
Improved Combinatorial Algorithms for the Inhomogeneous Short
Integer Solution Problem

Shi Bai1, Steven D. Galbraith2, Liangze Li3, Daniel Sheffield2.

1 Department of Mathematical Sciences, Florida Atlantic University, Boca Raton, USA.
2 Department of Mathematics, University of Auckland, Auckland, New Zealand.

3 School of Mathematical Sciences, Peking University, Beijing, China.

Abstract. The paper is about algorithms for the inhomogeneous short integer solution problem: Given
(A, s) to find a short vector x such that Ax ≡ s (mod q). We consider algorithms for this problem due
to Camion and Patarin; Wagner; Schroeppel and Shamir; Minder and Sinclair; Howgrave-Graham and
Joux (HGJ); Becker, Coron and Joux (BCJ). Our main results include: Applying the Hermite normal
form (HNF) to get faster algorithms; A heuristic analysis of the HGJ and BCJ algorithms in the case
of density greater than one; An improved cryptanalysis of the SWIFFT hash function; A new method
that exploits symmetries to speed up algorithms for Ring-SIS in some cases.

This paper is published in Journal of Cryptology, Volume 32, Issue 1 (2019) 35–83.

Keywords: Short integer solution problem (SIS), SWIFFT hash function, subset-sum, knapsacks.

1 Introduction

The subset-sum problem (also called the knapsack problem) is: Given positive integers a1, . . . , am and an
integer s, to compute a vector x = (x1, . . . , xm) ∈ {0, 1}m if it exists, such that

s =

m∑
i=1

aixi.

It is often convenient to write a = (a1, . . . , am) as a row and x = (x1, . . . , xm)T as a column so that s = ax.
The modular subset-sum problem is similar: Given a modulus q, integer vector a and integer s to find
x ∈ {0, 1}m, if it exists, such that s ≡ ax (mod q).

The vector version of this problem is called the inhomogeneous short integer solution problem (ISIS):
Given a modulus q, a small set B ⊆ Z that contains 0 (e.g., B = {0, 1} or {−1, 0, 1}), an n ×m matrix A
(where typically m is much bigger than n), and a column vector s ∈ Znq to find a column vector x ∈ Bm (if
it exists) such that

s ≡ Ax (mod q). (1)

If we want to be more precise we call this the (m,n, q,B)-ISIS problem. The original short integer solution
problem (SIS) is the case s = 0, in which case it is required to find a solution x ∈ Bm such that x 6= 0. Our
algorithms solve both problems.

We unify the subset-sum and ISIS problems as the (G,m,B)-ISIS problem where G is an abelian group
(written additively and viewed as a Z-module), m an integer and B a small subset of Z that contains 0.
Given m group elements and a target group element from G, the (G,m,B)-ISIS problem is to write the target
element as an integral linear combination with coefficients in B of the given m group elements. Micciancio [22]
gave a similar generalisation that he called “generalization of the compact knapsack problem to arbitrary
rings” but his paper mostly considers the special case of a ring with a “convolution” product (similar to the
rings used in NTRU). Gama, Izabachène, Nguyen and Xie [13] provide a similar abstraction but focus on the
worst-to-average reduction of the so-called generalized SIS/LWE problem. Our work mainly focuses on the
cryptanalysis aspects. The three motivating examples for the group are G = Z, G = Zq and G = Znq . In the

1

latter two cases we consider the following distribution on ISIS instances parameterised by m ∈ N: Sample
uniformly A ∈ Gm and s ∈ G, and a solution is any vector x ∈ Bm (if one exists) such that s = Ax. In the
case G = Z one would need to specify a distribution on elements of Zm in order to define a distribution on
ISIS instances. We do not explore the case G = Z in this paper, as our algorithms are suited to the modular
case.

We now define the density of an ISIS instance, generalising a standard concept in the subset-sum prob-
lem over Z with B = {0, 1}. If one chooses the integers ai in a subset-sum instance uniformly in an in-
terval {0, 1, . . . , B} ⊂ Z then max{ai} ≈ B and the standard definition of density is m/ log2(max{ai}) ≈
m/ log(B) = log(#Bm)/ log(B). Taking G = ZB , our definition below gives density m/ log(B). For our
purposes it is also convenient to define an alternative notion of density that we call exponential-density.

Definition 1. Let G be a finite group. The density of a (G,m,B)-ISIS instance is m log(#B)
log(#G) . The exponential-

density of a (G,m,B)-ISIS instance is δ = (#B)m

#G .

To interpret exponential-density we recall the notion of regularity. Lemma 1 of Ajtai [2] proves regularity
of this construction for any finite abelian group G and B = {0, 1}, meaning that for any ε > 0 there is
an integer m so that if A is a randomly chosen vector in Gm then the statistical distance of the uniform
distribution on G from the distribution {Ax : x ∈ {0, 1}m} is at most ε. In light of this result, it is natural
to model the values Ax over x ∈ {0, 1}m as if they are sampled independently and uniformly from G. We
state this heuristic assumption precisely as Heuristic 1 below. With Heuristic 1, when δ < 1 we consider the
exponential-density to be a close approximation to the probability, given uniform s, that there is a solution
x ∈ Bm for the equation s = Ax. Similarly, when δ > 1 we consider δ to be a close approximation to the
average size of the solution set {x ∈ Bm : s = Ax}.

Throughout the paper the phrases “low density” and “high density” are used informally, and are consistent
with either definition of density. If #Bm is much smaller than #G then we say the (G,m,B)-ISIS problem
has low density. If #Bm ≈ #G then we say we are in the density 1 case. If #Bm is much larger than #G
then we are in the high density case.

The ISIS problem has applications in lattice-based cryptography. For example, inverting the SWIFFT
hash function of Lyubashevsky, Micciancio, Peikert and Rosen [21] is solving (1024, 64, 257, {0, 1})-ISIS. Since
this function is a compression function (mapping 1024 bits to about 512 bits) it corresponds to a very high
density instance of ISIS. The security level of SWIFFT claimed in [21] is “to find collisions takes time at
least 2106 and requires almost as much space, and the known inversion attacks require about 2128 time and
space”.4 Note that the main contribution of the SWIFFT paper [21] was to propose and implement the
new hash function, and hence only provided a very informal security estimate. Our estimates are that the
algorithms sketched in [21] actually require around 2148 and 2153 bit operations respectively. Appendix B
of [16] (an early version of [15]) gives an improved collision attack, exploiting the birthday paradox, using
lists of size 296 (surprisingly this result is missing in the published version [15]). Our estimates are that this
algorithm requires around 2115 bit operations. The unpublished preprint of Kirchner [19] claims a collision
attack on SWIFFT that requires 2109 bit operations, but the method is sketchy and no detailed analysis is
given. We remark that a stronger variant of the SWIFFT hash function has also been proposed [1], but we
do not discuss it further in this paper.

It is known that one can try to solve both subset-sum and ISIS using lattice methods (for example, reduc-
ing to the closest vector problem (CVP) or shortest vector problem (SVP) in certain lattices of dimension
m or m+ 1). For instance, given an ISIS problem s ≡ Ax (mod q), one can reduce it to CVP: we consider
the lattice Λ⊥q (A) = {y ∈ Zm : Ay ≡ 0 (mod q)} and find any vector w ∈ Zm such that Aw ≡ s (mod q),

then solve the CVP problem (for lattice Λ⊥q (A) and target point w) to find some y close to w and so returns
w− y as the ISIS solution.

The focus in this paper is on combinatorial algorithms that are based on time-memory tradeoffs. In
particular, all approaches described in this paper use exponential storage. In another direction, recent work

4 We remark that generic hash function collision algorithms such as parallel collision search would require at least
2256 bit operations. Hence we do not consider such algorithms further in this paper.

2

of Bansal, Garg, Nederlof and Vyas [3] gives a rigorous space-efficient algorithm for the integer subset-sum
problem that runs in Õ(20.86m). By comparison, our heuristic algorithms aim to minimize the time-complexity
and are exponentially faster (but also take more space). The main application is to help select parameters for
lattice-based cryptosystems: it is important to take into account both lattice algorithms and combinatorial
algorithms to determine the concrete security level.

In this work, we assume that the set B is rather small (e.g., B = {0, 1} or {−1, 0, 1}). Some previous
algorithms of this type for the subset-sum and ISIS problems are due to: Schroeppel and Shamir; Camion
and Patarin; Wagner; Minder and Sinclair; Howgrave-Graham and Joux; Becker, Coron and Joux. We will
recall the previous algorithms in Section 2. It can be seen that the Camion-Patarin/Wagner (CPW) and
Minder-Sinclair methods are suitable for very high density instances (such as SWIFFT), while the other
methods are more suitable for low density instances.

1.1 Our contributions

Our contribution is to give a general framework that unifies the subset-sum, modular subset-sum and ISIS
problems. We show that the algorithms by Schroeppel and Shamir, Camion and Patarin, Wagner, Minder-
Sinclair, Howgrave-Graham and Joux, Becker-Coron-Joux can be used to solve these generalised problems.
The four technical contributions of our paper are:

1. To develop variants of these algorithms for the approximate-ISIS problem (namely s ≡ Ax + e (mod q)
for a “small” e), which itself arises naturally when one takes the Hermite normal form of an ISIS instance.

2. To study the Howgrave-Graham and Joux (HGJ) and Becker-Coron-Joux (BCJ) methods in the case of
instances of density greater than one. We give in Figure 1 of Section 3 a comparison of the HGJ, BCJ
and CPW algorithms as the density grows.

3. To give improved cryptanalysis5 of the SWIFFT hash function [21] by reducing it to approximate-ISIS.
We reduce the collision attack time from around 2113 to around 2104 bit operations (this corresponds to
a speed-up of factor ≈ 500). We also reduce inverting time by a factor of ≈ 1000. We stress that our
algorithms do not break the SWIFFT hash function, as our running times are not significantly faster
than the informal security estimate (lower bound) of 2106 stated in [21].

4. The SWIFFT hash function and many other cryptographic problems (such as NTRU) are actually based
on the Ring-SIS or Ring-ISIS problems (see Section 6). The previous analysis of these algorithms has
ignored the ring structure. In Section 6 we sketch how to speed up algorithms for Ring-SIS by exploiting
symmetries. Our main insight is to choose a suitable eigenbasis that allows to include symmetries into
our general framework for the algorithms. These ideas do not seem to be compatible with the use of
the Hermite normal form, and so do not give further improvements to our attacks on the SWIFFT hash
function.

1.2 Related literature

There is an extensive literature on the approximate subset-sum problem over Z (given s ∈ Z to find x
such that s ≈ ax) including polynomial-time algorithms (see Section 35.5 of [9]). These algorithms exploit
properties of the usual ordering on Z and do not seem to be applicable to ISIS. Indeed, such algorithms cannot
be directly applied to the modular subset-sum problem either, though the modular subset-sum problem can
be lifted to polynomially many instances of the subset-sum problem over Z and then the approximate subset-
sum algorithms can be applied. Hence, even though the algorithms considered in our paper can be applied
to the subset-sum and modular subset-sum problems, our main interest is in the ISIS problem.

5 We remark that in [7], the authors claimed that finding pseudo-collisions for SWIFFT is comparable to breaking
a 68-bit symmetric cipher. Their method is to reduce to the sublattices of dimension 206. However the pseudo-
collision is not useful to find real collisions for SWIFFT, since in dimension 206 the real collisions for SWIFFT
almost certainly do not exist.

3

2 Algorithms to solve subset-sum/ISIS

In this section we give a general framework for discussing the algorithms of Camion and Patarin, Wagner,
Minder and Sinclair, Howgrave-Graham and Joux, Becker, Coron and Joux. Previously they were always
discussed in special cases. First we define the problem. Then, in Section 2.1 we list the algorithms and their
complexities. Section 2.2 presents the general framework and Section 2.3 presents our generalised merge
algorithm. The remainder of the section is to show that all previous algorithms can be described and unified
as special cases of our general framework.

Definition 2. Let G be a finite abelian group, m an integer and B a small subset of Z that contains 0. The
(G,m,B)-ISIS problem is defined as follows. An instance of the problem is a pair (A, s) with A ∈ Gm and
s ∈ G, and a solution is any vector x ∈ Bm (if one exists) such that s = Ax.

The weight of a solution x is defined to be wt(x) = #{i : 1 ≤ i ≤ m,xi 6= 0}. Let ω ∈ N. The weight-ω
(G,m,B)-ISIS problem is: Given (A, s), to compute a solution x ∈ Bm such that s = Ax in G and wt(x) = ω.

Our two main examples for the group are G = Zq and G = Znq .

2.1 Brief survey of previous methods

It is straightforward that one can solve the (G,m, {0, 1})-ISIS problem in Õ(2m/2) time and the same storage
using birthday methods.

Schroeppel and Shamir [26] showed how to match this running time but use considerably less space. A
better variant of the Schroeppel-Shamir algorithm was given by Howgrave-Graham and Joux [15]. We briefly
recall some details in Section 2.4.

The important paper of Howgrave-Graham and Joux [15] (HGJ) broke the Õ(2m/2) barrier, giving a
heuristic algorithm to solve the density-one subset-sum in time Õ(20.337m) and storage around Õ(20.256m).
Note that [15] presents algorithms for the traditional subset-sum problem, but Section 6 of [15] mentions that
the methods should be applicable to variants of the subset-sum problem including approximate subset-sum,
vector versions of subset-sum (i.e., ISIS), and different coefficient sets (e.g., xi ∈ {−1, 0, 1}). Our paper thus
addresses these predictions from [15]; we give the details in Section 2.7. We also answer the question written
in [15] that “It would be interesting to re-evaluate the security of SWIFFT with respect to our algorithm.”
(The answer is that the SWIFFT hash function has very high density, and so the HGJ algorithm is not faster
than other methods; see final paragraph of Section 3.1.)

Becker, Coron and Joux [4] (BCJ) gave some improvements to the HGJ method (also restricted to the
setting of subset-sum). We sketch the details in Section 2.8.

The basic idea of the so-called k-tree algorithm was rediscovered several times. Camion and Patarin [8]
gave an algorithm for solving high density subset-sum instances, and similar ideas were used by Wagner [28]
for solving the “k-sum problem”. We will refer to these ideas as the CPW algorithm and present it in
Section 2.5. The work of Minder and Sinclair [25] explained how to use these ideas more effectively (we
sketch the details in Section 2.6).

Lyubashevsky [20] noted that the CPW algorithm can be applied to solve high density subset-sum
problems. Shallue [27] extended Lyubashevsky’s work. Lyubashevsky, Micciancio, Peikert and Rosen [21]
explain that the CPW algorithm can be applied to solve ISIS in the high density case (inverting the SWIFFT
hash function is a very high density case of ISIS).

2.2 A general framework

All the algorithms mentioned above work by reducing to simpler problems (meaning, smaller solution space)
of higher density. In our general framework we express this by taking quotients. Indeed, the main conceptual
idea of all these algorithms is that high-density instances are easier to solve using brute-force/meet-in-middle
ideas, so we try to reduce the problem to a simpler problem of high density.

The algorithms feature two basic operations (possibly recursively):

4

1. Compute lists of solutions to some constrained problem obtained by “splitting” the solution space (i.e.,
having a smaller set of possible x) in a quotient group G/H. Splitting the solution space lowers the
density, but working in the quotient group G/H compensates by raising the density again.

2. Merge two lists of solutions to give a new list of solutions in a larger quotient group G/H ′. (In the final
stage of the algorithm we will have H ′ = {0} so that G/H ′ ∼= G.)

The algorithms differ primarily in the way that splitting is done.
We now introduce our notation of quotients, which will allow us to unify the previous work. Let H be

a subgroup of G and write G/H for the quotient. Since the map G → G/H is a group homomorphism, an
instance s = Ax in G reduces to an instance s ≡ Ax (mod H) in G/H. The exponential-density increases

from (#B)m

#G to (#B)m

#(G/H) , since the number of possible targets s (mod H) is reduced while the number of inputs

x remains the same. Of course, not every solution to the reduced problem will correspond to a solution to
the original problem. But for suitable parameters one may recover the original solution in G by “merging”
the solutions in G/H. This merging step will be detailed in Subsection 2.3.

In practice we will employ this idea in the following ways: for G = Z then take H = MZ and G/H = ZM ;
for G = Zq and M | q then take H = MZq and G/H ∼= ZM ; for G = Znq and 1 ≤ ` < n then take

H = {(0, . . . , 0, g`+1, . . . , gn)T : gi ∈ Zq} ∼= Zn−`q so that G/H ∼= Z`q.

Remark 1. Our general framework allows to consider the CPW algorithm for subset-sum and modular subset-
sum. To have the above decomposition one needs the modulus in the modular subset-sum problem to have
factors of a suitable size (in other words, to have suitable subgroups). However, it does not necessarily mean
that a group with no subgroups is immune to combinatorial algorithms of the other types. Indeed, Wagner
and Lyubashevsky described approaches for modular subset-sum using sub-intervals instead of quotients (for
further details we refer to Lyubashevsky [20]). We also mention the work of Shallue [27], which gives a rigorous
analysis of the CPW algorithm for the modular subset-sum problem. Similarly, our general formulation in
terms of taking quotient groups G/H cannot be applied to solve the elliptic curve discrete logarithm problem.
If G = E(Fq) is an elliptic curve group of prime order then there are no suitable subgroups H to apply
quotients. There may be other techniques available when suitable subgroups are not available. We leave this
problem for future work.

We also remark that high density instances can often be reduced to smaller dimensional instances having
density approximately one: Choose a suitable integer ` (i.e., so that (#B)m−` ≈ #G) and set ` entries of x to
be zero. Delete the corresponding elements/columns from A to get an n×(m−`) matrix A′ and let x′ be the
corresponding solution vector in Zm−`. Then solve the problem A′x′ = s in G. Since the number of possible
targets remains the same while the number of inputs x′ is reduced to (#B)m−`, the exponential-density of

the new problem is (#B)m−`

#G ≈ 1. When evaluating algorithms for high density ISIS we must always compare
them against the best low-density algorithms when applied to the reduced problem.

