
Oblivious Parallel RAM

Elette Boyle∗

Technion Israel
eboyle@alum.mit.edu

Kai-Min Chung
Academica Sinica

kmchung@iis.sinica.edu.tw

Rafael Pass†

Cornell University
rafael@cs.cornell.edu

August 2, 2014

Abstract

A machine is said to be oblivious if the sequences of memory accesses made by the machine
for two inputs with the same running time are identically (or close to identically) distributed.
Oblivious RAM (ORAM) compilers—compilers that turn any RAM program Π into a oblivious
RAM Π′, while only incurring a “small”, polylogarithmic, slow-down—have been extensively
studied since the work of Goldreich and Ostrovsky [GO96] and have numerous fundamental
applications. These compilers, however, do not leverage parallelism: even if Π can be heavily
parallelized, Π′ will be inherently sequential.

In this work, we present the first Oblivious Parallel RAM (OPRAM) compiler, which compiles
any PRAM into an oblivious PRAM while only incurring a polylogarithmic slowdown.

∗The research of the first author has received funding from the European Union’s Tenth Framework Programme
(FP10/ 2010-2016) under grant agreement no. 259426 ERC-CaC.
†Pass is supported in part by a Alfred P. Sloan Fellowship, Microsoft New Faculty Fellowship, NSF Award CNS-

1217821, NSF CAREER Award CCF-0746990, NSF Award CCF-1214844, AFOSR YIP Award FA9550-10-1-0093,
and DARPA and AFRL under contract FA8750-11-2- 0211. The views and conclusions contained in this document
are those of the authors and should not be interpreted as representing the official policies, either expressed or implied,
of the Defense Advanced Research Projects Agency or the US Government.

1 Introduction

Oblivious Machines. A machine is said to be memory oblivious, or simply oblivious, if the
sequences of memory accesses made by the machine on two inputs with the same running time are
identically (or close to identically) distributed. For instance, if we restrict to programs which always
have the same running time, the notion of an Oblivious Turing Machine, introduced by Pippenger
and Fischer [PF79], is a Turing machine where the movement of the heads on the tape is independent
of the input, and the notion of an Oblivous RAM, introduced by Goldreich [Gol87] and Goldreich and
Ostrovsky [GO96], is a Random Access Machine (RAM) where the distribution of memory access
locations are independent of the input. Already in the late 1970s, Pippenger and Fischer [PF79]
showed that any Turing Machine Π can be compiled into an oblivious one Π′ with only a logarithmic
slowdown in running-time. Roughly ten years later, Goldreich and Ostrovsky [GO96] showed a
similar result for RAMs, but this time the slowdown was polylogarithmic; in recent years several
improvements to both the asymptotic and concrete efficiency of such ORAM compilers have been
developed (e.g., [Ajt10, DMN11, GMOT11, KLO12, CP13, CLP13, GGH+13, SvDS+13, PR14]).

In parallel with these recent developments, several important applications of ORAMs have
surfaced, for example in the context of software protection (already in the original work by [GO96]),
in the context of secure two-party [OS97, GKK+11, LO13, GGH+13] and multi-party [DMN11,
BCP14] computation, in the context of building secure hardware with untrusted memory [FDD12],
and more recently in the context of outsourcing data (we can view the CPU of a RAM program as
a client, and the memory of the RAM program as being outsourced to the cloud) [SS13], and more
complex server delegation scenarios (e.g., [CKW13, GHRW14]).

Oblivious Parallel RAM (OPRAM). But for many of the above-mentioned applications, the
RAM model of computations is not appropriate—modern computing architectures heavily leverage
parallelism (e.g., using multiple cores), and the above-mentioned ORAM compilers obliterate all
such gains: even if Π can be heavily parallelized, the ORAM-compiled program Π′ will be inherently
sequential. The notion of a Parallel RAM (PRAM) better captures such computing architectures.
In the PRAM model of computation, several (polynomially many) CPUs are simultaneously run-
ning, potentially communicating with one another, while accessing the same shared “external”
memory. We consider the general setting of Concurrent Read, Concurrent Write (CRCW) PRAM,
where CPUs may read the same data simultaneously, and simultaneous write conflicts are resolved
in a canonical way.

Our focus here is on the notion of an Oblivious Parallel Random Access Machines (OPRAM).
Our main contribution is presenting an OPRAM compiler that turns any m-processor PRAM into
an m-processor OPRAM, while only inducing a polylogarithmic slowdown.

Theorem 1.1 (Informally stated). There exists an OPRAM compiler with polylog(n) worst-case
computational overhead and ω(log n) memory overhead, where n is the memory size.

Note that any PRAM can trivially be turned into a RAM (just as a RAM can be turned into a
Turing machine), and we could then just rely on standard ORAM compilers; but, in general, such
a transformation would result in very large overhead (as would a generic RAM to Turing machine
transformation).

We proceed to provide a high-level overview of our construction.

1

1.1 Construction Overview

Our construction is based on a recent ORAM construction due to Chung and Pass (CP) [CP13],
which in turn relies on the tree-based ORAM construction due to Shi, Chan, Stefanov and Li
(SCSL) [SCSL11]. To explain our approach, let us first recall the SCSL-CP construction.

The SCSL-CP ORAM Compiler. At a high level, each memory cell r in the original database
will be associated with a random leaf pos in a binary tree, as specified by a so-called “position
map” with pos = Pos(r). Each node in the tree consists of a “bucket,” which stores a collection of
elements. The content val of memory cell r will be found inside one of the buckets along the path
from the root to the leaf pos, and will be stored in a tuple of the form (r, val, pos). Originally, the
tuple corresponding to memory cell r will be placed in the root bucket of the tree, and later on,
the tuple will be moved to a bucket lower down the tree through a “flush” procedure, which pushes
tuples down the tree as far as they can go along a random path, while ensuring that each memory
cell r is still found on its appropriate path from the root to its assigned leaf Pos(r). Each time the
content of a memory cell r is accessed (either through a read or a write) the following steps are
performed:

• We look up the position pos = Pos(r) of the memory cell r in the position map Pos.

• We access all memory buckets in the tree from the root to the leaf pos. Once the tuple
(r, val, pos) corresponding to the memory cell r is found (in a bucket on the path), it is
removed from the bucket. Note that even if the memory cell if found high up in the tree, we
still traverse the whole path.

• We assign memory cell r to a new random leaf pos′, and store the new position in position
map Pos(r) = pos′.

• The content (potentially updated in case of a write operation) of the memory cell r is put
back in the root as the new tuple (r, val′, pos′).

• We finally perform a “flush”: we pick an independently random leaf pos′′, traverse the tree
from the root to pos′′, and push down tuples as far as possible along this path, as long as
contents of memory cells are still stored on the path to their assigned destination leafs.

The analysis in [CP13] shows that as long as the buckets are size ω(log n), then except with negligible
probability buckets will never overflow, and hence any sequence of data accesses will appear simply
as traversals down random paths of the tree. We will make use of this analysis in the present work.
(We remark that the original compiler of [SCSL11] showed a similar result but relies on a somewhat
more complicated eviction procedure in the place of the of flush step, requiring a more elaborate
analysis.)

The above solution has the disadvantage that the CPUs needs to store the whole position map
Pos which is only smaller than the external memory by a constant factor. However, by simply
recursively outsourcing the position map to a (smaller) ORAM, one eventually obtains a solution
where the CPU only stores memory of size polylog(n) (where n is the memory size); this whole
internal CPU memory can now also be stored externally at polylogarithmic (multiplicative) slow-
down—at each operation we simply read/write this chunk of memory.

Further works [SvDS+13, CLP13] have considered optimized variants of this tree-based approach
using even smaller bucket size, but require the use of a “stash” into which potential “overflows” of
the buckets in the tree are placed. These solutions appear less amenable to parallelization.

2

Dealing with Parallel RAMs. To support m-processor Parallel RAM programs, first consider
allowing all the m CPUs to access the above-mentioned tree structure in parallel. Several problems
immediately arise when attempting to implement this (näıve) idea.

• Parallel accesses to the same memory cell: If multiple CPUs attempt to access the same
memory cell r, both CPUs will traverse the same path from the root to the leaf Pos(r), thus
blatantly leaking the fact that the same data was accessed.

We resolve this issue by letting the CPUs check—through an oblivious aggregation operation—
whether two (or more) of them wish to access the same memory cell; if so, a representative is
selected (the CPU with the smallest id) to actually perform the memory access, and all the
others simply choose a random leaf and make “dummy” accesses to the nodes along the path
from the root to that leaf. This ensures that each parallel access always behaves (in terms
of memory accesses) as if m distinct memory cells were requested. Finally, the representative
CPU needs to communicate the read value val back to all the other CPUs that wanted to
access r; this is done using a oblivious multi-cast operation.

• Parallel accesses to the same bucket: The paths traversed by the different CPUs in the
binary tree may intersect, which may lead to read/write collisions. (For example, all CPUs
will wish to access the bucket at the root). To resolve this issue, again, the CPUs need to
select some representative to perform the appropriate operations to prevent conflicts; again,
this is resolved using an aggregation operation.

• Dealing with parallel “put-backs”: Recall that in the above-described SCSL-CP ORAM
solution, after a memory cell has been accessed and removed from the tree, the tuple corre-
sponding to it is put back into the root of the tree. Now, however, we have m CPUs that in
parallel will attempt to insert tuples into the root, and since the root bucket can only hold
polylog(n) elements, it will directly overflow if m ∈ ω(polylog(n)) (recall that in the PRAM
model the number m of parallel processors may be polynomially related to the input).

To overcome this problem, instead of returning tuples back to the root, we directly insert
them into level logm of the tree, while ensuring that they are placed into the correct bucket
along the path to their assigned destination leaf. Note that level logm contains m buckets,
and since the m tuples are each assigned to random leaves, each bucket will in expectation be
assigned exactly 1 tuple.

The challenge in this step is specifying how the m CPUs can insert elements into the tree
while maintaining obliviousness. For example, if each CPU simply inserts their own tuple into
its assigned node, we immediately leak information about its destination leaf node. To resolve
this issue, we have the CPUs obliviously route tuples between each other, so that eventually
the i’th CPU holds the tuples to be insert to the ith node, and all CPU finally perform either
a real or a dummy write to their corresponding node.

• Preventing overflows: While the above parallel “put-back” strategy ensures that the ex-
pected number of new tuples per node in level logm is one for each operation of the underlying
PRAM, it is not clear that we do not get overflows after executing the PRAM for multiple
operations. The flush operations in the ORAM are meant to prevent this. To ensure that no
new overflows are introduced, we now flush m times instead of once (since we have reinserted
m tuples), and all these m flushes are done in parallel: each CPU simply performs an indepen-
dent flush. Again, these parallel flushes may lead to conflict in nodes accessed (the paths may
intersect) and, as before, we resolve this issue by having the CPUs elect some representative
to perform the appropriate operations.

3

But so far we have not discussed how the above operations can be executed. In particular, in
the above description, we require an oblivious routing, an oblivious aggregation, and an oblivious
multi-cast.

