
Scalable Zero Knowledge via Cycles of Elliptic Curves
(extended version)

Eli Ben-Sasson
eli@cs.technion.ac.il

Technion

Alessandro Chiesa
alexch@mit.edu

MIT

Eran Tromer
tromer@cs.tau.ac.il

Tel Aviv University

Madars Virza
madars@mit.edu

MIT

September 18, 2016

Abstract

Non-interactive zero-knowledge proofs of knowledge for general NP statements are a powerful
cryptographic primitive, both in theory and in practical applications. Recently, much research has focused
on achieving an additional property, succinctness, requiring the proof to be very short and easy to verify.
Such proof systems are known as zero-knowledge succinct non-interactive arguments of knowledge
(zk-SNARKs), and are desired when communication is expensive, or the verifier is computationally weak.

Existing zk-SNARK implementations have severe scalability limitations, in terms of space complexity
as a function of the size of the computation being proved (e.g., running time of the NP statement’s decision
program). First, the size of the proving key is quasilinear in the upper bound on the computation size.
Second, producing a proof requires “writing down” all intermediate values of the entire computation, and
then conducting global operations such as FFTs.

The bootstrapping technique of Bitansky et al. (STOC ’13), following Valiant (TCC ’08), offers an
approach to scalability, by recursively composing proofs: proving statements about acceptance of the
proof system’s own verifier (and correctness of the program’s latest step). Alas, recursive composition of
known zk-SNARKs has never been realized in practice, due to enormous computational cost.

Using new elliptic-curve cryptographic techniques, and methods for exploiting the proof systems’ field
structure and nondeterminism, we achieve the first zk-SNARK implementation that practically achieves
recursive proof composition. Our zk-SNARK implementation runs random-access machine programs
and produces proofs of their correct execution, on today’s hardware, for any program running time. It
takes constant time to generate the keys that support all computation sizes. Subsequently, the proving
process only incurs a constant multiplicative overhead compared to the original computation’s time, and
an essentially-constant additive overhead in memory. Thus, our zk-SNARK implementation is the first to
have a well-defined, albeit low, clock rate of “verified instructions per second”.

Keywords: computationally-sound proofs, proof-carrying data, zero knowledge, elliptic curves

1

Contents

1 Introduction 3
1.1 Scalability limitations of prior zk-SNARK implementations . 3
1.2 What we know from theory . 4
1.3 Contributions . 4
1.4 Summary of challenges and techniques . 5
1.5 Follow-up work . 7
1.6 Roadmap . 7

2 Preliminaries 7
2.1 Preprocessing zk-SNARKs for arithmetic circuits . 7
2.2 Proof-carrying data . 7
2.3 The bootstrapping approach . 8

3 PCD-friendly preprocessing zk-SNARKs 9
3.1 PCD-friendly cycles of elliptic curves . 9
3.2 Two-cycles based on MNT curves . 10
3.3 A matched pair of preprocessing zk-SNARKs . 12
3.4 A higher-security 2-cycle . 13

4 Proof-carrying data from PCD-friendly zk-SNARKs 14
4.1 Intuition . 14
4.2 Construction . 16
4.3 Security . 17

5 Constructions of arithmetic circuits 19
5.1 Arithmetic circuits for zk-SNARK verifiers . 19
5.2 Arithmetic circuits for collision-resistant hashing . 20

6 Scalable zk-SNARKs 21
6.1 Specifying a machine . 21
6.2 Construction summary . 22
6.3 Arithmetic circuits for secure loads and stores . 23
6.4 The RAM compliance predicate . 24
6.5 The new zk-SNARK construction . 27

7 Evaluation on vnTinyRAM 29

8 Open problems 31

Acknowledgments 31

A Computation models 32
A.1 Arithmetic circuits . 32
A.2 Random-access machines . 32
A.3 The architecture vnTinyRAM . 33

B Pairings and elliptic curves 34
B.1 Pairings . 34
B.2 Elliptic curves . 34

C Preprocessing zk-SNARKs for arithmetic circuit satisfiability 36
C.1 Known constructions and security . 37
C.2 Instantiations via elliptic curves . 37
C.3 The zk-SNARK verifier protocol . 38

D Proof-carrying data for arithmetic compliance predicates 40

E Scalable zk-SNARKs for random-access machines 42
E.1 Known constructions and security . 43

References 44
2

1 Introduction

Non-interactive zero-knowledge proofs of knowledge [BFM88, NY90, BDSMP91] are a powerful tool,
studied extensively both in theoretical and applied cryptography. Recently, much research has focused on
achieving an additional property, succinctness, that requires the proof to be very short and easy to verify. A
proof system with this additional property is called a zero-knowledge Succinct Non-interactive ARgument
of Knowledge (zk-SNARK). Because succinctness is a desirable, sometimes critical, property in numerous
security applications, prior work has investigated zk-SNARK implementations. Unfortunately, all implemen-
tations to date suffer from severe scalability limitations, due to high space complexity, as we now explain.

1.1 Scalability limitations of prior zk-SNARK implementations

Expensive preprocessing. As in any non-interactive zero-knowledge proof, a zk-SNARK requires a one-
time trusted setup of public parameters: a key generator samples a proving key (used to generate proofs) and
a verification key (used to check proofs); the key pair is then published as the proof system’s parameters.

Most zk-SNARK constructions [Gro10, Lip12, BCIOP13, GGPR13, PGHR13, BCGTV13a, Lip13,
BCTV14, Lip14, KPPS+14, ZPK14, DFGK14, WSRBW15, BBFR15], including published implemen-
tations [PGHR13, BCGTV13a, BCTV14, KPPS+14, ZPK14, WSRBW15, BBFR15], require expensive
preprocessing during key generation. The key generator takes as input an upper bound on the computation
size, e.g., an explicit NP decision circuit C output by a circuit generator; then, the key generator’s space
complexity, as well as the size of the output proving key, depends at least linearly on this upper bound.
Essentially, the circuit C is explicitly laid out and encoded so as to produce the proof system’s parameters.

One way to mitigate the costs of expensive preprocessing is to make C universal, i.e., design C so that
it can handle more than one choice of program [BCTV14]. Yet, C still depends on upper bounds on the
program size and number of execution steps. Moreover, even if key generation is carried out only once per
circuit C, the resulting large proving key must be stored, and accessed, each time a proof is generated. Prior
implementations of zk-SNARKs quickly become space-bound already for modest computation sizes, e.g.,
with proving keys of over 4 GB for circuits of only 16 million gates [BCTV14].1

Thus, expensive preprocessing severely limits scalability of a zk-SNARK.

Space-intensive proof generation. Related in part to the aforementioned expensive preprocessing, the
prover in all published zk-SNARK implementations has large space complexity. Essentially, the proving
process requires writing down the entire computation (e.g., the evaluation of the circuit C) all at once, and
then conduct a global computation (such as Fast Fourier transforms, or multi-exponentiations) based on it. In
particular, if C expresses the execution of a program, then proving requires writing down the full trace of
intermediate states throughout the program execution.

Tradeoffs are possible, using block-wise versions of the global algorithms, and repeating the computation
to reproduce segments of the trace. These decrease the prover’s space complexity but significantly increase
its time complexity, and thus do not adequately address scalability.

Remark 1.1. Even when relaxing the goal (allowing interaction, “theorem batching”, or non-zero-knowledge
proofs), all published implementations of proof systems for outsourcing NP computations [SBW11, SMBW12,
SVPB+12, SBVB+13, BFRS+13] also suffer from both of the above scalability limitations. (In con-
trast, when outsourcing P computations, there are implementations without expensive preprocessing:
[CMT12, TRMP12, Tha13] consider low-depth circuits, and [CRR11] consider outsourcing to multiple
provers at least one of which is honest.)

1Even worse, the reported numbers are for “data at rest”: the proving key consists of a list of elliptic-curve points, which are
compressed when not in use. However, when the prover uses the proving key to produce a proof, the points are uncompressed (and
represented via projective or Jacobian coordinates), and take about three times as much space in memory.

3

1.2 What we know from theory

Ideally, we would like to implement a zk-SNARK that does not suffer from either of the scalability limitations
mentioned in the previous section, i.e., a zk-SNARK where:
• Key generation is cheap (i.e., its running time only depends on the security parameter) and suffices for all

computations (of polynomial size). Such a zk-SNARK is called fully succinct.
• Proof generation is carried out incrementally, alongside the original computation, by updating, at each step,

a proof of correctness of the computation so far. Such a zk-SNARK is called incrementally computable.
Work in cryptography tells us that the above properties can be achieved in theoretical zk-SNARK constructions.
Namely, building on the work of Valiant on incrementally-verifiable computation [Val08] and the work of
Chiesa and Tromer on proof-carrying data [CT10, CT12], Bitansky et al. [BCCT13] showed how to construct
zk-SNARKs that are fully-succinct and incrementally-computable.