2.3 The merge algorithm

We now introduce the notation to be used throughout. Let X ⊆ Bm be a set of coefficients. We will always
be working with a set of subgroups {Hi : 1 ≤ i ≤ t} of G such that, for each pair 1 ≤ i < j ≤ t
we have #(G/(Hi ∩ Hj)) = #(G/Hi) · #(G/Hj). All algorithms involve splitting the set of coefficients
X ⊆ X1 + X2 = {x1 + x2 : x1 ∈ X1,x2 ∈ X2} in some way (for example, by positions or by weight).

We consider one step of the merge algorithm6. Let H[, H,H] be subgroups of G that denote subgroups
used in the CPW/HGJ/BCJ algorithms. We are merging modulo H a pair of lists L1 and L2 that are “partial
solutions” modulo H[. In other words, the output is a set of solutions to the problem Ax ≡ s (mod H ∩H[)
for x ∈ X . For future processing, the output includes information about Ax (mod H]). The details are
given as Algorithm 1.

6 The word “merge” is not really appropriate as we are not computing a union or intersection of lists, but forming
sums x1 +x2 where x1 ∈ L1 and x2 ∈ L2. However, it is the name used by several previous authors so we continue
to use it. The meaning should be clear in the context.

5

Algorithm 1 Basic merge algorithm

Input: L1 = {(x,Ax (mod H)) : Ax ≡ R (mod H[),x ∈ X1},
L2 = {(x,Ax (mod H)) : Ax ≡ s−R (mod H[),x ∈ X2}

Output: L = {(x,Ax (mod H])) : Ax ≡ s (mod H ∩H[),x ∈ X}
1: Initialise L = {}
2: Sort/Hash L2 with respect to the second coordinate (Ax)
3: for (x1,u) ∈ L1 do
4: Compute v = s− u (mod H)
5: for (x2,v) ∈ L2 do
6: if x1 + x2 ∈ X then
7: Compute A(x1 + x2) (mod H])
8: Add (x1 + x2,A(x1 + x2) (mod H])) to L

The running time of the algorithm depends on the cost of sorting/hashing L2 and searching v in L2 for
every u in L1, which is for example, O(#L2 log2(#L2) + #L1 log2(#L2)) i.e., Õ(max(#L1,#L2)). How-
ever, the time is often dominated by the total number of pairs (x1,x2) considered in the algorithm, and
this depends on how many values u give rise to matches between the two lists L1 and L2. Assuming the
function from X to G/H given by x 7→ Ax (mod H) is regular, the total number of (x1,x2) pairs such that
A(x1 + x2) ≡ s (mod H) can be approximated by #L1 ·#L2/#(G/H). Hence, the heuristic running time
is Õ(max{#L1,#L2,#L1#L2/#(G/H)}). (This analysis includes the correction by May and Meurer to the
analysis in [15], as mentioned in Section 2.2 of [4].)

Another remark is that, in many cases, it is non-trivial to determine the size of the output list L. Instead,
this can be heuristically estimated by #X/#(G/(H ∩H[)).

2.4 Schroeppel and Shamir algorithm

Schroeppel and Shamir [26] noted that by using 4 lists instead of 2 one could get an algorithm for subset-sum
over Z with running time (#B)m/2 but with storage growing proportional to (#B)m/4. (Their presentation
is more general than just subset-sum over Z.)

Howgrave-Graham and Joux obtained this result in a much simpler way by using reduction modulo M
and Algorithm 1. Our insight is to interpret reduction modulo M as working in a quotient group G/H.
It immediately follows that the HGJ formulation of the Schroeppel-Shamir algorithm is applicable to the
(G,m,B)-ISIS problem, giving an algorithm that requires time proportional to (#B)m/2 and space propor-
tional to (#B)m/4. Since our goal is to discuss improved algorithms, we do not give the details here.

Dinur, Dunkelman, Keller and Shamir [11] have given improvements to the Schroeppel-Shamir algorithm,
in the sense of getting a better time-memory curve. However, their methods always require time at least
(#B)m/2. Since we are primarily concerned with reducing the average running time, we do not consider their
results further.

2.5 Camion and Patarin/Wagner algorithm (CPW)

The CPW algorithm is applicable for instances of very high density. It splits the solution space into sets of
vectors of shorter length and solves the split sub-problems. It was first proposed by Camion and Patarin for
subset-sum, and then by Wagner in the additive group Zm2 (and some other settings).

Section 3 of Micciancio and Regev [24] notes that the algorithm can be used to solve (I)SIS. We will
describe the algorithm for the general (G,m,B)-ISIS problem.

Let k = 2t be a small integer such that k | m. Let H1, · · · , Ht be subgroups of the abelian group G such
that

G ∼= (G/H1)⊕ · · · ⊕ (G/Ht). (2)

Precisely we need that G/(Hi1 ∩Hi2) ∼= (G/Hi1)⊕ (G/Hi2) for any 1 ≤ i1 < i2 ≤ t and H1 ∩ · · · ∩Ht = {0}.
One can think of this as being like a “Chinese remainder theorem” for G: there is a one-to-one correspondence

6

between G and the set of t-tuples (g (mod H1), . . . , g (mod Ht)). In this subsection, we take that #(G/Hi)
is roughly (#G)1/(t+1) for 1 ≤ i < t and #(G/Ht) ≈ (#G)2/(t+1). The work of Minder and Sinclair [25]
obtains improvements over the CPW algorithm by relaxing these conditions.

We now give specific examples of such subgroups for the case G = Znq . Let ` ∈ N be such that ` ≈ n/(t+1).

Then we choose the subgroup H1 = {(0, . . . , 0, g`+1, . . . , gn)T : gi ∈ Zq} such that G/H1
∼= Z`q corresponds

to truncating the first ` positions of the vector. Similarly, G/H2 corresponds to the next ` positions of the
vector (so H2 = {(g1, . . . , g`, 0, . . . , 0, g2`+1, . . . , gn)T : gi ∈ Zq}). Finally, G/Ht corresponds to the last ≈ 2`
positions of the vector. The “splitting” in the CPW approach is by positions. To be precise, let u = m/k
and define X1 = {(x1, . . . , xu, 0, . . . , 0) ∈ Bm} and for 2 ≤ j ≤ k define

Xj = {(0, . . . , 0, x(j−1)u+1, . . . , xju, 0, . . . , 0) ∈ Bm}.

Level 0: The CPW algorithm works by first constructing k = 2t lists L
(0)
j = {(x,Ax (mod H1)) : x ∈ Xj}

for 1 ≤ j ≤ k− 1 and L
(0)
k = {(x,Ax− s (mod H1)) : x ∈ Xk}. Each list consists of #Xj = (#B)u elements

and can be computed in O((#B)u) = O((#B)m/2
t

) operations in G. (To optimise the running time one only
computes Ax (mod H1) at this stage.)

Level 1: Use Algorithm 1 to merge the lists from level 0 to compute the k/2 new lists L
(1)
1 , . . . , L

(1)
k/2. Note

that for 1 ≤ j ≤ k/2 − 1 each element of L
(1)
j corresponds to a pair (x1,x2) ∈ L

(0)
2j−1 × L

(0)
2j such that

A(x1 + x2) ≡ 0 (mod H1) and L
(1)
k/2 contains pairs (x1,x2) ∈ L(0)

k−1 × L
(0)
k such that A(x1 + x2) − s ≡ 0

(mod H1). In other words, the new lists L
(1)
j for 1 ≤ j ≤ k/2 contain elements x1 + x2 that are “correct” for

the quotient G/H1. To optimise the running time one only computes A(x1 + x2) (mod H2) when working
at this level, rather than the full values A(x1 + x2) ∈ G. The output of the algorithm is k/2 new lists, for

1 ≤ j ≤ k/2−1, L
(1)
j = {(x1 +x2,A(x1 +x2) (mod H2)) : A(x1 +x2) ≡ 0 (mod H1),x1 ∈ X2j−1,x2 ∈ X2j},

and L
(1)
k/2 = {(x1 + x2,A(x1 + x2) (mod H2)) : A(x1 + x2)− s ≡ 0 (mod H1),x1 ∈ Xk−1,x2 ∈ Xk}.

Level i ≥ 2: Use Algorithm 1 to merge the lists L
(i−1)
2j−1 and L

(i−1)
2j from level i−1. The output of the algorithm

is k/2i lists L
(i)
j containing elements that are “correct” for the quotientG/(H1∩· · ·∩Hi). Precisely, for 1 ≤ j ≤

k/2i−1, L
(i)
j = {(x1+x2,A(x1+x2) (mod Hi+1)) : A(x1+x2) ≡ 0 (mod Hi),x1 ∈ L(i−1)

2j−1 ,x2 ∈ L(i−1)
2j } and

L
(i)
k/2i = {(x1 + x2,A(x1 + x2) (mod Hi+1)) : A(x1 + x2)− s ≡ 0 (mod Hi),x1 ∈ L(i−1)

k/2i−1−1,x2 ∈ L(i−1)
k/2i−1}.

Level t: Merge the two lists L
(t−1)
1 and L

(t−1)
2 to get one list L

(t)
1 by ensuring the solutions are correct

modulo Ht. In other words the list contains elements that are “correct” for G/(H1 ∩ · · · ∩ Ht) = G. The
output of Algorithm 1 at this stage is a list

L
(t)
1 = {x1 + x2 : A(x1 + x2)− s ≡ 0 (mod Ht),x1 ∈ L(t−1)

1 ,x2 ∈ L(t−1)
2 }

= {x ∈ Bm : Ax = s}.

Success Probability. Note that the algorithm is deterministic, but we can consider the probability over
uniformly chosen problem instances (A, s) that it gives a correct result. The heuristic analysis of the success

probability is based on analyzing the expected size of lists in the algorithm: if L
(t)
1 is not empty, the CPW

algorithm succeeds to find a solution for (I)SIS. We rely on the following heuristic, which is a stronger version
of the regularity of knapsack functions (see Section 4.1 of Micciancio [22] or Ajtai [2]).

Heuristic 1 We may model the elements Ax (mod Hi) (and Ax− s (mod Hi)) in the lists for merging as
uniformly and independently sampled from G/Hi.

7

Assuming this heuristic, the expected size of the lists on each level is (omitting subscripts)

#L(0) ≈ (#B)m/2
t

,

#L(i) ≈ #L(i−1) ·#L(i−1)

q`
for 1 ≤ i ≤ t− 1,

#L(t) ≈ #L(t−1) ·#L(t−1)

q2`
.

To have #L
(t)
1 ≈ 1, the standard argument is that we want the lists L(1), . . . , L(t−1) to all be roughly the

same size. It follows that we desire ` ≈ n/(t+ 1), (#B)2m/k/(#G)1/(t+1) ≈ (#B)m/k and so (#G)1/(t+1) ≈
(#B)m/k (i.e., 2t/(t+ 1) ≈ log2((#B)m)/ log2(#G)). Then the final list at level t has expected size ≈ 1. We
refer to [8, 28, 24, 21, 25] for full details and heuristic analysis.

Lyubashevsky [20] and Minder and Sinclair [25] provide some rigorous analysis of the success probability
(over random instances) of the CPW algorithm that supports the validity of the heuristic analysis.

Running Time. In practice for a given (I)SIS instance, the parameters (#B), (#G) and m are given. One

takes k = 2t to be as large as possible subject to the constraint (#B)m/2
t ≥ (#G)1/(t+1); in other words

t is the largest integer such that 2t/(t + 1) ≤ log2((#B)m)/ log2(#G). Hence the size of k is governed by
the density of the instance (higher density means larger k). When the density is 1 (i.e., (#B)m ≈ (#G))
then we need to have k = 1 + log2(k) and hence k = 2, and the CPW algorithm becomes the trivial
“meet-in-the-middle” method.

Lowering the Density. Assume that, for some integer t, the exponential-density for the (I)SIS instance (where
G = Znq) satisfies the constraint:

2t−1

t
<

log2((#B)m)

log2(qn)
<

2t

t+ 1
, (3)

since log2((#B)m)
log2(qn) < 2t

t+1 the largest k we can choose is 2t−1. Directly using the CPW algorithm the time

complexity is Õ(2t−1 · (#B)m/2
t−1

). However, since 2t−1

t < log2((#B)m)
log2(qn) , the density is higher than what CPW

using 2t−1 lists needs to find a single solution. Hence, one can lower the density: Choose an integer `0 such

that log2((#B)m−`0)
log2(qn) ≈ 2t−1

t . In other words, (#B)(m−`0)/2t−1 ≈ qn/t. Then set `0 entries of x to be zero. In

other words, delete the corresponding `0 columns of A to get an n × (m − `0) matrix A′ and let x′ be the
corresponding vector in Zm−`0 . One can use the CPW algorithm with k = 2t−1 to solve A′x′ = s in G. The
time complexity is reduced to Õ(2t−1 · (#B)(m−`0)/2t−1

) = Õ(2t−1 · qn/t).
We will see later that Minder and Sinclair’s method works better for such a situation (when reducing the

density is required). However when combined with other strategies such as the HNF, it does not rule out
the possibility of using the above idea. In particular, a combination of these strategies may lead to a better
algorithm (see for example Subsection 5.1).

Remark 2. The main drawbacks of the CPW algorithm are: it requires very large storage (the time and
memory complexity are approximately equal); it is not amenable to parallelisation; it can only be used for
very high density instances. Some techniques to reduce storage and benefit from parallelism are given by
Bernstein et al [5, 6]. Note that the algorithm is completely deterministic, and so always gives the same
solution set, but to obtain different solutions one can apply a random permutation to the problem before
running the algorithm.

2.6 Minder and Sinclair refinement of CPW

In this subsection, we recall the work of Minder and Sinclair [25] that allows a finer balancing of parameters
and extends the range of the CPW algorithm to larger values of k = 2t than the density of the (I)SIS instance

8

might predict. Assume the density for a (I)SIS instance with G = Znq satisfies the constraint in Equation (3)

for some integer t. This implies #Bm/2t < qn/(t+1) < qn/t < #Bm/2t−1

.
Instead of lowering the density as described in the previous subsection, Minder and Sinclair proposed

the “extended k-tree” algorithm to make use of the extra density. When the density satisfies Equation (3),
Minder and Sinclair use k = 2t by choosing appropriate subgroups Hi. Note in the previous subsection, the
CPW algorithm chooses k = 2t−1.

Let `i ≥ 1 be chosen later, subject to `1+`2+· · ·+`t = n. The subgroup H1 = {(0, · · · , 0, g`1+1, · · · , gn)T :
gi ∈ Zq} such that G/H1

∼= Z`1q corresponds to the first `1 positions of the vector. Similarly, the subgroup

H2 = {(g1, · · · , g`1 , 0, · · · , 0, g`1+`2+1, · · · , gn) : gi ∈ Zq} satisfies G/H2
∼= Z`2q and corresponds to the

next `2 positions of the vector. Finally, Ht = {(g1, · · · , g`1+···+`t−1 , 0, · · · , 0) : gi ∈ Zq} corresponds to the

last `t positions of the vector. Denote by L(i) any of the lists at the i-th stage of the algorithm (the lists
at the same level have the same size). The heuristic time complexity for Minder and Sinclair’s algorithm
is Õ(2t · max0≤i≤t(#L

(i))). To minimise the running time, one needs to minimise max0≤i≤t(#L
(i)). The

expected size of the lists on each level is

#L(0) = (#B)m/2
t

,

#L(i) =
#L(i−1) ·#L(i−1)

q`i
for 1 ≤ i ≤ t.

Write #L(i) = 2bi where b0 = m log2(#B)/2t, bi = 2bi−1 − log2(q)`i. To minimize the time complexity, one
computes the optimal values `i by solving the following integer programming problem.

Minimize bmax = max
0≤i≤t

bi.

subject to 0 ≤ bi ≤ bmax for 0 ≤ i ≤ t,
b0 = m log2(#B)/2t,

bi = 2bi−1 − `i log2(q) for 1 ≤ i ≤ t,
`i ≥ 0 for 1 ≤ i ≤ t,
t∑
i=1

`i = n.

Theorem 3.1 in [25] shows that the solution to the above linear program (i.e., ignoring the constraint
`i ∈ Z) is `2 = · · · = `t−1 = (n− `1)/(t+ 1) and `t = 2(n− `1)/(t+ 1) where `1 satisfies

(#B)m/2
t · (#B)m/2

t

q`1
= q(n−`1)/(t+1).

This gives max0≤i≤t(#L
(i)) = q(n−`1)/(t+1). From Equation (3), we have 0 < `1 < n/(t + 1). The time

complexity of Minder and Sinclair’s algorithm7 is Õ(2t ·max0≤i≤t(#L
(i))) = Õ(2t · q(n−`1)/(t+1)). It follows

that

(#B)m/2
t

< max
0≤i≤t

(#L(i)) = q(n−`1)/(t+1) < (#B)m/2
t−1

.

The time complexity for Minder and Sinclair’s refinement of CPW is better than the methods described in
the previous subsection since q(n−`1)/t < (#B)m/2

t−1

(not reducing the density) and q(n−`1)/t < qn/t (after
reducing the density) . At a high level, Minder and Sinclair make use of the extra density in the instance to
add one more level that eliminates `1 coordinates.

7 In practice, we want `i to be integers, so good parameter choices can be obtained by using d`ie, see [25] for details.
The time complexity is therefore a little bit worse, however this rounding does not affect the asymptotic complexity.

