q, in

certain parts of the algorithm, by an approximate equality y1 ≈ y2. The definition of y1 ≈ y2 will be that
y1 − y2 ∈ E , where E is some neighbourhood of 0. Different choices of E will lead to different relations, and
the exact choice depends somewhat on the algorithm under consideration.

4.1 Approximate merge algorithm

Our main tool is to merge lists using an approximate algorithm. We write Ax ≈ s to mean Ax+ e = s for
some e ∈ E in some set E of permitted errors. We warn the reader that this symbol ≈ is not necessarily an
equivalence relation (e.g., it is not necessarily symmetric).

15

We use similar notation to Section 2.3: X ⊆ Bm is a set of vectors, letters Hi denote suitably chosen
subgroups of G such that #(G/Hi) = qℓi . We split the set of vectors X ⊆ X1+X2 = {x1+x2 : x1 ∈ X1,x2 ∈
X2} in some way.

We also have a set of errors E and its splittings E1, E2. Recall that we are trying to solve s ≡ Ax+ e with
x ∈ X and e ∈ E . We also define the error sets E(i) restricted to the quotient groups G/Hi, so that typically
E(i) = Bℓi (For example E(i) = {0, 1}ℓi for HGJ or {−1, 0, 1}ℓi for BCJ).

Let H♭, H,H♯ be subgroups of G that denote subgroups used in the CPW/HGJ/BCJ algorithms. We are
merging, modulo H , partial solutions modulo H♭∩H . For clarity, let us write G/H♭ = Z

ℓ′

q and G/(H∩H♭) =

Z
ℓ+ℓ′

q . The input is a pair of lists L1 and L2 that are “partial solutions” modulo H♭. In other words, they

are lists of pair (x,Ax) such that Ax + e ≡ s (mod H♭) with e ∈ E♭ ⊂ Bℓ′ (e.g., e ∈ E♭ ⊂ {0, 1}ℓ′ for
HGJ or e ∈ E♭ ⊂ {−1, 0, 1}ℓ′ for BCJ). The goal is to output a set of solutions to the problem Ax + e ≡ s
(mod H ∩ H♭) for x ∈ X and, re-using notation, e ∈ E ⊂ Bℓ+ℓ′ (e.g., e ∈ E ⊂ {0, 1}ℓ+ℓ′ for HGJ or
e ∈ E ⊂ {−1, 0, 1}ℓ+ℓ′ for BCJ). We write E♭

1, E♭
2 for the error sets used in the lists L1, L2; E for the error set

for G/(H♭∩H); E ′ for the error set corresponding to the elements of G/H . For future steps of the algorithm,
the output includes information about Ax (mod H♯). The details are given in Algorithm 2.

Algorithm 2 Approximate merge algorithm

Input: L1 = {(x,Ax (mod H)) : Ax+ e ≡ R (mod H♭),x ∈ X1, e ∈ E♭
1},

L2 = {(x,Ax (mod H)) : Ax+ e ≡ s−R (mod H♭),x ∈ X2, e ∈ E♭
2}

Output: L = {(x,Ax (mod H♯)) : Ax+ e ≡ s (mod H ∩H♭),x ∈ X , e ∈ E}
1: Initialise L = {}
2: Sort L1 with respect to the second coordinate
3: for (x1,u) ∈ L2 do
4: Compute v = s− u (mod H)
5: for (x2,u

′) ∈ L1 with v ≈ u′ (i.e., u′ − v ∈ E ′) do
6: if x1 + x2 ∈ X and A(x1 + x2) ≈ s (mod H ∩H♭) then
7: Compute A(x1 + x2) (mod H♯)
8: Add (x1 + x2,A(x1 + x2) (mod H♯)) to L

The detection of values u′ in the sorted list such that v ≈ u′ (meaning u′ − v = e for some e ∈ E ′) can
be done in several ways. One is to try all possible error vectors e and look up each candidate value v + e.
Another is to “hash” using most significant bits. We give the details below. The running time of the algorithm
depends on this choice. For each match we check the correctness for the whole quotient G/(H ∩H♭).

Lemma 2. Let G/H = Z
ℓ
q and let E ′ ⊆ Z

ℓ
q be an error set for G/H. Algorithm 2 performs

Õ
(

#L1 log(#L1) + #L2

⌈

#L1/(q
ℓ/#E ′)

⌉)

operations.

Proof. Sorting L1 takes Õ(#L1 log(#L1)) operations on vectors in G/H = Z
ℓ
q.

For each pair (x1,u) ∈ L2 and each e ∈ E ′ ⊆ Z
ℓ
q, the expected number of “matches” (x2,u − e) in L1

is #L1/q
ℓ. In the case where all values for e ∈ E ′ are chosen and then each candidate for u′ is looked up in

the table, then the check in line 6 of the algorithm is performed

#L2#E ′

⌈

#L1

qℓ

⌉

.

times. The most expensive step takes place in line 7, which only executes when the checks in line 6 pass, but
for simplicity we assume the running time is proportional to the above formula. �

16

In the BCJ application in Section 4.3 we will always have #L1 ≥ qℓ. Hence we can ignore the ceiling
operation in the Õ(#L1#L2/(q

ℓ/#E ′)) term.
As previously, it is non-trivial to bound the size of the output list L. Instead, this can be bounded by

#X#E/#(G/(H ∩H♭)).
Note that different choices for E , E♭

1, E♭
2, E ′ can lead to different organisation in the algorithm. For example

we may take the possible non-zero positions in E♭
1 and E♭

2 to be disjoint, then after executing line 5 of
Algorithm 2 we always have A(x1 + x2) ≈ s (mod H♭), and so in line 6 of Algorithm 2 we only need to
check A(x1 + x2) ≈ s (mod H) – this is what we will do when adapting the CPW algorithm to this case.

4.2 The CPW algorithm

Recall that our problem is (taking the HNF and then renaming (A′, s′) as (A, s) and denoting (x1,x0) as
(x, e)): Given A, q, s to solve Ax + e = s in G = Z

n
q , where x has length m − n and e has length n. We

assume the problem has high density, in the sense that there are many pairs (x, e) ∈ Bm that solve the
system.

As we have seen, the CPW algorithm is most suitable for problems with very high density, since higher
density means more lists can be used and so the running time is lower. Hence, it may seem that reducing m
to m − n will be unhelpful for the CPW algorithm. However, we actually get a very nice tradeoff. In some
sense, the high density is preserved by our transform while the actual computations are reduced due to the
reduction in the size of m.

As noted, we define a (not-necessarily symmetric or transitive) relation ≈ on vectors in G = Z
n
q as v ≈ w

if and only if v −w ∈ Bn. One can then organise a CPW-style algorithm: compute the lists L
(i)
j as usual,

but merge them using ≈. However, we need to be a bit careful. Consider the case of four lists. Lists L
(0)
j

contain pairs (x,Ax) (in the case of L
(0)
4 it is (x,Ax − s)). Merging L

(0)
1 and L

(0)
2 gives a list L

(1)
1 of pairs

(x1 + x2,A(x1 + x2) (mod H2)) for x1 ∈ L
(0)
1 and x2 ∈ L

(0)
2 such that A(x1 + x2) ≈ 0 (mod H1), which

means A(x1 + x2) ≡ e (mod H1) for some e ∈ Bn/3. Similarly, L
(1)
2 is a list of pairs (x1 + x2,A(x1 + x2)

(mod H2)) for x1 ∈ L
(0)
3 and x2 ∈ L

(0)
4 such that A(x1 + x2) − s ≡ e′ (mod H1) for some e′ ∈ Bn/3. The

problem is that e+ e′ does not necessarily lie in Bn/3 and so the merge at the final stage will not necessarily
lead to a solution to the problem.

There are several ways to avoid this issue. One would be to “weed out” these failed matches at the later
stages. However, our approach is to constrain the relation ≈ further during the merge operations. Specifically
(using the notation of the previous paragraph) we require the possible non-zero positions in e and e′ to be
disjoint.

The details. To be precise, let k = 2t be the number of lists. We define u = (m − n)/k and let Xj =
{(0, . . . , 0, x(j−1)u+1, . . . , xju, 0, . . . , 0) ∈ Bm−n} for 1 ≤ j ≤ k. It turns out to be better to not have all
merges using quotient groups of the same size, so we choose integers ℓi > 0 such that ℓ1+ℓ2+ · · ·+ℓt = n. We
will choose the subgroups Hi so that G/Hi

∼= Z
ℓi
q for 1 ≤ i ≤ t. So H1 = {(0, 0, · · · , 0, gℓ1+1, · · · , gn) ∈ Z

n
q },

H2 = {(g1, . . . , gℓ1 , 0, . . . , 0, gℓ1+ℓ2+1, . . . , gn)} and so on.