As an initial step, in Section 3.2, we provide a full description of an OPRAM with desired
polylogarithmic slowdown in terms of the number of external memory accesses, but which requires
large size local memory stored by each CPU, and large communication between the CPUs (i.e.,
polynomial in the number of processors). In such “large-bandwidth” setting, the above operations
can be trivially implemented by simply having the CPU broadcast all information to one another.
Then, in our actual solution, presented in Section 3.3, we show how to instantiate the above
procedures using efficient, oblivious, distributed protocols.

We achieve oblivious routing of data items to secret destinations via a fixed-topology routing
procedure in logm rounds, which essentially amounts to routing the messages along the edges of a
boolean hypercube. Namely, in each round t, all messages are routed in the correct direction along
edges in the tth dimension of the hypercube toward their target destinations; at the conclusion
of logm rounds, each message will be successfully delivered. We show that for our application,
the target addresses will be distributed randomly, and hence that we will not encounter message
congestion at any node in any of the intermediate routing steps.

The oblivious aggregation and oblivious multi-cast procedures are duals of one another: in the
former, a number of CPUs want to efficiently communicate some pieces of information to a single
CPU, whereas in the latter a single CPU wants to efficiently communicate some piece of informa-
tion to a set of CPUs. We rely on a similar procedure to solve both. At a high level, we perform
the following steps. First the CPUs’ data items are obliviously sorted based on some key (e.g., the
memory cell the CPU is trying to access). Then their data is aggregated when possible (e.g., com-
bining requests for the same cell r) by exchanging data with each CPU neighbor along the boolean
hypercube (equivalently, “passing data to the left” to CPUs of increasing distance 20, 21, 22, ...2logm

and aggregating), and then reversing the original sort to return each aggregated request for cell r
to an appropriate CPU who originally requested r.

1.2 Applications of OPRAM

We briefly discuss some immediate applications of secure OPRAM.

Improved/Parallelized Outsourced Data. Standard ORAM has been shown to yield effec-
tive, practical solutions for securely outsourcing data storage to an untrusted server (e.g., the
ObliviStore system of [SS13]). Efficient OPRAM compilers will enable these systems to support
secure efficient parallel accesses to outsourced data. For example, OPRAM procedures securely
aggregate parallel data requests and resolve conflicts client-side, minimizing expensive client-server
communications (as was explored in [WST12], at a smaller scale). As network latency is a major
bottleneck in ORAM implementations, such parallelization may yield significant improvements in
efficiency.

Multi-Client Outsourced Data. In a similar vein, use of OPRAM further enables secure access
and manipulation of outsourced shared data by multiple (mutually trusting) clients. Here, each
client can simply act as an independent CPU, and will execute the OPRAM-compiled program
corresponding to the parallel concatenation of their independent tasks.

4

Secure Multi-Processor Architecture. Much recent work has gone toward implementing se-
cure hardware architectures by using ORAM to prevent information leakage via access patterns
of the secure processor to the potentially insecure memory (e.g., the Ascend project of [FDD12]).
Relying instead on OPRAM opens the door to achieving secure hardware in the multi-processor
setting.

Secure Two-Party and Multi-Party Computation of PRAMs. Secure multi-party com-
putation (MPC) enables mutually distrusting parties to jointly evaluate functions on their secret
inputs, without revealing information on the inputs beyond the desired function output. ORAM has
become a central tool in achieving efficient MPC protocols for securely evaluating RAM programs.
By instead relying on OPRAM, these protocols can leverage parallelizability of the evaluated pro-
grams, yielding round complexities that scale with the parallel complexity of a PRAM, instead of
its (sequential) time complexity as described as a RAM program.

In the two-party setting, protocol constructions generically make black-box use of an ORAM
compiler [OS97, GKK+11, LO13, GGH+13]. (Roughly, these protocols work by ORAM-compiling
the program Π to be evaluated and parties’ inputs (i.e., the “database”), and then executing the
secret ORAM CPU instructions via a standard two-party secure protocol). In such constructions,
the ORAM can be directly replaced by an OPRAM scheme.

In the multi-party setting, a recent work of Boyle, Chung, and Pass [BCP14] demonstrated how
to obtain secure computation of RAM programs in a manner that scales well with the number of
parties. The [BCP14] protocol relies on the specific ORAM of [CP13] in a non-black-box way;1

however, by inspecting [BCP14], it can be seen that our OPRAM construction in the present work
in fact satisfies the same required properties (indeed, as it also builds upon [CP13]).2

1.3 Related Prior Work

The notion of oblivious RAM was first studied by Goldreich [Gol87] and Goldreich and Ostro-
vsky [GO96]. Since then, several constructions have been presented, culminating in a recent line of
works following a tree-based approach due to Shi et al. [SCSL11] (e.g., [CP13, GGH+13, SvDS+13,
PR14]). In this work, we focus on the construction of Chung and Pass [CP13], which achieves near
optimal parameters and enjoys a particularly simple description.

The question of parallelizing the overhead of (standard) ORAM, or equivalently, the client-
server communication required per data access, was studied by Lorch, Parno, Mickens, Raykova,
and Schiffman [LPM+13]. Note that this question is orthogonal to ours, which instead wishes
to support parallelization of data accesses. Lorch et al. present a modified version of the Shi et
al. ORAM [SCSL11] compiler, where the O(log2 n) sequential communications between the server
and CPU per data access (for database size n) can be replaced by a single round of communication
between the server and O(log2 n) distinct CPUs, in parallel. To do so, Lorch et al. provide a specific
data aggregation procedure in which the CPUs zero out non-targeted blocks and then “obliviously
aggregate” the xor of these values to learn the sought value. In comparison, our oblivious aggregate
procedure requires greater computation/communication but supports more general aggregations,
enabling us to parallelize over different data queries.

1In particular, the load-balancing and communication-locality techniques in [BCP14] rely on specific properties of
the server-side data access patterns dictated by the [CP13] ORAM, which are not satisfied generically.

2For those readers familiar with the structure of the [BCP14] protocol: A separate committee of parties will be
elected for each CPUi; as before, the committees maintain the corresponding polylog(n)-size CPUi secret state, and
communicate with other CPUj committees and ORAM memory bucket committees as dictated by the OPRAM-
compiled program Π′.

5

It was observed by Williams, Sion, and Tomescu [WST12] in their PrivateFS work that existing
ORAM schemes can support parallelization across data accesses up to the “size of the top level.”3

Explicitly, Williams et al. focus on the original Goldreich-Ostrovsky [GO96] ORAM, and provide
a means for up to O(log n) data queries to be simultaneously executed when coordinated through
a central CPU (corresponding to our “high-bandwidth” case). However, this approach does not
extend to the more general PRAM setting, where the number of parallel processors may be large
(even Θ(n)).

Goodrich and Mitzenmacher [GMOT12] provided an ORAM construction that handles some
parallelism but requires a large O(nε) secret CPU memory state.

2 Preliminaries

2.1 Parallel RAM (PRAM) Programs

A Concurrent Read Concurrent Write (CRCW)m-processor parallel random-access machine (PRAM)
with memory size n consists of numbered processors CPU1, . . . , CPUm, each with local memory
registers of size log n, which operate synchronously in parallel and can make access to shared
“external” memory of size n.

A PRAM program Π (given m,n, and some input x stored in shared memory) provides CPU-
specific execution instructions, which can access the shared data via commands Access(r, v), where
r ∈ [n] is an index to a memory location, and v is a word (of size log n) or ⊥. Each Access(r, v)
instruction is executed as:

1. Read from shared memory cell address r; denote value by vold.
2. Write value v 6= ⊥ to address r (if v = ⊥, then take no action).
3. Return vold.

In the case that two or more processors simultaneously initiate Access(r, vi) with the same address
r, then all requesting processors receive the previously existing memory value vold, and the memory
is rewritten with the value vi corresponding to the lowest-numbered CPU i for which vi 6= ⊥.

We more generally support PRAM programs with a dynamic number of processors (i.e., mi

processors required for each time step i of the computation), as long as this sequence of processor
numbers m1,m2, . . . is public information. The complexity of our OPRAM solution will scale with
the number of required processors in each round, instead of the maximum number of required pro-
cessors. For simplicity of notation, we will describe our compiler for the simplistic fixed-m setting;
however, our procedures can be directly extended to the dynamic mi setting in a straightforward
manner.

The (parallel) time complexity of a PRAM program Π is the maximum number of time steps
taken by any processor to evaluate Π, where each Access execution is charged as a single step. The
PRAM complexity of a function f is defined as the minimal parallel time complexity of any PRAM
program which evaluates f . We remark that the PRAM complexity of any function f is bounded
above by its circuit depth complexity.

2.2 Tree-Based ORAM

Concretely, our solution relies on the ORAM due to Chung and Pass [CP13], which in turn closely
follows the tree-based ORAM construction of Shi et al. [SCSL11]. We now recall the [CP13]

3In the example of the SCSL-CP tree-based ORAMs, this would correspond roughly to the number of data items
that can be inserted into the root node before it overflows.

6

λ

0
1

00 01 10 11

000 001 010 011 100 101 110 111

value of memory cell r is found somewhere on path from λ to pos = 011

flush along random path from λ to pos∗ = 110

1 2 3 b = b rαc n
α

n
α − 1· · ·

· · · · · ·
· · ·

pos =
011

Position Map Pos

ORAM Tree Γ

position of memory cell r is found here

Figure 1: Illustration of the basic [CP13] ORAM construction.

construction in greater detail, in order to introduce notation for the remainder of the paper.
The [CP13] construction (as with [SCSL11]) proceeds by first presenting an intermediate so-

lution achieving obliviousness, but in which the CPU must maintain a large number of registers
(specifically, providing a means for securely storing n data items requiring CPU state size Θ̃(n/α),
where α > 1 is any constant). Then, this solution is recursively applied logα n times to store the
resulting CPU state, until finally reaching a CPU state size polylog(n), while only blowing up the
computational overhead by a factor logα n. The overall compiler is fully specified by describing one
level of this recursion.

Step 1: Basic ORAM with O(n) registers. The compiler ORAM on input n ∈ N and a
program Π with memory size n outputs a program Π′ that is identical to Π but each Read(r)
or Write(r, val) is replaced by corresponding commands ORead(r), OWrite(r, val) to be specified
shortly. Π′ has the same registers as Π and additionally has n/α registers used to store a position
map Pos plus a polylogarithmic number of additional work registers used by ORead and OWrite.
In its external memory, Π′ will maintain a complete binary tree Γ of depth ` = log(n/α); we index
nodes in the tree by a binary string of length at most `, where the root is indexed by the empty
string λ, and each node indexed by γ has left and right children indexed γ0 and γ1, respectively.
Each memory cell r will be associated with a random leaf pos in the tree, specified by the position
map Pos; as we shall see shortly, the memory cell r will be stored at one of the nodes on the path
from the root λ to the leaf pos. To ensure that the position map is smaller than the memory size,
we assign a block of α consecutive memory cells to the same leaf; thus memory cell r corresponding
to block b = br/αc will be associated with leaf pos = Pos(b).

Each node in the tree is associated with a bucket which stores (at most) K tuples (b, pos, v),
where v is the content of block b and pos is the leaf associated with the block b, and K ∈ ω(log n)∩

7

polylog(n) is a parameter that will determine the security of the ORAM (thus each bucket stores
K(α + 2) words). We assume that all registers and memory cells are initialized with a special
symbol ⊥.