9

2.7 The algorithm of Howgrave-Graham and Joux (HGJ)

We now present the HGJ algorithm, that can be applied for instances of the (G,m,B)-ISIS problem of
density ≤ 1. The algorithm heuristically improves on the square-root time complexity of Schroeppel-Shamir.
For simplicity we focus on the case B = {0, 1}. Section 6 of [15] notes that a possible extension is to develop
the algorithm for “vectorial knapsack problems”. Our formulation contains this predicted extension.

The first crucial idea of Howgrave-Graham and Joux [15] is to split the vector x by weight rather than by
positions. The second crucial idea is to reduce to a simpler problem and then apply the algorithm recursively.
The procedures in [15] use reduction modulo M , which we generalise as a map into a quotient group G/H.
It follows that the HGJ algorithm can be expressed in terms of our general framework.

Suppose s = Ax in G where x ∈ Bm has weight wt(x) = ω. Our goal is to compute x. Write X for the
set of weight ω vectors in Bm, and write X1,X2 for the set of weight ω/2 vectors in Bm. Then there are

(
ω
ω/2

)
ways to write x as x1 + x2 where x1 ∈ X1,x2 ∈ X2.

The procedure is to choose a suitable subgroup H so that there is a good chance that a randomly chosen
element R ∈ G/H can be written as Ax1 for one of the

(
ω
ω/2

)
choices for x1. Then the procedure solves the

two subset-sum instances in the group G/H (recursively) to generate lists of solutions

L1 = {x1 ∈ Bm : Ax1 = R (mod H),wt(x1) = ω/2}

and
L2 = {x2 ∈ Bm : Ax2 = s−R (mod H),wt(x2) = ω/2}.

We actually store pairs of values (x1,Ax1 (mod H])) ∈ Bm × (G/H]) for a suitably chosen subgroup H].
One then applies Algorithm 1 to merge the lists to get solutions x = x1 + x2 ∈ X satisfying the equation in
G/(H ∩H]). The paper [15] gives several solutions to the problem of merging lists, including a 4-list merge.
But the main algorithm in [15] exploits Algorithm 1.

The subgroup H is chosen to trade-off the probability that a random value R corresponds to some
splitting of the desired original solution x (this depends on the size of the quotient group G/H), while also
ensuring that the lists L1 and L2 are not too large.

The improvement in complexity for finding the solutions in L1 and L2 is due to the lowering of the weight
from ω to ω/2. This is why the process is amenable to recursive solution. At some point one terminates the
recursion and solves the problem by a more elementary method (e.g. Schroeppel-Shamir).

One inconvenience is that we may not know exactly the weight of the desired solution x. If we can guess
that the weight of x lies in [ω − 2ε, ω + 2ε] then we can construct lists {x1 : Ax1 = R (mod H),wt(x1) ∈
[ω/2 − ε, ω/2 + ε]}. A similar idea can be used at the bottom level of the recursion, when we apply the
Schroeppel-Shamir method and so need to split into vectors of half length and approximately half the
weight.

One must pay attention to the relationship between the size of the group G/H and the original group
G. For example, when solving modular subset-sum in G = Zq where q does not have factors of a suitable
size then, as noted in [15], “we first need to transform the problems into (polynomially many instances of)
integer knapsacks”. For the case G = Znq this should not be necessary.

Heuristic complexity analysis. The final algorithm is a careful combination of these procedures, performed
recursively. We limit our discussion to recursion of 3 levels. In terms of the subgroups, the recursive nature
of the algorithm requires a sequence of subgroups H1, H2, H3 (of similar form to those in Section 2.5, but
we now require H1 ∩H2 ∩H3 6= {0}) so that the quotient groups G/(H1 ∩H2 ∩H3), G/(H2 ∩H3), G/H3

become smaller and smaller. The “top level” of the recursion turns an ISIS instance in G to two lower-weight
ISIS instances in G′ = G/(H1 ∩H2 ∩H3); to solve these sub-instances using the same method we need to
choose a quotient of G′ by some proper subgroup H2 ∩H3, which is the same as taking a quotient of G by
the subgroup H2 ∩H3 etc.

In [15], for subset-sum over Z, this tower of subgroups is manifested by taking moduli M that divide one
another (“For the higher level modulus, we choose M = 4194319 · 58711 · 613”, meaning H3 = 613Z, H2 =
58711Z, H1 = 4194319Z, H2 ∩H3 = (58711 · 613)Z and H1 ∩H2 ∩H3 = MZ).

10

We do not reproduce all the analysis from [15], since it is superseded by the method of Becker et al. But
the crucial aspect is that the success of the algorithm depends on the probability that there is a splitting
x = x1 + x2 of the solution into equal weight terms such that Ax1 = R (mod H). This depends on the
number

(
ω
ω/2

)
of splittings of the weight ω vector x and on the size M = #(G/H) of the quotient group.

Overall, the heuristic running time for the HGJ method to solve the (I)SIS problem when ω = m/2 (as
stated in Section 2.2 of [4]) is Õ(20.337m). The running-time is restated in Table 2.

2.8 The algorithm of Becker, Coron and Joux

Becker, Coron and Joux [4] present an improved version of the HGJ algorithm (again, their paper is in the
context of subset-sum, but we explain how it can be adapted to our more general setting). The idea is to
allow larger coefficient sets. Precisely, suppose B = {0, 1} and let X ⊂ Bm be the set of weight ω vectors.
The HGJ idea is to split X by taking X1 = X2 to be the set of weight ω/2 vectors in Bm. Becker et al suggest
to take X1 = X2 to be the set of vectors in Zm having ω/2 + αm entries equal to +1 and αm entries equal
to −1, and the remaining entries equal to 0. This essentially increases the density of the sub-problems, and
leads to a better choice of parameters. The organisation of the algorithm, and its analysis, are the same as
HGJ. The HGJ algorithm is simply the case α = 0 of the BCJ algorithm.

We briefly sketch the heuristic analysis from [4] for the case of 3 levels of recursion, B = {0, 1}, G = Znq ,
and where we solve ISIS instances of density 1 (so that 2m ≈ qn) with a solution of weight m/2. Let

Xa,b = {x ∈ {−1, 0, 1}m : #{i : xi = 1} = am,#{i : xi = −1} = bm}.

A good approximation to #Xa,b is 2H(a,b)·m where H(x, y) = −x log2(x)−y log2(y)−(1−x−y) log2(1−x−y).
Choose subgroups H1, H2, H3 (of the similar form to Section 2.6) such that #(G/Hi) = q`i . Fix α =

0.0267, β = 0.0168 and γ = 0.0029 and also integers `1, `2, `3 such that q`1 ≈ q0.2673n ≈ 20.2673m, q`2 ≈
20.2904m and q`3 ≈ 20.2408m. Note that #(G/(H1 ∩H2 ∩H3)) ≈ q0.2015n ≈ 20.2015m.

Theorem 1. (Becker-Coron-Joux) With notation as above, and assuming Heuristic 1 about the regularity
of Ax (mod Hi), the BCJ algorithm runs in time Õ(20.2912m).

Proof. (Sketch) The first level of recursion splits X = Bm into X1 + X2 where X1 = X2 = X1/4+α,α. We

choose uniformly at random R1 ∈ G/(H1∩H2∩H3) and compute two lists L
(1)
1 = {(x,Ax (mod H1∩H2)) :

x ∈ X1,Ax ≡ R1 (mod H1∩H2∩H3)} and L
(1)
2 , which is the same except Ax ≡ s−R1 (mod H1∩H2∩H3).

By Heuristic 1, the expected size of the lists is 2H(1/4+α,α)m/q`1+`2+`3 = 20.2173m and hence the merging
step requires time Õ((20.2173m)2/qn−`1−`2−`3)= Õ(20.2331m).

The second level of recursion computes each of L
(1)
1 and L

(1)
2 , by splitting into further lists. Choose uni-

formlyR2 ∈ G/(H1∩H2) and split L
(1)
1 into L

(2)
1 and L

(2)
2 where L

(2)
1 = {(x,Ax) : x ∈ X1/8+α/2+β,α/2+β ,Ax ≡

R2 (mod H2 ∩ H3)} and L
(2)
2 is similar except the congruence is Ax ≡ R1 − R2 (mod H2 ∩ H3). We

split L
(1)
2 into sets L

(2)
3 and L

(2)
4 a similar way using a random R3 ∈ G/(H1 ∩ H2). Again, by Heuris-

tic 1, the size of lists is approximately 2H(1/8+α/2+β,α/2+β)m/q`2+`3 = 20.2790m and the cost to merge is
Õ(22·0.2790m/q`1) = Õ(2(2·0.2790−0.2673)m) = Õ(20.2907m).

The final level of recursion computes each L
(2)
j by splitting into two lists corresponding to coefficient sets

X1/16+α/4+β/2+γ,α/4+β/2+γ . The expected size of the lists is

2H(1/16+α/4+β/2+γ,α/4+β/2+γ)m/q`3 ≈ 20.2908m

and they can be computed efficiently using the Shroeppel-Shamir algorithm in time

Õ(
√

2H(1/16+α/4+β/2+γ,α/4+β/2+γ)m) = Õ(20.2658m).

Merging the lists takes Õ(22·0.2908/q`2) = Õ(20.2912m) time. Thus the time complexity of the BCJ algorithm
is Õ(20.2912m). �

11

The above theorem does not address the probability that the algorithm succeeds to output a solution to
the problem. The discussion of this issue is complex and takes more than 3 pages (Section 3.4) of [4]. We
give a rough “back-of-envelope” calculation that gives some confidence.

Suppose there is a unique solution x ∈ {0, 1}m of weight m/2 to the ISIS instance. Consider the first
step of the recursion. For the whole algorithm to succeed, it is necessary that there is a splitting x = x1 +x2

of the solution so that x1 ∈ L(1)
1 and x2 ∈ L(1)

2 . We split x so that the m/2 ones are equally distributed
across x1 and x2, and the m/2 zeroes are sometimes expanded as (−1,+1) or (+1,−1) pairs. We call such
splittings “valid”. Hence, the number of ways to split x in this way is

N1 =

(
m/2

m/4

)(
m/2

αm

)(
(1/2− α)m

αm

)
=

(
m/2

m/4

)(
m/2

αm,αm, (1/2− 2α)m

)
. (4)

Here
(
n

a,b,c

)
is the usual multinomial coefficient n!/(a!b!c!) where n = a + b + c. For randomly chosen R1 ∈

G/(H1∩H2∩H3), there is a good chance that a valid splitting exists if N1 ≥ q`1+`2+`3 . Indeed, the heuristic
expected number of valid splittings is roughly N1/q

`1+`2+`3 . Hence, we choose N1 ≈ q`1+`2+`3 to make sure
a valid splitting exists at this stage with significant probability.

For the second stage we assume that we already made a good choice in the first stage, and indeed that
we have N1/q

`1+`2+`3 possible values for x1. The number of ways to further split x1 is

N2 =

(
(1/4 + α)m

(1/8 + α/2)m

)(
αm

αm/2

)(
(3/4− 2α)m

βm, βm, (3/4− 2α− 2β)m

)
.

The heuristic total expected number of valid splittings at this stage is roughly (N1/q
`1+`2+`3)(N2/q

`2+`3)2.
For randomly chosenR2 ∈ G/(H2∩H3), there is a good chance to have a valid splitting if (N1/q

`1+`2+`3)(N2/q
`2+`3)2 ≥

1 (remember that this stage requires splitting two solutions from the first stage). Hence, we choose N1 ≈
q`1+`2+`3 ,N2 ≈ q`2+`3 .

In the final stage (again assuming good splittings in the second stage), the number of ways to split is

N3 =

(
(1/8 + α/2 + β)m

(1/16 + α/4 + β/2)m

)(
(β + α/2)m

(β/2 + α/4)m

)(
(7/8− α− 2β)m

γm, γm, (7/8− α− 2β − 2γ)m

)
.

The heuristic expected number of valid splittings is (N1/q
`1+`2+`3)(N2/q

`2+`3)2(N3/q
`3)4, which we require

to be ≥ 1. Hence, we choose N1 ≈ q`1+`2+`3 ,N2 ≈ q`2+`3 ,N3 ≈ q`3 . Thus, choosing #G/H3 close to N3,
#G/(H2 ∩H3) close to N2 and #G/(H1 ∩H2 ∩H3) close to N1 then it is believed the success probability
of the algorithm is significantly larger than 0. This argument is supported in Section 3.4 of [4] by theoretical
discussions and numerical experiments. To conclude, for the algorithm to have a good chance to succeed we
require

N1/q
`1+`2+`3 ≥ 1, (N1/q

`1+`2+`3)(N2/q
`2+`3)2 ≥ 1,

(N1/q
`1+`2+`3)(N2/q

`2+`3)2(N3/q
`3)4 ≥ 1.

2.9 Summary

Despite the large literature on the topic, summarised above, one sees there are only two fundamental ideas
that are used by all these algorithms:

– Reduce modulo subgroups to create higher density instances. Since the new instances have higher density
one now has the option to perform methods that only find some of the possible solutions.

– Splitting solutions. Splitting can be done by length (i.e., positions) or by weight. Either way, one reduces
to two “simpler” problems that can be solved recursively and then “merges” the solutions back to
solutions to the original problem.

The main difference between the methods is that CPW requires large density to begin with, in which case
splitting by positions is possible. In contrast HGJ/BCJ can be applied when the original instance has low
density, in which case it is necessary to use splitting by weight in order to be able to discard some potential
solutions.

12

3 Analysis of HGJ/BCJ for high density

The CPW algorithm clearly likes high density problems. However, the analysis of the HGJ and BCJ algo-
rithms in [15, 4] is in the case of finding a specific solution (and so is relevant to the case of density at most
1). It is intuitively clear that when the density is higher (and so there is more than one possible solution),
and when we only want to compute a single solution to the problem, then the success probability of the
algorithm (taken over problem instances) should increase. In this section we explain that the parameters in
the HGJ and BCJ algorithms can be improved when one is solving instances of density > 1. This was an-
ticipated in [16]: “further improvements can be obtained if, in addition, we seek one solution among many”.
We now give a very approximate heuristic analysis of this situation. We focus on the case B = {0, 1}m and
G = Znq . As with previous work, we are not able to give general formulae for the running time as a function
of the density, as the parameters in the algorithms depend in subtle ways on each other. Instead, we fix some
reference instances, compute optimal parameters for them, and give the running times.

3.1 Analysis

Let the number of solutions to the original (I)SIS instance be N ≥ 1 (the exponential-density is the expected
value of this number). We consider at most t levels of recursion. The subgroups H1, H2, · · · , Ht, where
#(G/Hi) = q`i , are chosen to trade-off the probability of a successful split at each stage and also to ensure
the size of the lists to be merged at each stage is not too large. Using the same notation as Section 2.8, write
N1,N2, · · · ,Nt for the number of ways to split a single valid solution at each level of the recursion.

The standard approach is to choose the subgroups H1, H2, · · · , Ht such that #G/(Hi∩Hi+1∩· · ·∩Ht) =
q`i+`i+1+···+`t ≈ Ni for all 1 ≤ i ≤ t. The success probability is then justified by requiring

N1

q`1+···+`t

(
N2

q`2+···+`t

)2

· · ·
(

Ni
q`i+···+`t

)2i−1

≥ 1

for all 1 ≤ i ≤ t. We now assume a best-case scenario, that all the splittings of all the N ≥ 1 solutions
are distinct. This assumption is clearly unrealistic for large values of N , but it gives a rough idea of how
much speedup one can ask with this approach. We address this assumption in Section 3.2. Then the success
condition changes, for all 1 ≤ i ≤ t, to

N N1

q`1+···+`t

(
N2

q`2+···+`t

)2

· · ·
(

Ni
q`i+···+`t

)2i−1

≥ 1. (5)

It follows that, for example when t = 3, the best parameters `1, `2, `3, α, β, γ are chosen by the following
integer linear program.

minimize

T = max

(
#(L(1))2

qn−`1−`2−`3
,

#(L(2))2

q`1
,

#(L(3))2

q`2
,
√

#X1/16+α/4+β/2+γ,α/4+β/2+γ

)
subject to #L(1) =

#X1/4+α,α

q`1+`2+`3
,

#L(2) =
#X1/8+α/2+β,α/2+β

q`2+`3
,

#L(3) =
#X1/16+α/4+β/2+γ,α/4+β/2+γ

q`3
,

equation (5) holds for all 1 ≤ i ≤ 3

`i ∈ N, 1 ≤ i ≤ 3

α, β, γ ∈ R≥0.

13

For the ISIS problem B = {0, 1}m given q and n, the exponential-density (expected number of solutions) is
N = 2m/qn. Define c1 such that N = 2c1m. One can estimate the time complexity as Õ(2c2m) by solving
the above linear program and choosing the optimal parameters α, β, γ and `1, `2, `3. We use LINGO 11.0 to
do the optimization and obtain Table 2 and 3 giving calculations for HGJ/BCJ. For comparison we recall
in Table 1 the results of Sections 2.5 and 2.6 on the time complexity of CPW. We draw Figure 1, which
indicates how the density affects the asymptotic complexity for CPW8, HGJ and BCJ.