Concretely, the approach of [BCCT13] consists of a transformation that takes as input a preprocessing
zk-SNARK (such as one from existing implementations), and bootstraps it, via recursive proof composition,
into a new zk-SNARK that is fully-succinct and incrementally-computable. In recursive proof composition,
a prover produces a proof about an NP statement that, among other checks, also ensures the accepting
computation of the proof system’s own verifier. In a zk-SNARK, proof verification is asymptotically cheaper
than merely verifying the corresponding NP statement; so recursive proof composition is viable, in theory.
In practice, however, this step introduces concretely enormous costs: even if zk-SNARK verifiers can be
executed in just a few milliseconds on a modern desktop [PGHR13, BCTV14], zk-SNARK verifiers still
take millions of machine cycles to execute. Hence, known zk-SNARK implementations cannot achieve even
one step of recursive proof composition in practical time. Thus, whether recursive proof composition can be
realized in practice, with any reasonable efficiency, has so far remained an intriguing open question.

Remark 1.2 (PCPs). Suitably instantiating Micali’s “computationally-sound proofs” [Mic00] yields fully-
succinct zk-SNARKs. However, it is not known how to also achieve incremental computation with this
approach (without also invoking the aforementioned approach of Bitansky et al. [BCCT13]). Indeed, [Mic00]
requires probabilistically-checkable proofs (PCPs) [BFLS91], where one can achieve a prover that runs in
quasilinear-time [BCGT13b], but only by requiring space-intensive computations — again due to the need to
write down the entire computation and conducting global operations on it.

1.3 Contributions

We present the first prototype implementation that practically achieves recursive composition of zk-SNARKs.
This enables us to achieve the following results:

(i) Scalable zk-SNARKs. We present the first implementation of a zk-SNARK that is fully succinct and
incrementally computable. Our implementation follows the approach of Bitansky et al. [BCCT13].

Our zk-SNARK works for proving/verifying computations on a general notion of random-access machine.
The key generator takes as input a machine specification, consisting of settings for random-access memory
(number of addresses and number of bits at each address) and a CPU circuit, defining the machine’s behavior.
The keys sampled by the key generator support proving/verifying computations, of any polynomial length, on
this machine. Thus, our zk-SNARK implementation directly supports many architectures (e.g., floating-point
processors, SIMD-based processors, etc.) — one only needs to specify memory settings and a CPU circuit.

Compared to the original machine computation, our zk-SNARK only imposes a constant multiplicative
overhead in time and an essentially-constant additive overhead in space. Indeed, the proving process steps
through the machine’s computation, each time producing a new proof that the computation is correct so far,
by relying on the prior proof; each proof asserts the satisfiability of a constant-size circuit, and requires few
resources in time and space to produce. Our zk-SNARK scales, on today’s hardware, to any computation size.

4

(ii) Proof-carrying data. The main tool in [BCCT13]’s approach is proof-carrying data (PCD) [CT10,
CT12], a cryptographic primitive that encapsulates the security guarantees provided by recursive proof
composition. Thus, as a stepping stone towards the aforementioned zk-SNARK implementation, we also
achieve the first implementation of PCD, for arithmetic circuits.

(iii) Evaluation on vnTinyRAM. We evaluate our zk-SNARK on a specific choice of random-access
machine: vnTinyRAM, a simple RISC von Neumann architecture that is supported by the most recent
preprocessing zk-SNARK implementation [BCTV14]. The evaluation confirms our expectations that our
approach is slower for small computations but achieves scalability to large computations.

We evaluated our prototype on 16-bit and 32-bit vnTinyRAM with 16 registers (as in [BCTV14]). For
instance, for 32-bit vnTinyRAM, our prototype incrementally proves correct program execution at the cost of
26.2 seconds per program step, using a 55 MB proving key and 993 MB of additional memory. In contrast,
for a T -step program, the system of [BCTV14] requires roughly 0.05 · T seconds, provided that roughly
3.1 · T MB of main memory are available. Thus for T > 321 our system is more space-efficient, and the
savings in space continue to grow as T increases. (These numbers are for an 80-bit security level.)

The road ahead. Obtaining scalable zk-SNARKs is but one application of PCD. More generally, PCD
enables efficient “distributed theorem proving”, which has applications ranging from securing the IT supply
chain, to information flow control, and to distributed programming-language semantics [CT10, CT12, CTV13].
Now that a first prototype of PCD has been achieved, these applications are waiting to be explored in practice.

Remark 1.3 (parametrization). In this work we describe a concrete implementation of a cryptographic system,
whose efficiency scales with the security parameter and other quantities (e.g., wordsize of a machine, size of
random-access memory, and so on). Since we make several concrete choices (e.g., fixing the security level
at 80 bits, fixing vnTinyRAM’s wordsize to 16 or 32 bits as in [BCTV14]) many asymptotic dependencies
“collapse” to constants. We focus on scalability as a function of the computation size, i.e., the number of steps
and amount of memory in the original program’s execution on the concrete random-access machine.

1.4 Summary of challenges and techniques

As we recall in Section 2, bootstrapping zk-SNARKs involves two main ingredients: a collision-resistant
hash function and a preprocessing zk-SNARK. Practical implementations of both ingredients exist. So one
may conclude that “practical bootstrapping” is merely a matter of stitching together implementations of these
two ingredients. As we now explain, this conclusion is mistaken, because bootstrapping a zk-SNARK in
practice poses several challenges that must be tackled in order to obtain any reasonable efficiency.

Common theme: leverage field structure. The techniques that we employ to overcome efficiency barriers
leverage the fact that the “native” NP language whose membership is proved/verified by the zk-SNARK is
the satisfiability of F-arithmetic circuits, for a certain finite field F. While any NP statement can be reduced to
F-arithmetic circuits, the proof system is most efficient for statements expressible as F-arithmetic circuits of
small size. Prior work only partially leveraged this fact, by using circuits that conduct large-integer arithmetic
or “pack” bits into field elements for non-bitwise checks (e.g., equality) [PGHR13, BCGTV13a, BFRS+13,
BCTV14]. In this paper, we go further and, for improved efficiency, use circuits that conduct field operations.

1.4.1 Challenge: how to efficiently “close the loop”?

By far the most prominent challenge is efficiently “closing the loop”. In the bootstrapping approach, each
step requires proving a statement that (i) verifies the validity of previous zk-SNARK proofs; and (ii) checks
another execution step. For recursive composition, this statement needs to be expressed as an F-arithmetic
circuit Cpcd, so that it can be proved using the very same zk-SNARK. In particular, we need to implement
the verifier V as an F-arithmetic circuit CV (a subcircuit of Cpcd).

5

In principle, constructing CV is possible, because circuits are a universal model of computation. And not
just in principle: much research has been devoted to improve the efficiency and functionality of circuit gener-
ators in practice [SVPB+12, BCGT13a, SBVB+13, PGHR13, BCGTV13a, BCTV14]. Hence, a reasonable
approach to construct CV is to apply a suitable circuit generator to a suitable software implementation of V .

However, such an approach is likely to be inefficient. Circuit generators strive to support complex program
computations, by providing ways to efficiently handle data-dependent control flow, memory accesses, and so
on. Instead, verifiers in preprocessing zk-SNARK constructions are “circuit-like” programs, consisting of few
pairing-based arithmetic checks that do not use complex data-dependent control flow or memory accesses.

Thus, we want to avoid circuit generators, and somehow directly construct CV so that its size is not huge.
As we shall explain (see Section 3), this is not merely a programmatic difficulty, but there are mathematical
obstructions to constructing CV efficiently.

Main technique: PCD-friendly cycles of elliptic curves. In our underlying preprocessing zk-SNARK,
the verifier V consists mainly of operations in an elliptic curve over a field F′, and is thus expressed, most
efficiently, as a F′-arithmetic circuit. We observe that if this field F′ is the same as the aforementioned native
field F of the zk-SNARK’s statement, then recursive composition can be orders of magnitude more efficient
than otherwise. Unfortunately, as we shall explain, the “field matching” F = F′ is mathematically impossible.