The following is a specification of the ORead(r) procedure:

Fetch: Let b = br/αc be the block containing memory cell r (in the original database), and let
i = r mod α be r’s component within the block b. We first look up the position of the block
b using the position map: pos = Pos(b); if Pos(b) =⊥, set pos ← [n/α] to be a uniformly
random leaf.

Next, traverse the data tree from the root to the leaf pos, making exactly one read and one
write operation for the memory bucket associated with each of the nodes along the path.
More precisely, we read the content once, and then we either write it back (unchanged), or we
simply “erase it” (writing ⊥) so as to implement the following task: search for a tuple of the
form (b, pos, v) for the desired b, pos in any of the nodes during the traversal; if such a tuple
is found, remove it from its place in the tree and set v to the found value, and otherwise take
v =⊥. Finally, return the ith component of v as the output of the ORead(r) operation.

Update Position Map: Pick a uniformly random leak pos′ ← [n/α] and let Pos(b) = pos′.

Put Back: Add the tuple (b, pos′, v) to the root λ of the tree. If there is not enough space left in
the bucket, abort outputting overflow.

Flush: Pick a uniformly random leaf pos∗ ← [n/α] and traverse the tree from the roof to the
leaf pos∗, making exactly one read and one write operation for every memory cell associated
with the nodes along the path so as to implement the following task: “push down” each
tuple (b′′, pos′′, v′′) read in the nodes traversed so far as possible along the path to pos∗ while
ensuring that the tuple is still on the path to its associated leaf pos′′ (that is, the tuple ends
up in the node γ = longest common prefix of pos′′ and pos∗.) Note that this operation can be
performed trivially as long as the CPU has sufficiently many work registers to load two whole
buckets into memory; since the bucket size is polylogarithmic, this is possible. If at any point
some bucket is about to overflow, abort outputting overflow.

OWrite(r, v) proceeds identically in the same steps as ORead(r), except that in the “Put Back”
steps, we add the tuple (b, pos′, v′), where v′ is the string v but the ith component is set to v (instead
of adding the tuple (b, pos′, v) as in ORead). (Note that, just as ORead, OWrite also outputs the
ordinal memory content of the memory cell r; this feature will be useful in the “full-fledged”
construction.)

The full-fledged construction: ORAM with polylog registers. The full-fledged construc-
tion of the CP ORAM proceeds as above, except that instead of storing the position map in registers
in the CPU, we now recursively store them in another ORAM (which only needs to operate on n/α
memory cells, but still using buckets that store K tuples). Recall that each invocation of ORead
and OWrite requires reading one position in the position map and updating its value to a random
leaf; that is, we need to perform a single recursive OWrite call (recall that OWrite updates the value
in a memory cell, and returns the old value) to emulate the position map.

At the base of the recursion, when the position map is of constant size, we use the trivial ORAM
construction which simply stores the position map in the CPU registers.

Theorem 2.1 ([CP13]). The compiler ORAM described above is a secure Oblivious RAM compiler
with polylog(n) worst-case computation overhead and ω(log n) memory overhead, where n is the
database memory size.

8

2.3 Sorting Networks

Our protocol will employ an n-wire sorting network, which can be used to sort values on n wires
via a fixed topology of comparisons. A sorting network consists of a sequence of layers, each layer
in turn consisting of one or more comparator gates, which take two wires as input, and swap the
values when in unsorted order. Formally, given input values ~x = (x1, . . . , xn) (which we assume
to be integers wlog), a comparator operation compare(i, j, ~x) for i < j returns ~x′ where ~x = ~x′ if
xi ≤ xj , and otherwise, swaps these values as x′i = xj and x′j = xi (whereas x′k = xk for all k 6= i, j).
Formally, a layer in the sorting network is a set L = {(i1, j1), . . . , (ik, jk)} of pairwise-disjoint pairs
of distinct indices of [n]. A d-depth sorting network is a list SN = (L1, . . . , Ld) of layers, with the
property that for any input vector ~x, the final output will be in sorted order xi ≤ xi+1 ∀i < n.

Ajtai, Komlós, and Szemerédi demonstrated a sorting network with depth logarithmic in n.

Theorem 2.2. [AKS83] There exists an n-wire sorting network of depth O(log n) and size O(n log n).

While the AKS sorting network is asymptotically optimal, in practical scenarios one may wish to
use the simpler alternative construction due to Batcher [Bat68] which achieves significantly smaller
linear constants.

Theorem 2.3. [Bat68] There exists an n-wire sorting network of depth O(log2 n) and size O(n log2 n).

3 Oblivious PRAM

The definition of an Oblivious PRAM (OPRAM) compiler directly mirrors that of standard ORAM,
with the exception that the compiler takes as input and produces as output a parallel RAM program.
Namely, denote the sequence of shared memory cell accesses made during an execution of a PRAM
program Π on input (m,n, x) as Π̃(m,n, x). We present a definition of an OPRAM compiler
following Chung and Pass [CP13], which in turn follows Goldreich [Gol87].

Definition 3.1 (Oblivious Parallel RAM). A polynomial-time algorithm O is an Oblivious Parallel
RAM (OPRAM) compiler with computational overhead comp(·) and memory overhead mem(·), if
O given m,n ∈ N and a deterministic m-processor PRAM program Π with memory size n, outputs
a program Π′ with memory size mem(n) · n such that for any input x, the parallel running time
of Π′(m,n, x) is bounded by comp(n) · T , where T is the parallel runtime of Π(m,n, x), and there
exists a negligible function µ such that the following properties hold:

• Correctness: For any m,n ∈ N and any string x ∈ {0, 1}∗, with probability at least 1−µ(n),
it holds that Π(m,n, x) = Π′(m,n, x).

• Obliviousness: For any two PRAM programs Π1,Π2, any m,n ∈ N, and any two inputs
x1, x2 ∈ {0, 1}∗, if |Π1(m,n, x1)| = |Π2(m,n, x2)|, then Π̃′1(m,n, x1) is µ-close to Π̃′2(m,n, x2)
in statistical distance, where Π′i ← O(m,n,Πi) for i ∈ {1, 2}.

3.1 Solution Overview

Our OPRAM compiler O, on input m,n ∈ N and a m-processor PRAM program Π with memory
size n, will output a program Π′ that is identical to Π, but where each Access(r, v) operation is
replaced by a sequence of operations defined by subroutine OPAccess(r, v), which we will construct
over the following subsections.

The OPAccess procedure begins with m CPUs, each with a requested data cell r (within some
block b) and some action to be taken (either ⊥ to denote read, or v to denote rewriting cell r with

9

value v). Recall that the primary challenges in implementing oblivious parallel data accesses within
the tree-based ORAM structure of [SCSL11, CP13] are in handling collisions between processor
accesses, and in reinserting data to the ORAM (and flushing data down the tree) in parallel.

Intuitively, our subroutine OPAccess addresses these challenges by the following sequence of
tasks:

1. Conflict Resolution:

• Choose one representative CPU per requested data block b (in the real database). This
representative will perform the real data fetch and computation on b in later steps, while
the other CPUs will simply make “dummy” accesses into the ORAM structure.

• Aggregate all CPU instructions to take place on each requested block b.

2. Read/Write Position Map:

• Each representative CPU: Sample a fresh random leaf id `′. Perform a (recursive) Read/Write
access command on the position map database ` ← OPAccess(bi, `

′) to fetch the current
position map value ` and rewrite it with the newly sampled value `′.

• Each dummy CPU: Perform a dummy access to an arbitrary cell in the position map
database, say the first. (Recall that the position map database is itself protected by a
layer of ORAM). That is, execute `← OPAccess(1, ∅), and ignore the read value `.

3. Look Up Current Memory Values: Each representative CPU fetches memory from ORAM
database nodes corresponding to accessing his desired data block b (i.e., the collection of
buckets down the relevant path in the ORAM tree) and copies the values into local memory.
Non-chosen CPUs choose a random path ` (independent of the position map above) and make
analogous dummy data fetches along the path to `, ignoring all read values. Recall that
simultaneous data reads do not yield conflicts.4

4. Remove Old Data: Consider the paths down the ORAM tree accessed in the previous step.

• Aggregate instructions across CPUs accessing the same “buckets” of memory on the server
side. Each representative CPU rep(b) begins with the instruction of “remove block b if it
occurs” and dummy CPUs hold the empty instruction. (Aggregation is as before, but at
bucket level instead of the block level).

• For each bucket to be modified, the CPU with the smallest id from those who wish to
modify it executes the aggregated block-removal instructions for the bucket.

5. Insert Updated Data into Database in Parallel: All CPUs execute a parallel insertion
procedure into the ORAM database at the appropriate level (corresponding to the number
of active CPUs) in order to insert the updated data tuples (b, `′, v′) with new leaf node `′ as
sampled in Step 1 and new value v′ into the bucket along the path to `′.

6. Flush the ORAM Database: In parallel, each CPU initiates an independent flush of the
ORAM tree. (Recall that this corresponds to selecting a random path down the tree, and
pushing all data blocks in this path as far as they will go). To implement the simultaneous
flush commands, as before, commands are aggregated across CPUs for each bucket to be
modified, and the CPU with the smallest id performs the corresponding aggregated set of
commands. (For example, all CPUs will wish to access the root node in their flush; the
aggregation of all corresponding commands to the root node data will be executed by the
lowest-numbered CPU who wishes to access this bucket, in this case CPU 1).

4We will in fact reveal to the adversary that only read actions are occurring, by not rewriting the data values.
But, this will not be an issue, as this step always induces read-only operations, independent of the data values.

10

7. Return Output: Each representative CPU rep(b) communicates the original value of the
data block b to the subset of CPUs that originally requested it.

We now proceed to flesh out this OPAccess procedure. We begin in Section 3.2 by considering
a simplified setting, in which CPUs are able to cheaply communicate amongst themselves and to
store large information (comparable to the number of processors). Then in Section 3.3 we show
how to replace this large CPU-to-CPU communication and memory cost via more sophisticated
procedures for oblivious aggregation, oblivious multi-cast, and oblivious route.

3.2 Rudimentary Solution: Requiring Large Bandwidth.

We first provide a solution for a simplified case, where we are not concerned with minimizing
communication between CPUs or the size of required CPU local memory. In such setting, commu-
nicating and aggregating information between all CPUs is “for free.”

The compiler Heavy-O, on input m,n ∈ N and m-processor PRAM program Π with memory
size n, outputs a program Π′ identical to Π, but with each Access(r, v) operation replaced by the
modified procedure Heavy-OPAccess as defined in Figure 2.

Lemma 3.2. For any n,m ∈ N, The compiler Heavy-O is a secure Oblivious PRAM compiler
with computational overhead polylog(n) and memory overhead polylog(n), assuming each CPU has
Ω̃(m) local memory.

We will address the desired claims of correctness, security, and complexity of the Heavy-O
compiler by induction on the number of levels of recursion. Namely, Lemma 3.2 follows directly
from the following claim, applied with t = dlog ne.

By Heavy-Ot we will denote the Heavy-O compiler implemented with t ≤ dlog ne recursion
levels. That is, the exit condition “If t′ ≥ logα n” in Step 0 (see Figure 2) is replaced by “If t′ ≥ t”
(denoting the current recursion counter by t′).