Table 1. Heuristic time complexity of CPW for different densities. The exponential-density is 2c1m.

t 2c1m Õ(2c2m)

1 1 Õ(20.5m)

2 20.25m Õ(20.25m)

3 20.5m Õ(20.125m)

4 20.6875m Õ(20.0625m)

Table 2. Time complexity of HGJ for different density.

t 2c1m Õ(2c2m) q`1 q`2 q`3

2 20 = 1 Õ(20.3371m) 20.25m 20.25m –

2 20.025m Õ(20.3121m) 20.275m 20.25m –

2 20.045m Õ(20.2928m) 20.2928m 20.2507m –

2 20.055m Õ(20.2878m) 20.2878m 20.2557m –

2 20.085m Õ(20.2728m) 20.2728m 20.2707m –

3 20.15m Õ(20.2535m) 20.2617m 20.1711m 20.125m

3 20.2m Õ(20.2368m) 20.2617m 20.1878m 20.125m

3 20.3m Õ(20.2070m) 20.2670m 20.2070m 20.1303m

3 20.5m Õ(20.1887m) 20.2677m 20.1879m 20.1669m

Table 3. Time complexity of BCJ for different density.

t 2c1m Õ(2c2m) q`1 q`2 q`3 α β γ

3 20 = 1 Õ(20.2912m) 20.2673m 20.2904m 20.2408m 0.0267 0.0168 0.0029

3 20.025m Õ(20.2829m) 20.2463m 20.2802m 20.2829m 0.02578 0.01973 0.00534

3 20.045m Õ(20.2794m) 20.2604m 20.2794m 20.2770m 0.02818 0.01833 0.00453

3 20.055m Õ(20.2765m) 20.2634m 20.2765m 20.2649m 0.02651 0.01705 0.00391

3 20.085m Õ(20.2579m) 20.2404m 20.2564m 20.1818m 0.01082 0.00888 0.00131

3 20.15m Õ(20.2499m) 20.2430m 20.2499m 20.1554m 0.00102 0.00971 0.00023

3 20.2m Õ(20.2357m) 20.2357m 20.2358m 20.2036m 0.00231 0.01171 0.00206

3 20.3m Õ(20.2070m) 20.2670m 20.2070m 20.1303m 0 0 0

3 20.5m Õ(20.1887m) 20.2677m 20.1879m 20.1669m 0 0 0

8 We remark that [12] contains a similar figure regarding the complexity of the CPW algorithm.

14

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

c 2

c1

CPW
HGJ
BCJ

Fig. 1. Comparison of the heuristic performance of CPW, HGJ and BCJ algorithms on ISIS instances of density
≥ 1. The horizontal axis is the value c1 such that the expected number of solutions is 2c1m. The vertical axis is the
constant c2 such that the heuristic asymptotic complexity is Õ(2c2m).

These results demonstrate that, although CPW is the best choice for very high density instances, the
HGJ/BCJ algorithms do perform better when the density is increased and they are better than CPW for
quite a large range of densities. The final rows of Table 3 show that the BCJ algorithm becomes exactly the
HGJ algorithm (i.e., α = β = γ = 0) once the density is sufficiently high.

To invert the SWIFFT hash function the parameters are B = {0, 1}m, G = Znq , m = 1024, q = 257,
n = 64 and so the expected number of solutions is 20.5m. Figure 1 therefore confirms that, for this problem,
the CPW algorithm is the right choice. This answers the question from [15].

3.2 Heuristic Justification of Assumptions

The above analysis is based on the strong simplifying assumption that all the splittings of all the N = 2c1m

solutions are distinct, and it should not be assumed that the HGJ and BCJ algorithms perform exactly
as well as our theoretical analysis suggests. However, we now give some evidence that the assumptions are
reasonable when the density is moderate.

We have N = 2c1m solutions x ∈ Bm such that Ax = s. We suppose all these solutions behave like
independently chosen binary strings of Hamming weight very close to m/2. Consider one solution x. In the
first level of the recursion we split x = x1 +x2 where x1,x2 ∈ X1/4+α,α. There are N1 ways to do this, where
N1 is given in equation (4) and all these splittings have, by definition, distinct values for x1. Turning this
around, the probability that a vector x1 ∈ X1/4+α,α appears as a splitting of x should be p1 = N1

#X1/4+α,α
.

Now consider splitting a second solution x′ = x′1 + x′2. The probability that a value x′1 is equal to one of
the previous values x1 is p1. Hence, the total number of “new” solutions {x1,x

′
1} is N1 + (1 − p1)N1. The

following Lemma extends this argument.

Lemma 1. Let X be a set. Suppose distinct subsets Xi of X of size N1 are chosen uniformly at random for
1 ≤ i ≤ t. Let p = N1/#X. Then the expected size of ∪ti=1Xi is (1− (1− p)t)N1/p.

15

Proof. The probability that any given x ∈ X1 lies in X2 is p, so the expected size of X1 ∩X2 is p#X1. So
we expect #(X1 ∪X2) = N1 + (1− p1)N1 = (1 + (1− p))N1.

The probability that any x ∈ X1 ∪ X2 lies in X3 is p, so the expected size of (X1 ∪ X2) ∩ X3 =
p#(X1∪X2) = p(1+(1−p)). Hence, we expect #(X1∪X2∪X3) = #(X1∪X2)+#X3−#((X1∪X2)∩X3) =
(1 + (1− p) + 1− p(1 + (1− p)))N1 = (1 + (1− p) + (1− p)2)N1. More generally, one can show by induction

that the expected value of #(X1 ∪ · · · ∪Xt) is (1 + (1− p) + · · ·+ (1− p)t−1)N1 = 1−(1−p)t
p N1. �

Lemma 1 indicates that when we split all N solutions x, the total number of vectors x1 ∈ X1/4+α,α

should be roughly (1− (1− p1)N)N1/p1. If p1N is very small (� 1) then one has (1− p1)N ≈ 1− p1N and
so (1− (1− p1)N)/p1 ≈ N . In other words, almost all the splittings of all the N solutions are distinct. For
the values of α listed in Tables 2 and 3, max(p1) = 2−0.2143m, and so if N ≤ 20.2m then p1N ≤ 2−0.0143m.
Hence, the assumption made earlier seems justified when the number of solutions is less that 20.2m. Hence,
for the remainder of the argument we suppose the density is low enough that our assumption made earlier
holds.

In the second level of the recursion we have N ′ = N N1

q`1+`2+`3
solutions. Each solution has N2 splittings as

a sum of vectors in X1/8+α/2+β,α/2+β . Let p2 = N2

#X1/8+α/2+β,α/2+β
be the probability a random vector appears

as such a splitting. Lemma 1 shows that, as long as p2N ′ � 1, we again expect almost all the splittings to
be distinct.

For all values α, β listed in Tables 2 and 3 we have max(p2) = 2−0.2469m. Since N N1

q`1+`2+`3
≤ N ≤ 20.2m

(when N = 1, one chooses q`1+`2+`3 ≈ N1, and if N > 1, one chooses q`1+`2+`3 > N1 to reduce the time
complexity, so q`1+`2+`3 ≥ N1) it follows that p2N ′ ≤ 2−0.0469m is very small. So the assumption seems
reasonable in these cases.

Finally consider the third level of the recursion. Let N ′′ = N
(

N1

q`1+`2+`3

)(
N2

q`2+`3

)2

be the number

solutions to be split. Let p3 = N3

#X1/16+α/4+β/2+γ,α/4+β/2+γ
. For all values α, β, γ listed in Tables 2 and 3

we have max(p3) = 2−0.2123m. Since N ′′ ≤ N ≤ 20.2m (when N = 1, one chooses q`1+`2+`3 ≈ N1 and
q`2+`3 ≈ N2, while if N > 1, one chooses q`1+`2+`3 ≥ N1 and q`2+`3 ≥ N2 to reduce the time complexity),

p3N ′′ = 2−0.0123m is very small. Thus 1−(1−p3)N
′′

p3
N3 ≈ N ′′N3, i.e., almost all the splittings of all the N ′′

solutions at this stage are distinct.
Hence, when the number of solutions is ≤ 20.2m, Figure 1 seems to be an accurate view of the complexity

of the HGJ and BCJ algorithms. When the exponential-density is greater than 20.2m then the results of
Figure 1 are less rigorous, but they at least give some intuition for how the HGJ and BCJ algorithms behave.
In any case, once the exponential-density reaches around 20.3m one would likely switch to the Minder-Sinclair
variant of the CPW algorithm.

4 Hermite normal form

We now give the main idea of the paper. For simplicity, assume that q is prime, G = Znq and n > 1. We
also assume that the matrix A in the ISIS instance has rank equal to n, which will be true with very high
probability when m� n.

We exploit the Hermite normal form. Given an n × m matrix A over Zq with rank n < m then, by
permuting columns as necessary, we may assume that A = [A1|A2] where A1 is an invertible n× n matrix
and A2 is an n× (m− n) matrix. Then there exists a matrix U = A−1

1 such that

UA = [In|A′]

where In is the n × n identity matrix and A′ is the n × (m − n) matrix UA2. The matrix [In|A′] is called
the Hermite normal form (HNF) of A and it can be computed (together with U) by various methods. We
assume q is prime and hence Gaussian elimination is sufficient to compute the HNF.

Writing xT = (xT0 |xT1) where x0 has length n and x1 has length m− n we have that

s ≡ Ax (mod q) if and only if s′ = Us ≡ A′x1 + x0 (mod q).

16

Hence, the Hermite normal form converts an ISIS instance to an approximate subset sum problem of the
form A′x ≈ s′.

We now rename (A′, s′,x0,x1) as (A, s, e,x) so the problem becomes s = Ax + e.

We will now apply the previous algorithms for the ISIS problem to this variant of the problem. This
project was suggested in Section 6 of [15] to be an interesting problem (they called it the “approximate
knapsack problem”). Our approach is to replace exact equality of elements in quotient groups G/H = Z`q,
in certain parts of the algorithm, by an approximate equality y1 ≈ y2. The definition of y1 ≈ y2 will be
that y1 − y2 ∈ E , where E is some neighbourhood of 0. Different choices of E will lead to different tradeoffs
of running time and success probability, and the exact choice depends somewhat on the algorithm under
consideration.

4.1 Approximate merge algorithm

Our main tool is an algorithm to merge lists “approximately”. We write Ax ≈ s to mean Ax + e = s for
some e ∈ E in some set E of permitted errors. We warn the reader that this symbol ≈ is not necessarily an
equivalence relation (e.g., it is not necessarily symmetric or transitive).

We use similar notation to Section 2.3: X ⊆ Bm is a set of vectors, letters Hi denote suitably chosen
subgroups of G such that #(G/Hi) = q`i . For any instance s ≡ Ax + e we will split x = x1 + x2 for x1 ∈ X1

and x2 ∈ X2 and e = e1 + e2 for e1 ∈ E(1) and e2 ∈ E(2), where the sets Xi and E(i) are appropriately
chosen. Indeed, the error sets E(i) are typically restricted to the quotient groups G/Hi, so that E(i) = B`i .
For example E(i) = {0, 1}`i for HGJ or {−1, 0, 1}`i for BCJ.

Let H[, H,H] be subgroups of G that denote subgroups used in the CPW/HGJ/BCJ algorithms. We are
merging, modulo H, partial solutions modulo H[. For clarity, let us write G/H[= Z`′q and G/(H ∩H[) =

Z`+`′q . The input is a pair of lists L1 and L2 that are “partial solutions” modulo H[. In other words, they

are lists of pairs (x,Ax (mod H[)) such that if (x1,Ax1) ∈ L1 and (x2,Ax2) ∈ L2 then A(x1 + x2) + e ≡ s
(mod H[) for some e ∈ E[⊂ B`′ . The goal is to output a set of solutions to the problem Ax + e ≡ s
(mod H ∩ H[) for x ∈ X and, re-using notation, e ∈ E ⊂ B`+`′ (e.g., e ∈ E ⊂ {0, 1}`+`′ for HGJ or
e ∈ E ⊂ {−1, 0, 1}`+`′ for BCJ). We write E[1, E[2 for the error sets used in the lists L1, L2; E for the error set
for G/(H[∩H); E ′ for the error set corresponding to the elements of G/H. For future steps of the algorithm,
the output includes information about Ax (mod H]). The details are given in Algorithm 2.

Algorithm 2 Approximate merge algorithm

Input: L1 = {(x,Ax (mod H)) : Ax + e ≡ R (mod H[),x ∈ X1, e ∈ E[1},
L2 = {(x,Ax (mod H)) : Ax + e ≡ s−R (mod H[),x ∈ X2, e ∈ E[2}

Output: L = {(x,Ax (mod H])) : Ax + e ≡ s (mod H ∩H[),x ∈ X , e ∈ E}
1: Initialise L = {}
2: Sort L1 with respect to the second coordinate
3: for (x1,u) ∈ L2 do
4: Compute v = s− u (mod H)
5: for (x2,u

′) ∈ L1 with v ≈ u′ (i.e., u′ − v ∈ E ′) do
6: if x1 + x2 ∈ X and A(x1 + x2) ≈ s (mod H ∩H[) then
7: Compute A(x1 + x2) (mod H])
8: Add (x1 + x2,A(x1 + x2) (mod H])) to L

The detection of values u′ in the sorted list such that v ≈ u′ (meaning u′ − v = e for some e ∈ E ′) can
be done in several ways. One is to try all possible error vectors e and look up each candidate value v + e.
Another is to “hash” using most significant bits; we give the details in Section 4.2 below. The running time
of the algorithm depends on this choice. For each match we check the correctness for the whole quotient
G/(H ∩H[).

17

Lemma 2. Let G/H = Z`q and let E ′ ⊆ Z`q be an error set for G/H. Suppose #L1 is exponentially large.
Assuming Heuristic 1, Algorithm 2 performs

Õ

(
#L1 · log(#L1) + #L2 ·

⌈
#L1 ·#E ′

q`

⌉)
arithmetic operations.

Here, by arithmetic operations, one can take operations in Zq. But when #L1 is exponentially large then

all natural interpretations of “arithmetic operations” are equivalent by the Õ notation.

Proof. Sorting L1 takes Õ(#L1 · log(#L1)) operations on vectors in G/H = Z`q.
For each pair (x1,u) ∈ L2 and each e ∈ E ′ ⊆ Z`q, Heuristic 1 implies that the expected number of

“matches” (x2,u − e) in L1 is #L1/q
`. In the case where all values for e ∈ E ′ are chosen and then each

candidate for u′ is looked up in the table, then the check in line 6 of the algorithm is performed

#L2 ·
⌈

#L1 ·#E ′

q`

⌉
.

times. The most expensive arithmetic takes place in line 7, which only executes when the checks in line 6
pass, but for simplicity (and since we are using Õ) we bound the running time as proportional to the above
formula. �

In the BCJ application in Section 4.3 we will always have #L1 ≥ q`. Hence we can ignore the ceiling
operation in the Õ(#L1#L2/(q

`/#E ′)) term.
As previously, it is non-trivial to approximate the size of the output list L. Instead, this can be approxi-

mated by #X#E/#(G/(H ∩H[)).
Note that different choices for E , E[1, E[2, E ′ can lead to different organisation in the algorithm. For example

we may take the possible non-zero positions in E[1 and E[2 to be disjoint, then after executing line 5 of
Algorithm 2 we always have A(x1 + x2) ≈ s (mod H[), and so in line 6 of Algorithm 2 we only need to
check A(x1 + x2) ≈ s (mod H); this is what we will do when adapting the CPW algorithm to this case.

4.2 The CPW algorithm

Recall that our problem is (taking the HNF and then renaming (A′, s′) as (A, s) and denoting (x1,x0) as
(x, e)): Given A, q, s to solve Ax + e = s in G = Znq , where x ∈ Bm−n has length m − n and e ∈ Bn has
length n. We assume the problem has high density, in the sense that there are many solutions (x, e) ∈ Bm
to the system.

As we have seen, the CPW algorithm is most suitable for problems with very high density, since higher
density means more lists can be used and so the running time is lower. Hence, it may seem that reducing m
to m− n will be unhelpful for the CPW algorithm. However, we actually get a very useful tradeoff. In some
sense, the high density is preserved in our transform while the actual computations are reduced due to the
reduction in the size of m.

As noted, we define a (not-necessarily symmetric or transitive) relation ≈ on vectors in G = Znq as v ≈ w

if and only if v −w ∈ Bn. One can then organise a CPW-style algorithm: compute the lists L
(i)
j as usual,

but merge them using ≈. One needs to be a bit careful with the errors. We consider the following four-lists
CPW procedure as an example.

Example 1. Lists L
(0)
j contain pairs (x,Ax (mod H1)) (except L

(0)
4 has pairs (x,Ax−s (mod H1))). Merging

L
(0)
1 and L

(0)
2 gives a list L

(1)
1 of pairs (x1 + x2,A(x1 + x2) (mod H2)) for x1 ∈ L(0)

1 and x2 ∈ L(0)
2 such

that A(x1 + x2) ≈ 0 (mod H1), which means A(x1 + x2) ≡ e (mod H1) for some e ∈ Bn/3. Similarly, L
(1)
2

is a list of pairs (x3 + x4,A(x3 + x4) (mod H2)) for x3 ∈ L(0)
3 and x4 ∈ L(0)

4 such that A(x3 + x4)− s ≡ e′

(mod H1) for some e′ ∈ Bn/3. The problem is that e + e′ does not necessarily lie in Bn/3 and so the merge
at the final stage will not necessarily lead to a solution to the problem.

18

There are several ways to avoid this issue. One would be to “weed out” these failed matches at the later
stages. However, our approach is to constrain the relation ≈ further during the merge operations. Specifically
(using the notation of the previous paragraph) we require the possible non-zero positions in e and e′ to be
disjoint.

The details. Let k = 2t be the number of lists. We define u = (m− n)/k and let

Xj = {(0, . . . , 0, x(j−1)u+1, . . . , xju, 0, . . . , 0) ∈ Bm−n}

for 1 ≤ j ≤ k. We choose integers `i > 0 such that `1 + `2 + · · · + `t = n and then choose the sub-
groups Hi so that G/Hi

∼= Z`iq for 1 ≤ i ≤ t. So H1 = {(0, 0, · · · , 0, g`1+1, · · · , gn) ∈ Znq }, H2 =
{(g1, . . . , g`1 , 0, . . . , 0, g`1+`2+1, . . . , gn)} and so on.