In contrast, we show how to circumvent this obstruction by using multiple, suitably-chosen elliptic curves,
that lie on a PCD-friendly cycle. For example, a PCD-friendly 2-cycle consists of two curves such that the
(prime) size of the base field of one curve equals the group order of the other curve, and vice versa. Our
implementation uses a PCD-friendly cycle of elliptic curves (found at a great computational expense) to
attain zk-SNARKs that are tailored for recursive proof composition.

Additional technique: nondeterministic verification of pairings. The zk-SNARK verifier involves, more
specifically, several pairing-based checks over its elliptic curve. Yet, each pairing evaluation is very expensive,
if not carefully performed. To further improve efficiency, we exploit the fact that the zk-SNARK supports NP
statements, and provide a hand-optimized circuit implementation of the zk-SNARK verifier that leverages
nondeterminism for improved efficiency. For instance, in our construction, we make heavy use of affine
coordinates for both curve arithmetic and divisor evaluations [LMN10], because these are particularly efficient
to verify (as opposed to computing, for which projective or Jacobian coordinates are known to be faster).

1.4.2 Challenge: how to efficiently verify collision-resistant hashing?

Bootstrapping zk-SNARKs uses, at multiple places, a collision-resistant hash function H and an arithmetic
circuit CH for verifying computations of H . If not performed efficiently, this would be another bottleneck.

For instance, the aforementioned circuit Cpcd, besides verifying prior zk-SNARK proofs, is also tasked
with verifying one step of machine execution. This involves not only checking the CPU execution but also the
validity of loads and stores to random-access memory, done via memory-checking techniques based on Merkle
trees [BEGKN91, BCGT13a]. Thus Cpcd also needs to have a subcircuit to check Merkle-tree authentication
paths. Constructing such circuits is straightforward, given a circuit CH for verifying computations of H . But
the main question here is how to pick H so that CH can be small. Indeed, if random-access memory consists
of A addresses, then checking an authentication path requires at least dlogAe · |CH | gates. If CH is large,
this subcircuit dwarfs the CPU, and “wastes” most of the size of Cpcd for a single load/store.

Merely picking some standard choice of hash function H (e.g., SHA-256 or Keccak) yields CH with tens
of thousands of gates [PGHR13, BCGG+14], making hash verifications very expensive. Is this inherent?

Additional technique: field-specific hashes. We select a hash H that is tailored to efficient verification in
the field F. In our setting, F has prime order p, so its additive group is isomorphic to Zp. Thus, a natural
approach is to let H be a modular subset-sum function over Zp. For suitable parameter choices and for
random coefficients, subset-sum functions are collision-resistant [Ajt96, GGH96]. In this paper we base all

6

of our collision-resistant hashing on suitable subset sums, and thereby greatly reduce the burden of hashing.2

1.5 Follow-up work

Since the publication of the conference version of this work in CRYPTO 2014, there has been follow-up
research building on it. Chiesa et al. [CTV15] extend and then apply PCD to construct zero-knowledge proofs
for a class of cluster computations in which the proving process is itself a cluster computation. Costello et
al. [CFHK+15] build on our idea of obtaining bounded recursive proof composition, using PCD-friendly
chains of elliptic curves found via the Cocks–Pinch method (see Remark 3.2 and Footnote 8), in order to
construct a zk-SNARK that is inbetween a preprocessing zk-SNARK and a fully-succinct one.

1.6 Roadmap

The rest of this paper is organized as follows. In Section 2 we recall the main ideas of [BCCT13]’s approach.
Then we discuss our construction in more detail, in the following three steps:

PCD-friendly
preprocessing zk-SNARKs

(Section 3)
⇒ proof-carrying data

(Sections 4 and 5) ⇒ scalable zk-SNARKs
(Section 6)

In Section 7, we evaluate our system on the machine vnTinyRAM. In Section 8, we discuss open problems.

2 Preliminaries

We give here the essential definitions needed for the technical discussions in the body of the paper; more de-
tailed definitions can be found in the appendices (where some definitions are taken verbatim from [BCTV14]).

We denote by F a field, and by Fn the field of size n. Throughout, we assume familiarity with finite
fields; for background on these, see the book of Lidl and Niederreiter [LN97].

2.1 Preprocessing zk-SNARKs for arithmetic circuits

Given a field F, the circuit satisfaction problem of an F-arithmetic circuitC : Fn×Fh → Fl is defined by the re-
lationRC = {(x, a) ∈ Fn × Fh : C(x, a) = 0l}; its language is LC = {x ∈ Fn : ∃ a ∈ Fh, C(x, a) = 0l}.

A preprocessing zk-SNARK for F-arithmetic circuit satisfiability (see, e.g., [BCIOP13]) is a triple of
polynomial-time algorithms (G,P, V), called key generator, prover, and verifier. The key generator G,
given a security parameter λ and an F-arithmetic circuit C : Fn × Fh → Fl, samples a proving key pk and a
verification key vk; these are the proof system’s public parameters, which need to be generated only once per
circuit. After that, anyone can use pk to generate non-interactive proofs for the language LC , and anyone
can use the vk to check these proofs. Namely, given pk and any (x, a) ∈ RC , the honest prover P (pk, x, a)
produces a proof π attesting that x ∈ LC ; the verifier V (vk, x, π) checks that π is a valid proof for x ∈ LC .
A proof π is a proof of knowledge, as well as a (statistical) zero-knowledge proof. The succinctness property
requires that π has length Oλ(1) and V runs in time Oλ(|x|), where Oλ hides a (fixed) polynomial in λ.

See Appendix C for details.

2.2 Proof-carrying data

Proof-carrying data (PCD) [CT10, CT12] is a cryptographic primitive that encapsulates the security guarantees
obtainable via recursive composition of proofs. Since recursive proof composition naturally involves multiple
(physical or virtual) parties, PCD is phrased in the language of a dynamically-evolving distributed computation

2We note that subset-sum functions were also used in [BFRS+13], but, crucially, they were not tailored to the field. This is a key
difference in usage and efficiency. (E.g., our hash function can be verified in ≤ 300 gates, while [BFRS+13] report 13,000.)

7

among mutually-untrusting computing nodes, who perform local computations, based on local data and
previous messages, and then produce output messages. Given a compliance predicate Π to express local
checks, the goal of PCD is to ensure that any given message z in the distributed computation is Π-compliant,
i.e., is consistent with a history in which each node’s local computation satisfies Π. This formulation includes
as special cases incrementally-verifiable computation [Val08] and targeted malleability [BSW12].

Concretely, a proof-carrying data (PCD) system is a triple of polynomial-time algorithms (G,P,V),
called key generator, prover, and verifier. The key generator G is given as input a predicate Π (specified as
an arithmetic circuit), and outputs a proving key pk and a verification key vk; these keys allow anyone to
prove/verify that a piece of data z is Π-compliant. This is achieved by attaching a short and easy-to-verify
proof to each piece of data. Namely, given pk, received messages ~zin with proofs ~πin, local data zloc, and a
claimed outgoing message z, P computes a new proof π to attach to z, which attests that z is Π-compliant; the
verifier V(vk, z, π) verifies that z is Π-compliant. A proof π is a proof of knowledge, as well as a (statistical)
zero-knowledge proof; succinctness requires that π has length Oλ(1) and V runs in time Oλ(|z|).

Finally, note that since Π is expressed as an F-arithmetic circuit for a given field F, the size of messages
and local data are fixed; we denote these sizes by nmsg, nloc ∈ N. Similarly, the number of input messages is
also fixed; we call this the arity, and denote it by s ∈ N. Moreover, for convenience, Π also takes as input a
flag bbase ∈ {0, 1} denoting whether the node has no predecessors (i.e., bbase is a “base-case” flag). Overall,
Π takes an input (z, zloc, ~zin, bbase) ∈ Fnmsg × Fnloc × Fs·nmsg × F.

See Appendix D for details.

2.3 The bootstrapping approach

Our implementation follows [BCCT13], which we now review. The approach consists of a transformation that,
on input a preprocessing zk-SNARK and a collision-resistant hash function, outputs a scalable zk-SNARK.
Thus, the input zk-SNARK is bootstrapped into one with improved scalability properties.

So fix a preprocessing zk-SNARK (G,P, V) and collision-resistant functionH . The goal is to construct a
fully-succinct incrementally-computable zk-SNARK (G?, P ?, V ?) for proving/verifying the correct execution
on a given random-access machine M. Informally, we describe the transformation in four steps.