Claim 3.3. Heavy-Ot is a secure Oblivious PRAM compiler with computational overhead polylog(n)
and memory overhead polylog(n), assuming each CPU has (large) local memory Ω(m+ n/αt).

Proof. Observe the claim holds trivially for t = 0, in which case the entire size-n database is simply
stored locally by each CPU. Suppose it holds for some 0 ≤ t ≤ dlog ne − 1; we now prove it holds
also for t+1. We first analyze the correctness, security, and complexity overhead of the Heavy-Ot+1

conditioned on never reaching the event overflow. Then, we prove that the probability of overflow
is negligible in n.

Correctness (w/o overflow). Consider the state of the memory (of the CPUs and server) in
each step of Heavy-OPAccess, assuming no overflow. In Step 1, each CPU learns the instruction
pairs of all other CPUs; thus all CPUs agree on single representative rep(bi) for each requested
block bi, and a correct aggregation of all instructions to be performed on this block. Step 2 is a
recursive execution of Heavy-OPAccess. By the inductive hypothesis, this access successfully returns
the correct value `i of Pos(bi) for each bi queried, and rewrites it with the freshly sampled value
`′i when specified (i.e., for each rep(bi) access; the dummy accesses are read-only). We are thus
guaranteed that each rep(bi) will find the desired block bi in Step 3 when accessing the memory
buckets in the path down the tree to leaf `i (as we assume no overflow was encountered), and so
will learn the current stored data value vold.

In Step 4, each CPU learns the target block bi and associated leaf `i of every representative
CPU rep(bi). By construction, each requested block bi appears in some bucket B in the tree along

11

Heavy-OPAccess(t, (ri, vi)): The Large Bandwidth Case
To be executed by m processors CPU1, . . . , CPUm w.r.t. (recursive) database size nt := n/(αt).

Input: Each CPUi holds: recursion level t, instruction pair (ri, vi) with ri ∈ [nt], global parameter α.

Each CPUi performs the following steps, in parallel:

0. Exit Case: If t ≥ logα n, access local memory.
Set voldi ← Mem[ri]. Write Mem[ri]← vi. return voldi .

1. Conflict Resolution

(a) Broadcast the instruction pair (ri, vi) to all CPUs. (Note: high bandwidth & memory).

(b) Let bi = bri/αc. Locally aggregate incoming instructions to block bi as v̄i = v̄i[1] · · · v̄i[α],
resolving write conflicts (i.e., ∀s ∈ [α], take v̄i[s]← vj for minimal j such that rj = biα+s).
Denote by rep(bi) := min{j : brj/αc = bi} the smallest index j of any CPU whose rj is in
this block bi. (CPU rep(bi) will actually access bi, while others perform dummy accesses).

2. Read/Write Position Map

If i = rep(bi): Sample a fresh random leaf id `′i ← [nt]. Recursively initiate `i ←
Heavy-OPAccess(t+ 1, (bi, `

′
i)) to read the current value `i of Pos(bi) and rewrite it with `′i.

Else: Recursively initiate dummy access x← Heavy-OPAccess(t+1, (1,⊥)) at arbitrary address
(say 1); ignore the read value x. Sample a fresh random leaf id `′i ← [nt] for a dummy lookup.

3. Look Up Current Memory Values

Read the memory contents of all buckets down the path to leaf node `i defined in the previous
step, copying all buckets into local memory.

If i = rep(bi): locate and store target block triple (bi, v
old
i , `i). Update v̄ from Step 1 with

existing data: ∀s ∈ [α], replace any non-written cell values v̄i[s] = ∅ with v̄i[s] ← voldi [s]. v̄i
now stores the entire data block to be rewritten for block bi.

4. Remove Old Data from ORAM Database

(a) If i = rep(bi): Broadcast the pair (bi, `i) to all CPUs. Otherwise: broadcast (⊥, `i).
(b) Initiate UpdateBuckets

(
nt, (remove-bi, `i), {(remove-bj , `j)}j∈[m]\{i}

)
.

5. Insert New Data into Database in Parallel

(a) If i = rep(bi): Broadcast (bi, v̄i, `
′
i), including updated value v̄i and target leaf node `′i.

(b) Let lev∗ := blogmc be the ORAM tree level with number of buckets equal to number of
CPUs (the level where data will be inserted). Locally aggregate all incoming instructions
whose path `′j has lev∗-bit prefix i: Inserti := {(bj , v̄j , `′j) : (`′j)

(lev∗) = i}.
(c) Access memory bucket i (at level lev∗) and rewrite contents, inserting data items Inserti.

6. Flush the ORAM Database

(a) Sample a random leaf node `flush
i ← [nt] along which to flush. Broadcast `flush

i to all CPUs.

(b) If i ≤ nt: Initiate UpdateBuckets
(
nt, (flush, `flush

i), {(flush, `flush
j)}j∈[m]\{i}

)
.

Recall that flush denotes that for each encountered data triple (b, `, v), “pushes” the triple
down to the lowest point at which his chosen flush path and ` agree.

7. Update CPUs

If i = rep(bi): broadcast the old value voldi of block bi to all CPUs.

Figure 2: Pseudocode for oblivious parallel data access procedure Heavy-OPAccess, in the case
where we are not concerned with the per-round bandwidth/memory of the protocol.

12

UpdateBuckets
(
nt, (mycommand,mypath), {(commandj , pathj)}j∈[m]\{i}

)
Let path(0), path(1), . . . , path(lognt) denote the bit prefixes of length 0 (i.e., ∅) to log nt of path.

For each level lev = 0, . . . , log nt of the tree, each CPU i does the following (at bucket mypath(lev)):

1. Define CPUs(mypath(lev)) := {i}∪{j : path
(lev)
j = mypath(lev)} to be the set of CPUs requesting

changes to bucket mypath(lev). Let bucket-rep(mypath(lev)) denote the minimal index in the set.

2. If i 6= bucket-rep(mypath(lev)), do nothing. Otherwise:

Case 1: mycommand = remove-bi.
Interpret each commandj = remove-bj as a target block id bj to be removed. Access

memory bucket mypath(lev) and rewrite contents, removing any block bj for which j ∈
CPUs(mypath(lev)).

Case 2: mycommand = flush.

Define Flush ⊂ {L,R} as {v : ∃ pathj s.t. path
(lev+1)
j = mypath(lev)||v}, associating L ≡

0, R ≡ 1. This determines whether data will be flushed left and/or right from this bucket.
Access memory bucket mypath(lev); denote its collection of stored data blocks b by
ThisBucket. Partition ThisBucket = ThisBucket-L ∪ ThisBucket-R into those blocks whose
associated leaves continue to the left or right (i.e., ThisBucket-L := {bj ∈ ThisBucket :
¯̀(lev+1)
j = mypath(lev)||0}, and similar for 1).

• If L ∈ Flush, then set ThisBucket← ThisBucket \ThisBucket-L, access memory bucket
mypath(lev)||0, and insert data items ThisBucket-L into it.

• If R ∈ Flush, then set ThisBucket← ThisBucket\ThisBucket-R, access memory bucket
mypath(lev)||1, and insert data items ThisBucket-R into it.

Rewrite the contents of bucket mypath(lev) with the updated value of ThisBucket.

Figure 3: Procedure for combining CPUs’ instructions for buckets and implementing them by a
single representative CPU. (Used for correctness, not security).

13

his path, and there there will necessarily be some CPU assigned as bucket-rep(B) in UpdateBuckets,
who will then successfully remove the block bi from B. At this point, none of the requested blocks
bi appear in the tree.

In Step 5, the CPUs insert each block bi (with updated data value vi) into the ORAM data tree
at level min{log n/αt, blog(m)c} along the path to its (new) leaf `′i.

Finally, the flushing procedure in Step 6 maintains the necessary property that each block bi
appears along the path to Pos(bi), and in Step 7 all CPUs learn the collection of all queried values
vold (in particular, including the value they initially requested).

Thus, assuming no overflow, correctness holds.

Obliviousness (w/o overflow). Consider the access patterns to server-side memory in each step
of Heavy-OPAccess, assuming no overflow. Step 1 is performed locally without communication to
the server. Step 2 is a recursive execution of Heavy-OPAccess, which thus yields access patterns
independent of the vector of queried data locations (up to statistical distance negligible in n). In
Step 3, each CPU accesses the buckets along a single path down the tree, where representative CPUs
rep(bi) access along the path given by Pos(bi) (for distinct bi), and non-representative CPUs each
access down an independent, random path. Since the adversarial view so far has been independent
of the values of Pos(bi), conditioned on this view all CPU’s paths are independent and random.

In Step 4, all data access patterns are publicly determinable based on the accesses in the previous
step (that is, the complication in Step 4 is to ensure correctness without access collisions, but is
not needed for security). In Step 5, each CPU i accesses his corresponding bucket i in the tree. In
the flushing procedure of Step 6, each CPU selects an independent, random path down the tree,
and the communication patterns to the server reveal no information beyond the identities of these
paths. Finally, Step 7 is performed locally without communication to the server.

Thus, assuming no overflow, obliviousness holds.

Protocol Complexity (w/o overflow). First note that the server-side memory storage require-
ment is simply that of the [CP13] ORAM construction; namely, polylog(n) memory overhead.

Consider the per-CPU required local memory. Each CPU must be able to store: O(log n)-size
requests from each CPU (due to the broadcasts in Steps 1(a), 4(a), 5(a), and 7); the data contents
of at most 3 memory buckets (due to the flushing procedure in UpdateBuckets); and local data
storage of size nt = n/αt due to terminating the recursion at level t. Overall, this yields a per-CPU
local memory requirement of Ω̃(m+ n/αt) (where Ω̃ notation hides log n factors).

Consider the parallel complexity of the OPRAM-compiled program Π′ ← Heavy-O(m,n,Π).
For each parallel memory access in the underlying program Π, the processors perform: Conflict
resolution (1 local communication round), Read/writing the position map (which has parallel com-
plexity polylog(n) by the inductive hypothesis), Looking up current memory values (sequential
steps = depth of level-t ORAM tree ∈ O(log n)), Removing old data from the ORAM tree (1 local
communication round, plus depth of the ORAM tree ∈ O(log n) sequential steps), Inserting the
new data in parallel (1 local communication round, plus 1 communication round to the server),
Flushing the ORAM database (1 local communication round, and 2× the depth of the ORAM tree
rounds of communication with the server, since each bucket along a flush path is accessed once to
receive new data items and once to flush its own data items down), and Updating CPUs with the
read values (1 local communication round). Altogether, this yields parallel complexity overhead
O(polylog(n)).

It remains to address the probability of encountering overflow.

14

Claim 3.4. There exists a negligible function µ such that for any deterministic m-processor PRAM
program Π, any database size n, and any input x, the probability that the Heavy-O-compiled program
Π′(m,n, x) outputs overflow is bounded by µ(n).

Proof. We consider separately the probability of overflow in each of the level-t recursive ORAM
trees. Since there are dlog ne of them, the claim follows by a straightforward union bound.

Taking inspiration from [CP13], we analyze the ORAM-compiled execution via an abstract dart
game. The game consists of black and white darts. In each round of the game, m black darts are
thrown, followed by m white darts. Each dart independently hits the bullseye with probability
p = 1/m. The game continues until exactly K darts have hit the bullseye, or after the end of the
T th round for some fixed polynomial bound T = T (n), whichever comes first. The game is “won”
(which will correspond to overflow in a particular bucket) if K darts hit the bullseye, and all of
them are black.