Let γi = ℓi/2
t−i = ℓi/(k/2

i). For 1 ≤ j ≤ k/2i we define error sets E(i)
γi,j

⊆ Bℓi restricted to the quotient
group G/Hi and with γi error positions as

E(i)
γi,j

= {(0, . . . , 0, e(j−1)γi+1, . . . , ejγi , 0, 0, . . . , 0) ∈ Bℓi}.

Note that #E(i)
γi,j

= (#B)γi .

Level 0: Compute lists L
(0)
j = {(x,Ax (mod H1)) ∈ Xj × Z

ℓ1
q } for 1 ≤ j ≤ k − 1 and L

(0)
k = {(x,Ax − s

(mod H1)) ∈ Xk × Z
ℓ1
q }. Note that #L

(0)
j = #Bu = #B(m−n)/k. The cost to compute the initial k lists is

O(#L
(0)
j) = O((#B)(m−n)/k) or, to be more precise, the cost is approximately k ·#L(0)

j · C bit operations,

where C is the number of bit operations to compute a sum of at most u vectors in Z
ℓ1
q i.e. C = (m −

n) log2(q
ℓ1)/k.

17

Level 1: We now merge the k = 2t lists in pairs to get k/2 = 2t−1 lists. Let γ1 = ℓ1/(k/2). For j =

1, 2, · · · , k/2 the sets E(1)
γ1,j

∈ Bℓ1 specify the positions that are allowed to contain errors. In other words, for
j = 1, 2, · · · , k/2− 1 we construct the new lists

L
(1)
j = {(x1 + x2,A(x1 + x2) (mod H2)) : x1 ∈ L

(0)
2j−1,x2 ∈ L

(0)
2j ,

A(x1 + x2) (mod H1) ∈ E(1)
γ1,j

},
and

L
(1)
k/2 = {(x1 + x2,A(x1 + x2) (mod H2)) : x1 ∈ L

(0)
k−1,x2 ∈ L

(0)
k ,

A(x1 + x2)− s (mod H1) ∈ E(1)
γ1,k/2

}.

The probability that two random vectors in Z
ℓ1
q have sum in E(1)

γ1,j
is #E(1)

γ1,j
/qℓ1 = #Bγ1/qℓ1 , and so the

heuristic expected size of the lists L
(1)
j is #L

(0)
2j−1#L

(0)
2j #Bγ1/qℓ1 ≈ #B2(m−n)/k+γ1/qℓ1 .

Level i ≥ 2: The procedure continues in the same way. We are now merging k/2i−1 lists to get k/2i lists. We
do this by checking ℓi coordinates and so will allow errors for each merge in only γi = ℓi/(k/2

i) positions.
Hence, for j = 1, 2, · · · , k/2i − 1 we construct the new lists

L
(i)
j = {(x1 + x2,A(x1 + x2) (mod Hi+1)) : x1 ∈ L

(i−1)
2j−1 ,x2 ∈ L

(i−1)
2j ,

A(x1 + x2) (mod Hi) ∈ E(i)
γi,j

},
and

L
(i)
k/2i = {(x1 + x2,A(x1 + x2) (mod Hi+1)) : x1 ∈ L

(i−1)
k/2i−1−1,x2 ∈ L

(i−1)
k/2i−1 ,

A(x1 + x2)− s (mod Hi) ∈ E(i)
γi,k/2i

}.

As before, the heuristic expected size of L
(i)
j is #L

(i−1)
2j−1#L

(i−1)
2j #Bγi/qℓi .

It remains to explain how to perform the merging of the lists using Algorithm 2. We are seeking a match
on vectors in Z

ℓi
q that are equal on all but γi coordinates, and that are “close” on those γi coordinates. The

natural solution is to detect matches using the most significant bits of the coordinates (this approach was
used in a similar situation by Howgrave-Graham, Silverman and Whyte [11]). Precisely, let vi be a parameter
(indicating the number of most significant bits being used). Represent Zq as {0, 1, . . . , q−1} and define a hash
function F : Zq → Z2vi by F (x) = ⌊ x

q/2vi ⌋. We can then extend F to Z
γi
q (and to the whole of Zℓi

q by taking

the identity map on the other coordinates). We want to detect a match of the form Ax1 + Ax2 + e = 0,
which we will express as −Ax1 = Ax2 + e. The idea is to compute F (−Ax1) for all x1 in the first list
and store these in a sorted list. For each value of x2 in the second list one computes all possible values for
F (Ax2 + e) and checks which of them are in the sorted list.

For example, consider q = 23 = 8 and suppose we use a single most significant bit (so F : Zq →
{0, 1}). Suppose −Ax1 = (7, 2, 4, 5, 6, 4, 0, 7)T and that we are only considering binary errors on the first 4
coordinates. Then we have F (−Ax1) = (1, 0, 1, 1, 6, 4, 0, 7). Suppose now Ax2 = (6, 2, 3, 5, 6, 4, 0, 7). Then
F (Ax2) = (1, 0, 0, 1, 6, 4, 0, 7). By looking at the “borderline” entries of Ax2 we know that we should also
check (1, 0, 1, 1, 6, 4, 0, 7). There is no other value to check, since F ((6, 2, 3, 5) + (1, 1, 0, 1)) = (1, 0, 0, 1) and
F ((6, 2, 3, 5) + (1, 1, 1, 1)) = (1, 0, 1, 1) and so the only possible values for the first 4 entries of F (Ax2 + e)
are {(1, 0, 0, 1), (1, 0, 1, 1)}.

To be precise we define Flips(v) = {F (v+e) : e ∈ E(i)
γi,j

}, where i, j and γi are clear in any given iteration
of the algorithm. In other words, it is the set of all patterns of most significant bits that would arise by
adding valid errors to the corresponding coordinates of v. It is important to realise that one does not need

to loop over all e ∈ E(i)
γi,j

to compute Flips(v); instead one only needs to check entries of v that are on the
borderline. As we will see, the set Flips(v) is usually quite small. Let pflip be the probability that a randomly
chosen element of Zq has hash value that flips when adding an error.

18

1. If B = {0, 1} then pflip = 2vi/q. Thus, on average, #Flips(v) = 2γi2
vi/q.

2. If B = {−1, 0, 1} then pflip = 2vi+1/q. Thus, on average, #Flips(v) = 2γi2
vi+1/q.

To summarise the “approximate 2-merge” algorithm: First compute F (v) for every v = −Ax1 in the

list L
(i−1)
2j−1 , and sort these values. Note that there may be multiple different values x1 in the list with the

same hash value F (−Ax1), and these should be stored in a list associated with that entry of the hash table

or binary tree representing the sorted list. Then, for every v = Ax2 for x2 in the list L
(i−1)
2j we compute

Flips(v) and search, for each u ∈ Flips(v), for occurrences of u in the sorted list. Finally, for each match, we
go through all values x1 in the first list with the given hash value F (−Ax1) and, for each of them, check if
it really is true that A(x1 + x2) is in the correct error set (since a match of the hash values does not imply
correctness). The number of possible hash values on vectors in Z

ℓi
q , with γi positions reduced to the vi most

significant bits, is 2viγiqℓi−γi . Hence, the average number of values in the list L
(i−1)
2j−1 that take a given hash

value is #L
(i−1)
2j−1 /(2

viγiqℓi−γi). Finally, for all good matches we need to compute A(x1 + x2) (mod Hi).

Success Probability. Now we give a heuristic analysis of the algorithm. The algorithm succeeds if L
(t)
1 is not

empty, where k = 2t is the number of lists used. Denote by L(i) any of the lists at the i-th stage of the
algorithm. The heuristic expected size of the lists on each level are

#L(0) = (#B)(m−n)/2t ,

#L(i) = #L(i−1)#L(i−1)#Bγi/qℓi , for all 1 ≤ i ≤ t.

Hence, to have #L(t) ≈ 1 we want the lists L(1), L(2), · · · , L(t−1) to all be roughly the same size. We make
the following deductions.

#L(i) ≈ (#B)(m−n)/2t ⇒ 1 ≈ (#B)(m−n)/2t+γi/qℓi, for all 1 ≤ i ≤ t− 1,

#L
(t)
1 ≈ 1 ⇒ 1 ≈ (#B)2(m−n)/2t+γt/qℓt .

Following Minder and Sinclair we use an integer program to get optimal values for ℓi. We write #L(i) = 2bi

where b0 = (m−n) log2(#B)/2t and hence get bi = 2bi−1 − ℓi log2(q) + γi log2(#B) where γi = ℓi/2
t−i. The

time complexity is proportional to max0≤i≤t #L
(i). So to minimize the time one should choose k = 2t to be

as large as possible and then choose the ℓi to be a solution to the following integer program.

minimize bmax = max
0≤i≤t

bi

subject to 0 ≤ bi ≤ bmax, 0 ≤ i ≤ t

b0 = (m− n) log2(#B)/2t,
bi = 2bi−1 − ℓi log2(q) + ℓi log2(#B)/2t−i,

ℓi ≥ 0, 0 ≤ i ≤ t
t

∑

i=1

ℓi = n.