Step 1: from zk-SNARKs to PCD. The first step, independent of M, is to construct a PCD system (G,P,V),
by using the zk-SNARK (G,P, V). This step involves recursive composition of zk-SNARK proofs.

Step 2: delegate the machine’s memory. The second step is to reduce the footprint of the machine M, by
delegating its random-access memory to an untrusted storage, via standard memory-checking techniques
based on Merkle trees [BEGKN91, BCGT13a]. We thus modify M so that its “CPU” receives values loaded
from memory as nondeterministic guesses, along with corresponding authentication paths that are checked
against the root of a Merkle tree based on the hash function H . Thus, the entire state of M only consists of a
(short) CPU state, and a (short) root of the Merkle tree that “summarizes” memory.3

Step 3: design a predicate ΠM,H for step-wise verification. The third step is to design a compliance
predicate ΠM,H that ensures that the only ΠM,H -compliant messages z are the ones that result from the
correct execution of the (modified) machine M, one step at a time; this is analogous to the notion of
incremental computation [Val08]. Crucially, because ΠM,H is only asked to verify one step of execution at a
time, we can implement ΠM,H ’s requisite checks with a circuit of merely constant size.

Step 4: construct new proof system. The new zk-SNARK (G?, P ?, V ?) is constructed as follows. The
new key generator G? is set to the PCD generator G invoked on ΠM,H . The new prover P ? uses the PCD
prover P to prove correct execution of M, one step at a time and conducting the incremental distributed

3 Similarly to [BCCT13] and our realization thereof, Braun et al. [BFRS+13] leverage memory-checking techniques based on
Merkle trees [BEGKN91] for the purpose of enabling a circuit to “securely” load from and store to an untrusted storage. However,
the systems’ goals (delegation of MapReduce computations via a 2-move protocol) and techniques are different (cf. Footnote 2).

8

computation “in his head”. The new verifier V ? simply uses the PCD verifier V to verify ΠM,H -compliance.
In sum, since ΠM,H is small and suffices for all computations, the new zk-SNARK is scalable: it is fully
succinct; moreover, because the new prover computes a proof for each new step based on the previous one, it
is also incrementally computable. (See Appendix E for definitions of these properties.)

Our goal is to realize the above approach in a practical implementation.

Security of recursive proof composition. Security in [BCCT13] is proved by using the proof-of-knowledge
property of zk-SNARKs; we refer the interested reader to [BCCT13] for details. One aspect that must be
addressed from a theoretical standpoint is the depth of composition. Depending on assumption strength, one
may have to recursively compose proofs in “proof trees above the message chain”, rather than along the
chain. From a practical perspective we make the heuristic assumption that depth of composition does not
affect security of the zk-SNARK, because no evidence suggests otherwise for the constructions that we use.

3 PCD-friendly preprocessing zk-SNARKs

We first construct preprocessing zk-SNARKs that are tailored for efficient recursive composition of proofs.
Later, in Section 5, we discuss how we use such zk-SNARKs to construct a PCD system.

3.1 PCD-friendly cycles of elliptic curves

Let F be a finite field, and (G,P, V) a preprocessing zk-SNARK for F-arithmetic satisfiability. The idea
of recursive proof composition is to prove/verify satisfiability of an F-arithmetic circuit Cpcd that checks
the validity of previous proofs (among other things). Thus, we need to implement the verifier V as an
F-arithmetic circuit CV , to be used as a sub-circuit of Cpcd.

How to write CV depends on the algorithm of V , which in turn depends on which elliptic curve is used to
instantiate the pairing-based zk-SNARK. For prime r, in order to prove statements about Fr-arithmetic circuit
satisfiability, one instantiates (G,P, V) using an elliptic curve E defined over some finite field Fq, where the
group E(Fq) of Fq-rational points has order r = #E(Fq) (or, more generally, r divides #E(Fq)). Then, all
of V ’s arithmetic computations are over Fq, or extensions of Fq up to degree k, where k is the embedding
degree of E with respect to r (i.e., the smallest integer k such that r divides qk − 1). (See Appendix C.2.)

We motivate our approach by first describing two “failed attempts”.

Attempt #1: pick curve with q = r. Ideally, we would like to select a curve E with q = r, so that V ’s
arithmetic is over the same field for which V ’s native NP language is defined. Unfortunately, this cannot
happen: the condition that E has embedding degree k with respect to r implies that r divides qk − 1, which
implies that q 6= r. The same implication holds even if E(Fq) has a non-prime order n and the prime r (with
respect to which k is defined) only divides n. So, while appealing, this idea cannot even be instantiated.4

Attempt #2: long arithmetic. Since we are stuck with q 6= r, we may consider doing “long arithmetic”:
simulating Fq operations via Fr operations, by working with bit chunks to perform integer arithmetic, and
modding out by q when needed. Alas, having to work at the “bit level” implies a blowup on the order of log q
compared to native arithmetic. So, while this approach can at least be instantiated, it is very expensive.5

Our approach: cycle through multiple curves. We formulate, and instantiate, a new property for elliptic
curves that enables us to completely circumvent long arithmetic, even with q 6= r. In short, our idea is to base
recursive proof composition, not on a single zk-SNARK, but on multiple zk-SNARKs, each instantiated on a
different elliptic curve, that jointly satisfy a special property.

4Besides, the condition q = #E(Fq) is undesirable even when not ruled out (e.g., when k = ∞): on such curves, known as
anomalous, discrete logarithms can be computed in polynomial time via the SSSA attack [Sem98, Sma99, SA98].

5Showing that it is provably expensive requires stronger circuit lower bounds than currently known [Raz87, Smo87, GLS09].

9

For the simplest case, suppose we have two primes qα and qβ , and elliptic curves Eα/Fqα and Eβ/Fqβ
such that qα = #Eβ(Fqβ) and qβ = #Eα(Fqα), i.e., the size of the base field of one curve equals the group
order of the other curve, and vice versa. We then construct two preprocessing zk-SNARKs (Gα, Pα, Vα) and
(Gβ, Pβ, Vβ), respectively instantiated on the two curves Eα/Fqα and Eβ/Fqβ .

Now note that (Gα, Pα, Vα) works for Fqβ -arithmetic circuit satisfiability, but all of Vα’s arithmetic
computations are over Fqα (or extensions thereof); while (Gβ, Pβ, Vβ) works for Fqα-arithmetic circuits, but
Vβ’s arithmetic computations are over Fqβ (or extensions thereof). Instead of having each zk-SNARK handle
statements about its own verifier, as in the prior attempts (i.e., writing Vα as a Fqβ -arithmetic circuit, or Vβ as
a Fqα-arithmetic circuit), we instead let each zk-SNARK handle statements about the verifier of the other
zk-SNARK. That is, we write Vα as a Fqα-arithmetic circuit CVα , and Vβ as a Fqβ -arithmetic circuit CVβ .

We can then perform recursive proof composition by alternating between the two proof systems. Roughly,
one can use Pα to prove successful verification of a proof by CVβ and, conversely, Pβ to prove successful
verification of a proof by CVα . Doing so in alternation ensures that fields “match up”, and no long arithmetic
is needed. (This sketch omits key technical details; see Section 4.)

Since Eα and Eβ facilitate constructing PCD, we say that (Eα, Eβ) is a PCD-friendly 2-cycle of elliptic
curves. More generally, the idea extends to cycling through ` curves satisfying this definition:

Definition 3.1. Let E0, . . . , E`−1 be elliptic curves, respectively defined over finite fields Fq0 , . . . ,Fq`−1
,

with each qi a prime. We say that (E0, . . . , E`−1) is a PCD-friendly cycle of length ` if each Ei is pairing
friendly and, moreover, ∀ i ∈ {0, . . . , `− 1}, qi = #Ei+1 mod `(Fqi+1 mod `

) .

To our knowledge this notion has not been explicitly sought before.6 Though, fortunately, a family that
satisfies this notion is already known, as discussed in the next subsection.

Remark 3.2 (relaxation). One can relax Definition 3.1 to require a weaker, but still useful, condition: for
each i ∈ {0, . . . , `− 1}, qi divides #E(Fi+1 mod `). Even if weaker, this condition is still very strong. For
instance, it implies that each curve Ei has ρ-value ≈ 1, i.e., that each Ei has near-prime order.7 Constructing
pairing-friendly curves with such good ρ-values is challenging even without the cycle condition!