Let us analyze the probability of winning in the above dart game.
Subclaim 1: With overwhelming probability in n, no more than K/2 darts hit the bullseye in

any round. In any single round, associate with each of the 2 ·m darts thrown an indicator variable
Xi for whether the dart strikes the target. The Xi are independent random variables each equal to
1 with probability p = 1/m. Thus, the probability that more than K/2 of the darts hit the target
is bounded (via a Chernoff tail bound5) by

Pr

[
2m∑
i=1

Xi > K/2

]
≤ e

2(K/4−1)2

2+(K/4−1) ≤ e−Ω(K) ≤ e−ω(logn).

Since there are at most T = poly(n) distinct rounds of the game, the subclaim follows by a union
bound.

Subclaim 2: Conditioned on no round having more than K/2 bullseyes, the probability of winning
the game is negligible in d. Fix an arbitrary such winning sequence s, which terminates sometime
during some round r of the game. By assumption, the final partial round r contains no more than
K/2 bullseyes. For the remaining K/2 bullseyes in rounds 1 through r − 1, we are in a situation
mirroring that of [CP13]: for each such winning sequence s, there exist 2K/2 − 1 distinct other
“losing” sequences s′ that each occur with the same probability, where any non-empty subset of
black darts hitting the bullseye are replaced with their corresponding white darts. Further, every
two distinct winning sequences s1, s2 yield disjoint sets of losing sequences, and all such constructed
sequences have the property that no round has more than K/2 bullseyes (since this number of total
bullseyes per round is preserved). Thus, conditioned on having no round with more than K/2
bullseyes, the probability of winning the game is bounded above by 2−K/2 ∈ e−ω(logn).

We now relate the dart game to the analysis of our OPRAM compiler.
We analyze the memory buckets at the nodes in the t-th recursive ORAM tree, via three sub-

cases.
Case 1: Nodes in level lev < logm. Since data items are inserted to the tree in parallel directly

at level logm, these nodes do not receive data, and thus will not overflow.
Case 2: Consider any internal node (i.e., a node that is not a leaf) γ in the tree at level

logm ≤ lev < log nt. Note that when m > nt, this case is vacuous. For purposes of analysis,
consider the contents of γ as split into two parts: γL containing the data blocks whose leaf path
continues to the left from γ (i.e., leaf γ||0||·), and γR containing the data blocks whose leaf path

5Explicit Chernoff bound used: for X = X1 + · · ·X2m (Xi independent) and mean µ, then for any δ > 0, it holds

that Pr[X > (1 + δ)µ] ≤ e−δ
2µ/(2+δ).

15

continues right (i.e., γ||1||·). For the bucket of node γ to overflow, there must be K tuples in it. In
particular, either γL or γR must have K/2 tuples.

For each parallel memory access in Π(m,n, x), in the t-th recursive ORAM tree for which
nt ≥ m, (at most) m data items are inserted, and then m independent paths in the tree are
flushed. By definition, an inserted data item will enter our bucket γL (respectively, γR) only if
its associated leaf has the prefix γ||0 (resp., γ||1); we will assume the worst case in which all such
data items arrive directly to the bucket. On the other hand, the bucket γL (resp., γR) will be
completely emptied after any flush whose path contains this same prefix γ||0 (resp., γ||1). Since all
leaves for inserted data items and data flushes are chosen randomly and independently, these events
correspond directly to the black and white darts in the game above. Namely, the probability that a
randomly chosen path will have the specific prefix γ||0 of length lev is 2−lev ≤ 1/m (since we consider
lev ≥ logm); this corresponds to the probability of a dart hitting the bullseye. The bucket can only
overflow if K/2 “black darts” (inserts) hit the bullseye without any “white dart” (flush) hitting
the bullseye in between. By the analysis above, we proved that for any sequence of K/2 bullseye
hits, the probability that all K/2 of them are black is bounded above by 2−K/4, which is negligible
in n. However, since there is a fixed polynomial number T = poly(n) of parallel memory accesses
in the execution of Π(m,n, x) (corresponding to the number of “rounds” in the dart game), and
in particular, T (2m) ∈ poly(n) total darts thrown, the probability that the sequence of bullseyes
contains K/2 sequential blacks anywhere in the sequence is bounded via a direct union bound by
(T2m)2−K/4 ∈ e−ω(logn), as desired.

Case 3: Consider any leaf node γ. This analysis follows the same argument as in [CP13]. For
there to be an overflow in γ at time t, there must be K+1 out of nt/α elements in the position map
that map to the leaf γ. Since all positions are sampled uniformly and independently among the
nt/α different leaves, the expected number of elements mapping to γ is µ = 1, and by a standard
multiplicative Chernoff bound,6 the probability that K + 1 elements are mapped to γ is upper
bounded by (

eK

(K + 1)(K+1)

)µ
≤ 2K/2 ∈ e−ω(logn).

Thus, the total probability of overflow is negligible in n, and the theorem follows.

Remark 3.5 (Truncating OPRAM for Fixed m). In the case that the number of CPUs m is fixed
and known a priori, the OPRAM construction can be directly trimmed in two places.

Trimming tops of recursive data trees: As was mentioned in the OPRAM overflow analysis, data
items are always inserted into the OPRAM trees at level logm, and flushed down from this level.
Thus, if the number of CPUs m is unchanging throughout the course of the program and known a
priori (or at least a lower bound), then it will be the case the the top levels in the ORAM tree are
never utilized. In such case, the data buckets in the corresponding tops of the trees, from the root
node to level logm for this bound, can simply be removed without affecting the OPRAM.

Truncating recursion: In the t-th level of recursion, the corresponding database size shrinks to
n/αt. Trimming the tree tops in the fashion above, we see that starting at recursion level logαm,
the entire OPRAM tree can be trimmed, leaving only the leaves. At this point, in contrast to the
standard ORAM setting (in which the final “secret database” must fit in the local registers of a

6We use the following version of the Chernoff bound: Let X1, . . . , Ln be independent [0, 1]-valued random variables.

Let X =
∑
iXi and µ = E[X]. For every δ > 0, Pr[X ≥ (1 + δ)µ] ≤

(
eδ

(1+δ)(1+δ

)µ
.

16

single CPU), we may discontinue the recursion and store the remaining size-Õ(m) secret database
across the local storage of the m processors. We can then trivially achieve oblivious data accesses
for this data via local communication between processors.

For simplicity of description and analysis, in our exposition we do not explicitly consider trim-
ming tree-tops, and additionally follow the same recursive structure until the end (i.e., where each
CPU can store the recursed database, without singling out this special final round in which collec-
tively each CPU can store the recursed database).

3.3 New Tools: Space-Efficient Distributed Oblivious Insertion, Aggregation,
and Multicasting

In this section, we construct space-efficient distributed procedures for oblivious parallel insertion,
aggregation, and multicasting. We will show how to use these procedures to reduce the CPU local
memory and inter-CPU communication of our rudimentary solution.

3.3.1 Oblivious Parallel Insertion (Oblivious Routing)

At a certain point in the OPAccess procedure, the processors must reinsert data blocks in par-
allel into secret locations within the appropriate level of the ORAM tree. In the rudimentary
Heavy-OPAccess solution, this insertion was achieved trivially, simply by having each processor i
broadcast his data block and target insertion address, gathering those data blocks whose target
addresses match his id i, and then inserting these data blocks into bucket i at the correct level of the
ORAM tree. We now wish to achieve a memory and communication efficient insertion procedure
whose data access patterns remain independent of the secret insertion locations.

We solve this problem by delivering memory blocks to their target locations via a fixed-topology
routing network. Namely, the m processors CPU1, . . . , CPUm will first write the relevant m data
items msgi (and their corresponding destination addresses addri) to memory in fixed order, and
then rearrange them in logm sequential rounds to the proper locations via the routing network.
At the conclusion of the routing procedure, each node j should hold all messages msgi for which
addri = j. We now proceed to describe this routing network.

For simplicity, assume m = 2` for some ` ∈ N (otherwise, consider the smallest ` for which
2` ≥ m). The routing network has depth `; in each level t = 1, . . . , `, each node communicates
with the corresponding node whose id agrees in all bit locations except for the tth (corresponding
to his tth neighbor in the logm-dimensional boolean hypercube). These nodes exchange messages
according to the tth bit of their destination addresses addri. This is formally described in Figure 4.
After the tth round, each message msgi is held by a party whose id agrees with the destination
address addri in the first t bits. Thus, at the conclusion of ` rounds, all messages are properly
delivered.

Note that this pairwise communication structure frequently appears within sorting networks.
In our setting, in contrast to sorting networks, data items are not simply maintained or swapped
in each step, but rather may also be both directed to one node or the other. This will be necessary
for us since (unlike sorting) the source-to-target mapping is not a one-to-one function.

We now show that, if the destination addresses addri are uniformly sampled, then with over-
whelming probability no node will ever need to hold too many messages at any point during the
routing network execution.

Lemma 3.6 (Routing Network). If L messages begin with target destination addresses addri dis-
tributed independently and uniformly over [L] in the L-to-L node routing network in Figure 4,

17

Parallel Insertion Routing Protocol Route(m, (msgi, addri))
Input: CPUi holds: message msgi with target destination addri, and global overflow threshold K.
Output: CPUi holds {msgj : addrj = i}.
Let lev∗ = logm (assumed for simplicity to be an integer). Each CPUi performs the following.

Initialize Mi,0 ← msgi. For t = 1, . . . , lev∗:

1. Perform the following symmetric message exchange with CPUi⊕2t :

Mi,t+1 ← {msgj ∈Mi,t ∪Mi⊕2t,t : (addrj)t = (i)t}.

2. If |Mi,t+1| > K (i.e., memory overflow), then CPUi aborts.

Figure 4: Fixed-topology routing network for delivering m messages originally held by m proces-
sors to their corresponding destination addresses within [m]. Used to simultaneously insert values
into the ORAM tree.

then with probability bounded by (L logL)2−K , no intermediate node will ever hold greater than K
messages at any point during the course of the protocol execution.

Proof. Consider an arbitrary node a ∈ {0, 1}`, at some level t of execution of the protocol. There
are precisely 2t possible messages mi that could be held by node a at this step, corresponding to
those originating in locations b ∈ {0, 1}` whose final ` − t bits agree with those of a. Node a will
hold message mb at the conclusion of round t precisely if the first t bits of addrb agree with those
of a. For each such message mb, the associated destination address addrb is a random element of
[L], which agrees with a on the first t bits with probability 2t.

For each b ∈ {0, 1}` agreeing with a on the final `− t bits, define Xb to be the indicator variable
that is equal to 1 if addrb agrees with a on the first t bits. Then the collection of 2t random variables
{Xb : bi = ai ∀i = t + 1, . . . , `} are independent, and X =

∑
Xb has mean µ = 2t · 2−t = 1. Note

that X corresponds to the number of messages held by node a at level t. By a Chernoff bound,7 it
holds that

Pr[X ≥ K] = Pr[X ≥ (1 + (K − 1))µ] <

(
eK−1

KK

)
< 2−K .

Then, taking a union bound over the total number of nodes L and levels ` = logL, we have that
the probability of any node experiencing an overflow at any round is bounded by (L logL)2−K .