Let γi = `i/2
t−i = `i/(k/2

i) for 1 ≤ i ≤ t. We assume in this section that the γi are all integers; see
Section 5 for an example of how to handle the case when 2t−i does not divide `i. In practice, the values of

γi can be computed from a integer program. For 1 ≤ j ≤ k/2i we define error sets E(i)
γi,j
⊆ B`i restricted to

the quotient group G/Hi and with γi error positions as

E(i)
γi,j

= {(0, . . . , 0, e(j−1)γi+1, . . . , ejγi , 0, 0, . . . , 0) ∈ B`i}.

Note that #E(i)
γi,j

= (#B)γi .

Level 0: Compute lists L
(0)
j = {(x,Ax (mod H1)) ∈ Xj × Z`1q } for 1 ≤ j ≤ k − 1 and L

(0)
k = {(x,Ax − s

(mod H1)) ∈ Xk × Z`1q }. Note that #L
(0)
j = #Bu = #B(m−n)/k. The cost to compute the initial k lists is

O(#L
(0)
j) = O((#B)(m−n)/k) or, to be more precise, the cost is approximately k ·#L(0)

j · C bit operations,

where C is the number of bit operations to compute a sum of at most u vectors in Z`1q i.e. C = (m −
n) log2(q`1)/k.

Level 1: We now merge the k = 2t lists in pairs to get k/2 = 2t−1 lists. Recall that γ1 = `1/(k/2). For

j = 1, 2, · · · , k/2 the sets E(1)
γ1,j
∈ B`1 specify the positions that are allowed to contain errors. In other words,

for j = 1, 2, · · · , k/2− 1 we construct the new lists

L
(1)
j = {(x1 + x2,A(x1 + x2) (mod H2)) : x1 ∈ L(0)

2j−1,x2 ∈ L(0)
2j ,

A(x1 + x2) (mod H1) ∈ E(1)
γ1,j
},

and

L
(1)
k/2 = {(x1 + x2,A(x1 + x2) (mod H2)) : x1 ∈ L(0)

k−1,x2 ∈ L(0)
k ,

A(x1 + x2)− s (mod H1) ∈ E(1)
γ1,k/2

}.

The probability that two independent, uniformly random vectors in Z`1q have sum in E(1)
γ1,j

is #E(1)
γ1,j

/q`1 =

#Bγ1/q`1 , and so the expected size of the lists L
(1)
j is #L

(0)
2j−1#L

(0)
2j #Bγ1/q`1 ≈ #B2(m−n)/k+γ1/q`1 .

Level i ≥ 2: The procedure continues in the same way. We are now merging k/2i−1 lists to get k/2i lists. We
do this by checking `i coordinates and so will allow errors for each merge in only γi = `i/(k/2

i) positions.
Hence, for j = 1, 2, · · · , k/2i − 1 we construct the new lists

L
(i)
j = {(x1 + x2,A(x1 + x2) (mod Hi+1)) : x1 ∈ L(i−1)

2j−1 ,x2 ∈ L(i−1)
2j ,

A(x1 + x2) (mod Hi) ∈ E(i)
γi,j
},

19

and

L
(i)
k/2i = {(x1 + x2,A(x1 + x2) (mod Hi+1)) : x1 ∈ L(i−1)

k/2i−1−1,x2 ∈ L(i−1)
k/2i−1 ,

A(x1 + x2)− s (mod Hi) ∈ E(i)
γi,k/2i

}.

As before, the heuristic expected size of L
(i)
j is #L

(i−1)
2j−1 #L

(i−1)
2j #Bγi/q`i .

It remains to explain how to perform the merging of the lists using Algorithm 2. We are seeking a match
on vectors in Z`iq that are equal on all but γi coordinates, and that are “close” on those γi coordinates. The
natural solution is to detect matches using the most significant bits of the coordinates (this approach was
used in NTRU by Howgrave-Graham, Silverman and Whyte [14]).

The hash function F . Precisely, let vi be a parameter (indicating the number of most significant bits being
used). Represent Zq as {0, 1, . . . , q− 1} and define a hash function F : Zq → Z2vi by F (x) = b x

q/2vi c. We say

that a ∈ Z is borderline if F (a) 6= F (a + e) for a possible error value e. We can then extend F to Zγiq (and

to the whole of Z`iq by taking the identity map on the other coordinates). We want to detect a match of the
form Ax1 + Ax2 + e = 0, which we will express as −Ax1 = Ax2 + e. The idea is to compute F (−Ax1) for
all x1 in the first list and store these in a sorted list (or a hash table). For each value of x2 in the second list
one computes all possible values for F (Ax2 + e) and checks which are in the first list.

Example 2. For example, consider q = 23 = 8 and suppose we use a single most significant bit (so vi = 1
and F : Zq → {0, 1}). The borderline entries are 3 and 7, which are both such that F (a + 1) 6= F (a).
Suppose −Ax1 = (7, 2, 4, 5, 6, 4, 0, 7)T and that we are only considering binary errors on the first 4 co-
ordinates. Then we have F (−Ax1) = (1, 0, 1, 1, 6, 4, 0, 7). Suppose now Ax2 = (6, 2, 3, 5, 6, 4, 0, 7). Then
F (Ax2) = (1, 0, 0, 1, 6, 4, 0, 7). By looking at the borderline entries of Ax2 we know that we should also
check (1, 0, 1, 1, 6, 4, 0, 7). There is no other value to check, since F ((6, 2, 3, 5) + (1, 1, 0, 1)) = (1, 0, 0, 1) and
F ((6, 2, 3, 5) + (1, 1, 1, 1)) = (1, 0, 1, 1) and so the only possible values for the first 4 entries of F (Ax2 + e)
are {(1, 0, 0, 1), (1, 0, 1, 1)}.

To be precise we define Flips(v) = {F (v+e) : e ∈ E(i)
γi,j
}, where i, j and γi are clear in any given iteration

of the algorithm. In other words, Flips(v) is the set of all patterns of most significant bits that would arise
by adding valid errors to the corresponding coordinates of v. It is important to realise that one does not

need to loop over all e ∈ E(i)
γi,j

to compute Flips(v); instead one only needs to check entries of v that are on
the borderline. As we will see, the set Flips(v) is usually quite small.

Suppose there are r “borderline” integers in Zq (meaning integers 0 ≤ a < q such that F (a) 6= F (a + e
(mod q)) for some e ∈ B). Define pflip = r/q to be the probability that a randomly chosen element of Zq
has hash value that flips when adding a vector in B. When B = {0, 1} then the expected size of Flips(a) is
((q− r) · 1 + r · 2)/q = 1 + pflip. Hence, for vectors v ∈ Zγiq the expected size of Flips(v) is (pflip + 1)γi . More
generally, given parameters q, vi and Bγi , the value pflip and the expected value of #Flips(v) can be easily
computed.

To summarise the “approximate merge” algorithm: First compute F (v) for every v = −Ax1 in the list

L
(i−1)
2j−1 , and sort these values. Note that there may be multiple different values x1 in the list with the same

hash value F (−Ax1), and these should be stored in a list associated with that entry of the hash table

or binary tree representing the sorted list. Then for every v = Ax2 for x2 in the list L
(i−1)
2j we compute

Flips(v) and search, for each u ∈ Flips(v), for occurrences of u in the sorted list. Finally, for each match,
we go through all values x1 in the first list with the given hash value F (−Ax1) and, for each of them, check
if it really is true that A(x1 + x2) is in the correct error set (since a match of the hash values does not
imply correctness). The number of possible hash values on vectors in Z`iq , with γi positions reduced to the vi

most significant bits, is around 2viγiq`i−γi . Hence, the average number of values in the list L
(i−1)
2j−1 that take

a given hash value is #L
(i−1)
2j−1 /(2

viγiq`i−γi). Finally, for all good matches we need to compute A(x1 + x2)
(mod Hi+1).

20

Success Probability. Now we give a heuristic analysis of the algorithm (again, we are considering the prob-

ability over the instances of the problem). The algorithm succeeds if L
(t)
1 is not empty, where k = 2t is the

number of lists used. We assume that the lists at the same level have the same size and denote by L(i) any
of the lists at the i-th level of the algorithm. In practice, the list sizes at the same level may be different, and
they can be obtained by solving an integer programming problem. The heuristic expected size of the lists on
each level are

#L(0) = (#B)(m−n)/2t ,

#L(i) =
#L(i−1) ·#L(i−1) ·#Bγi

q`i
for 1 ≤ i ≤ t.

Following Minder and Sinclair we use integer programming to get optimal values for `i. We write #L(i) =
2bi where b0 = (m− n) log2(#B)/2t and hence get bi = 2bi−1 − `i log2(q) + γi log2(#B) where γi = `i/2

t−i.
The time complexity is primarily proportional to max0≤i≤t #L(i) (it also depends to a lesser extent on γi
and the size of Flips). So to minimize the time one should choose k = 2t to be as large as possible and then
choose the `i to be a solution to the following integer program.

Minimize bmax = max
0≤i≤t

bi.

subject to 0 ≤ bi ≤ bmax for 0 ≤ i ≤ t,
b0 = (m− n) log2(#B)/2t,

bi = 2bi−1 − `i log2(q) + `i log2(#B)/2t−i,

`i ≥ 0 for 0 ≤ i ≤ t,
t∑
i=1

`i = n.

Complexity Analysis. We now fix a choice of `1, `2, · · · , `t subject to the constraints mentioned above. Our
aim is to give a precise formula for the running time of the CPW algorithm using our approximate merge
algorithm. This will be used in Section 5 to analyze the running-time of the attacks on SWIFFT. Note
that “approximate merge” is more complicated and takes more time than “basic merge”, and so we have to
investigate whether we have made a positive improvement overall.

Lemma 3. Let notation be as above. Let C1 be the number of bit operations to compute F for the γi positions
that allow errors. Let C2 be the number of bit operations to compute Flips(v). Let C3 be the number of bit

operations to check that x1 + x2 ∈ Bm−n and that A(x1 + x2) (mod Hi) ∈ E(i)
γi,j

(we only need to check γi
positions of the error). Then at level i, Algorithm 2 requires on average

#L
(i−1)
2j−1

(
C1 + log2

(
#L

(i−1)
2j−1

)
log2

(
q`i
))

(6)

+ #L
(i−1)
2j

(
C2 + #Flips(v)

[
log2

(
#L

(i−1)
2j−1

)
log2

(
q`i
)

+ C3

#L
(i−1)
2j−1

2viγiq`i−γi

])
(7)

+ #L
(i)
j

(m− n)

2t−i
log2

(
q`i+1

)
(8)

bit operations.

Proof. Line 2 of Algorithm 2 requires computing F (−Ax1 (mod Hi)) for all elements in the list L
(i−1)
2j−1 and

then sorting. The total cost is bounded by #L
(i−1)
2j−1 (C1 + log2(#L

(i−1)
2j−1) log2(q`i)) bit operations, which gives

the component of equation (6).

Next, for each pair (x2,v) ∈ L(i−1)
2j one needs to compute Flips(v). For each element in Flips(v), one

needs to look up the value in the sorted list. The notation #Flips denotes the expected number of flips to

21

be checked and it depends on the parameters γi and vi in the approximate-merge. For each match one has,

on average, #L
(i−1)
2j−1 /(2

viγiq`i−γi) different values from the first list with that hash value. Hence we need

to handle around #Flips(v) · #L(i−1)
2j #L

(i−1)
2j−1 /(2

viγiq`i−γi) values. For each of these we need to compute
A(x1 + x2) (mod Hi) and check that it is within the permitted error set. This leads to equation (7).

Finally, one needs to compute the values A(x1 +x2) (mod Hi+1) for the next iteration. This occurs only

for the “good” values, of which there are by definition #L
(i)
j . The computation of A(x1 + x2) is adding9 at

most (m− n)/2t−i vectors of length `i+1. �

Note that Algorithm 2 is deterministic. By saying “on average”, we are averaging over random in-
puts/problem instances.

Note also that Lemma 3 does not include the setup time of computing the initial lists. This should also
be taken account when determining the total running time.

Larger values for vi (the number of bits in the output of F) increase pflip but reduce #L
(i−1)
2j−1 /(2

viγiq`i−γi).
Note that vi does not effect the success probability, but only the running time. In practice, we first use a linear
program to optimize the list sizes in terms of the parameters `i and γi. Once they are fixed, we choose vi to

minimize the costs in equation (7) by balancing the terms #Flips(v) and #L
(i−1)
2j−1 /(2

viγiq`i−γi). The overall

time to perform the “approximate merge” is proportional to #L
(i−1)
2j log2(#L

(i−1)
2j−1) which is dominated by

the list size in the procedure. Note if γi = 0 and C1, C2, C3 are 0, we recover the basic merge algorithm and

we have vi = log2(q), #Flips(v) = 1 and #L
(i−1)
2j−1 /(2

viγiq`i−γi) = #L
(i−1)
2j−1 /q

`i .
Given a concrete instance of the problem, some of the constraints (such as that all the γi are equal for

the same level i) may not be satisfiable. We use an integer program to get a precise complexity statement
together with Lemma 3. In Section 5 we use these ideas to obtain an algorithm for the SWIFFT hash function
and we demonstrate improved running-time estimates compared with the standard CPW algorithm.

4.3 The HGJ and BCJ algorithm

Recall that our problem is: Given A, s to solve Ax + e = s in G = Znq , where x has length m′ = m − n
and e has length n. Here A is an n ×m′ matrix, x ∈ {0, 1}m′ and e ∈ {0, 1}n. We assume wt(x) = m′/2
and wt(e) = n/2. Assume for simplicity10 that the density is approximately 1 (hence 2m

′+n/qn ≈ 1). Using
Algorithm 2 we can get an improved version of the HGJ/BCJ algorithm. Since HGJ is a special case of BCJ,
we discuss the general case.

We use the BCJ algorithm with 3 levels of recursion to find a solution x ∈ {0, 1}m′ of weight m′/2. Recall
that Xa,b denotes vectors in {−1, 0, 1}m′ with am′ entries equal to 1 and bm′ entries equal to −1. With this
notation, our desired solution is an element of X1/2,0.

Following [4] we choose suitable parameters α, β, γ (see below). The first level of recursion splits x =
x1 + x2 where x1,x2 ∈ X1/4+α,α. The second level of recursion splits x ∈ X1/4+α,α into x1 + x2 where
x1,x2 ∈ X1/8+α/2+β,α/2+β . The third level of recursion splits a vector into a sum of two vectors in the set
X1/16+α/4+β/2+γ,α/4+β/2+γ .

We also use the BCJ idea to split the errors. This is a little more complex to describe as the error sets
are in {−1, 0, 1}n′ for varying values of n′ < n. The notation Ea,b will mean a set of vectors in {−1, 0, 1}n′

with an′ entries equal to 1 and bn′ entries equal to −1. We assume e ∈ E1/2,0 initially (n′ = n). We will fix
parameters α′, β′, γ′ (to be specified below).

Let H1, H2, H3 be subgroups of G, of the usual form, such that #(G/Hi) = q`i . For 1 ≤ i ≤ 3 we define

E(i→3)
a,b ⊆ {−1, 0, 1}n′ where n′ = `i + · · · + `3 to be the set of vectors with an′ entries equal to 1 and bn′

entries equal to −1. These are considered as subsets of the quotient groups G/(Hi ∩ · · · ∩H3). We denote

E(3→3)
a,b by E(3)

a,b .

9 This is for B = {0, 1}; it is adding or subtracting when B = {−1, 0, 1}.
10 We do not analyse this algorithm in the case of density > 1, but it is clear that similar improvements can be

obtained as in Section 3. As in Section 3 it is not possible to give a general formula for the running time.

22

Algorithm. The first level of recursion chooses a random value R1 ∈ Z`1+`2+`3
q = G/(H1 ∩ H2 ∩ H3) and

computes two lists L
(1)
1 = {(x,Ax) : x ∈ X1/4+α,α,Ax+e ≡ R1 (mod H1∩H2∩H3) for some e ∈ E(1→3)

1/4+α′,α′}
and L

(1)
2 which is the same except Ax + e ≡ s−R1 (mod H1 ∩H2 ∩H3).

The second level of recursion computes L
(1)
1 and L

(1)
2 by splitting into further lists. We split x ∈ X1/4+α,α

into x1 + x2 where x1,x2 ∈ X1/8+α/2+β,α/2+β and split error vectors into E(2→3)
1/8+α′/2+β′,α′/2+β′ . For example,

choosing a random value R2, L
(1)
1 is split into L

(2)
1 = {(x,Ax) : x ∈ X1/8+α/2+β,α/2+β ,Ax + e ≡ R2

(mod H2 ∩ H3), for some e ∈ E(2→3)
1/8+α′/2+β′,α′/2+β′} and L

(2)
2 is similar except the congruence is Ax + e ≡

R1 −R2 (mod H2 ∩H3).

The final level of recursion computes each list L
(2)
j by splitting x ∈ X1/8+α/2+β,α/2+β into a sum

X1/16+α/4+β/2+γ,α/4+β/2+γ and splitting the error e (mod H3) ∈ E(2→3)
1/8+α′/2+β′,α′/2+β′ into a sum from

E(3)
1/16+α′/4+β′/2+γ′,α′/4+β′/2+γ′ . The lists at the final level are computed using the Shroeppel-Shamir al-

gorithm.