Hence, generic methods such as Cocks–Pinch [CP01] and Dupont–Enge–Morain [DEM05], which yield
(with high probability) curves with ρ-values > 1 (specifically, ≈ 2), cannot be used to construct PCD-friendly
cycles.8 This also applies to generalizations of the Cocks–Pinch method [BLS03, BW05, SB06] that improve
the ρ-value to be 1 < ρ < 2. In this work we do not investigate the above relaxation because, we can fulfill
Definition 3.1 with ` = 2, the minimal length possible.

3.2 Two-cycles based on MNT curves

We construct pairs of elliptic curves, E4 and E6, that form PCD-friendly 2-cycles (E4, E6). These are MNT
curves [MNT01] of embedding degrees 4 and 6. Our construction also ensures that E4 and E6 are sufficiently
2-adic (see below), a desirable property for efficient implementations of preprocessing zk-SNARKs.

6Definition 3.1 is reminiscent, but different from, the notion of an aliquot cycle of elliptic curves by Silverman and Stange [SS11].
An aliquot cycle considers a single curve (over Q) reduced at ` primes, rather than ` curves, and does not require pairing-friendliness.

7For each i ∈ {0, . . . , `−1}, the condition that qi−1 divides #E(Fi) implies, via the Hasse bound, that hiqi−1 ≤ qi ·(1+2/
√
qi)

for some cofactor hi ∈ N; hence log qi−1 ≤ log qi + log(1 + 2/
√
qi) − log hi, and thus log qi−1

log qi
≤ 1 +

log(1+2/
√
qi)

log qi
≤

1 + 2√
qi log qi

= 1 +ai for ai := 2√
qi log qi

. Note that each ai is exponentially small. Therefore, for each i ∈ {0, . . . , `− 1}, we can

upper bound the ρ-value ofEi, equal to log qi
log qi−1

, as follows: log qi
log qi−1

=
∏
j 6=i

log qj−1

log qj
≤
∏
j 6=i (1 + aj) = 1+

∑
j 6=i aj+

∏
j 6=i aj .

In sum, the ρ-value of Ei is upper bounded by 1 + εi, where the quantity εi :=
∑
j 6=i aj +

∏
j 6=i aj is exponentially small.

8 At best, such methods can be used to construct PCD-friendly “chains”, which can be used to reduce the space complexity of
preprocessing zk-SNARKs via a limited application of recursive proof composition. But the large ρ-values would imply that each
recursive composition roughly doubles the cost of the zk-SNARK so that long chains do not seem to be advantageous.

10

MNT curves and the KT correspondence. Miyaji, Nakabayashi, and Takano [MNT01] characterized
prime-order elliptic curves with embedding degrees k = 3, 4, 6; such curves are now known as MNT curves.
Given an elliptic curve E defined over a prime field Fq, they gave necessary and sufficient conditions on the
pair (q, t), where t is the trace of E over Fq, for E to have embedding degree k = 3, 4, 6. We refer to an
MNT curve with embedding degree k as an MNTk curve. Karabina and Teske [KT08] proved an explicit
1-to-1 correspondence between MNT4 and MNT6 curves:

Theorem 3.3 ([KT08]). Let r, q > 64 be primes. Then the following two conditions are equivalent:
1. r and q represent an elliptic curve E4/Fq with embedding degree k = 4 and r = #E(Fq);
2. r and q represent an elliptic curve E6/Fr with embedding degree k = 6 and q = #E(Fr).

PCD-friendly 2-cycles on MNT curves. The above theorem implies that:

Each MNT6 curve lies on a PCD-friendly 2-cycle with the corresponding MNT4 curve (and vice versa).

Thus, a PCD-friendly 2-cycle can be obtained by constructing an MNT4 curve and its corresponding MNT6
curve. Next, we explain at high level how this can be done.

Constructing PCD-friendly 2-cycles. First, we recall the only known method to construct MNTk curves
[MNT01]. It consists of two steps:
• Step I: curve discovery. Find suitable (q, t) ∈ N2 such that there exists an ordinary elliptic curve E/Fq of

prime order r := q + 1− t and embedding degree k.
• Step II: curve construction. Starting from (q, t), use the Complex-Multiplication method (CM method)

[AM93] to compute the equation of E over Fq.
The complexity of Step II depends on the discriminant D of E, which is the square-free part of 4q − t2. At
present, the CM method is feasible for discriminants D up to size 1016 [Sut12]. Thus, Step I is conducted in a
way that results in candidate parameters (q, t) inducing relatively-small discriminants, to aid Step II. (Instead,
“most” (q, t) induce a discriminant D of size

√
q, which is too large to handle.) Concretely, [MNT01] derived,

for k ∈ {3, 4, 6} and discriminant D, Pell-type equations whose solutions yield candidate parameters (q, t)
for MNTk curves E/Fq of trace t and discriminant D. So Step I can be performed by iteratively solving the
MNTk Pell-type equation, for increasing discriminant size, until a suitable (q, t) is found.

The above strategy can be extended, in a straightforward way, to construct PCD-friendly 2-cycles. First
perform Step I to obtain suitable parameters (q4, t4) for an MNT4 curve E4/Fq4 ; the parameters (q6, t6) for
the corresponding MNT6 curve E6/Fq6 are q6 := q4 + 1− t4 and t6 := 2− t4. Then perform Step II for
(q4, t4) to compute the equation of E4, and then also for (q6, t6) to compute that of E6. The complexity in
both cases is the same: one can verify that E4 and E6 have the same discriminant. The two curves E4 and E6

form a PCD-friendly 2-cycle (E4, E6).

Suitable cycle parameters. We now explain what “suitable (q4, t4)” means in our context, by specifying a
list of additional properties that we wish a PCD-friendly cycle to satisfy.

• Bit lengths. In a 2-cycle (E4, E6), the curve E4 is “less secure” than E6, because E4 has embedding degree
4 while E6 has embedding degree 6. Thus, we use E4 to set lower bounds on bit lengths. Since we aim at
a security level of 80 bits, we need r4 ≥ 2160 and q4 ≥ 2240 (so that

√
r4 ≥ 280 and q44 ≥ 2960 [FST10]).

Since log r4 ≈ log q4 for MNT4 curves, we only need to ensure that q4 has at least 240 bits.9

• Towering friendliness. We restrict our focus to moduli q4 and q6 that are towering friendly (i.e., congruent
to 1 modulo 6) [BS10]; this improves the efficiency of arithmetic in F4

q4 and F6
q6 (and their subfields).

9Alas, since E4 has a low embedding degree, the ECDLP in E(Fq4) and DLP in F4
q4 are “unbalanced”: the former provides 120

bits of security, while the latter only 80. Moreover, the same is true for E6: the ECDLP in E(Fq6) provides 120 bits of security,
while the DLP in F6

q4 only 80. Finding PCD-friendly cycles without these inefficiencies is an open problem (see Section 8).

11

• 2-adicity. As discussed in [BCGTV13a, BCTV14], if a pairing-based preprocessing zk-SNARK (G,P, V)
is instantiated with an elliptic curve E/Fq of prime order r (or with #E(Fq) divisible by a prime r), it
is important, for efficiency reasons, that r − 1 is divisible by a large power of 2, i.e., ν2(r − 1) is large.
(Recall that ν2(n), the 2-adic order of n, is the largest power of 2 dividing n.) Concretely, if G is invoked
on an Fr-arithmetic circuit C, it is important that ν2(r − 1) ≥ dlog |C|e. We call ν2(r − 1) the 2-adic
order of E, or the 2-adicity of E. (See Appendix C.2 for more details.)

So let `4 and `6 be the target values for ν2(r4 − 1) and ν2(r6 − 1). One can verify that, for any MNT-
based PCD-friendly 2-cycle (E4, E6), it holds that ν2(r4 − 1) = 2 · ν2(r6 − 1); in other words, E4

is always “twice as 2-adic” as E6. Thus, to achieve the target 2-adic orders, it suffices to ensure that
ν2(r4 − 1) ≥ max{`4, 2`6} (where, as before, r4 := q4 + 1− t4). As we shall see (in Section 5), in this
paper it will suffice to take ν2(r4 − 1) ≥ 34.

Of the above properties, the most restrictive one is 2-adicity, because it requires seeing enough curves until,
“by sheer statistics”, one finds (q4, t4) with a high-enough value for ν2(r4− 1). Collecting enough samples is
costly because, as discriminant size increases, the density of MNT curves decreases: empirically, one finds
that the number MNT curves with discriminant D ≤ N is (approximately) less than

√
N [KT08].