3.3.2 Oblivious Aggregation

In a number of places in the rudimentary OPAccess procedure, the CPUs wish to aggregate data
pertaining to the same block/bucket/etc. For example, in the first step, the CPUs each begin
with a target data address ri and access instruction vi, and they wish to aggregate all instructions
pertaining to data in the same α-size data block (i.e., considering bi := ri mod α), so that a single
CPU can perform all these instructions. To achieve security and efficiency in the overall OPRAM
construction, we need that this aggregation procedure is oblivious (i.e., the access patterns are
independent of the data), and is efficient.

Formally, we want to achieve the following aggregation goal, with communication patterns
independent of the inputs, using only Õ(polylog(m)) local memory and communication per CPU,

7Exact Chernoff bound used: Pr[X > (1 + δ)µ] <
(

eδ

(1+δ)1+δ

)µ
for any δ > 0.

18

in only Õ(polylog(m)) sequential time steps. (Note that without requiring efficiency, this goal
is trivially achieved in the rudimentary solution with a single round of CPU-to-CPU broadcast
communication; but, this step requires large Ω(m) local memory and communication per CPU.)
An illustrative example to keep in mind is that discussed above, where keyi = bi, datai = vi, and Agg
is the process that combines instructions to the same data block, resolving conflicts as necessary.
In Section 3.4, we will describe exactly where and how the oblivious aggregation procedure is used
to replace the expensive steps within the rudimentary OPRAM solution.

Oblivious aggregation:

Input: Each CPU i ∈ [m] holds (keyi, datai). Let K =
⋃{keyi} denote the set of distinct keys.

We assume that any (subset of) data associated with the same key can be aggregated by an
aggregation function Agg to a short digest of size at most poly(`, logm), where ` = |datai|.

Goal: Each CPU i outputs outi such that the following holds.

• for every key ∈ K, there exists unique agent i with keyi = key such that outi = (rep, key, aggkey),
where aggkey = Agg({dataj : keyj = key}).
• for every remaining agent i, outi = (dummy,⊥,⊥).

At a high level, we achieve this via the following steps. (1) First, the CPUs sort their data list
with respect to the corresponding key values. This can be achieved via an implementation of a
polylog(m)-depth sorting network, and provides the useful guarantee that all data pertaining to the
same key are necessarily held by an block of adjacent CPUs. (2) Second, we pass data among CPUs
in a sequence of log(m) steps such that at the conclusion the “left-most” (i.e., lowest indexed) CPU
in each key-block will learn the aggregation of all data pertaining to this key. Explicitly, in each
step i, each CPU sends all held information to the CPU 2i to the “left” of him, and simultaneously
accepts any received information pertaining to his key. (3) Third, each CPU will learn whether
he is the “left-most” representative in each key-block, by simply checking whether his left-hand
neighbor holds the same key. From here, the CPUs have succeeded in aggregating information for
each key at a single representative CPU; (4) in the fourth step, they now reverse the original sorting
procedure to return this aggregated information to one of the CPUs who originally requested it.

We present the complete protocol OblivAgg for achieving oblivious aggregation in a space-
efficient fashion in Figure 5.

We now proceed to prove the correctness and efficiency of the protocol OblivAgg.

Lemma 3.7 (Space-Efficient Oblivious Aggregation). Suppose m processors initiate protocol OblivAgg
w.r.t. aggregator Agg, on respective inputs {(keyi, datai)}i∈[m], each of size `. Then at the conclu-
sion of execution, each processor i ∈ [m] outputs a triple (rep′i, key′i, data′i) such that the following
properties hold (where asymptotics are w.r.t. m):

1. The protocol terminates in Õ(1) rounds.

2. The local memory and computation required by each processor is Õ(`).

3. (Correctness). For every key key ∈ K :=
⋃{keyi}, there exists a unique processor i with

output key′i = key. For each such processor, it further holds that key′i = keyi, rep′i = “rep”,
and data′i = Agg({dataj : keyj = keyi}). For every remaining processor, the output tuple is
(dummy,⊥,⊥).

4. (Obliviousness). The inter-CPU communication patterns are independent of the inputs (keyi, datai).

19

Oblivious Aggregation Procedure OblivAgg (w.r.t. Agg)
Input: Each CPU i ∈ [m] holds a pair (keyi, datai).
Output: Each CPU i ∈ [m] outputs a triple (repi, keyi, aggdatai) corresponding to either
(dummy,⊥,⊥) or with aggdatai = Agg({dataj : keyj = keyi}), as further specified in Section 3.3.

1. Sort on keyi. Each CPUi initializes a triple (sourceidi, keytempi, datatempi)← (i, keyi, datai).

For each layer L1, . . . , Ld in the sorting network:

• Let L` = ((i1, j1), . . . , (im/2, jm/2)) be the comparators in the current layer `.

• In parallel, for each t ∈ [m/2], the corresponding pair of CPUs (CPUit , CPUjt) perform
the following pairwise sort w.r.t. key:

If keytempjt < keytempit , then
swap (sourceidit , keytempit , datatempit)↔ (sourceidjt , keytempjt , datatempjt).

2. Aggregate to left. For t = 0, 1, . . . , logm:

• (Pass to left). Each CPUi for i > 2t sends his current pair (keytempi, datatempi) to
CPUi−2t .

• (Aggregate). Each CPUi for i < m − 2t receiving a pair (keytempj , datatempj) will
aggregate it into own pair if the keys match. That is, if keytempi = keytempj , then set
datatempi ← Agg(datatempi, datatempj). In both cases, the received pair is then erased.

The left-most CPUi with keytempi = key now has Agg({datatempj : keytempj = key})).
3. Identify representatives. For each value keyj , the left-most CPU i currently holding

keytempi = keyj will identify himself as (temporary) representative.

• Each CPUi for i < m: send keytempi to right-hand neighbor, CPUi+1.

• Each CPUi for i > 1: If the received value keytempi−1 matches his own keytempi, then
set repi ← “dummy” and zero out keytempi ← ⊥, datatempi ← ⊥. Otherwise, set repi ←
“rep”. (CPU1 always sets rep1 ← “rep”).

4. Reverse sort (i.e., sort on sourceidi). Return aggregated data to a requesting CPU.

For each layer L1, . . . , Ld in the sorting network:

• Let L` = ((i1, j1), . . . , (im/2, jm/2)) be the comparators in the current layer `.

• Each CPUi initializes idtemp← sourceidi. In parallel, for each t ∈ [m/2], the correspond-
ing pair of CPUs (CPUit , CPUjt) perform the following pairwise sort w.r.t. sourceid:

If idtempjt < idtempit , then
swap (idtempit , repit , keytempit , datatempit)↔ (idtempjt , repjt , keytempjt , datatempjt).

At the conclusion, each CPUi holds a tuple with (idtempi, repi, keytempi, datatempi) with
idtempi = i and keytempi = keyi.

5. Output. Each CPUi outputs the triple (repi, keyi, datatempi).

Figure 5: Space-efficient oblivious data aggregation procedure.

20

Proof. Property (1): Steps 1 and 4 of OblivAgg each execute a sorting network, and require com-
munication rounds equal to the depth d ∈ Õ(1) of the sorting network implemented. Step 2 takes
place in logm sequential steps. Step 3 requires a single round. And Step 5 (output) takes place
locally. Thus, the combined round complexity of OblivAgg is Õ(1). (Recall that asymptotics are
with respect to m).

Property (2): We first address the size the individual items stored, and then ensure the number
of stored items is never too large.

• Keys (e.g., keyi, tempkeyi): Each key is bounded in size by the initial input size `.

• Data (e.g., datai, datatempi, aggdatai): Similarly, by the property of the aggregation function
Agg, we are guaranteed that each data item is bounded in size by the original data size, which
is in turn bounded by size `.

• CPU identifiers (e.g., sourceidi, idtempi): Each processor can be identified by bit string of
length logm.

• Representative flag (repi): The rep/dummy flag can be stored as a single bit.

Each processor begins with input size `. In each round of executing the first sorting network (Step
1 of OblivAgg), a processor must hold two sets of data (sourceid, keytemp, datatemp), correspond-
ing to at most 2(logm + 2`) storage. Note that no more than 2 tuples are required to be held
at any time within this step, as the processors exchange tuples but need not maintain both val-
ues. In each round of the Aggregation phase (Step 2), processors may need to store two pairs
(keytemp, datatemp) in addition to the information held from the conclusion of the previous step
(namely, a single value sourceidi), which totals to logm+2(2`) memory. Note that by the properties
of the aggregation scheme Agg, the size of the aggregated data does not grow beyond ` (and recall
that parties do not maintain data associated with any different key). In the Representative Iden-
tification phase (Step 3), each processor receives one additional key value keyi−1, which requires
memory logm, and is then translated to a single-bit flag repi and then deleted. In the Reverse Sort
phase (Step 4), processors within each round must again store two tuples, this time of the form
(idtemp, rep, keytemp, datatemp), which corresponds to 2(logm+ 1 + `+ `) memory. Thus, the total
local memory requirement per processor is bounded by Õ(1).

Property (3): We now prove that the protocol results in the desired output. Consider the values
stored by each processor at the conclusion of each phase of the protocol.

After the completion of Step 1, by the correctness of the utilized sorting network, it holds that
each CPUi holds a tuple (sourceidi, keytempi, datatempi) such that the list (sourceid1, . . . , sourceidm)
is some permutation of [m], and keytempi ≤ keytempj for every i < j. Note that for each i it always
the case that the pair (keytempi, datatempi) currently held by CPUi is precisely the original input
pair of CPUj for j = sourceidi.

For the Aggregation phase in Step 2, we make the following claim.

Claim 3.8. At the conclusion of Aggregate Left (Step 2), the CPU of lowest index i for which
keytempi = key holds datatempi = Agg({dataj : keyj = key}) (for each value key).

Proof. Fix an arbitrary value key, and let Skey ⊂ [m] denote the subset of processors for which
keytempi = key. From the previous sorting step, we are guaranteed that Skey consists of an interval
of consecutive processors istart, . . . , istop. Now, consider any j ∈ Skey (whose data CPU istart wishes
to learn).

For any pair of indices i < j ∈ Skey, denote by ti,j := max{t ∈ [logm] : (j ⊕ istart)t = 1} ∈
{0, 1, . . . , logm− 1} the highest index in which the bit representations of j and istart disagree. We

21

now prove that for each such pair i, j, CPUi will learn CPUj ’s data after round ti,j ≤ logm. The
claim will follow, by applying this statement to each pair (istart, j) with j ∈ Skey.

Induct on ti,j . Base case ti,j = 0: follows immediately from the protocol construction; namely,
in the 0-th round, each CPU j sends his data to CPU (j − 1), which in this case is precisely CPU
i. Now, suppose the inductive hypothesis holds for all i < j with ti,j = t, and consider a pair i < j
with ti,j = t+ 1. In round t+ 1 of the protocol, processor i receives from processor (i+ 2t+1) the
collection of all information it has aggregated up to round t. By the definition of ti,j , we know
that i < (i + 2t+1) ≤ j, and that t(i+2t+1),j ≤ t. Indeed, we know that i and j differ in bit index
(t + 1), and no higher; thus, (i + 2t) must agree with j in index (t + 1) in addition to all higher
indices. But, this means by the inductive hypothesis that CPU (i+ 2t) has learned CPU j’s data
in a previous round. Thus, CPU i will learn CPU j’s data in round t+ 1, as desired.