Success Probability. Suppose there is a unique solution (x, e) ∈ {0, 1}m′+n to the G-ISIS instance, where
x has weight m′/2 and e has weight n/2. Consider the first step of the recursion. For the whole algorithm
to succeed, it is necessary that there is a splitting x = x1 + x2 of the solution together with a splitting
e ≡ e1 + e2 (mod H1 ∩H2 ∩H3), so that for a randomly chosen R1 ∈ G/(H1 ∩H2 ∩H3), Ax1 + e1 ≡ R1

(mod H1 ∩ H2 ∩ H3) and Ax2 + e2 ≡ s − R1 (mod H1 ∩ H2 ∩ H3). The number of ways to split x (with
length m′) on the first level of recursion is

N1 =

(
m′/2

m′/4

)(
m′/2

αm′, αm′, (1/2− 2α)m′

)
where the notation

(
N

a,b,(N−a−b)
)

=
(
N
a,b

)
=
(
N
a

)(
N−a
b

)
denotes the usual multinomial coefficient. The number

of ways to split e (mod H1 ∩H2 ∩H3) (with length `1 + `2 + `3) on the first level of recursion is

N ′1 =

(
(`1 + `2 + `3)/2

(`1 + `2 + `3)/4

)(
(`1 + `2 + `3)/2

α′(`1 + `2 + `3), α′(`1 + `2 + `3)

)
.

For randomly chosen R1 ∈ G/(H1 ∩H2 ∩H3), we expect there to be a valid splitting if N1N ′1 ≥ q`1+`2+`3 .
Indeed, the expected number of valid splittings should be roughlyN1N ′1/q`1+`2+`3 . Hence, we chooseN1N ′1 ≈
q`1+`2+`3 to make sure a valid splitting pair exists at this stage with significant probability.

For the second stage we assume that we already made a good choice in the first stage, and indeed that

we have N1N ′1/q`1+`2+`3 possible values for (x1, e1) where x1 ∈ X1/4+α,α, e1 ∈ E(1→3)
1/4+α′,α′ . The number of

ways to further split x1 is

N2 =

(
(1/4 + α)m′

(1/8 + α/2)m′

)(
αm′

αm′/2

)(
(3/4− 2α)m′

βm′, βm′, (3/4− 2α− 2β)m′

)
.

The number of ways to further split e1 (mod H2 ∩H3) is

N ′2 =

(
(1/4 + α′)(`2 + `3)

(1/8 + α′/2)(`2 + `3)

)(
α′(`2 + `3)

α′(`2 + `3)/2

)(
(3/4− 2α′)(`2 + `3)

β′(`2 + `3), β′(`2 + `3), (3/4− 2α′ − 2β′)(`2 + `3)

)
.

The expected number of valid splittings at this stage should be roughly

(N1N ′1/q`1+`2+`3)(N2N ′2/q`2+`3)2

since at this stage we need to split both x1 and x2.
For a randomly chosen R2 ∈ G/(H2 ∩H3), there is a good chance that a valid splitting exists if

(N1N ′1/q`1+`2+`3)(N2N ′2/q`2+`3)2 ≥ 1.

23

Hence, since we already choose N1N ′1 ≈ q`1+`2+`3 , we now impose the condition N2N ′2 ≈ q`2+`3 .
In the final stage (again assuming good splittings in the entire second stage), the number of ways to split

elements in X1/8+α/2+β,α/2+β is

N3 =

(
(1/8 + α/2 + β)m′

(1/16 + α/4 + β/2)m′

)(
(β + α/2)m′

(β/2 + α/4)m′

)(
(7/8− α− 2β)m′

γm′, γm′, (7/8− α− 2β − 2γ)m′

)
.

The number of ways to split elements in E(3)
1/8+α′/2+β′,α′/2+β′ is

N ′3 =

(
(1/8 + α′/2 + β′)`3

(1/16 + α′/4 + β′/2)`3

)(
(β′ + α′/2)`3

(β′/2 + α′/4)`3

)(
(7/8− α′ − 2β′)`3

γ′`3, γ′`3, (7/8− α′ − 2β′ − 2γ′)`3

)
.

The expected number of valid splittings is

(N1N ′1/q`1+`2+`3)(N2N ′2/q`2+`3)2(N3N ′3/q`3)4,

which we require to be ≥ 1. Hence, we add the additional constraint N3N ′3 ≈ q`3 . Thus, choosing #G/H3

close to N3N ′3, #G/(H2 ∩ H3) close to N2N ′2 and #G/(H1 ∩ H2 ∩ H3) close to N1N ′1 then the heuristic
success probability of the algorithm should be noticeable.

Parameters. Suitable parameters need to be chosen to optimize the running time and have good success
probability. As in previous sections, we use the estimate #Xa,b ≈ 2H(a,b)·m′ where

H(x, y) = −x log2(x)− y log2(y)− (1− x− y) log2(1− x− y)

and similarly for Ea,b. We also use

h(x) = −x log2(x)− (1− x) log2(1− x)

to estimate the binomial. Then the logarithm of the number of decompositions for each level is

log2(N1) ≈ m′

2 (h(1/2) +H(2α, 2α)) ≈ m′ 1 +H(2α, 2α)

2
,

log2(N2) ≈ m′ ·
1 + 8α+ (3− 8α) ·H(β

3/4−2α ,
β

3/4−2α)

4
,

log2(N3) ≈ m′ ·
1 + 8α+ 16β + (7− 8α− 16β) ·H(γ

7/8−α−2β ,
γ

7/8−α−2β)

8
.

The (logarithmic) number of decompositions for the error vector is similar.

log2(N ′1) ≈ (`1 + `2 + `3) · 1 +H(2α′, 2α′)

2

log2(N ′2) ≈ (`2 + `3) ·
1 + 8α′ + (3− 8α′) ·H(β′

3/4−2α′ ,
β′

3/4−2α′)

4

log2(N ′3) ≈ `3 ·
1 + 8α′ + 16β′ + (7− 8α′ − 16β′) ·H(γ′

7/8−α′−2β′ ,
γ′

7/8−α′−2β′)

8
.

Assuming that 2m
′+n ≈ qn, we have n ≈ m′

log2 q−1 , and we choose the following parameters (these are the

result of an optimisation problem to minimise the running time of the algorithm).

α = 0.0267, β = 0.0168, γ = 0.0029;

α′ = 0.0279, β′ = 0.0027, γ′ = 0.0027;

q`1 = 20.2673m′20.4558n, q`2 = 20.2904m′20.1388n and q`3 = 20.2408m′20.0507n.

24

For such parameters, we can estimate

N1 ≈ 20.7985m′ , N2 = 20.5312m′ , and N3 = 20.2408m′ ;

and
N ′1 = 20.8082(`1+`2+`3), N ′2 = 20.3568(`2+`3) and N ′3 = 20.2106`3 .

We consider the success probability. The number of splittings for the first level is

N1N ′1/q`1+`2+`3 .

With the above parameters, then the logarithm (base 2) of this value is approximately

0.7985m′ − 0.7985m′2

m′ + n
− 0.7985m′n

m′ + n
− 0.1238n2

m′ + n

≈ − 0.1238n2

m′ + n

Similarly, the logarithm of the number of valid splittings for the second stage is

log2

(
(N1N ′1/q`1+`2+`3)(N2N ′2/q`2+`3)2

)
≈ −0.3676n2

m′ + n
.

Finally, the logarithm of the number of valid splittings for the last stage is

log2

(
(N1N ′1/q`1+`2+`3)(N2N ′2/q`2+`3)2(N3N ′3/q`3)4

)
≈ −0.5278n2

m′ + n
.

For example, taking m = 1024, n = 64 and m′ = m− n gives expected number of splittings at each level
to be 0.7, 0.36 and 0.23 respectively, giving a total success probability of approximately 0.06. So we expect to
need to repeat the algorithm around 16 times. For fixed n and letting m′ →∞ then the success probability
tends to 1.

Heuristic running time. We now consider the running time for one execution of the algorithm. (We do not
consider the number of repetitions requried due to the success probability here.)

Theorem 2. Let s = Ax + e in Znq where x ∈ {0, 1}m′ has weight m′/2, and e ∈ {0, 1}n has weight n/2.

Suppose the density is approximately 1, so that 2m = 2m
′+n ≈ qn. With notation as above, and assuming

heuristics about the regularity of Ax+e, the approximate BCJ algorithm runs in Õ(20.2912m′+0.1899n) time.

Proof. We run the algorithm as described using the parameters specified above.
First level. In the first level of the recursion, the expected size of each list is given by

log2

(
#L(1)

)
= log2

(
#X1/4+α,α #E(1→3)

1/4+α′,α′ / q
`1+`2+`3

)
≈ m′H(1/4 + α, α) +H(1/4 + α′, α′)(`1 + `2 + `3)− (`1 + `2 + `3) log2(q).

For our parameters we have the relation

q`1+`2+`3 = 20.7985m′20.6453n.

Hence the logarithmic size is

log2

(
#L(1)

)
= 0.2173m′ + 0.8169

m′n

m′ + n
− 0.6453n+ 0.6601

n2

m′ + n

≤ 0.2173m′ + 0.1716n.

25

Using the approximate merge (Algorithm 2) this requires time

T1 = Õ
(

#L(1)#L(1)2n−`1−`2−`3/qn−`1−`2−`3
)

(9)

One can compute a precise formula for log2(T1) by evaluating equation (9) with our parameters. We used a
computer script to keep track of all the quantities. One can show that log2(T1) ≤ 0.2331m′ + 0.1899n.
Second level. Similarly, in the second level of recursion the size of the lists is approximately

log2

(
#L(2)

)
= log2

(
#X1/8+α/2+β,α/2+β #E(2→3)

1/8+α′/2+β′,α′/2+β′ / q
`2+`3

)
≈ m′H(1/8 + α/2 + β, α/2 + β)

+H(1/8 + α′/2 + β′, α′/2 + β′)(`2 + `3)− (`2 + `3) log2(q).

For our parameters we have the relation

q`2+`3 = 20.5312m′20.1895n.

Hence the logarithmic size is

log2

(
#L(2)

)
= 0.2791m′ +

0.3756m′n

m′ + n
− 0.1895n+

0.1340n2

m′ + n

≤ 0.2791m′ + 0.1861n.

Using the approximate merge (Algorithm 2), the cost to merge is

T2 = Õ
(

#L(2)#L(2)#E(1)
1/4+α′,α′/q

`1
)
.

With the above parameters

log2(T2) ≈0.2908m′ +
1.0246m′n

m′ + n
− 0.8348n+

0.7342n2

m′ + n

≤ 0.2908m′ + 0.1898n.

Third level. The last level of recursion computes lists of expected size

log2

(
#L(3)

)
= log2

(
#X1/16+α/4+β/2+γ,α/4+β/2+γ

)
+ log2

(
#E(3)

1/16+α′/4+β′/2+γ′,α′/4+β′/2+γ′

)
− `3 log2(q)

≈ m′H(1/16 + α/4 + β/2 + γ, α/4 + β/2 + γ)

+ `3H(1/16 + α′/4 + β′/2 + γ′, α′/4 + β′/2 + γ′)− `3 log2(q).

For our parameters we have the relation

q`3 = 20.2408m′20.0507n.

Hence the logarithmic size is

log2

(
#L(3)

)
= 0.2908m′ +

0.1120m′n

m′ + n
− 0.0507n+

0.0236n2

m′ + n

≤ 0.2908m′ + 0.0613n.

Using the approximate merge (Algorithm 2), the cost to merge is

T3 = Õ
(

#L(3)#L(3)E(2)
1/8+α′/2+β′,α′/2+β′/q

`2
)
.

26

With the above parameters

log2(T3) ≈ 0.2912m′ +
0.4293m′n

m′ + n
− 0.2402n+

0.1453n2

m′ + n

≤ 0.2912m′ + 0.1891n.

Each list in the last level can be constructed using the Shroeppel-Shamir algorithm (or its variants) in time

T4 = Õ(
√

#X1/16+α/4+β/2+γ,α/4+β/2+γ #E(3)
1/16+α′/4+β′/2+γ′,α′/4+β′/2+γ′).

We have

log3(T4) ≈ 0.2658m′ +
0.0560m′n

m′ + n
+

0.0118n2

m′ + n

≤ 0.2658m′ + 0.0560n.

By taking the maximum of the running times of all levels in the recursion, the time complexity of the
algorithm is Õ(20.2912m′+0.1899n). �

Remark 3. Note that Õ(20.2912m′+0.1899n) < Õ(20.2912m), so the algorithm is an improvement over standard
BCJ by a multiplicative factor 20.1013n. If one fixes n and considers m → ∞ then the success probability
is constant and the running time is the same Õ(20.2912m) statement as given in [4] but with an improved
constant.

5 Improved attacks on SWIFFT

We present improved attacks for both inversion and finding collisions of the SWIFFT hash function. The
parameters are m = 1024, n = 64, q = 257 and B = {0, 1}. Note that for the moment we ignore the ring
structure and just treat SWIFFT as an instance of ISIS. The best previously known attacks for the SWIFFT
inversion and collision problems require 2148 bit operations and 2113 bit operations respectively. Our improved
attacks solve the SWIFFT inversion and collision problems in 2138 bit operations and 2104 bit operations
respectively. Our results do not violate the claimed security level of SWIFFT.

5.1 Inverting SWIFFT.

Lyubashevsky, Micciancio, Peikert and Rosen [21] discussed using the original CPW algorithm to solve the
(1024, 64, 257, {0, 1})-SIS problem: “it is also possible to mount an inversion attack using time and space
approximately 2128”. Note that 2128 is the initial list size required and hence the running-time would be
expected to be larger. We re-estimate the bit-complexity of the algorithm. The method breaks up the 1024
column vectors of matrix A into k = 8 groups of 128 column vectors each. For each group we compute a list
of size 2128, then choose `1 = 16, `2 = 16, `3 = 32. At each level the size of the lists is around 2128, so the
required storage is about 8 · 2128 · log2(q16) bits. Using Lemma 3 of the special case γi = C1 = C2 = 0, we
predict the total running time is approximately 2148 bit operations for success probability at least 1/2.

We now show that using the Hermite normal form and our approximate CPW algorithm from Section 4.2
gives a 210 speed-up. First, we lower the dimension from 1024 to 1000 by setting 24 entries of x to be zero
and deleting the corresponding columns from A. This reduces the density, but we still have high enough
density to run the CPW algorithm. Then we compute the Hermite normal form, to reduce A to a 64× 936
matrix. We then use k = 8 to break {0, 1}936 into 8 groups of length 117. Thus we construct 8 initial lists of
size 2117 and take `1 = 15, `2 = 16 and `3 = 33.

At each step, we merge two lists using the “approximate merge” algorithm described in Algorithm 2. To
begin, we merge the initial eight lists of size 2117 by checking the first `1 = 15 coordinates of the vectors. We
allow errors in γ1 = 4, 4, 3, 4 positions for each merge. The expected size of the three new lists corresponding

27

to γ1 = 4 is 22·117·24

25715 ≈ 2117.92, and the expected size of the other list is 22·117·23

25715 ≈ 2116.92. For hashing, we
take v1 = 7 most significant bits of each value in Z257. The probability pflip ≈ 0.25 is such that #Flips(v) is
on average no more than 2.5, and the expected number of collisions in a hash slot (i.e., the expected number

of x in a list that have the same value for F (Ax (mod H))) is 2117

2v1γ1q`1−γ1
≤ 2.

At the next level we merge the four lists of sizes 2117.92, 2117.92, 2116.92, 2117.92 by checking the next
`2 = 16 coordinates of the vectors. We allow errors in γ2 = 8 positions for each merge. The expected sizes of

the two new lists is 2117.92+117.92·28

25716 ≈ 2115.75 and 2116.92+117.92·28

25716 ≈ 2114.75. For the hashing of each merge, we
take v2 = 7. The probability pflip ≈ 0.25 such that #Flips(v) ≈ 6 and the expected number of elements n a
hash slot is bounded above by 1.

At the top level we merge the two lists of sizes 2114.75 and 2115.75 by checking the remaining `3 = 33
coordinates of the vectors, allowing γ3 = 33 positions to have errors. The expected size of the solution set11

is 2114.75+115.75233

25733 ≈ 2−0.7. For hashing we use v3 = 4. Thus #Flips(v) ≈ 3.1 and the expected number of
elements in a hash slot is bounded above by 1.

In conclusion, the maximum size of the lists at all levels is 2117.92. Using the above information and
Lemma 3, we estimate the total time to be around 2138 bit operations (and with a similar success probability
as the method of [21] which is about 0.6).

Remark 4. The analysis of the expected size of lists assumes independence of vectors in the lists. However,
when the ISIS instance comes from a ring then there are certain symmetries that show that vectors are not
independent. We have theoretical and experimental evidence that these issues do not effect the analysis of
the CPW algorithm on SWIFFT. See Remark 5 in Section 6 for further discussion.

5.2 Finding collisions for SWIFFT.

Finding collisions for SWIFFT is equivalent to solving the (1024, 64, 257, {−1, 0, 1})-SIS problem.
Lyubashevsky, Micciancio, Peikert and Rosen [21] give an analysis using the CPW algorithm and choose

k = 16. The method breaks up the 1024 column vectors of A into 16 groups of 64 vectors each, for each
group create an initial list of 364 ≈ 2101.4 vectors. Then we choose `1 = `2 = `3 = `4 = 13 to perform the
merges. Since the goal of [21] is to provide a lower bound on the running time of the most efficient known
algorithm: they optimistically assume that, at each level, the lists have 2102 vectors. Thus the final level
ends up with a list of ≈ 2102 elements whose first 52 coordinates are all zero. Since 2102 > 25712 ≈ 296, it is
expected that there exists an element whose last 12 coordinates are also zero, which leads to the conclusion
that the space is at least 2102 and the running time is at least 2106. Kirchner [19] also claims a collision
algorithm with similar complexity.

Note that the assumption in [21] that the lists have 2102 elements at each level seems implausible. In
practice, it is useful to obtain a more precise estimate of the running time of the method. In particular, the
lists at various levels are getting smaller (sizes 2101.4 → 298.8 → 293.5 → 283.0 → 261.9) and so one does not
have a list of 2102 vectors at the final level. The success probability (using the expected size on the lists) of
this algorithm is around 2−34. Taking these into consideration, the bit complexity of this approach is about
2153.