Complexity Analysis. We now fix a choice of ℓ1, ℓ2, · · · , ℓt subject to the constraints mentioned above. Our
aim is to give a precise formula for the running time of the CPW algorithm using our approximate merge
algorithm. This is important as the “approximate 2-merge” is more complicated and takes more time than
the “basic 2-merge”, and so we have to be certain that we have made a positive improvement overall.

Lemma 3. Let notation be as above. Let C1 be the number of bit operations to compute F for the γi positions
that allow errors. Let C2 be the number of bit operations to compute Flips(v). Let C3 be the number of bit

19

operations to check that x1 + x2 ∈ Bm−n and that A(x1 + x2) (mod Hi) ∈ E(i)
γi,j

(we only need to check γi
positions of the error). Then the i-th iteration of Algorithm 2 requires

#L
(i−1)
2j−1

(

C1 + log2(#L
(i−1)
2j−1) log2(q

ℓi)
)

+ #L
(i−1)
2j

(

C2 + 2γipflip

[

log2(#L
(i−1)
2j−1) log2(q

ℓi) + (#L
(i−1)
2j−1 /(2

viγiqℓi−γi))C3

])

+ #L
(i)
j (ℓi+1(m− n)/2t−i log2(q))

bit operations.

Proof. The first operation involves sorting L
(i−1)
2j−1 , where we use F to compute the value u that acts as the

index to the hash table or binary tree. The total cost is #L
(i−1)
2j−1 (C1 + log2(#L

(i−1)
2j−1) log2(q

ℓi) bit operations.

Next, for each pair (x2,v) ∈ L
(i−1)
2j one needs to compute Flips(v). For each element in Flips(v) (the

expected number is 2γipflip) one needs to look up the value in the sorted list. For each match one has, on

average, #L
(i−1)
2j−1 /(2

viγiqℓi−γi) different values from the first list with that hash value. For each of these we
need to compute x1 + x2 and A(x1 + x2) (mod Hi).

Finally, one needs to compute the values A(x1+x2) (mod Hi+1) for the next iteration. This occurs only

for the “good” values, of which there are by definition #L
(i)
j . The computation of A(x1 + x2) is adding at

most (m− n)/2t−i vectors of length ℓi+1. �

Larger values for vi increase pflip but reduce #L
(i−1)
2j−1 /(2

viγiqℓi−γi). So we choose vi to balance the

costs 2γipflip and #L
(i−1)
2j−1 /(2

viγiqℓi−γi). Hence, the time to perform the “approximate 2-merge” can be

proportional to #L
(i−1)
2j−1 log2(#L

(i−1)
2j−1). When γi = 0 we recover the basic merge algorithm and so C1 = 0,

C2 = 0 (and, when using the algorithm in the CPW context, C3 = 0), vi = log2(q), 2γipflip = 1, and

#L
(i−1)
2j−1 /(2

viγiqℓi−γi) = #L
(i−1)
2j−1 /q

ℓi .
As in the work of Minder and Sinclair, it is not possible to give a general complexity statement in terms

of (m,n, q,B), since the complexity depends on the choice of parameters in the algorithm, and they are the
solution to the integer program. However, in Section 5 we use the algorithm to attack the SWIFFT hash
function and demonstrate improved running times compared with the standard CPW algorithm.

4.3 The HGJ and BCJ algorithm

Recall that our problem is: Given A, s to solve Ax + e = s in G = Z
n
q , where x has length m′ = m − n

and e has length n. Here A is an n ×m′ matrix, x ∈ {0, 1}m′

and e ∈ {0, 1}n. We assume wt(x) = m′/2
and wt(e) = n/2. Assume for simplicity that the density is approximately 1 (hence 2m

′+n/qn ≈ 1)8. Using
Algorithm 2 we can get an improved version of the HGJ/BCJ algorithm. Since HGJ is a special case of BCJ,
we discuss the general case.

We use the BCJ algorithm with 3 levels of recursion to find a solution x ∈ {0, 1}m′

of weightm′/2. Recall
that Xa,b denotes vectors in {−1, 0, 1}m′

with am′ entries equal to 1 and bm′ entries equal to −1. With this
notation, our desired solution is an element of X1/2,0.

Following [2] we choose suitable parameters α, β, γ (see below). The first level of recursion splits x =
x1 + x2 where x1,x2 ∈ X1/4+α,α. The second level of recursion splits x ∈ X1/4+α,α into x1 + x2 where
x1,x2 ∈ X1/8+α/2+β,α/2+β . The third level of recursion splits a vector into a sum of two vectors in the set
X1/16+α/4+β/2+γ,α/4+β/2+γ .

We also use the BCJ idea to split the errors. This is a little more complex to describe as the error sets
are in {−1, 0, 1}n′

for varying values of n′ < n. The notation Ea,b will mean a set of vectors in {−1, 0, 1}n′

8 We do not analyse this algorithm in the case of density > 1, but it is clear that similar improvements can be
obtained as in Section 3. As in Section 3 it is not possible to give a general formula for the running time.

20

with an′ entries equal to 1 and bn′ entries equal to −1. We assume e ∈ E1/2,0 initially (n′ = n). We will fix
parameters α′, β′, γ′ (to be specified below).

Let H1, H2, H3 be subgroups of G, of the usual form, such that #(G/Hi) = qℓi . For 1 ≤ i ≤ 3 we define

E(i→3)
a,b ⊆ {−1, 0, 1}n′

where n′ = ℓi + · · · + ℓ3 to be the set of vectors with an′ entries equal to 1 and bn′

entries equal to −1. These are considered as subsets of the quotient groups G/(Hi ∩ · · · ∩ H3). We denote

E(3→3)
a,b by E(3)

a,b .

Algorithm. The first level of recursion chooses a random value R1 ∈ Z
ℓ1+ℓ2+ℓ3
q = G/(H1 ∩ H2 ∩ H3) and

computes two lists L
(1)
1 = {(x,Ax) : x ∈ X1/4+α,α,Ax+e ≡ R1 (mod H1∩H2∩H3) for some e ∈ E(1→3)

1/4+α′,α′}
and L

(1)
2 which is the same except Ax+ e ≡ s−R1 (mod H1 ∩H2 ∩H3).

The second level of recursion computes L
(1)
1 and L

(1)
2 by splitting into further lists. We split x ∈ X1/4+α,α

into x1 + x2 where x1,x2 ∈ X1/8+α/2+β,α/2+β and split error vectors into E(2→3)
1/8+α′/2+β′,α′/2+β′ . For example,

choosing a random value R2, L
(1)
1 is split into L

(2)
1 = {(x,Ax) : x ∈ X1/8+α/2+β,α/2+β ,Ax + e ≡ R2

(mod H2 ∩ H3), for some e ∈ E(2→3)
1/8+α′/2+β′,α′/2+β′} and L

(2)
2 is similar except the congruence is Ax + e ≡

R1 −R2 (mod H2 ∩H3).

The final level of recursion computes each list L
(2)
j by splitting x ∈ X1/8+α/2+β,α/2+β into a sum

X1/16+α/4+β/2+γ,α/4+β/2+γ and splitting the error e (mod H3) ∈ E(3)
1/8+α′/2+β′,α′/2+β′ into a sum from

E(3)
1/16+α′/4+β′/2+γ′,α′/4+β′/2+γ′ . The lists at the final level are computed using the Shroeppel-Shamir al-

gorithm.

Success Probability. Suppose there is a unique solution (x, e) ∈ {0, 1}m′+n to the ISIS instance, where x
has weight m′/2 and e has weight n/2. Consider the first step of the recursion. For the whole algorithm
to succeed, it is necessary that there is a splitting x = x1 + x2 of the solution together with a splitting
e ≡ e1 + e2 (mod H1 ∩H2 ∩H3), so that for a randomly chosen R1 ∈ G/(H1 ∩H2 ∩H3), Ax1 + e1 ≡ R1

(mod H1 ∩ H2 ∩ H3) and Ax2 + e2 ≡ s − R1 (mod H1 ∩ H2 ∩ H3). The number of ways to split x (with
length m′) on the first level of recursion is

N1 =

(

m′/2

m′/4

)(

m′/2

αm′, αm′, (1/2− 2α)m′

)

where the notation
(

N
a,b,(N−a−b)

)

=
(

N
a,b

)

=
(

N
a

)(

N−a
b

)

denotes the usual multinomial coefficient. The number

of ways to split e (mod H1 ∩H2 ∩H3) (with length ℓ1 + ℓ2 + ℓ3) on the first level of recursion is

N ′
1 =

(

(ℓ1 + ℓ2 + ℓ3)/2

(ℓ1 + ℓ2 + ℓ3)/4

)(

(ℓ1 + ℓ2 + ℓ3)/2

α′(ℓ1 + ℓ2 + ℓ3), α′(ℓ1 + ℓ2 + ℓ3)

)

.

For randomly chosen R1 ∈ G/(H1 ∩H2 ∩H3), we expect there to be a valid splitting if N1N ′
1 ≥ qℓ1+ℓ2+ℓ3 .