In Step 3, each processor learns whether his left-hand neighbor holds the same temporary key
as he does; that is, he learns whether or not he is the left-most CPU holding tempkeyi (and, in
turn, holds the complete aggregation of all data relating to this key). Each processor for whom
this is not the case sets his tuple to (dummy,⊥,⊥).

At this point in the protocol, the processors have successfully reached the state where a single
self-identified representative for each queried key holds the desired data aggregation. The final
step is to return these information tuples to some CPU who originally requested this key. This is
achieved in the final reverse sort (Step 4). Namely, by the correctness of the implemented sorting
network, at the conclusion of Step 4 each CPUi holds a tuple (idtempi, repi, keytempi, datatempi)
such that the ordered list (idtemp1, . . . , idtempm) is precisely the ordered list 1, . . . ,m. Since the
tuples (idtempi, repi, keytempi, datatempi) are never modified (only swapped between processors), it
remains to show that each non-dummy (repi, keytempi, datatempi) tuple is received by an appropri-
ate requesting CPU. But, that is precisely the information held by idtempi: the identity of the CPU
who made the original request with respect to key keytempi. Thus, the reverse sort successfully
routes the aggregated tuples back to a CPU making the correct key request.

Property (4): Since we utilize a sorting network with fixed topology, and the aggregate-to-
left functionality has fixed communication topology, the inter-CPU communication patterns are
constant, independent of the initial CPU inputs.

3.3.3 Oblivious Multicasting

In this section, we provide a memory/communication-efficient procedure for oblivious multicasting.
Our goal here is dual to that of the previous section: Namely, a subset of CPUs must deliver
information to (unknown) collections of other CPUs who request it. This is abstractly modeled as
follows, where keyi denotes which data item is requested by each CPU i.

Oblivious Multicasting:

Input: Each CPU i holds (keyi, datai) with the following promise. Let K =
⋃{keyi} denote the

set of distinct keys. For every key ∈ K, there exists a unique agent i with keyi = key such that
datai 6= ⊥; let datakey denote such datai.

Goal: Each agent i outputs outi = (keyi, datakeyi).

22

Oblivious Multicasting Procedure OblivMCast
Input: Each CPU i holds (keyi, datai) with the following promise. Let K =

⋃{keyi} denote the
set of distinct keys. For every key ∈ K, there exists a unique agent i with keyi = key such that
datai 6= ⊥; let datakey denote such datai.
Output: Each agent i outputs outi = (keyi, datakeyi).

1. Sort on (keyi, datai). Each CPUi initializes (sourceidi, keytempi, datatempi)← (i, keyi, datai).

For each layer L1, . . . , Ld in the sorting network:

• Let L` = ((i1, j1), . . . , (im/2, jm/2)) be the comparators in the current layer `.

• In parallel, for each t ∈ [m/2], the corresponding pair of CPUs (CPUit , CPUjt) perform
the following pairwise sort w.r.t. key, additionally pushing payloads datakey to the left:

If (i) keytempjt < keytempit , or (ii) keytempjt = keytempit and datatempjt 6= ⊥, then
swap (sourceidit , keytempit , datatempit)↔ (sourceidjt , keytempjt , datatempjt).

2. Multicast to right. For t = 0, 1, . . . , logm:

• (Pass to right). Each CPUi for i ≤ m− 2t sends his current pair (keytempi, datatempi) to
CPUi+2t .

• (Aggregate). Each CPUi for i > 2t receiving a pair (keytempj , datatempj) with j =
i − 2t update its data as follows. If keytempi = keytempj and datatempj 6= ⊥, then set
datatempi ← datatempj .

Every CPU i now holds (keytempi, datatempi) = (key, datakey) for some key ∈ K.

3. Reverse sort (i.e., sort on sourceidi). Return received data to an original requesting CPU.

For each layer L1, . . . , Ld in the sorting network:

• Let L` = ((i1, j1), . . . , (im/2, jm/2)) be the comparators in the current layer `.

• Each CPUi initializes idtemp← sourceidi. In parallel, for each t ∈ [m/2], the correspond-
ing pair of CPUs (CPUit , CPUjt) perform the following pairwise sort w.r.t. sourceid:

If idtempjt < idtempit , then
swap (idtempit , keytempit , datatempit)↔ (idtempjt , keytempjt , datatempjt).

At the conclusion, each CPUi holds a tuple with (idtempi, keytempi, datatempi) with idtempi =
i, keytempi = keyi, and datatempi = datakeyi .

4. Output. Each CPUi outputs outputi = (keyi, datakeyi).

Figure 6: Space-efficient oblivious data multicasting procedure.

23

We present a protocol OblivMCast for achieving oblivious multicasting in a space-efficient fashion
in Figure 6. This procedure is roughly the “dual” of the OblivAgg protocol in the previous section.
We now proceed to prove the correctness and efficiency of the protocol OblivMCast.

Lemma 3.9 (Space-Efficient Oblivious Multicasting). Suppose m processors initiate protocol OblivMCast
on respective inputs {(keyi, datai)}i∈[m] of size ` that satisfies the promise specified above. Then at
the conclusion of execution, each processor i ∈ [m] outputs a pair (key′i, data′i) such that the following
properties hold (where asymptotics are w.r.t. m):

1. The protocol terminates in Õ(1) rounds.

2. The local memory and computation required by each processor is Õ(`).

3. (Correctness). For every i, key′i = keyi, and data′i = datakeyi.

4. (Obliviousness). The inter-CPU communication patterns are independent of the inputs (keyi, datai).

Proof. Property (1): Steps 1 and 3 of OblivMCast each execute a sorting network, and require
communication rounds equal to the depth d ∈ Õ(1) of the sorting network implemented. Step 2
takes place in logm sequential steps. And Step 4 (output) takes place locally. Thus, the combined
round complexity of OblivMCast is Õ(1). (Recall that asymptotics are with respect to m).

Property (2): We first address the size the individual items stored, and then ensure the number
of stored items is never too large.

• Keys (e.g., keyi, tempkeyi): Each key is bounded in size by the initial input size `.

• Data (e.g., datai, datatempi): Similarly, each data item is bounded by the initial input size `.

• CPU identifiers (e.g., sourceidi, idtempi): Each processor can be identified by bit string of
length logm.

Each processor begins with input size `. In each round of executing the first sorting network (Step
1 of OblivAgg), a processor must hold two sets of data (sourceid, keytemp, datatemp), corresponding
to at most 2(logm + 2`) storage. Note that no more than 2 tuples are required to be held at any
time within this step, as the processors exchange tuples but need not maintain both values. In each
round of the Multicast phase (Step 2), processors may need to store two pairs (keytemp, datatemp)
in addition to the information held from the conclusion of the previous step (namely, a single value
sourceidi), which totals to logm + 2(2`) memory. In the Reverse Sort phase (Step 3), processors
within each round must again store two tuples, this time of the form (idtemp, keytemp, datatemp),
which corresponds to 2(logm + ` + `) memory. Thus, the total local memory requirement per
processor is bounded by Õ(1).

Property (3): We now prove that the protocol results in the desired output. Consider the values
stored by each processor at the conclusion of each phase of the protocol.

After the completion of Step 1, by the correctness of the utilized sorting network, it holds that
each CPUi holds a tuple (sourceidi, keytempi, datatempi) such that the list (sourceid1, . . . , sourceidm)
is some permutation of [m], and keytempi ≤ keytempj for every i < j. Furthermore, for every
key ∈ K, let i be the smallest index such that keytempi = key. It holds that datatempi = datakey

and datatempj = ⊥ for every j > i with keytempj = key. Note that for each i it always the case
that the pair (keytempi, datatempi) currently held by CPUi is precisely the original input pair of
CPUj for j = sourceidi.

For the Multicast phase in Step 2, we make the following claim, asserting that each key have
received corresponding data.

24

Claim 3.10. At the conclusion of Multicast to Right (Step 2), every CPU i holds datatempi =
datakeytempi.

Proof. Fix an arbitrary value key, and let Skey ⊂ [m] denote the subset of processors for which
keytempi = key. From the previous sorting step, we are guaranteed that Skey consists of an interval
of consecutive processors istart, . . . , istop. Furthermore, we know that datatempistart

= datakey and
datatempi = ⊥ for istart < i ≤ istop.

We now show by induction that for t ∈ {0, . . . , logm + 1}, at the beginning of iteration t,
datatempi = datakey for istart ≤ i ≤ min{istart+2t−1, istop}. The base case t = 0 holds trivially.
Suppose the induction holds for t, we show that the induction holds for t + 1. It suffices to show
that for every istart+2t ≤ i ≤ min{istart+2t+1−1, istop}, datatempi is set to datakey in the t-st iteration.
Note that for every such i, CPUi receives (keytempj , datatempj) from CPUj with j = i−2t. By the
induction hypothesis, datatempj = datakey 6= ⊥, and thus datatempi ← datatempj = datakey.

The final step is to return these information tuples to some CPU who originally requested this
key. This is achieved in the final reverse sort (Step 3). Namely, by the correctness of the imple-
mented sorting network, at the conclusion of Step 4 each CPUi holds a tuple (idtempi, keytempi, datatempi)
such that the ordered list (idtemp1, . . . , idtempm) is precisely the ordered list 1, . . . ,m. Since the tu-
ples (idtempi, keytempi, datatempi) are never modified (only swapped between processors), it means
that each CPU i now holds keytempi being the original keyi. Thus, the reverse sort successfully
routes the updated key-data pair back to a CPU making the correct key request.

Property (4): Since we utilize a sorting network with fixed topology, and the multicast-to-
right functionality has fixed communication topology, the inter-CPU communication patterns are
constant, independent of the initial CPU inputs.

3.4 Putting Things Together

In this section, we reduce the CPU local memory size and inter-CPU communication of our rudimen-
tary Heavy-OPAccess solution to polylog(n) using the space-efficient distributed oblivious procedures
from Section 3.3. Let us first recall the steps in Heavy-OPAccess where large memory/bandwidth
are required.

• In Step 1., each CPU i broadcasts (ri, vi) to all CPUs. Let bi = bri/αc. This is used to
aggregate instructions to each bi and determine its representative CPU rep(bi).

• In Step 4., each CPU i broadcasts (bi, `i) or (⊥, `i). This is used to aggregate instructions to
each buckets along path `i about which blocks bi’s to be removed.

• In Step 5., each (representative) CPU i broadcasts (bi, v̄i, `
′
i). This is used to aggregate blocks

to be inserted to each bucket in appropriate level of the tree.

• In Step 6., each CPU i broadcasts `flush
i . This is used to aggregate information about which

buckets the flush operation should perform.

• In Step 7., each (representative) CPU rep(b) broadcasts the old value vold of block b to all
CPUs so that each CPU receives desired information.

We will use oblivious aggregation procedure to replace broadcasts in Step 1, 4, and 6; the
parallel insertion procedure to replace broadcasts in Step 5, and finally the oblivious multicast
procedure to replace broadcasts in Step 7.