An extensive computation for a suitable cycle. Overall, finding and constructing a suitable cycle required
a substantial computational effort.
• Cycle discovery. In order to find suitable parameters for a cycle, we explored a large space: all discriminants

up to 1.1 · 1015, requiring about 610,000 core-hours on a large cluster of modern x86 servers. Our search
algorithm is a modification of [KT08, Algorithm 3]. Among all the 2-cycles that we found, we selected
parameters (q4, t4) and (q6, t6) for a 2-cycle (E4, E6) of curves such that: (i) q4, q6 each have 298 bits;
(ii) q4, q6 are towering friendly; and (iii) ν2(r4 − 1) = 34 and ν2(r6 − 1) = 17. The bit length of q4, q6 is
higher than the lower bound of 240; we entail this cost so to pick a rare cycle with high 2-adicity, which
helps the zk-SNARK’s efficiency more than the slowdown incurred by the higher bit length.
• Cycle construction. Both E4 and E6 have discriminant 614144978799019, whose size requires state-of-

the-art techniques in the CM method [Sut11, ES10, Sut12] in order to explicitly construct the curves.10

Below, we report the parameters and equations for the 2-cycle (E4, E6) that we selected.

E4/Fq4 : y2 = x3 +A4x+B4 where
A4 = 2,

B4 = 423894536526684178289416011533888240029318103673896002803341544124054745019340795360841685,

q4 = 475922286169261325753349249653048451545124879242694725395555128576210262817955800483758081.

E6/Fq6 : y2 = x3 +A6x+B6 where
A6 = 11,

B6 = 106700080510851735677967319632585352256454251201367587890185989362936000262606668469523074,

q6 = 475922286169261325753349249653048451545124878552823515553267735739164647307408490559963137.

Security. One may wonder if curves lying on PCD-friendly cycles are weak (e.g., in terms of DL hardness).
Yet, MNT4 and MNT6 curves of suitable parameters are widely believed to be secure, and they all fall in
PCD-friendly 2-cycles. The additional requirement of high 2-adicity is not known to cause weakness either.

3.3 A matched pair of preprocessing zk-SNARKs

Based on the PCD-friendly cycle (E4, E6), we designed and constructed two preprocessing zk-SNARKs for
arithmetic circuit satisfiability: (G4, P4, V4) based on the curve E4, and (G6, P6, V6) on E6. The software

10The authors are grateful to Andrew V. Sutherland for generous help in running the CM method on such a large discriminant.

12

implementation follows [BCTV14], the fastest preprocessing zk-SNARK implementation for circuits at the
time of writing. We thus adapt the techniques in [BCTV14] to our algebraic setting, which consists of the
two MNT curves E4 and E6, and achieve efficient implementations of (G4, P4, V4) and (G6, P6, V6).

The implementation itself entails many algorithmic and engineering details, and we refer the reader
to [BCTV14] for a discussion of these techniques. We only provide a high-level efficiency comparison
between the preprocessing zk-SNARK of [BCTV14] based on Edwards curves (also at 80-bit security), and
our implementations of (G4, P4, V4) and (G6, P6, V6); see Figure 1. Our implementation is slower, because
of two main reasons: (i) MNT curves do not enjoy advantageous properties that Edwards curves do; and
(ii) the modulus sizes are larger (298 bits in our case vs. 180 bits in [BCTV14]). On the other hand, the fact
that MNT curves lie on a PCD-friendly 2-cycle is crucial for the PCD construction described next.

80 bits of security
(GEd, PEd, VEd) (G4, P4, V4) (G6, P6, V6)

Key generator 12.4 s 33.9 s 48.8 s
Prover 13.0 s 36.5 s 49.4 s
Verifier 4.4 ms 9.1 ms 16.7 ms
Proof size 230 B 337 B 374 B

Figure 1: Comparison of (GEd, PEd, VEd), (G4, P4, V4), and (G6, P6, V6), on a circuit C with 217 gates and inputs
of 10 field elements. The size of C was chosen so that the 2-adicity of each zk-SNARK’s curve is high enough (i.e.,
ν2(ri − 1) ≥ 17 for i = Ed, 4, 6). The experiment was conducted on our benchmarking machine (described in
Section 7), running in single-thread mode. (The reported times are the average of 10 experiments, with standard deviation
less than 1%.)

3.4 A higher-security 2-cycle

We also found and constructed a 2-cycle with higher security, by (significantly) increasing the modulus. This
2-cycle can be used in place of the previous 2-cycle, albeit with moderate performance overheads.

E4/Fq4 : y2 = x3 +A4x+B4 where
A4 = 2,

B4 = 0x01373684A8C9DCAE7A016AC5D7748D3313CD8E39051C596560835DF0C9E50A5B59B882A92C78

DC537E51A16703EC9855C77FC3D8BB21C8D68BB8CFB9DB4B8C8FBA773111C36C8B1B4E8F1ECE

940EF9EAAD265458E06372009C9A0491678EF4,

q4 = 0x01C4C62D92C41110229022EEE2CDADB7F997505B8FAFED5EB7E8F96C97D87307FDB925E8A

0ED8D99D124D9A15AF79DB117E776F218059DB80F0DA5CB537E38685ACCE9767254A4638810719AC4

25F0E39D54522CDD119F5E9063DE245E8001.

E6/Fq6 : y2 = x3 +A6x+B6 where
A6 = 11,

B6 = 0x7DA285E70863C79D56446237CE2E1468D14AE9BB64B2BB01B10E60A5D5DFE0A25714B798599

3F62F03B22A9A3C737A1A1E0FCF2C43D7BF847957C34CCA1E3585F9A80A95F401867C4E80F4747FD

E5ABA7505BA6FCF2485540B13DFC8468A,

q6 = 0x01C4C62D92C41110229022EEE2CDADB7F997505B8FAFED5EB7E8F96C97D87307FDB925E8A

0ED8D99D124D9A15AF79DB26C5C28C859A99B3EEBCA9429212636B9DFF97634993AA4D6C381BC3F

0057974EA099170FA13A4FD90776E240000001.

13

4 Proof-carrying data from PCD-friendly zk-SNARKs

In Section 3 we formulated, and instantiated, PCD-friendly cycles of elliptic curves (see Definition 3.1); this
notion was motivated by efficiency considerations arising when recursively composing zk-SNARK proofs.
Roughly, given two zk-SNARKs based on elliptic curves forming a PCD-friendly 2-cycle, one can alternate
between the two proof systems, and the 2-cycle property ensures that fields “match up” at each recursive
verification, allowing for an efficient circuit implementation of the verifier of both proof systems.

The discussion so far, however, is only a sketch of the approach and omits key technical details. We now
spell out these by describing how to construct a PCD system, given the two zk-SNARKs. So let (Eα, Eβ)
be a PCD-friendly 2-cycle of elliptic curves, and let (Gα, Pα, Vα) and (Gβ, Pβ, Vβ) be two preprocessing
zk-SNARKs respectively instantiated with the two elliptic curves Eα/Fqα and Eβ/Fqβ . Note that:
• (Gα, Pα, Vα) works for Frα-arithmetic circuit satisfiability, while Vα’s computations are over Fqα ; and
• (Gβ, Pβ, Vβ) works for Frβ -arithmetic circuit satisfiability, while Vβ’s computations are over Fqβ .
Due to the 2-cycle property, Frα equals Fqβ , and Frβ equals Fqα . Our goal is to use (Gα, Pα, Vα) and (Gβ,
Pβ, Vβ), along with other ingredients, to construct a PCD system (G,P,V).

Remark 4.1 (longer cycles). As we have PCD-friendly cycles of length ` = 2, the PCD construction
described in this section (including our code) is specialized to this case. One can extend the construction to
work with (preprocessing zk-SNARKs based on) PCD-friendly cycles of length ` > 2.

4.1 Intuition

We begin by giving the intuition behind our construction of the PCD generator G, prover P, and verifier V.
For simplicity, for now, we focus on the case where each node receives a single input message (i.e., the
special case of “message chains” having arity s = 1).

Starting point. A natural first attempt is to construct two arithmetic circuits, Cpcd,α over Frα and Cpcd,β

over Frβ , that, for a given compliance predicate Π, work as follows.

Cpcd,α(x, a)
1. Parse the input x as (vkα, vkβ , z).
2. Parse the witness a as (zloc, zin, πin).
3. If πin = 0 (base case), set bbase := 1.
4. If πin 6= 0 (not base case), set bbase := 0 and

check that Vβ
(
vkβ , (vkα, vkβ , zin), πin

)
accepts.