One can already improve the above approach by using Minder and Sinclair’s refinement [25]. For k = 16
lists one can take `1 = 12, `2 = 14, `3 = 12, `4 = 26. The maximum size of the lists at all the levels is then
around 2107. Using Lemma 3 we estimate the total time to be about 2126 bit operations.

Howgrave-Graham and Joux described an improved collision attack in Appendix B of [16] (an early
version of [15]). The idea is to attack the original {0, 1}-SIS problem directly: first using the original CPW
algorithm to get a list of elements with a certain subset of their coordinates equal to 0, then exploit the
birthday paradox using the elements in this list to find a collision between the remaining coordinates. They
choose k = 16 and create 16 initial lists of size 264. By choosing `1 = 4, `2 = 12, `3 = 12, `4 = 12, the size

11 Here we tune the constraint bt ≥ 0 to be bt ≥ −1, which means we expect to have to run the whole algorithm
twice. It is possible to tune certain constraints in the integer program in Section 4.2 to get a better attack in terms
of bit-complexity.

28

of the lists on all other levels (except the initial and the solution lists) is about 296. In the final step they
obtain a list of 296 elements with the first 40 coordinates equal to zero. Since (296)2 ≈ 25724, the birthday
paradox shows one can find a collision between the remaining 24 coordinates in this list. In other words,
we have Ax1 ≡ Ax2 where x1,x2 ∈ {0, 1}m and so we have found a collision for SWIFFT. The space
requirement is about 296 and the time is predicted in [16] to be proportional to 2100. Lemma 3 suggests the
total bit-operation is about 2115, thus a speedup of 211 from the aforementioned Minder-Sinclair method.
The success probability is about 2−1.4

We now describe a better collision attack, by using the Hermite normal form and the approximate-CPW
algorithm from Section 4.2. We apply the HNF to have an n×m′ instance, where m′ = m− n = 960. Then
we use the CPW method (with Minder and Sinclair’s refinement) to construct a list of x ∈ {0, 1}960 such
that Ax (mod H) has coordinates lying in {−1, 0} (in other words, there is a binary error vector e such
that Ax + e ≡ 0 (mod H)). In the end, we exploit the birthday paradox to find a near collision between the
remaining coordinates: the “near collision” means that the difference of the coordinates lies in {−1, 0, 1}.

Let k = 16 and we divide the matrix into 16 groups of 60 vectors each. For each group create an initial
list. Note that we can control the size of the initial lists and they do not need to have the same size. We
choose `1 = 5, `2 = 10, `3 = 11, `4 = 12 to perform our approximate merge. These values can be obtained by
solving the integer program described in Section 4.2: one needs to modify the constraint bt ≥ 0 (one solution
survives at the bottom level) in the integer program to 2bt + log2(3) · (n−

∑t
i=1 `i) ≥ log2(q) · (n−

∑t
i=1 `i),

i.e. in the last level we want the size of the list to be large enough to use the birthday paradox. As long as
this size is sufficiently large, there exist two elements (a near collision) x1,x2 such that A(x1 − x2) has its
remaining coordinates coming from {−1, 0, 1}. Figure 2 shows the size of the lists in each level and other
parameters. In the last level, we obtain a list of 283.45 elements with 38 coordinates equal to {−1, 0}. Since
283.45+83.45326 ≈ 25726, a list of size 283.45 large enough to use the birthday paradox on the remaining 26
coordinates.

In the above procedure, the maximum list size is 283.88 and hence the space is proportional to 284. By
Lemma 3 the total running time is estimated to be 2104 bit operations; hence leads to a 211 speed-up over
the previous best method. Compared to previous methods, we start with much smaller lists due to HNF and
use the approximate merge to increase the list size. This helps to control the maximum list sizes during the
procedure.

83.45

83.76

82.94

79.03

59.06

γ1 = 0

60

γ2 = 4

79.97

60

γ1 = 0

60

γ3 = 6

82.88

79.97

60

γ1 = 0

60

γ2 = 3

79.97

60

γ1 = 0

60

γ4 = 12

83.76

82.94

81.03

59.06

γ1 = 2

60

γ2 = 0

81.97

60

γ1 = 2

60

γ3 = 5

83.88

80.97

60

γ1 = 1

60

γ2 = 3

79.97

60

γ1 = 0

60

Fig. 2. Parameter choices and list sizes for the approximate-CPW algorithm for finding collisions in SWIFFT. As
stated above, we take `1 = 5, `2 = 10, `3 = 11 and `4 = 12. The values vi, being the number of most significant bits
we use for the hash in the cases when γi 6= 0, are v1 = v2 = 8 and v3 = v4 = 7. The numbers in the dotted box
denote the log2 size of the list; the γi is used in the approximate-merge algorithm.

29

6 Ring-SIS

We consider the ring Rq = Zq[t]/(tn + 1), where q is prime and n is typically a power of 2. For example,
the SWIFFT hash function is defined using q = 257 and n = 64. Ring elements are often represented as
tuples (a0, . . . , an−1) ∈ Znq corresponding to the polynomial a0 + a1t+ · · ·+ an−1t

n−1. Define a subset X of
Rq as those polynomials with coefficients ai ∈ {0, 1}, or possibly {−1, 0, 1}. The Ring-SIS problem is, given
a1, . . . ,am ∈ Rq, to find x1 . . . ,xm ∈ X such that 0 = a1x1 + · · ·+ amxm and not all xi = 0. The SWIFFT
hash function uses m = 16, giving 2mn = 21024 choices for (x1, . . . ,xm). One can find collisions in the
SWIFFT hash function by solving Ring-SIS with the set X being polynomials with coefficients ai ∈ {−1, 0, 1}.

All previous cryptanalytic work on the SWIFFT hash function ignored the ring structure and converted
the problem to (I)SIS. In this section we consider exploiting the ring structure to obtain a speedup. Our tool
is the map ψ : Rq → Rq given by ψ(a(t)) = ta(t). This is not a ring homomorphism. We will think of ψ as
an invertible linear map on the Zq-vector space Rq, and call it a “symmetry” (technically, we have a group
action). In terms of coefficient vectors, we have

ψ(a0, . . . , an−1) = (−an−1, a0, . . . , an−2).

Note that ψ has order 2n and that ψn = −1.
The key observation is that

ψ(ax) = ψ(a(t)x(t)) = ta(t)x(t) = a(t)(tx(t)) = aψ(x).

Hence, an orbit {ψi(ax) : 0 ≤ i < 2n} can be considered as a times the orbit of x. If the set X has the
property that ψ(X) = X then one can adapt the CPW algorithm to work with the set of orbits X/ψ rather
than the whole set X . The hope is that this gives a reduction by a factor 2n in the cost of all stages of the
algorithm.

For the parameters in SWIFFT we do not have ψ(X) = X . This is because X consists of polynomials with
coefficients in {0, 1}, whereas t64 = −1 and so large enough shifts of polynomials in X have some coefficients
equal to −1. So for the remainder of this section we restrict attention to cases where ψ(X) = X . This is
the case when the ring Rq is defined as Zq[t]/(tn − 1), or if X is the set of polynomials with coefficients in
{−1, 0, 1}.

A remaining non-trivial issue is how to deal with quotients G/H. Our group G is now the additive group
of the ring Rq, and to have a well-defined action of ψ on the quotient G/H it is necessary that H be invariant
under ψ (i.e., ψ(H) = H). It might seem that this condition greatly restricts our possible choices for H, and
so does not allow arbitrary fine-tuning of the size of G/H. We now explain that for the parameters used in
SWIFFT no such obstruction arises.

The matrix representation of ψ with respect to the basis {1, t, . . . , tn−1} is
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
0 0 0 · · · 1
−1 0 0 · · · 0

 .

One can verify that, when q = 257 and n = 64, this matrix has n distinct eigenvalues (specifically, the
64 distinct 128-th roots of 1 in Z∗257). This happens since 128 | (257 − 1); a choice that was taken so that
t64 + 1 splits completely modulo q (which enables fast computation of the hash function using the number
theoretic transform). This means that there is an eigenbasis for ψ. With respect to this basis of Z64

257 the
matrix representing ψ is diagonal. Hence, by taking H to be the group generated by any 64 − ` of these
eigenvectors we have a ψ-invariant subgroup such that #(G/H) = q`. On the other hand, if tn + 1 did not
split completely modulo q then the attacker’s job would likely be a little more difficult.

We now very briefly describe the CPW algorithm in the case when X consists of polynomials with
coefficients in {−1, 0, 1}. Suppose one wants to solve 0 = a1x1 + · · · + a16x16 using an 8-list algorithm.

30

The original CPW algorithm would choose a suitable subgroup H1 and compute lists L
(0)
i = {(a2i−1x2i−1 +

a2ix2i (mod H1),x2i−1,x2i) : x2i−1,x2i ∈ X} for 1 ≤ i ≤ 8. The size of each set L
(0)
i is roughly #X 2.

One then merges the sets by finding matches (a1x1 + a2x2 (mod H1),x1,x2) ∈ L
(0)
1 and (a3x3 + a4x4

(mod H1),x3,x4) ∈ L(0)
2 such that a1x1 +a2x2 +a3x3 +a4x4 ≡ 0 (mod H1). Our observation is that we also

have (ψi(a1x1 + a2x2) (mod H1), ψi(x1), ψi(x2)) ∈ L(0)
1 and (ψi(a3x3 + a4x4) (mod H1), ψi(x3), ψi(x4)) ∈

L
(0)
2 , and these values satisfy

ψi(a1x1 + a2x2) + ψi(a3x3 + a4x4) ≡ 0 (mod H1).

Hence the idea is to store a single representative of each orbit. We now define the representative we use.

Definition 3. Let notation be as above, with q prime and 2n | (q−1). Let k = (q−1)/(2n) and let α1, . . . , αk
be coset representatives for Z∗q/Z where Z = {z ∈ Z∗q : z2n = 1}. Suppose ψ has distinct eigenvalues λ1, . . . , λn
so that, with respect to the corresponding eigenbasis, ψ((s1, . . . , sn)T) = (s1λ1, . . . , snλn)T . Let s ∈ Rq/H
for any subgroup H such that ψ(H) = H. Then the equivalence class representative [s] of s is defined to be
the element of {ψi(s) : 0 ≤ i < 2n} such that [s] = (0, . . . , 0, αj , ?, . . . , ?) for some 1 ≤ j ≤ k and ? denotes
an arbitrary element.

Note that [s] = (s1λ
i
1, s2λ

i
2, . . . , snλ

i
n)T for some 0 ≤ i < 2n. Writing λj = λ

aj
1 one can write this as

(s1λ
i
1, s2λ

a2i
1 , . . . , snλ

ani
1)T .

To compute the class representative efficiently one uses a precomputed table of discrete logarithms with
respect to λ1. In the case of SWIFFT we have k = 2 and can take α1 = 1 and α2 = 3.

Returning to the CPW algorithm. The idea is to store a single representative of each class, so that the

list L
(0)
1 becomes {([a1x1 + a2x2 (mod H1)],x1,x2) : x1,x2 ∈ X}. We store the specific pair (x1,x2) such

that [a1x1 +a2x2 (mod H1)] = a1x1 +a2x2 (mod H1). We now consider the merge operation. The question
is how to find all tuples (x1,x2,x3,x4) such that

a1x1 + a2x2 + a3x3 + a4x4 ≡ 0 (mod H1)

when given only the classes [a1x1 + a2x2 (mod H1)], [a3x3 + a4x4 (mod H1)]. In other words, we need to
determine all indices i, i′ such that

ψi(a1x1 + a2x2 (mod H1)) ≡ ψi
′
(−(a3x3 + a4x4 (mod H1))). (10)

Lemma 4. Suppose a quadruple (x1,x2,x3,x4) satisfies equation (10). Then [a1x1 + a2x2 (mod H1)] =
[a3x3 +a4x4 (mod H1)]. Furthermore, if [a1x1 +a2x2 (mod H1)] = a1x1 +a2x2 (mod H1) and [a3x3 +a4x4

(mod H1)] = a3x3 + a4x4 (mod H1) then i′ = i.

Proof. Without loss of generality we can apply a suitable power of ψ to both sides, so that the left hand side
equals [a1x1 + a2x2 (mod H1)], and so is a normalised vector (0, · · · , 0, αj , ?, · · ·)T . The right hand side is

then ψi
′′
(−(a3x3 + a4x4 (mod H1))) for some integer i′′. To get equality it follows that the right hand side

is also a normalised vector, and so

ψi
′′
(−(a3x3 + a4x4 (mod H1))) = [−(a3x3 + a4x4 (mod H1))].

The result follows. �

It follows that all matches in the merge algorithm can be found by simply checking equality of equivalence
class representatives. Hence, the merge algorithm is exactly the same as Algorithm 1.

It follows that the sizes of lists are reduced from 3n to roughly 3n/(2n) and that the merge time is reduced
correspondingly. There are some additional challenges in programming the algorithm, but they should not
lead to a slower program overall.

31

Remark 5. We now make a remark about success probability. The original CPW algorithm would have lists
of size 3n, and they would be merged by checking a condition in G/H = Z`q. The heuristic argument is that

the merged list would be of size roughly (3n)2/q`, and hence consist of approximately 32n/(2nq`) orbits under
ψ. In our new algorithm we have lists of size 3n/(2n) and, by Lemma 4, there is a unique match (namely, it
is sufficient to test equality of the normalised class representatives as in Definition 3). Since the number of
normalised class representatives is roughly q`/(2n) it follows that the size of the new list (whose entries are
class representatives) should be approximately (3n/2n)2/(q`/2n) ≈ 32n/(2nq`), which is consistent with the
original algorithm. This argument supports our claim in Remark 4 (Section 5.1) that the symmetries do not
negatively impact the success probability of these algorithms when applied to structured matrices.

These ideas do not lead to a better attack on SWIFFT for two reasons:

1. It seems hard to use this idea for Ring-ISIS (and hence inverting SWIFFT) because ψ does not fix the
inhomogenous term s. Also, in that case we would not have the required condition ψ(X) = X .
Instead, the main application seems to be finding collisions in SWIFFT by solving Ring-SIS.

2. We already have a speedup to the CPW algorithm by a factor of more than 2n, by using the Hermite
normal form and other ideas.

It is an open problem to combine the use of orbits under ψ with the Hermite normal form. We briefly
explain the issue. Solving Ring-SIS is finding x1, . . . ,x16 such that 0 = a1x1 + · · · + a16x16. Assuming
a16 ∈ Rq is invertible, the Hermite normal form is

0 = (a−1
16 a1)x1 + · · ·+ (a−1

16 a15)x15 + x16.

One then wants to perform an 8-list approximate-CPW algorithm on the sum of 15 elements. The problem
is that 8 does not divide 15, so when we split the sum of 15 terms into 8 blocks, we are unable to get a clean
division into a sum of ring elements. Of course, we can discard the ring structure and split the sum as we
did in Section 5.1. But since blocks no longer correspond to ring elements, we do not have an action by ψ
and hence do not seem to be able to achieve any speedup.

7 Experimental results

The purpose of this section is three-fold. First, we check the heuristic assumptions used in the analysis.
Second, we show that the improved algorithms achieve the predicted speed-up in practice. Third, we show
that our time and space complexity estimates are robust: the actual running-time of the algorithm follows
from the bit complexity (and hence size) estimate.

For our experiments with the SWIFFT inversion and collision problems we study a version of SWIFFT
with smaller parameters. We consider two scenarios: the SIS inversion problem with B = {0, 1} and the SIS
collision problem with B = {0, 1}.

7.1 On our Heuristic Assumptions

In this subsection, we experimentally investigate the heuristic assumptions used in the paper. We use the
SAGE software for the implementation and the experiments. For this part, we run the experiments on a cluster
of Intel Xeon X5650 2.67GHz cores.

One of the main heuristic assumptions used in the analysis is Heuristic 1. It is used to show that the
expected size of a merged list is determined by the sizes of the two input lists. Theoretical evidence for this
heuristic comes from regularity arguments in [22, 21]. However, the splitting of the columns in the matrix
A may not follow this theoretical argument. Furthermore, we need to invoke this assumption at all levels
and any discrepancy could accumulate, and this could lead to problems in the overall estimate. Thus we
check the assumption by performing experiments for all levels. Rather than testing the heuristic directly we
test its impact on the algorithm (the sizes of lists after merging), since this is actually what is important

32

for our claims. In the experiments, we work with the ring Rq = Zq[t]/(tn + 1), where q is prime and n is
typically a power of 2. We also check several sets of parameters which requires different numbers of levels in
the procedure.

In the first set of parameters, we take n = 16,m = 112 and q = 13. We generate 1000 instances of the ring-
ISIS inversion problem for B = {0, 1} where each ring element ai is uniformly and independently generated.
Then we form A by concatenating the anti-circulant matrices representing all ai’s. For the solving algorithm,
we use Minder-Sinclair’s variant of CPW. We use three levels (thus 8 initial lists) with `1 = 3, `2 = 5 and
`3 = 8. The lists size for all levels are tabulated in Table 4. These results show an extremely close agreement
between theory and practice and so emphatically confirm that our heuristics are reasonable.

Table 4. List size for parameters n = 16,m = 112 and q = 13.

Levels log2 of list size Init. Est

log2(#L(0)) 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00

log2(#L(1)) 16.90 16.90 16.90 16.90 16.90

log2(#L(2)) 15.30 15.30 15.30

log2(#L(3)) 1.06 0.99

We explain the notation: The rows log2(#L(i)) give the logarithm of the average size of the lists at the
i-th level in our experiments. The cells/columns under “log2 of list size” give the size of the lists at various
levels of the algorithm: thus we start with 8 lists and end with 1 list of solutions. Each cell corresponds to a
list which is merged from the two cells (lists) on the top of the current cell (e.g. the list with log. size 15.30
is merged from two lists of log. size 16.90). The last column “Init. Est” denotes the theoretical estimations
based on the initial list size.