Indeed, the expected number of valid splittings should be roughlyN1N ′
1/q

ℓ1+ℓ2+ℓ3 . Hence, we chooseN1N ′
1 ≈

qℓ1+ℓ2+ℓ3 to make sure a valid splitting pair exists at this stage with significant probability.
For the second stage we assume that we already made a good choice in the first stage, and indeed that

we have N1N ′
1/q

ℓ1+ℓ2+ℓ3 possible values for (x1, e1) where x1 ∈ X1/4+α,α, e1 ∈ E(1→3)
1/4+α′,α′ . The number of

ways to further split x1 is

N2 =

(

(1/4 + α)m′

(1/8 + α/2)m′

)(

αm′

αm′/2

)(

(3/4− 2α)m′

βm′, βm′, (3/4− 2α− 2β)m′

)

.

The number of ways to further split e1 (mod H2 ∩H3) is N ′
2 is

(

(1/4 + α′)(ℓ2 + ℓ3)

(1/8 + α′/2)(ℓ2 + ℓ3)

)(

α′(ℓ2 + ℓ3)

α′(ℓ2 + ℓ3)/2

)(

(3/4− 2α′)(ℓ2 + ℓ3)

β′(ℓ2 + ℓ3), β′(ℓ2 + ℓ3), (3/4− 2α′ − 2β′)(ℓ2 + ℓ3)

)

.

21

The expected number of valid splittings at this stage should be roughly

(N1N ′
1/q

ℓ1+ℓ2+ℓ3)(N2N ′
2/q

ℓ2+ℓ3)2.

For a randomly chosen R2 ∈ G/(H2 ∩H3), there is a good chance that a valid splitting exists if

(N1N ′
1/q

ℓ1+ℓ2+ℓ3)(N2N ′
2/q

ℓ2+ℓ3)2 ≥ 1

(recall that at this stage we need to split both x1 and x2). Hence, since we already choose N1N ′
1 ≈ qℓ1+ℓ2+ℓ3 ,

we now impose the condition N2N ′
2 ≈ qℓ2+ℓ3 .

In the final stage (again assuming good splittings in the entire second stage), the number of ways to split
elements in X1/8+α/2+β,α/2+β is

N3 =

(

(1/8 + α/2 + β)m′

(1/16 + α/4 + β/2)m′

)(

(β + α/2)m′

(β/2 + α/4)m′

)(

(7/8− α− 2β)m′

γm′, γm′, (7/8− α− 2β − 2γ)m′

)

.

The number of ways to split elements in E(3)
1/8+α′/2+β′,α′/2+β′ is:

N ′
3 =

(

(1/8 + α′/2 + β′)ℓ3
(1/16 + α′/4 + β′/2)ℓ3

)(

(β′ + α′/2)ℓ3
(β′/2 + α′/4)ℓ3

)(

(7/8− α′ − 2β′)ℓ3
γ′ℓ3, γ′ℓ3, (7/8− α′ − 2β′ − 2γ′)ℓ3

)

.

The expected number of valid splittings is

(N1N ′
1/q

ℓ1+ℓ2+ℓ3)(N2N ′
2/q

ℓ2+ℓ3)2(N3N ′
3/q

ℓ3)4,

which we require to be ≥ 1. Hence, we add the additional constraint N3N ′
3 ≈ qℓ3 . Thus, choosing #G/H3

close to N3N ′
3, #G/(H2 ∩ H3) close to N2N ′

2 and #G/(H1 ∩ H2 ∩ H3) close to N1N ′
1 then the heuristic

success probability of the algorithm should be significantly noticeable.

Parameters. Suitable parameters need to be chosen to optimize the running time and have good success
probability.

As in previous sections, we use the estimate #Xa,b ≈ 2H(a,b)·m′

where

H(x, y) = −x log2(x)− y log2(y)− (1− x− y) log2(1 − x− y)

and similarly for Ea,b. We also use

h(x) = −x log2(x)− (1− x) log2(1 − x)

to estimate the binomial. Then the logarithm of the number of decompositions for each level is

log2(N1) ≈ m′

2 (h(1/2) +H(2α, 2α)) ≈ m′ 1 +H(2α, 2α)

2
,

log2(N2) ≈ m′ ·
1 + 8α+ (3 − 8α) ·H(β

3/4−2α ,
β

3/4−2α)

4
,

log2(N3) ≈ m′ ·
1 + 8α+ 16β + (7− 8α− 16β) ·H(γ

7/8−α−2β ,
γ

7/8−α−2β)

8
.

The (logarithmic) number of decompositions for the error vector is similar.

log2(N ′
1) ≈ (ℓ1 + ℓ2 + ℓ3) ·

1 +H(2α′, 2α′)

2

log2(N ′
2) ≈ (ℓ2 + ℓ3) ·

1 + 8α′ + (3− 8α′) ·H(β′

3/4−2α′ ,
β′

3/4−2α′)

4

log2(N ′
3) ≈ ℓ3 ·

1 + 8α′ + 16β′ + (7− 8α′ − 16β′) ·H(γ′

7/8−α′−2β′ ,
γ′

7/8−α′−2β′)

8
.

22

Assuming that 2m
′+n ≈ qn, we have n ≈ m′

log2 q−1 , and we choose the following parameters (these are the

result of an optimisation problem to minimise the running time of the algorithm).

α = 0.0267, β = 0.0168, γ = 0.0029;

α′ = 0.0279, β′ = 0.0027, γ′ = 0.0027;

qℓ1 = 20.2673m
′

20.4558n, qℓ2 = 20.2904m
′

20.1388n and qℓ3 = 20.2408m
′

20.0507n.

For such parameters, we can estimate

N1 ≈ 20.7985m
′

, N2 = 20.5312m
′

, and N3 = 20.2408m
′

;

and

N ′
1 = 20.8082(ℓ1+ℓ2+ℓ3), N ′

2 = 20.3568(ℓ2+ℓ3) and N ′
3 = 20.2106ℓ3 .

We consider the success probability. The number of splittings for the first level is

N1N ′
1/q

ℓ1+ℓ2+ℓ3 .

With the above parameters, then the logarithm (base 2) of this value is approximately

0.7985m′ − 0.7985m′2

m′ + n
− 0.7985m′n

m′ + n
− 0.1238n2

m′ + n

≈ − 0.1238n2

m′ + n

Similarly, the logarithm of the number of valid splittings for the second stage is

log2
(

(N1N ′
1/q

ℓ1+ℓ2+ℓ3)(N2N ′
2/q

ℓ2+ℓ3)2
)

≈ −0.3676n2

m′ + n
.

Finally, the logarithm of the number of valid splittings for the last stage is

log2
(

(N1N ′
1/q

ℓ1+ℓ2+ℓ3)(N2N ′
2/q

ℓ2+ℓ3)2(N3N ′
3/q

ℓ3)4
)

≈ −0.5278n2

m′ + n
.

For example, taking m = 1024, n = 64 and m′ = m− n gives expected number of splittings at each level
to be 0.7, 0.36 and 0.23 respectively, giving a total success probability of approximately 0.06. So we expect to
need to repeat the algorithm around 16 times. For fixed n and letting m′ → ∞ then the success probability
tends to 1.

Running time. We now consider the running time for one execution of the algorithm. (We do not consider
the number of repetitions requried due to the success probability here.)

Theorem 2. Let s = Ax + e in Z
n
q where x ∈ {0, 1}m′

has weight m′/2, and e ∈ {0, 1}n has weight n/2.

Suppose the density is approximately 1, so that 2m = 2m
′+n ≈ qn. With notation as above, and assuming

heuristics about the pseudo-randomnes of Ax+e, the approximate BCJ algorithm runs in Õ(20.2912m
′+0.1899n)

time.

Proof. We run the algorithm as described using the parameters specified above.
First level. In the first level of the recursion, the expected size of each list is given by

log2

(

#L(1)
)

= log2

(

#X1/4+α,α #E(1→3)
1/4+α′,α′ / q

ℓ1+ℓ2+ℓ3
)

≈ m′H(1/4 + α, α) +H(1/4 + α′, α′)(ℓ1 + ℓ2 + ℓ3)− (ℓ1 + ℓ2 + ℓ3) log2(q).

23

For our parameters we have the relation

qℓ1+ℓ2+ℓ3 = 20.7985m
′

20.6453n.

Hence the logarithmic size is

log2

(

#L(1)
)

=0.2173m′ + 0.8169
m′n

m′ + n
− 0.6453n+ 0.6601

n2

m′ + n

≤ 0.2173m′ + 0.1716n.