5. Check that Π(z, zloc, zin, bbase) = 0.

Cpcd,β(x, a)
1. Parse the input x as (vkα, vkβ , z).
2. Parse the witness a as (zloc, zin, πin).
3. If πin = 0 (base case), set bbase := 1.
4. If πin 6= 0 (not base case), set bbase := 0 and

check that Vα
(
vkα, (vkα, vkβ , zin), πin

)
accepts.

5. Check that Π(z, zloc, zin, bbase) = 0.

In other words, Cpcd,α checks Π-compliance at a node and also verifies a previous proof, relative to Vβ ; while
Cpcd,β does the same, but verifies a previous proof relative to Vα. Also note that the input x, but not the
witness a (over which we have no control), specifies the choice of verification keys.

More precisely, on input Π, the PCD generator G would work as follows: (i) construct Cpcd,α and
Cpcd,β from Π; (ii) sample two key pairs, (pkα, vkα) ← G4(Cpcd,α) and (pkβ, vkβ) ← G6(Cpcd,β); and
(iii) output pk := (pkα, pkβ, vkα, vkβ) and vk := (vkα, vkβ). On input proving key pk, outgoing message z,
local data zloc, and incoming message zin, the PCD prover P would invoke Pα(pkα, x, a) if πin is relative
to Vβ or Pβ(pkβ, x, a) if πin is relative to Vα, where x := (vkα, vkβ, z) and a := (zloc, zin, πin). Finally, on
input verification key vk, message z, and proof π, the PCD verifier V would either invoke Vα(vkα, x, π) or
Vβ(vkβ, x, π), where x := (vkα, vkβ, z).

However, the above simple sketch suffers from two main problems, which we now describe.

Problem #1. The compliance predicate Π is an arithmetic circuit. However, should Π be defined over Frα
or Frβ? If Π is defined over Frα , then the Frβ -arithmetic circuit Cpcd,β will be very inefficient, because it has
to evaluate Π over the “wrong” field; conversely, if Π is defined over Frβ , then Cpcd,α will be very inefficient.

14

Problem #2. In known preprocessing zk-SNARK constructions, including the one underlying (Gα, Pα, Vα)
and (Gβ, Pβ, Vβ), a verification key has length `(n) > n, where n is the size of the input to the circuit with
respect to which the key was created. Thus, it is not possible to obtain either vkα or vkβ that works for inputs
of the form x = (vkα, vkβ, z).

Our solution (at high level). To address the first problem, we simply “pick one side”: only one of Cpcd,α

and Cpcd,β evaluates Π, while the other circuit merely enables the PCD prover to translate a proof relative to
one zk-SNARK verifier to one relative to the other zk-SNARK verifier. Arbitrarily, we pick Cpcd,α to be the
one that evaluates Π; in particular, Π will be an Frα-arithmetic circuit.11 (The choice of Cpcd,α is without
loss of generality, since we can always relabel: if (Eα, Eβ) is PCD-friendly 2-cycle, so is (Eβ, Eα).)

To address the second problem, the ideal solution is to simply hardcode vkβ in Cpcd,α and vkα in Cpcd,β

(and let an input x consist only of a message z). However, this is not possible: vkβ depends on Cpcd,β , while
vkα depends on Cpcd,α (i.e., there is a circular dependency). We thus proceed as follows. We hardcode vkα in
Cpcd,β . Then, for vkβ , we rely on collision-resistant hashing. Namely, inputs x have the form (χβ, z) where,
allegedly, χβ is the hash of vkβ . We modify Cpcd,α to check that this holds: Cpcd,α’s witness is extended
to (allegedly) contain vkβ and then Cpcd,α checks that Hα(vkβ) = χβ , where Hα : {0, 1}mH,α → FdH,αrα is a
suitable collision-resistant hash function.

The above modifications to Cpcd,α and Cpcd,β yield the following construction.

Cpcd,α(x, a)
1. Parse the input x as (χβ , z).
2. Parse the witness a as (vkβ , zloc, zin, πin).
3. Check that Hα(vkβ) = χβ .
4. If πin = 0 (base case), set bbase := 1.
5. If πin 6= 0 (not base case), set bbase := 0 and

check that Vβ
(
vkβ , (χβ , zin), πin

)
accepts.

6. Check that Π(z, zloc, zin, bbase) = 0.

Cpcd,β(x, a)
1. Parse the input x as (χβ , z).
2. Parse the witness a as (πα).
3. Check that Vα

(
vkα, (χβ , z), πα

)
accepts.

Unfortunately, while the above two fixes make Cpcd,α and Cpcd,β well-defined, the use of hashing makes
Cpcd,α large, as we now explain. The verification key vkβ consists of various points on the elliptic curve
Eβ/Fqβ (or a twist of it). Recalling that Fqβ equals Frα (the field of definition of Cpcd,α), we represent vkβ
as a list of elements of Fqβ , because the (circuit implementing the) verifier Vβ uses vkβ for computations
in Fqβ . Unfortunately, Hα only accepts binary strings as input, and the translation from vkβ to its binary
representation incurs a log qβ blow up — a nontrivial cost. We do not know how to eliminate this cost.12

Thus, instead, we further modify Cpcd,α and Cpcd,β to shorten vkβ . Indeed, if Cpcd,β accepts inputs of n
elements in Frβ , then vkβ consists of `vk,β(n) elements in Fqβ ; hence, we seek to reduce n. To do so, instead
of working with messages of the form x = (χβ, z), we work with messages of the form x = (χβ), by also
hashing z along with vkβ (both of which are now supplied in the witness), as follows.

Cpcd,α(x, a)
1. Parse the input x as (χβ).
2. Parse the witness a as (vkβ , z, zloc, zin, πin).
3. Check that Hα(vkβ‖z) = χβ .
4. If πin = 0 (base case), set bbase := 1.
5. If πin 6= 0 (not base case), set bbase := 0 and

check that Vβ
(
vkβ , Hα(vkβ‖zin), πin

)
accepts.

6. Check that Π(z, zloc, zin, bbase) = 0.

Cpcd,β(x, a)
1. Parse the input x as (χβ).
2. Parse the witness a as a zk-SNARK proof πα.
3. Check that Vα(vkα, χβ , πα) accepts.

11Alternatively, we could restrict Π to be a boolean circuit, so that it can be easily evaluated byCpcd,α andCpcd,β . But this foregoes
Π’s ability to conduct field operations in large prime fields. Thus, it is more efficient to “give up” on Cpcd,β , and only let Cpcd,α

evaluate Π, and retain the expressive power of arithmetic circuits. (Other alternatives are possible, but we do not explore them.)
12As explained in Section 5.2, we are not aware of a collision-resistant hash function Hα, which can be easily verified over Frα ,

that accepts inputs represented as strings of elements in Frα . So, we are “stuck” with binary inputs.

15

Further details. The above discussion omits various technical details and optimizations.
For instance, thus far we have ignored the fact that, while Cpcd,α expects inputs over Frα , Cpcd,β expects

inputs over Frβ . Since x = χβ lies in FdH,αrα (as it is the output of Hα), we cannot use the same representation
of it for both Cpcd,α and Cpcd,β; instead, we need two representations: xα ∈ Fnαrα for Cpcd,α, and xβ ∈ Fnβrβ
for Cpcd,β . Naturally, for the first, we can set nα := dH,α, and let xα := χβ . For the second, merely letting
xβ be the list of nα · dlog rαe bits in χβ is not efficient: it would cause vkβ to have length `vk,β(nα · dlog rαe).
Instead, we let xβ store these bits into as few elements of Frβ as possible; specifically, nβ := dnα·dlog rαeblog rβc e of
them. So let:
• Sα→β : Fnαrα → Fnβ ·dlog rβerα denote the function that maps xα to (the binary representation of) xβ; and
• Sα←β : Fnβrβ → Fnα·dlog rαerβ denote the function that maps xβ back to (the binary representation of) xα.
The above implies that we need to further modify Cpcd,α and Cpcd,β , and include explicit subcircuits CS,α→β
and CS,α←β to carry out these “type conversions”; both of these circuits are simple to construct, and have
size |CS,α→β| = |CS,α←β| = nα · dlog rαe.