In the second experiment we take slightly larger parameters n = 32,m = 1024 and q = 13. The purpose
is to show that the heuristics are still plausible even when there are more levels. This requires to use a larger
number of lists, with 64 initial lists of log. size 16. As before, we generate 1000 instances of the ring-ISIS
problem. The list sizes for all levels are tabulated in Table 5. The notation used is the same as in Table 4.
The subgroups are defined with `i = 4, 5, 4, 4, 6, 9 for i = 1 to 6. For the last list, the figure −1.03 means
that on average there is one solution out of two experiments. This is not a problem since we would run the
algorithm twice.

Table 5. List size for parameters n = 32,m = 1024 and q = 13.

Levels log2 of lists size Init.
Est

log2(#L(0)) 64 initial lists of log. size 16.00 each 16.00

log2(#L(1)) 17.20 17.20 17.20 17.20 17.20 17.20 17.20 17.20 17.20 17.20 17.20 17.20 17.20 17.20 17.20 17.20 17.20
(continue.) 17.20 17.20 17.20 17.20 17.20 17.20 17.20 17.20 17.20 17.20 17.20 17.20 17.20 17.20 17.20 17.20

log2(#L(2)) 15.89 15.90 15.89 15.90 15.89 15.89 15.89 15.89 15.90 15.90 15.89 15.89 15.89 15.89 15.90 15.89 15.89

log2(#L(3)) 16.99 16.99 16.99 16.99 16.99 16.99 16.99 16.99 16.99

log2(#L(4)) 19.17 19.17 19.17 19.17 19.17

log2(#L(5)) 16.14 16.14 16.14

log2(#L(6)) -1.03 -1.02

In the third experiment we take a different set of parameters n = 16,m = 128 and q = 17 and we now
use the HNF and the approximate merge algorithm. We generate 1000 instances of the ring-ISIS problem.
The purpose is to show that the heuristics on the list sizes are still plausible when the errors are considered.
Note that after the HNF we have m′ = 112. We use 8 initial lists, each of size 214; we also use subgroups

33

defined by `1 = 4, `2 = 3 and `3 = 9. The lists size for all levels are tabulated in Table 6. The notation
is similar to the previous two tables, except that we also give information on the error lengths γi,j in the
table12. The rows Est. log2(#L(i)) denote the estimated logarithmic average list size at the i-th level where
the estimation is computed using the actual list size at the (i− 1)-th level.

Table 6. List size for parameters n = 16,m = 128 and q = 17.

Levels log2 of lists size

log2(#L(0)) 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00

Errors γ1,j 2 1 0 1

Est. log2(#L(1)) 13.65 12.65 11.65 12.65

log2(#L(1)) 13.65 12.65 11.65 12.65

Errors γ2,j 1 2

Est. log2(#L(2)) 15.04 14.04

log2(#L(2)) 15.04 14.04

Errors γ3,j 9

Est. log2(#L(3)) 1.29

log2(#L(3)) 1.40

Furthermore, for the same experiment, we also compute the experimental average number of #Flips(v)
in Lemma 3 (we record the total number of flips checked during the approximate merge algorithm and
then average the number by the size of list). The errors used in the approximate merge of Table 6 are
{2, 1, 1, 1, 2, 9} respectively (they correspond in order to cells “Errors γi,j” of Table 6 but we did not consider
the one without errors). The row “Lmsb” denotes the number of most significant bits used for each merge.
We record the experimental average numbers of #Flips(v) for each corresponding merge and compare them
to the theoretical values. The theoretical values are computed using the formula (pflip +1)γi for the expected
value of #Flips(v).

Table 7. The expected number of #Flips(v) in experiments of Table 6.

Errors γi,j 2 1 1 1 2 9

Lmsb 4 3 3 4 5 3

Theoretical average #Flips(v) 2.339 1.294 1.294 2.000 4.000 10.180

Experimental average #Flips(v) 2.339 1.294 1.294 2.000 4.000 10.212

These experimental results show that the list size estimates and the expected number of flips #Flips(v) are
accurate and the heuristic assumptions are plausible for both the CPW (with Minder-Sinclair’s refinement)
and the HNF cases.

7.2 ISIS inversion B = {0, 1}.

The parameters here are n = 16, q = 11 and m ranges from 80 to 160. We compared the extended k-tree
algorithm (Minder-Sinclair variant of CPW) with our HNF improvement. We tried 1000 instances for each set
of parameters starting with different random seeds. Table 8 shows the running-time comparison of algorithms
in five sets of parameters. In general, the problems get easier as the density increases and thus the instances
are getting easier when m increases.

12 In Subsection 4.2 we assume γi = `i/2
t−i are integers. In practice, the values of γi are computed from a integer

program. Hence we use the notation γi,j to indicate that the error lengths within the i-th level can be different.

34

Experiment E1 denotes the extended k-tree (CPW) algorithm of Minder and Sinclair (see Section 2.6).
Experiment E2 denotes the same algorithm, but with the HNF improvement and using approximate merge
(see Section 4.2). Columns “#E” are the theoretical estimate of the maximum number of bits of storage used
at any stage of the algorithm during experiment E respectively. The value m̃ in the Column “m̃, `i (E)”
denotes the actual dimension we used (since for a given dimension m, it is sometimes better to reduce the
dimension to get a faster attack).13 The notation `i denotes the constraints for each level in the computation;
when there are 3 (respectively 4) values `i listed it means we are performing an 8-list (respectively 16-list)
algorithm. Column “T. E1 ; E2” denotes the average observed running-time (using a SAGE implementation
on a cluster of Intel Xeon X5650 2.67GHz cores) over 1000 trials for each set of parameters for experiment E.
Column “T1/T2” denotes the ratio of the running-time estimate (using the estimate of Lemma 3) between
two experiments. Column “succ. E1 ; E2” denotes the success probability (the probability at least one
solution is found) by averaging over 1000 trials. It is noted that our improved algorithms have comparable
success probability to the original CPW algorithm.

Note that the actual running-time only follows roughly from the size upper bound “#E”, but not exactly.
For instance in experiment E1, dimension m = 128 can be reduced to m̃ = 112 which gives a better size
upper bound (from 14.70 to 14.49). However, the actual running-time for keeping m̃ = 128 is better than after
reducing to 112. This is because the column “#E” only denotes the theoretical estimate of the maximum bit
storage. The list sizes at various levels might be smaller than “#E” and the list sizes at the same level may
be different. Note it is easy to compute the list sizes at each level using the information in Table 8 using a
linear program.

Table 8. Comparison of algorithms for ISIS inversion B = {0, 1}.

m m̃ and `i (E1) m̃ and `i (E2) #E1 #E2 T. E1 / E2 = ratio T1/T2 succ. E1 ; E2

80 80, (1, 4, 11) 80, (1, 4, 11) 19.24 14.24 646.32s / 17.29s = 37.38 21.15 73.5% ; 74.6%
96 96, (2, 5, 9) 96, (2, 5, 9) 17.08 14.08 93.29s / 31.38s = 2.97 7.75 100% ; 100%
112 112, (4, 4, 8) 112, (4, 4, 8) 14.49 12.00 21.81s / 8.71s = 2.50 6.60 92.6% ; 90.3%
128 128, (1, 3, 5, 7) 128, (1, 4, 2, 9) 14.70 11.57 14.15s / 4.43s = 3.19 5.84 63.1% ; 64.8%
160 160, (2, 4, 4, 6) 160, (3, 2, 3, 8) 13.08 10.33 7.96s / 2.77s = 2.87 4.77 86.8% ; 83.0%

7.3 Collision on B = {0, 1}.

We now consider the collision problem for the set B = {0, 1}. This simulates the SWIFFT collision problem.
Experiment E3 is the Howgrave-Graham-Joux “birthday attack” variant of the Minder-Sinclair CPW algo-
rithm. In other words, we do the CPW algorithm using parameters `1, . . . , `t and then apply the birthday

paradox to the final list of entries in Zn−(`1+···+`t)
q . Experiment E4 is the same, but applying the HNF and

using approximate merge. The parameters are n = 16, q = 17, and m ranges from 96 to 176. The notation
used in Table 9 is analogous to that used in Table 8. Column “succ. E3 ; E4” also denotes the success
probability by averaging over 1000 trials. By comparison, our improved algorithms take less time and have
higher success probability than their counterparts (except for m = 128).

13 This does not occur in Table 8, but we see it in Table 9. When the dimension can be reduced to an instance which
has been investigated previously, we do not repeat the experiment but just reproduce the experimental results from
the previous instance.

35

Table 9. Comparison of algorithms for ISIS inversion B = {0, 1}.

m m̃ and `i (E3) m̃ and `i (E4) #E3 #E4 T. E3 / E4 = ratio T3/T4 succ. E3 ; E4

96 88, (2, 3, 4) 96, (3, 2, 3) 15.39 10.34 44.56s / 5.09s = 8.75 7.22 46.2% ; 56.0%
128 128, (1, 3, 2, 4) 96, (3, 2, 3) 14.95 10.34 19.79s / 5.09s = 3.50 6.29 95.6% ; 56.0%
144 144, (1, 4, 3, 2) 144, (2, 2, 2, 3) 13.91 10.29 17.34s / 6.73s = 2.58 4.75 84.5% ; 97.7%
160 160, (2, 3, 3, 2) 160, (3, 1, 2, 3) 12.85 9.94 8.55s / 5.65s = 1.51 1.66 67.5% ; 90.0%

To summarise, the experimental results presented in Tables 8 and 9 confirm that the improved algorithms
using the Hermite normal form indeed perform faster in practice than the previous start-of-the-art (with
comparable success probability). Our experimental results are also in agreement with the theoretical analysis.

8 Conclusions and further work

We have explained how the Hermite normal form reduces the ISIS problem to an “approximate subset-sum”
problem, and we have given a variant of the CPW algorithm that can solve such problems. As a result, we
have given improved algorithms for inverting and finding collisions for the SWIFFT hash function. Our new
methods are approximately 500-1000 times faster than previous methods, but do not violate the security
level of the SWIFFT hash function claimed in [21].

In Section 3 we have analysed the HGJ and BCJ algorithms for ISIS instances of density > 1. Figure 1
illustrates how these algorithms behave as the density grows. While these results are not of interest for
the SWIFFT hash function (as it has very high density), they may be relevant to the study of other ISIS
problems with small coefficient sets.

Section 4.3 discusses adapting the BCJ algorithm to the case of approximate ISIS (using the Hermite
normal form of the original ISIS instance) and obtains an improved algorithm to solve ISIS. We believe these
ideas will be of interest to studying ISIS instances with low density and small coefficient sets.

Finally, Section 7 reports on extensive experiments with the CPW algorithm. These results confirm our
theoretical analysis, and demonstrate that applying the Hermite normal form to ISIS gives a significant
speedup in practice.

There are several questions remaining for future work. One important challenge is to develop algorithms
with lower storage requirements and that can be parallelised or distributed. We note that Pollard-rho-style
random walks do not seem to be useful as they lead to running times proportional to

√
qn, which is usually

much worse than the running times considered in this paper.
It is also worthwhile to examine the lattice-based schemes submitted to the NIST Post-quantum Stan-

dardization process14. There might be schemes for which the algorithms described in this paper could be
applied.

Acknowledgments

We thank the reviewers for their detailed comments and suggestions. We acknowledge NeSI (the New Zealand
eScience Infrastructure), PSMN (Pôle Scientifique de Modélisation Numérique – ENS de Lyon) and the
Research Computing at Florida Atlantic University for providing computing facilities and support.

The work of the first author has been supported in part by ERC Starting Grant ERC-2013-StG-335086-
LATTAC.

References

1. Yuriy Arbitman, Gil Dogon, Vadim Lyubashevsky, Daniele Micciancio, Chris Peikert and Alon Rosen, SWIFFTX:
A Proposal for the SHA-3 Standard. Submitted to NIST SHA-3 Competition.

14 https://csrc.nist.gov/Projects/Post-Quantum-Cryptography

36

2. Miklós Ajtai, Generating Hard Instances of Lattice Problems, Electronic Colloquium on Computational Com-
plexity (ECCC), TR96-007 (1996).

3. Nikhil Bansal, Shashwat Garg, Jesper Nederlof and Nikhil Vyas, Faster space-efficient algorithms for subset sum
and k-sum, in Proc. of the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017(2017)
198–209.

4. Anja Becker, Jean-Sébastien Coron and Antoine Joux, Improved Generic Algorithms for Hard Knapsacks, in K.
G. Paterson (ed.), EUROCRYPT 2011, Springer LNCS 6632 (2011) 364–385.

5. Daniel J. Bernstein, Better price-performance ratios for generalized birthday attacks, in Workshop Record of
SHARCS07, (2007) http://cr.yp.to/papers.html#genbday

6. Daniel J. Bernstein, Tanja Lange, Ruben Niederhagen, Christiane Peters and Peter Schwabe, FSBday: Imple-
menting Wagner’s generalized birthday attack against the SHA-3 round-1 candidate FSB, in B. K. Roy and N.
Sendrier (eds.), INDOCRYPT 2009, Springer LNCS 5922 (2009) 18–38.

7. Johannes Buchmann and Richard Lindner, Secure Parameters for SWIFFT, in B. Roy and N. Sendrier (eds.),
INDOCRYPT 2009, LNCS 5922 (2009) 1–17.

8. Paul Camion and Jacques Patarin, The Knapsack Hash Function proposed at Crypto’89 can be broken, in D.
W. Davies (ed.), EUROCRYPT 1991, Springer LNCS 547 (1991) 39–53.

9. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein, Introduction to algorithms, 2nd
ed., MIT press, 2001.

10. Matthijs J. Coster, Antoine Joux, Brian A. LaMacchia, Andrew M. Odlyzko, Claus-Peter Schnorr, and Jacques
Stern, Improved low-density subset sum algorithms, Computational Complexity, 2:111-128, 1992.

11. Itai Dinur, Orr Dunkelman, Nathan Keller and Adi Shamir, Efficient Dissection of Composite Problems, with
Applications to Cryptanalysis, Knapsacks, and Combinatorial Search Problems, in R. Safavi-Naini and R. Canetti,
CRYPTO 2012, Springer LNCS 7417 (2012) 719–740.

12. Matthieu Finiasz and Nicolas Sendrier, Security Bounds for the Design of Code-Based Cryptosystems, In: Matsui,
M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 88105. Springer, Heidelberg (2009)

13. Nicolas Gama, Malika Izabachène, Phong Q. Nguyen, Xiang Xie, Structural Lattice Reduction: Generalized
Worst-Case to Average-Case Reductions and Homomorphic Cryptosystems. EUROCRYPT (2) 2016: 528-558.

14. Nick Howgrave-Graham, Joseph H. Silverman and William Whyte, A meet-in-the-middle attack on an NTRU
private key, Technical Report 004, NTRU Cryptosystems, June 2003.

15. Nick Howgrave-Graham and Antoine Joux, New Generic Algorithms for Hard Knapsacks, in H. Gilbert (ed.),
EUROCRYPT 2010, Springer LNCS 6110 (2010) 235–256.

16. Nick Howgrave-Graham and Antoine Joux, New Generic Algorithms for Hard Knapsacks (preprint), 17 pages
(undated). Available from www.joux.biz/publications/Knapsacks.pdf

17. Nick Howgrave-Graham, A Hybrid Lattice-Reduction and Meet-in-the-Middle Attack Against NTRU, in A.
Menezes (ed.), CRYPTO 2007, Springer LNCS 4622 (2007) 150–169.

18. Jeffrey C. Lagarias and Andrew M. Odlyzko, Solving low-density subset sum problems, J. ACM, 32(1):229-246,
1985.

19. Paul Kirchner, Improved Generalized Birthday Attack, Cryptology ePrint Archive: Report 2011/377 (2011)
20. Vadim Lyubashevsky, On Random High Density Subset Sums, Electronic Colloquium on Computational Com-

plexity (ECCC) 007 (2005)
21. Vadim Lyubashevsky, Daniele Micciancio, Chris Peikert and Alon Rosen, SWIFFT: A Modest Proposal for FFT

Hashing, in K. Nyberg (ed.), FSE 2008, Springer LNCS 5086 (2008) 54–72.
22. Daniele Micciancio, Generalized compact knapsacks, cyclic lattices, and efficient one-way functions from worst-

case complexity assumptions, Electronic Colloquium on Computational Complexity (ECCC), No. 095 (2004).
23. Daniele Micciancio and Chris Peikert, Hardness of SIS and LWE with Small Parameters, in R. Canetti and J. A.

Garay (eds.), CRYPTO 2013, Springer LNCS 8042 (2013) 21–39.
24. Daniele Micciancio and Oded Regev, Lattice-based cryptography, in D. J. Bernstein, J. Buchmann and E. Dahmen

(eds.), Post Quantum Cryptography, Springer (2009) 147–191.
25. Lorenz Minder and Alistair Sinclair, The Extended k-tree Algorithm, J.Cryptol. 25 (2012) 349–382.
26. Richard Schroeppel and Adi Shamir, A T = O(2n/2), S = O(2n/4) Algorithm for Certain NP-Complete Problems,

SIAM J. Comput. No. 3 (1981) 456–464.
27. Andrew Shallue, An Improved Multi-set Algorithm for the Dense Subset Sum Problem, in A. J. van der Poorten

and A. Stein (eds.), ANTS 2008, Springer LNCS 5011 (2008) 416–429.
28. David Wagner, A Generalized Birthday Problem, in M. Yung (ed.), CRYPTO 2002, Springer LNCS 2442 (2002)

288–303.

37