Using the approximate merge (Algorithm 2) this requires time

T1 = Õ
(

#L(1)#L(1)2n−ℓ1−ℓ2−ℓ3/qn−ℓ1−ℓ2−ℓ3
)

(6)

One can compute a precise formula for log2(T1) by evaluating equation (6) with our parameters. We use a
computer script to keep track of all the quantities. One can show that log2(T1) ≤ 0.2331m′ + 0.1899n.
Second level. Similarly, in the second level of recursion the size of the lists is approximately

log2

(

#L(2)
)

= log2

(

#X1/8+α/2+β,α/2+β #E(2→3)
1/8+α′/2+β′,α′/2+β′ / q

ℓ2+ℓ3
)

≈ m′H(1/8 + α/2 + β, α/2 + β)

+H(1/8 + α′/2 + β′, α′/2 + β′)(ℓ2 + ℓ3)− (ℓ2 + ℓ3) log2(q).

For our parameters we have the relation

qℓ2+ℓ3 = 20.5312m
′

20.1895n.

Hence the logarithmic size is

log2

(

#L(2)
)

=0.2791m′ +
0.3756m′n

m′ + n
− 0.1895n+

0.1340n2

m′ + n

≤ 0.2791m′ + 0.1861n.

Using the approximate merge (Algorithm 2), the cost to merge is

T2 = Õ
(

#L(2)#L(2)#E(1)
1/4+α′,α′/q

ℓ1
)

.

With above parameters

log2(T2) ≈0.2908m′ +
1.0246m′n

m′ + n
− 0.8348n+

0.7342n2

m′ + n

≤ 0.2908m′ + 0.1898n.

Third level. The last level of recursion computes lists of expected size

log2

(

#L(3)
)

= log2
(

#X1/16+α/4+β/2+γ,α/4+β/2+γ

)

+ log2

(

#E(3)
1/16+α′/4+β′/2+γ′,α′/4+β′/2+γ′

)

− ℓ3 log2(q)

≈ m′H(1/16 + α/4 + β/2 + γ, α/4 + β/2 + γ)

+ ℓ3H(1/16 + α′/4 + β′/2 + γ′, α′/4 + β′/2 + γ′)− ℓ3 log2(q).

For our parameters we have the relation

qℓ3 = 20.2408m
′

20.0507n.

24

Hence the logarithmic size is

log2

(

#L(3)
)

=0.2908m′ +
0.1120m′n

m′ + n
− 0.0507n+

0.0236n2

m′ + n

≤ 0.2908m′ + 0.0613n.

Using the approximate merge (Algorithm 2), the cost to merge is

T3 = Õ
(

#L(3)#L(3)E(2)
1/8+α′/2+β′,α′/2+β′/q

ℓ2
)

.

With above parameters

log2(T3) ≈0.2912m′ +
0.4293m′n

m′ + n
− 0.2402n+

0.1453n2

m′ + n

≤ 0.2912m′ + 0.1891n.

Each list in the last level can be constructed using the Shroeppel-Shamir algorithm (or its variants) in time

T4 = Õ(
√

#X1/16+α/4+β/2+γ,α/4+β/2+γ #E(3)
1/16+α′/4+β′/2+γ′,α′/4+β′/2+γ′).

We have

log3(T4) ≈0.2658m′ +
0.0560m′n

m′ + n
+

0.0118n2

m′ + n

≤ 0.2658m′ + 0.0560n.

By taking the maximum of the running times of all levels in the recursion, the time complexity of the
algorithm is Õ(20.2912m

′+0.1899n). �

Remark 1. Note that Õ(20.2912m
′+0.1899n) < Õ(20.2912m), so the algorithm is an improvement over standard

BCJ by a multiplicative factor 20.1013n.

Corollary 1. Let n be fixed and m → ∞. One can solve (m,n, q, {0, 1})-ISIS in Õ(20.2912m−0.1013n) bit
operations.

Proof. Since n is fixed the success probability is constant. The running time is therefore Õ(20.2912(m−n)+0.1899n).
�

For fixed n, Corollary 1 is the same Õ(20.2912m) statement as given in [2], but with an improved constant.

5 Improved attacks on SWIFFT

We present improved attacks for both inversion and finding collisions of the SWIFFT hash function. The
parameters are m = 1024, n = 64, q = 257 and B = {0, 1}. Note that we ignore the ring structure and just
treat SWIFFT as an instance of ISIS. The best previously known attacks for the SWIFFT inversion and
collision problems require 2148 bit operations and 2113 bit operations respectively. Our improved attacks solve
the SWIFFT inversion and collision problems in 2138 bit operations and 2104 bit operations respectively.

5.1 Inverting SWIFFT.

Lyubashevsky, Micciancio, Peikert and Rosen [17] discussed using the original CPW algorithm to solve the
(1024, 64, 257, {0, 1})-SIS problem: “it is also possible to mount an inversion attack using time and space
approximately 2128”. They choose k = 8 to break up the 1024 column vectors of matrix A into 8 groups of

25

128 column vectors each. For each group compute a list of size 2128, then choose ℓ1 = 16, ℓ2 = 16, ℓ3 = 32, at
each level the size of the lists is around 2128, so the required storage is 8 ·2128 log2(q16) bits. Using Lemma 3,
we predict the total running time to be approximately 2148 bit operations.

We now show that using the Hermite normal form and our approximate CPW algorithm from Section 4.2
gives a 210 speed-up. First, we reduce the dimension from 1024 to 1000 by setting 24 entries of x to be zero
and deleting the corresponding columns from A. Then we compute the Hermite normal form, to reduce A
to a 64× 936 matrix. We then use k = 8 to break {0, 1}936 into 8 groups of length 117. Let ℓ1 = 15, ℓ2 = 16
and ℓ3 = 33. Construct 8 initial lists of size 2117.

At each step, we merge two lists in a similar way to the original CPW algorithm but using Algorithm 2.
At the bottom we merge the initial eight lists of size 2117 by checking the first ℓ1 = 15 coordinates of the
vectors. We allow errors in γ1 = 4, 4, 3, 4 positions for each merge. The expected size9 of the three new lists

corresponding to γ1 = 4 is 22·117·24

25715 ≈ 2117.92, and the expected size of the other list is 22·117·23

25715 ≈ 2116.92.
For the hashing, we take v1 = 7 most significant bits of each value in Z257. The probability pflip ≈ 0.5,

2γ1pflip ≤ 4 and 2117

2v1γ1qℓ1−γ1
≤ 2.

At the next level we merge the four lists of sizes 2117.92, 2117.92, 2116.92, 2117.92 by checking the next
ℓ2 = 16 coordinates of the vectors. We allow errors in γ2 = 8 positions for each merge. The expected sizes of

the two new lists is 2117.92+117.92 ·28

25716 ≈ 2115.75 and 2116.92+117.92·28

25716 ≈ 2114.75. For the hashing of each merge, we
use v2 = 7.

At the top level we merge the two lists of sizes 2114.75 and 2115.75 by checking the remaining ℓ3 = 33
coordinates of the vectors, allowing γ3 = 33 positions to have errors. The expected size of the solution set10

is 2114.75+115.75233

25733 ≈ 2−0.7, we use v3 = 4 for the hashing.
In conclusion, the maximum size of the lists at each level is 2117.92, and using Lemma 3 we estimate the

total time to be around 2138 bit operations.

5.2 Finding collisions for SWIFFT.

Finding collisions for SWIFFT is equivalent to solving the (1024, 64, 257, {−1, 0, 1})-SIS problem. Lyuba-
shevsky, Micciancio, Peikert and Rosen [17] give an analysis using the CPW algorithm and choosing k = 16.
They break up the 1024 column vectors of A into 16 groups of 64 vectors each, for each group create an
initial list of 364 ≈ 2102 vectors. They choose ℓ1 = ℓ2 = ℓ3 = ℓ4 = 13 to perform the merges. They very
optimistically assume that, at each level, the lists have 2102 vectors, and at the final level they end up with
a list of ≈ 2102 elements whose first 52 coordinates are all zero. Since 2102 > 25712 ≈ 296, it is expected
that there exists an element whose last 12 coordinates are also zero, they say “the space is at least 2102, the
running time is at least 2106”.

However, the assumption in [17] that the lists have 2102 elements at each level is implausible. This is
permitted in their context, since their goal is simply to get a lower bound on the running time. But we find
it useful to obtain a more accurate estimate of the running time of this approach. In fact the lists get smaller
and smaller (sizes 2102 → 2100 → 296 → 288 → 272) and so one does not have a list of 2102 vectors at the final
level. Indeed, the success probability of their algorithm is only around 2−24, and so running the algorithm
223 times brings the running time to be about 2144 bit operations.

One can increase the success probability by using Minder and Sinclair’s refinement of CPW [20]. For
k = 16 lists one can take ℓ1 = 12, ℓ2 = 14, ℓ3 = 12, ℓ4 = 26. The maximum size of the lists at all the levels is
then around 2107. Using Lemma 3 we estimate the total time to be about 2126 bit operations.

Howgrave-Graham and Joux described an improved collision attack in Appendix B of [13] (an early
version of [12]). The idea is to attack the original {0, 1}-SIS problem directly: first using the original CPW

9 The analysis of the expected size of lists assumes independence of vectors in the lists. However, when the ISIS
instance comes from a ring then there are certain symmetries that show that vectors are not independent. We
have theoretical and experimental evidence that these issues do not effect the analysis of the CPW algorithm on
SWIFFT. See Section 6 for further discussion.