25

Let us first consider the aggregation steps. For Step 1., to invoke the oblivious aggregation
procedure, we set keyi = bi and datai = (ri mod α, vi), and define the output of Agg({(ui, vi)})
to be a vector v̄ = v̄[1] · · · v̄[α] of read/write instructions to each memory cell in the block, where
conflicts are resolved by writing the value specified by the smallest CPU: i.e., ∀s ∈ [α], take v̄[s]← vj
for minimal j such that uj = s and vj 6= ⊥. By the functionality of OblivAgg, at the conclusion of
OblivAgg, each block bi is assigned to a unique representative (not necessarily the smallest CPU),
who holds the aggregation of all instructions on this block.

Both Step 4 and 6 invoke UpdateBuckets to update buckets along m random paths. In our
rudimentary solution, the paths (along with instructions) are broadcast among CPUs, and the
buckets are updated level by level. At each level, each update bucket is assigned to a representative
CPU with minimal index, who performs aggregated instructions to update the bucket. Here, to
avoid broadcasts, we invoke the oblivious aggregation procedure per level as follows.

• In Step 4., each CPU i holds a path `i and a block bi (or ⊥) to be removed. Also note that
the buckets along the path `i are stored locally by each CPU i, after the read operation in
the previous step (Step 3). At each level lev ∈ [log n], we invoke the oblivious aggregation

procedure with keyi = `
(lev)
i (the lev-bits prefix of `i) and datai = bi if bi is in the bucket of

node `
(lev)
i , and datai = ⊥ otherwise. We simply define Agg({datai}) = {b : ∃datai = b} to

be the union of blocks (to be removed from this bucket). Since datai 6= ⊥ only when datai
is in the bucket, the output size of Agg is upper bounded by the bucket size K. By the

functionality of OblivAgg, at the conclusion of OblivAgg, each bucket `
(lev)
i is assigned to a

unique representative (not necessarily the smallest CPU) with aggregated instruction on the
bucket. Then the representative CPUs can update the corresponding buckets accordingly.

• In Step 6., each CPU i samples a path `flush
i to be flushed and the instructions to each bucket

are simply left and right flushes. At each level lev ∈ [log n], we invoke the oblivious aggregation

procedure with keyi = `
flush(lev)
i and datai = L (resp., R) if the (lev+1)-st bit of `flush

i is 0 (resp.,
1). The aggregation function Agg is again the union function. Since there are only two possible
instructions, the output has O(1) length. By the functionality of OblivAgg, at the conclusion

of OblivAgg, each bucket `
flush(lev)
i is assigned to a unique representative (not necessarily the

smallest CPU) with aggregated instruction on the bucket. To update a bucket `
flush(lev)
i , the

representative CPU loads the bucket and its two children (if needed) into local memory from
the server, performs the flush operation(s) locally, and writes the buckets back.

Note that since we update m random paths, we do not need to hide the access pattern, and thus
the dummy CPUs do not need to perform dummy operations during UpdateBuckets. A formal
description of full-fledged UpdateBuckets can be found in Figure 7.

For Step 5., we rely on the parallel insertion procedure of Section 3.3.1, which routes blocks to
proper destinations within the relevant level of the server-held data tree in parallel using a simple
oblivious routing network. The procedure is invoked with msgi = bi and addri = `′i.

Finally, in Step 7., each representative CPU rep(b) holds information of the block b, and each
dummy CPU i wants to learn the value of a block bi. To do so, we invoke the oblivious multicast
procedure with keyi = bi and datai = voldi for representative CPUs and datai = ⊥ for dummy CPUs.
By the functionality of OblivMCast, at the conclusion of OblivMCast, each CPU receives the value
of the block it originally wished to learn.

26

UpdateBuckets (m, (commandi, pathi))
Let path(1), path(2), . . . , path(logn) denote the bit prefixes of length 1 to log n of path.

For each level lev = 1, . . . , log n of the tree:

1. The CPUs invoke the oblivious aggregation procedure OblivAgg as follows.

Case 1: commandi = remove-bi.
Each CPU i sets keyi = path

(lev)
i and datai = bi if bi is in the bucket of node `

(lev)
i , and

datai = ⊥ otherwise. Use the union function Agg({datai}) = {b : ∃datai = b} as the
aggregation function.

Case 2: commandi = flush.
Each CPU i sets keyi = path

(lev)
i and datai = L (resp., R) if the (lev + 1)-st bit of pathi is

0 (resp., 1). Use the union function as the aggregation function.

At the conclusion of the protocol, each bucket path
(lev)
i is assigned to a representative CPU

bucket-rep(path
(lev)
i) with aggregated commands agg-commandi.

2. Each representative CPU performs the updates:

If i 6= bucket-rep(path
(lev)
i), do nothing. Otherwise:

Case 1: commandi = remove-bi.
Remove all blocks b ∈ agg-commandi in the bucket path

(lev)
i by accessing memory bucket

path
(lev)
i and rewriting contents.

Case 2: commandi = flush.
Access memory buckets path

(lev)
i , path

(lev)
i ||0, path

(lev)
i ||1, perform flush operation locally

according to agg-commandi ⊂ {L,R}, and write the contents back.

Specifically, denote the collection of stored data blocks b in path
(lev)
i by ThisBucket. Parti-

tion ThisBucket = ThisBucket-L ∪ ThisBucket-R into those blocks whose associated leaves
continue to the left or right (i.e., {bj ∈ ThisBucket : ¯̀(lev+1)

j = mypath(lev)||0}, and similar
for 1).

• If L ∈ agg-commandi, then set ThisBucket ← ThisBucket \ ThisBucket-L, and insert

data items ThisBucket-L into bucket path
(lev)
i ||0.

• If R ∈ agg-commandi, then set ThisBucket ← ThisBucket \ ThisBucket-R, and insert

data items ThisBucket-L into bucket path
(lev)
i ||0.

Figure 7: A space-efficient implementation of the UpdateBuckets procedure. Unlike the previous
version, here each CPU only holds its own path and command but not that of the other CPUs.

27

References

[Ajt10] Miklós Ajtai. Oblivious rams without cryptogrpahic assumptions. In STOC, pages
181–190, 2010.

[AKS83] M. Ajtai, J. Komlós, and E. Szemerédi. An 0(n log n) sorting network. In Proceedings
of the Fifteenth Annual ACM Symposium on Theory of Computing, STOC ’83, pages
1–9, New York, NY, USA, 1983. ACM.

[Bat68] K. E. Batcher. Sorting networks and their applications. In Proceedings of the April 30–
May 2, 1968, Spring Joint Computer Conference, AFIPS ’68 (Spring), pages 307–314,
New York, NY, USA, 1968. ACM.

[BCP14] Elette Boyle, Kai-Min Chung, and Rafael Pass. Large-scale secure computation. Cryp-
tology ePrint Archive, Report 2014/404, 2014.

[CKW13] David Cash, Alptekin Küpçü, and Daniel Wichs. Dynamic proofs of retrievability via
oblivious ram. In EUROCRYPT, pages 279–295, 2013.

[CLP13] Kai-Min Chung, Zhenming Liu, and Rafael Pass. Statistically-secure ORAM with
Õ(log2 n) overhead. CoRR, 2013.

[CP13] Kai-Min Chung and Rafael Pass. A simple oram. Cryptology ePrint Archive, Report
2013/243, 2013.

[DMN11] Ivan Damg̊ard, Sigurd Meldgaard, and Jesper Buus Nielsen. Perfectly secure oblivious
ram without random oracles. In TCC, pages 144–163, 2011.

[FDD12] Christopher W. Fletcher, Marten van Dijk, and Srinivas Devadas. A secure processor
architecture for encrypted computation on untrusted programs. In Proceedings of the
Seventh ACM Workshop on Scalable Trusted Computing, STC ’12, pages 3–8, New
York, NY, USA, 2012. ACM.

[GGH+13] Craig Gentry, Kenny A. Goldman, Shai Halevi, Charanjit S. Jutla, Mariana Raykova,
and Daniel Wichs. Optimizing oram and using it efficiently for secure computation. In
Privacy Enhancing Technologies, pages 1–18, 2013.

[GHRW14] Craig Gentry, Shai Halevi, Mariana Raykova, and Daniel Wichs. Outsourcing private
ram computation. IACR Cryptology ePrint Archive, 2014:148, 2014.

[GKK+11] S. Dov Gordon, Jonathan Katz, Vladimir Kolesnikov, Tal Malkin, Mariana Raykova,
and Yevgeniy Vahlis. Secure computation with sublinear amortized work. IACR Cryp-
tology ePrint Archive, 2011:482, 2011.

[GMOT11] Michael T. Goodrich, Michael Mitzenmacher, Olga Ohrimenko, and Roberto Tamassia.
Oblivious ram simulation with efficient worst-case access overhead. In CCSW, pages
95–100, 2011.

[GMOT12] Michael T. Goodrich, Michael Mitzenmacher, Olga Ohrimenko, and Roberto Tamassia.
Privacy-preserving group data access via stateless oblivious ram simulation. In SODA,
pages 157–167, 2012.

[GO96] Oded Goldreich and Rafail Ostrovsky. Software protection and simulation on oblivious
rams. J. ACM, 43(3):431–473, 1996.

[Gol87] Oded Goldreich. Towards a theory of software protection and simulation by oblivious
rams. In STOC, pages 182–194, 1987.

[KLO12] Eyal Kushilevitz, Steve Lu, and Rafail Ostrovsky. On the (in)security of hash-based
oblivious ram and a new balancing scheme. In SODA, pages 143–156, 2012.

28

[LO13] Steve Lu and Rafail Ostrovsky. Distributed oblivious ram for secure two-party compu-
tation. In TCC, pages 377–396, 2013.

[LPM+13] Jacob R. Lorch, Bryan Parno, James W. Mickens, Mariana Raykova, and Joshua Schiff-
man. Shroud: ensuring private access to large-scale data in the data center. In FAST,
pages 199–214, 2013.

[OS97] Rafail Ostrovsky and Victor Shoup. Private information storage (extended abstract).
In STOC, pages 294–303, 1997.

[PF79] Nicholas Pippenger and Michael J. Fischer. Relations among complexity measures. J.
ACM, 26(2):361–381, 1979.

[PR14] Benny Pinkas and Tzachy Reinman. A simple recursive tree oblivious ram. Cryptology
ePrint Archive, Report 2014/418, 2014.

[SCSL11] Elaine Shi, T.-H. Hubert Chan, Emil Stefanov, and Mingfei Li. Oblivious ram with
o((logn)3) worst-case cost. In ASIACRYPT, pages 197–214, 2011.

[SS13] Emil Stefanov and Elaine Shi. Oblivistore: High performance oblivious cloud storage.
In IEEE Symposium on Security and Privacy, pages 253–267, 2013.

[SvDS+13] Emil Stefanov, Marten van Dijk, Elaine Shi, Christopher W. Fletcher, Ling Ren, Xi-
angyao Yu, and Srinivas Devadas. Path oram: an extremely simple oblivious ram
protocol. In ACM Conference on Computer and Communications Security, pages 299–
310, 2013.

[WST12] Peter Williams, Radu Sion, and Alin Tomescu. PrivateFS: A parallel oblivious file
system. In Proceedings of the 2012 ACM Conference on Computer and Communications
Security, CCS ’12, pages 977–988, New York, NY, USA, 2012. ACM.

29