10 It’s possible to tune certain constraints in the integer program in Section 4.2 to get a better attack. Here we tune
the constraint bt ≥ 0 to be bt ≥ −1, which means we expect to have to run the whole algorithm twice.

26

algorithm to get a list of elements with a certain subset of their coordinates equal to 0, then exploit the
birthday paradox using the elements in this list to find a collision between the remaining coordinates. They
choose k = 16 and create 16 initial lists of size 264, choosing ℓ1 = 4, ℓ2 = 12, ℓ3 = 12, ℓ4 = 12, then the
size of the lists on each level is 296. At the final step they obtain a list of 296 elements with the first 40
coordinates equal to zero. Since (296)2 ≈ 25724, the birthday paradox shows one can find a collision between
the remaining 24 = n − (ℓ1 + ℓ2 + ℓ3 + ℓ4) coordinates in this list. In other words, we have Ax1 ≡ Ax2

where x1,x2 ∈ {0, 1}m and so we have found a collision for SWIFFT. The space requirement is about 296

and the time is predicted in [13] to be proportional to 2100. Lemma 3 suggests the total time is about 2113

bit operations; a speedup by 213 from the Minder-Sinclair method.

We now describe a better collision attack, by using the HNF and our approximate-CPW algorithm from
Section 4.2. We apply the Hermite normal form to have an n ×m′ instance, where m′ = m− n = 960. We
then apply the CPW algorithm to construct a list of x ∈ {0, 1}960 such that Ax (mod H) has coordinates
lying in {−1, 0} (in other words, there is a binary error vector e such that Ax+e ≡ 0 (mod H)). Finally we
exploit the birthday paradox to find a near collision between the remaining coordinates (here “near collision”
means that the difference of the coordinates lies in {−1, 0, 1}).

Let k = 16 and break up the matrix into 16 groups of 60 vectors each. For each group create an initial
list. We can control the size of the initial lists, as long as they are smaller than 260. The initial lists don’t
need to have the same size. We choose ℓ1 = 5, ℓ2 = 10, ℓ3 = 11, ℓ4 = 12 to perform our approximate merge.
These values can be obtained by solving the integer program described in Section 4.2, we only need to change
the constraint bt ≥ 0 (one solution survives at the bottom level) of the integer program in Section 4.2 to be
2bt+log2(3)·(n−

∑t
i=1 ℓi) ≥ log2(q)·(n−

∑t
i=1 ℓi), i.e. on the last level we want the size of the list to be large

enough to exploit the birthday paradox. As long as this size is sufficiently large, there exist two elements (a
near collision) x1,x2 such that A(x1−x2) has its remaining coordinates all coming from {−1, 0, 1}. Figure 2
shows the size of the lists in each level and other parameters. We eventually obtain a list of 283.45 elements
with 38 coordinates equal to {−1, 0}. Since 283.45+83.45326 ≈ 25726, obtaining a list of size 283.45 in the final
step of CPW is large enough to exploit the birthday paradox.

In summary, the maximum size of the lists is 283.88, so the space is proportional to 284. By Lemma 3 the
total running time is estimated to be 2104 bit operations; a 29 speed-up over the previous best method.

83.45

83.76

82.94

79.03

59.06

γ1 = 0

60

γ2 = 4

79.97

60

γ1 = 0

60

γ3 = 6

82.88

79.97

60

γ1 = 0

60

γ2 = 3

79.97

60

γ1 = 0

60

γ4 = 12

83.76

82.94

81.03

59.06

γ1 = 2

60

γ2 = 0

81.97

60

γ1 = 2

60

γ3 = 5

83.88

80.97

60

γ1 = 1

60

γ2 = 3

79.97

60

γ1 = 0

60

Fig. 2. Parameter choices and list sizes for the approximate-CPW algorithm for finding collisions in SWIFFT. As
stated above, we take ℓ1 = 5, ℓ2 = 10, ℓ3 = 11 and ℓ4 = 12. The values vi, being the number of most significant bits
we use for the hash in the cases when γi 6= 0, are v1 = v2 = 8 and v3 = v4 = 7. The numbers in the dotted box
denote the log

2
size of the list; the γi is used in the approximate-merge algorithm.

27

6 Ring-SIS

We consider the ring Rq = Zq[t]/(t
n + 1), where q is prime and n is typically a power of 2. For example,

the SWIFFT hash function is defined using q = 257 and n = 64. Ring elements are often represented as
tuples (a0, . . . , an−1) ∈ Z

n
q corresponding to the polynomial a0 + a1t+ · · ·+ an−1t

n−1. Define a subset X of
Rq as those polynomials with coefficients ai ∈ {0, 1}, or possibly {−1, 0, 1}. The Ring-SIS problem is, given
a1, . . . , am ∈ Rq, to find x1 . . . ,xm ∈ X such that 0 = a1x1 + · · ·+ amxm and not all xi = 0. The SWIFFT
hash function uses m = 16, giving 2mn = 21024 choices for (x1, . . . ,xm). One can find collisions in the
SWIFFT hash function by solving Ring-SIS with the set X being polynomials with coefficients ai ∈ {−1, 0, 1}.

All previous cryptanalytic work on the SWIFFT hash function ignored the ring structure and converted
the problem to (I)SIS. In this section we consider exploiting the ring structure to obtain a speedup. Our tool
is the map ψ : Rq → Rq given by ψ(a(t)) = ta(t). This is not a ring homomorphism. We will think of ψ as
an invertible linear map on the Zq-vector space Rq, and call it a “symmetry” (technically, we have a group
action). In terms of coefficient vectors, we have

ψ(a0, . . . , an−1) = (−an−1, a0, . . . , an−2).

Note that ψ has order 2n and that ψn = −1.
The key observation is that

ψ(ax) = ψ(a(t)x(t)) = ta(t)x(t) = a(t)(tx(t)) = aψ(x).

Hence, an orbit {ψi(ax) : 0 ≤ i < 2n} can be considered as a times the orbit of x. If the set X has the
property that ψ(X) = X then one can adapt the CPW algorithm to work with the set of orbits X/ψ rather
than the whole set X . The hope is that this gives a reduction by a factor 2n in the cost of all stages of the
algorithm.

For the parameters in SWIFFT we do not have ψ(X) = X . This is because X consists of polynomials with
coefficients in {0, 1}, whereas t64 = −1 and so large enough shifts of polynomials in X have some coefficients
equal to −1. So for the remainder of this section we restrict attention to cases where ψ(X) = X . This is
the case when the ring Rq is defined as Zq[t]/(t

n − 1), or if X is the set of polynomials with coefficients in
{−1, 0, 1}.

A remaining non-trivial issue is how to deal with quotients G/H . Our group G is now the additive group
of the ring Rq, and to have a well-defined action of ψ on the quotient G/H it is necessary that H be invariant
under ψ (i.e., ψ(H) = H). It might seem that this condition greatly restricts our possible choices for H , and
so does not allow arbitrary fine-tuning of the size of G/H . We now explain that for the parameters used in
SWIFFT no such obstruction arises.

The matrix representation of ψ with respect to the basis {1, t, . . . , tn−1} is

0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
0 0 0 · · · 1
−1 0 0 · · · 0

.

One can verify that, when q = 257 and n = 64, this matrix has n distinct eigenvalues (specifically, the 64
distinct 128-th roots of 1 in Z

∗
257). This happens since 128 | (257− 1), a choice that was taken so that t64+1

splits completely modulo q (which allows a nice search-to-decision reduction). This means that there is an
eigenbasis for ψ. With respect to this basis of Z64

257 the matrix representing ψ is diagonal. Hence, by taking
H to be the group generated by any 64− ℓ of these eigenvectors we have a ψ-invariant subgroup such that
#(G/H) = qℓ. In other words, the ring chosen for SWIFFT is the “best possible” choice for an attacker: if
tn + 1 did not split completely modulo q then the attacker’s job would likely be a little more difficult.

We now very briefly describe the CPW algorithm in the case when X consists of polynomials with
coefficients in {−1, 0, 1}. Suppose one wants to solve 0 = a1x1 + · · · + a16x16 using an 8-list algorithm.

28

The original CPW algorithm would choose a suitable subgroup H1 and compute lists L
(0)
i = {(a2i−1x2i−1 +

a2ix2i (mod H1),x2i−1,x2i) : x2i−1,x2i ∈ X} for 1 ≤ i ≤ 8. The size of each set L
(0)
i is roughly #X 2.

One then merges the sets by finding matches (a1x1 + a2x2 (mod H1),x1,x2) ∈ L
(0)
1 and (a3x3 + a4x4

(mod H1),x3,x4) ∈ L
(0)
2 such that a1x1+a2x2+a3x3+a4x4 ≡ 0 (mod H1). Our observation is that we also

have (ψi(a1x1 + a2x2) (mod H1), ψ
i(x1), ψ

i(x2)) ∈ L
(0)
1 and (ψi(a3x3 + a4x4) (mod H1), ψ

i(x3), ψ
i(x4)) ∈

L
(0)
2 , and these values satisfy

ψi(a1x1 + a2x2) + ψi(a3x3 + a4x4) ≡ 0 (mod H1).

Hence the idea is to store a single representative of each orbit. We now define the representative we use.

Definition 3. Let notation be as above, with q prime and 2n | (q−1). Let k = (q−1)/(2n) and let α1, . . . , αk

be coset representatives for Z∗
q/Z where Z = {z ∈ Z

∗
q : z2n = 1}. Suppose ψ has distinct eigenvalues λ1, . . . , λn

so that, with respect to the corresponding eigenbasis, ψ((s1, . . . , sn)
T) = (s1λ1, . . . , snλn)

T . Let s ∈ Rq/H
for any subgroup H such that ψ(H) = H. Then the equivalence class representative [s] of s is defined to be
the element of {ψi(s) : 0 ≤ i < 2n} such that [s] = (0, . . . , 0, αj, ⋆, . . . , ⋆) for some 1 ≤ j ≤ k and ⋆ denotes
an arbitrary element.

Note that [s] = (s1λ
i
1, s2λ

i
2, . . . , snλ

i
n)

T for some 0 ≤ i < 2n. Writing λj = λ
aj

1 one can write this as

(s1λ
i
1, s2λ

a2i
1 , . . . , snλ

ani
1)T .

To compute the class representative efficiently one uses a precomputed table of discrete logarithms with
respect to λ1. In the case of SWIFFT we can take α1 = 1 and α2 = 3.

Returning to the CPW algorithm. The idea is to store a single representative of each class, so that the

list L
(0)
1 becomes {([a1x1 + a2x2 (mod H1)],x1,x2) : x1,x2 ∈ X}. We store the specific pair (x1,x2) such

that [a1x1+a2x2 (mod H1)] = a1x1+a2x2 (mod H1). We now consider the merge operation. The question
is how to find all tuples (x1,x2,x3,x4) such that

a1x1 + a2x2 + a3x3 + a4x4 ≡ 0 (mod H1)

when given only the classes [a1x1 + a2x2 (mod H1)], [a3x3 + a4x4 (mod H1)]. In other words, we need to
determine all indices i, i′ such that

ψi(a1x1 + a2x2 (mod H1)) ≡ ψi′(−(a3x3 + a4x4 (mod H1))). (7)

Lemma 4. Suppose a quadruple (x1, x2, x3, x4) satisfies equation (7). Then [a1x1 + a2x2 (mod H1)] =
[a3x3+a4x4 (mod H1)]. Furthermore, if [a1x1+a2x2 (mod H1)] = a1x1+a2x2 (mod H1) and [a3x3+a4x4

(mod H1)] = a3x3 + a4x4 (mod H1) then i
′ = i.

Proof. Without loss of generality we can apply a suitable power of ψ to both sides, so that the left hand side
equals [a1x1 + a2x2 (mod H1)], and so is a normalised vector (0, · · · , 0, αj, ⋆, · · ·)T . The right hand side is

then ψi′′(−(a3x3 + a4x4 (mod H1))) for some integer i′′. To get equality it follows that the right hand side
is also a normalised vector, and so

ψi′′ (−(a3x3 + a4x4 (mod H1))) = [−(a3x3 + a4x4 (mod H1))].

The result follows. �

It follows that all matches in the merge algorithm can be found by simply checking equality of equivalence
class representatives. Hence, the merge algorithm is exactly the same as Algorithm 1.

It follows that the sizes of lists are reduced from 3n to roughly 3n/(2n) and that the merge time is reduced
correspondingly. There are some additional challenges in programming the algorithm, but they should not
lead to a slower program overall.

29

We now make a remark about success probability. The original CPW algorithm would have lists of size
3n, and they would be merged by checking a condition in G/H = Z

ℓ
q. The heuristic argument is that the

merged list would be of size roughly (3n)2/qℓ, and hence consist of around 32n/(2nqℓ) orbits under ψ. In
our new algorithm we have lists of size 3n/(2n) and, by Lemma 4, there is a unique match (namely, it is
sufficient to test equality of the normalised class representatives as in Definition 3). Since the number of
normalised class representatives is roughly qℓ/(2n) it follows that the size of the new list (whose entries are
class representatives) should be approximately (3n/2n)2/(qℓ/2n) ≈ 32n/(2nqℓ), which is consistent with the
original algorithm. This argument supports our claim in footnote 7 (Section 5.1) that the symmetries do not
negatively impact the success probability of these algorithms when applied to structured matrices.

These ideas do not lead to a better attack on SWIFFT for two reasons:

1. It seems hard to use this idea for Ring-ISIS (and hence inverting SWIFFT) because ψ does not fix the
inhomogenous term s. Also, in that case we would not have the required condition ψ(X) = X .
Instead, the main application seems to be finding collisions in SWIFFT by solving Ring-SIS.

2. We already have a speedup to the CPW algorithm by a factor of more than 2n, by using the Hermite
normal form and other ideas.

It is an open problem to combine the use of orbits under ψ with the Hermite normal form. We briefly
explain the issue. Solving Ring-SIS is finding x1, . . . ,x16 such that 0 = a1x1 + · · · + a16x16. Assuming
a16 ∈ Rq is invertible, the Hermite normal form is

0 = (a−1
16 a1)x1 + · · ·+ (a−1

16 a15)x15 + x16.

One then wants to perform an 8-list approximate-CPW algorithm on the sum of 15 elements. The problem
is that 8 does not divide 15, so when we split the sum of 15 terms into 8 blocks, we are unable to get a clean
division into a sum of ring elements. Of course, we can discard the ring structure and split the sum as we
did in Section 5.1. But since blocks no longer correspond to ring elements, we do not have an action by ψ
and hence do not seem to be able to achieve any speedup.

7 Experimental results

The purpose of this section is two-fold. First, to show that our time and space complexity estimates are
robust: the actual running-time of the algorithm follows from the bit complexity (and hence size) estimate.
Second, to show that our improved algorithms achieve the predicted speed-up in practice. To simulate
and compare the algorithms described previously, we consider two scenarios: the SIS inversion problem with
B = {0, 1}; and the SIS collision problem with B = {0, 1}. These experiments simulate the SWIFFT inversion
and collision problems, but with smaller parameters.

7.1 ISIS inversion B = {0, 1}.

The parameters we used here are n = 16, q = 11 and m ranges from 96 to 160. We compare the extended
k-tree algorithm (Minder-Sinclair variant of CPW) with our HNF improvement. We try 5000 instances for
each set of parameters starting with different random seeds. Table 4 shows the running-time comparison of
algorithms in five sets of parameters. As expected, the problems get easier as the density increases.

Experiment E1 denotes the extended k-tree (CPW) algorithm of Minder and Sinclair (see Section 2.6).
Experiment E2 denotes the same algorithm, but with the HNF improvement and using approximate merge
(see Section 4.2). Columns “#E” are the theoretical estimate of the maximum number of bits of storage used
at any stage of the algorithm during experiment E. The value m̃ in Column “m̃, ℓi (E)” denotes the actual
dimension we used (since for a given dimension m, it is sometimes better to reduce the dimension to get a
faster attack).11 The notation ℓi denotes the constraints for each level in the computation; when there are 3

11 This does not occur in Table 4, but we see it in Table 5. When the dimension can be reduced to an instance which
has been investigated previously, we do not repeat the experiment but just reproduce the experimental results from
the previous instance.

30

(respectively 4) values ℓi listed it means we are performing an 8-list (respectively 16-list) algorithm. Column
“T. E1/E2” denotes the average observed running-time (using a sage implementation run on cores of an
Intel 2.7GHz cluster) over 5000 trials for each set of parameters for experiment E. Column “succ. E1/E2”
denotes the success probability (at least one solution is found) by averaging over 5000 trials. It is noted that
our improved algorithms have comparable success probability to their counter-parts.

Table 4. Comparison of algorithms for ISIS inversion B = {0, 1}.

m m̃ and ℓi (E1) m̃ and ℓi (E2) #E1 #E2 T. E1/E2 succ. E1/E2

96 96, (2, 5, 9) 96, (2, 5, 9) 17.08 14.08 99.87s/8.30s 99.6% / 99.6%
104 104, (3, 5, 8) 104, (4, 2, 10) 15.62 12.41 30.68s/3.38s 69.7% / 69.5%
112 112, (4, 4, 8) 112, (4, 4, 8) 14.49 12.00 24.63s/3.39s 90.8% / 90.8%
128 128, (4, 4, 8) 128, (1, 4, 2, 9) 14.70 11.57 15.78s/2.05s 63.5% / 63.2%
160 160, (2, 4, 4, 6) 160, (3, 2, 3, 8) 13.08 10.33 8.43s/1.36s 83.4% / 83.5%

The actual running-time follows roughly from the size bound, but not exactly. For instance in algorithm
E1, dimension m = 128 can be reduced to m̃ = 112 which gives a better size bound (from 14.70 to 14.49).
However, the actual running-time for keeping m̃ = 128 is better than after reducing to 112. To get a more
accurate estimate, one can use the bit complexity estimate mentioned in previous sections.

7.2 Collision on B = {0, 1}.

We now consider the collision problem for the set B = {0, 1}. This simulates the SWIFFT collision problem.
Experiment E3 is the Howgrave-Graham-Joux “birthday attack” variant of the Minder-Sinclair CPW algo-
rithm. In other words, we do the CPW algorithm using parameters ℓ1, . . . , ℓt and then apply the birthday

paradox to the final list of entries in Z
n−(ℓ1+···+ℓt)
q . Experiment E4 is the same, but applying the HNF and

using approximate merge. The parameters are n = 16, q = 17, and m ranges from 96 to 176. The notation
used in Table 5 is analogous to that used in Table 4. Column “succ. E3/E4” also denotes the success proba-
bility by averaging over 5000 trials. By comparison, our improved algorithms take less time and have higher
success probability than their counter-parts.

Table 5. Comparison of algorithms for ISIS inversion B = {0, 1}.

m m̃ and ℓi (E3) m̃ and ℓi (E4) #E3 #E4 T. E3/E4 succ. E3/E4

96 88, (2, 3, 4) 96, (3, 2, 3) 15.39 10.34 23.58s/1.43s 45.3 % / 55.1%
128 128, (1, 3, 3, 2) 96, (3, 2, 3) 13.55 10.34 15.68s/1.43s 15.8 % / 55.1%
144 144, (1, 4, 3, 2) 144, (2, 2, 2, 3) 13.91 10.29 16.21s/1.57s 83.5% / 96.9%
160 160, (2, 3, 3, 2) 160, (3, 1, 2, 3) 12.85 9.94 8.32s/1.62s 67.5% / 89.2%
176 176, (3, 2, 3, 2) 176, (1, 1, 2, 2, 3) 12.50 9.59 7.38s/1.46s 50.9% / 78.2%

8 Conclusions and further work

We have explained how the Hermite normal form reduces the ISIS problem to an “approximate subset-sum”
problem, and we have given a variant of the CPW algorithm that can solve such problems. As a result, we
have given improved algorithms for inverting and finding collisions for the SWIFFT hash function. Our new
methods are approximately 500-1000 times faster than previous methods.

31

In Section 3 we have analysed the HGJ and BCJ algorithms for ISIS instances of density > 1. Figure 1
illustrates how these algorithms behave as the density grows. While these results are not of interest for
the SWIFFT hash function (as it has very high density), they may be relevant to the study of other ISIS
problems with small coefficient sets.

Section 4.3 discusses adapting the BCJ algorithm to the case of approximate ISIS (using HNF trick on
the original ISIS) and obtains an improved algorithm to solve ISIS. We believe these ideas will be of interest
to studying ISIS instances with low density and small coefficient sets.

Finally, Section 7 reports on extensive experiments with the CPW algorithm. These results confirm our
theoretical analysis, and demonstrate that applying the Hermite normal form to ISIS gives a significant
speedup in practice.

There are several questions remaining for future work. One important challenge is to develop algorithms
with lower storage requirements and that can be parallelised or distributed. We note that Pollard-rho-style
random walks do not seem to be useful as they lead to running times proportional to

√
qn, which is usually

much worse than the running times considered in this paper.
One final remark: Our general formulation of the HGJ/BCJ/CPW algorithms in terms of taking quotient

groups G/H suggests an explanation of why these algorithms cannot be applied to solve the elliptic curve
discrete logarithm problem. If G = E(Fq) is an elliptic curve group of prime order then there are no suitable
subgroups H to apply quotients.

References

1. Yuriy Arbitman, Gil Dogon, Vadim Lyubashevsky, Daniele Micciancio, Chris Peikert and Alon Rosen, SWIFFTX:
A Proposal for the SHA-3 Standard. Submitted to NIST SHA-3 Competition.

2. Anja Becker, Jean-Sébastien Coron and Antoine Joux, Improved Generic Algorithms for Hard Knapsacks, in K.
G. Paterson (ed.), EUROCRYPT 2011, Springer LNCS 6632 (2011) 364–385.

3. Daniel J. Bernstein, Better price-performance ratios for generalized birthday attacks, in Workshop Record of
SHARCS07, (2007) http://cr.yp.to/papers.html#genbday

4. Daniel J. Bernstein, Tanja Lange, Ruben Niederhagen, Christiane Peters and Peter Schwabe, FSBday: Imple-
menting Wagner’s generalized birthday attack against the SHA-3 round-1 candidate FSB, in B. K. Roy and N.
Sendrier (eds.), INDOCRYPT 2009, Springer LNCS 5922 (2009) 18–38.

5. Johannes Buchmann and Richard Lindner, Secure Parameters for SWIFFT, in B. Roy and N. Sendrier (eds.),
INDOCRYPT 2009, LNCS 5922 (2009) 1–17.

6. Paul Camion and Jacques Patarin, The Knapsack Hash Function proposed at Crypto’89 can be broken, in D.
W. Davies (ed.), EUROCRYPT 1991, Springer LNCS 547 (1991) 39–53.

7. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein, Introduction to algorithms, 2nd
ed., MIT press, 2001.

8. Matthijs J. Coster, Antoine Joux, Brian A. LaMacchia, Andrew M. Odlyzko, Claus-Peter Schnorr, and Jacques
Stern, Improved low-density subset sum algorithms, Computational Complexity, 2:111-128, 1992.

9. Itai Dinur, Orr Dunkelman, Nathan Keller and Adi Shamir, Efficient Dissection of Composite Problems, with
Applications to Cryptanalysis, Knapsacks, and Combinatorial Search Problems, in R. Safavi-Naini and R. Canetti,
CRYPTO 2012, Springer LNCS 7417 (2012) 719–740.

10. Matthieu Finiasz and Nicolas Sendrier, Security Bounds for the Design of Code-Based Cryptosystems, In: Matsui,
M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 88105. Springer, Heidelberg (2009)

11. Nick Howgrave-Graham, Joseph H. Silverman and William Whyte, A meet-in-the-middle attack on an NTRU
private key, Technical Report 004, NTRU Cryptosystems, Jun 2003.

12. Nick Howgrave-Graham and Antoine Joux, New Generic Algorithms for Hard Knapsacks, in H. Gilbert (ed.),
EUROCRYPT 2010, Springer LNCS 6110 (2010) 235–256.

13. Nick Howgrave-Graham and Antoine Joux, New Generic Algorithms for Hard Knapsacks (preprint), 17 pages
(undated). Available from www.joux.biz/publications/Knapsacks.pdf

14. Nick Howgrave-Graham, A Hybrid Lattice-Reduction and Meet-in-the-Middle Attack Against NTRU, in A.
Menezes (ed.), CRYPTO 2007, Springer LNCS 4622 (2007) 150–169.

15. Jeffrey C. Lagarias and Andrew M. Odlyzko, Solving low-density subset sum problems, J. ACM, 32(1):229-246,
1985.

32

16. Vadim Lyubashevsky, On Random High Density Subset Sums, Electronic Colloquium on Computational Com-
plexity (ECCC) 007 (2005)

17. Vadim Lyubashevsky, Daniele Micciancio, Chris Peikert and Alon Rosen, SWIFFT: A Modest Proposal for FFT
Hashing, in K. Nyberg (ed.), FSE 2008, Springer LNCS 5086 (2008) 54–72.

18. Daniele Micciancio and Chris Peikert, Hardness of SIS and LWE with Small Parameters, in R. Canetti and J. A.
Garay (eds.), CRYPTO 2013, Springer LNCS 8042 (2013) 21–39.

19. Daniele Micciancio and Oded Regev, Lattice-based cryptography, in D. J. Bernstein, J. Buchmann and E. Dahmen
(eds.), Post Quantum Cryptography, Springer (2009) 147–191.

20. Lorenz Minder and Alistair Sinclair, The Extended k-tree Algorithm, J.Cryptol. 25 (2012) 349–382.
21. Richard Schroeppel and Adi Shamir, A T = O(2n/2), S = O(2n/4) Algorithm for Certain NP-Complete Problems,

SIAM J. Comput. No. 3 (1981) 456–464.
22. Andrew Shallue, An Improved Multi-set Algorithm for the Dense Subset Sum Problem, in A. J. van der Poorten

and A. Stein (eds.), ANTS 2008, Springer LNCS 5011 (2008) 416–429.
23. David Wagner, A Generalized Birthday Problem, in M. Yung (ed.), CRYPTO 2002, Springer LNCS 2442 (2002)

288–303.

33