Moreover, we leverage precomputation techniques [BCTV14]. A zk-SNARK verifier V can be viewed
as two functions: an “offline” function V offline that, given the verification key vk, computes a processed
verification key pvk; and an “online” function V online that, given pvk, an input x, and proof π, computes the
decision bit. (I.e., V (vk, x, π) := V online

(
V offline(vk), x, π).) Precomputation offers a tradeoff: while V online

is cheaper to compute than V , pvk is larger than vk (in each case, the difference is an additive constant). In
our setting, it turns out that it pays off to use precomputation techniques only in Cpcd,β but not in Cpcd,α.

We address all the details in the next subsection, where we give the construction of the PCD system.

4.2 Construction

We now describe in more detail our construction of the PCD generator G, prover P, and verifier V. Throughout,
we fix a message size nmsg ∈ N, local-data size nloc ∈ N, and arity s ∈ N. The construction will then work
for Frα-arithmetic compliance predicates Π: Fnmsg

rα × Fnloc
rα × Fs·nmsg

rα × Frα → Flrα (i.e., for message size
nmsg, local-data size nloc, arity s, and some output size l ∈ N). In terms of ingredients, we make use of the
following arithmetic circuits:
• An Frα-arithmetic circuit CH,α, implementing a collision-resistant function Hα : {0, 1}mH,α → FdH,αrα

such that mH,α ≥
(
`vk,β(nβ) + nmsg

)
· dlog rαe, where nα := dH,α and nβ := dnα·dlog rαeblog rβc e.

• An Frα-arithmetic circuit CS,α→β , implementing Sα→β : Fnαrα → Fnβ ·dlog rβerα .
• An Frβ -arithmetic circuit CS,α←β , implementing Sα←β : Fnβrβ → Fnα·dlog rαerβ .
• An Frβ -arithmetic circuitConline

V,α , implementing V online
α for inputs of nα elements in Frα ; an input xα ∈ Fnαrα

is given to Conline
V,α as a string of nα · dlog rαe elements in Frβ , each carrying a bit of xα.

• An Frα-arithmetic circuit CV,β , implementing Vβ for inputs of nβ elements in Frβ ; an input xβ ∈ Fnβrβ is
given to CV,β as a string of nβ · dlog rβe elements in Frα , each carrying a bit of xβ .

For now we take the above circuits as given; later, in Section 5 we discuss our concrete instantiations of them.
Also, we generically denote by bitsα a function that, given an input y in F`rα (for some `), outputs y’s binary
representation; the corresponding Frα-arithmetic circuit is denoted Cbits,α, and has ` · dlog rαe gates.13

For reference, pseudocode for the triple (G,P,V) is given in Figure 2.

13More precisely, for each Frα -element yi in the vector y, bitsα outputs bits b1, . . . , bdlog rαe such that
∑dlog rαe−1
j=0 bj2

j = yi,
where arithmetic is conducted over Frα . Due to wrap around, some elements in Frα have two such representations; if so, bitsα outputs
the lexicographically-first one. None the less, we construct Cbits,α to only check for either of these two representations, because:
(i) discriminating between representations costs an additional ` · dlog rαe gates; and (ii) doing so does not affect completeness or
soundness of our construction.

16

The PCD generator. The PCD generator G takes as input an Frα-arithmetic compliance predicate Π,
and outputs a key pair (pk, vk) for proving/verifying Π-compliance. The PCD generator works as follows:
(i) it uses CH,α, CS,α→β, CV,β,Π to construct the circuit Cpcd,α; (ii) it samples a key pair, (pkα, vkα) ←
G4(Cpcd,α); (iii) it uses vkα, CS,α←β, Conline

V,α to construct the other circuit Cpcd,β ; (iv) it samples another key
pair, (pkβ, vkβ)← G6(Cpcd,β); and (v) it outputs pk := (pkα, pkβ, vkα, vkβ) and vk := (vkα, vkβ).

We now describe Cpcd,α and Cpcd,β . The circuit Cpcd,β acts as a “proof converter”: it takes an input
xβ ∈ Fnβrβ and a witness aβ ∈ Fhβrβ , parses aβ as a zk-SNARK proof πα for Vα, and simply checks that
Conline
V,α

(
vkα, CS,α←β(xβ), πα

)
= 1. (The verification key vkα is hardcoded in Cpcd,β .)

In contrast, the circuit Cpcd,α verifies Π-compliance: it takes an input xα ∈ Fnαrα and a witness aα ∈ Fhαrα ,
parses aα as (vkβ, z, zloc, ~zin, bbase, ~πin, bres), and verifies that xα = CH,α(Cbits,α(vkβ)‖Cbits,α(z)) and
that Π(z, zloc, ~zin, bbase) = 0. Moreover, if bbase = 0 (not the base case), Cpcd,α also recursively verifies
Π-compliance of previous messages: for each corresponding pair (zin, πin) in (~zin, ~πin), it verifies that
CV,β

(
vkβ, xin,β, πin

)
= 1 where xin,β = CS,α→β(CH,α(Cbits,α(vkβ)‖Cbits,α(zin))).

See Figure 2 for details. Overall, the two circuits have the following sizes:

|Cpcd,α| ≈
(
`vk,β(nβ) + (1 + s)nmsg

)
· dlog rαe+ |CH,α|+ |Π|+ s ·

(
|CH,α|+ |CS,α→β |+ |CV,β |

)
,

|Cpcd,β | ≈ |CS,α←β |+ |Conline

V,α | .
(1)

The PCD prover. The PCD prover P takes as input a proving key pk, outgoing message z, local data zloc,
and incoming messages ~zin; when not in the base case, it also takes as input proofs ~πin, each attesting that a
message in ~zin is Π-compliant. The PCD prover outputs a proof π attesting to the fact that z is Π-compliant.

At high level, the PCD prover performs not one, but two, steps of recursive composition, “going around
the PCD-friendly 2-cycle”. The first step is relative to Cpcd,α and checks Π-compliance; the second step
is relative to Cpcd,β and merely converts the proof produced by the first step to the other verifier. More
precisely, the PCD prover constructs xα := Hα(bitsα(vkβ)‖bitsα(z)) ∈ Fnαrα and then uses Pα to produce
a proof πα attesting that xα ∈ LCpcd,α

. In the base case, Cpcd,α only verifies that Π(z, zloc, ~zin, 1) = 0; but,
when previous proofs ~πin are supplied, Cpcd,α verifies instead that Π(z, zloc, ~zin, 0) = 0 and, for each pair
(zin, πin), that Vβ

(
vkβ, xβ,in, πin

)
= 1 where xβ,in := Sα→β(Hα(bitsα(vkβ)‖bitsα(zin))) ∈ Fnβrβ . Next, the

PCD prover uses Pβ to convert πα into a proof π attesting that xβ ∈ LCpcd,β
, where xβ := Sα→β(xα) ∈ Fnβrβ ;

this is merely a translation because Cpcd,β only verifies that πα is valid. The proof π is P’s output.

The PCD verifier. The PCD verifier V takes as input a verification key vk, message z, and proof π. Proofs
relative to (Gα, Pα, Vα) are never “seen” outside the PCD prover, because the prover converts them to proofs
relative to (Gβ, Pβ, Vβ). Hence, the proof π is relative to (Gβ, Pβ, Vβ), and the PCD verifier checks that z is
Π-compliant by checking that Vβ(vkβ, xβ, π) = 1, where xβ := Sα→β(Hα(bitsα(vkβ)‖bitsα(z))) ∈ Fnβrβ .

4.3 Security

The intuition for the security of (G,P,V) is straightforward. Suppose that a malicious polynomial-size prover
P̃ outputs a message z and proof π that are accepted by the PCD verifier V. Our goal is to deduce that z
is Π-compliant. By construction of V, we deduce that Sα→β(Hα(bitsα(vkβ)‖bitsα(z))) ∈ LCpcd,β

. In turn,
by construction of Cpcd,β , we deduce that Hα(bitsα(vkβ)‖bitsα(z)) ∈ LCpcd,α

. In turn, by construction of
Cpcd,α, we deduce that there is local data zloc and previous messages ~zin such that one of the following holds:
(i) Π(z, zloc, ~zin, 1) = 0, which is the base case; or (ii) Π(z, zloc, ~zin, 0) = 0 and, for each incoming message
zin, Sα→β(Hα(bitsα(vkβ)‖bitsα(zin))) ∈ LCpcd,β

(and thus, by induction, that each zin is Π-compliant). In
either case, we conclude that z is Π-compliant.

The above argument can be formalized by using the proof-of-knowledge property of zk-SNARKs. Yet, as
explained in Section 2.3, a formal argument lies beyond the scope of this paper, which instead focuses on
practical aspects of PCD systems; see [BCCT13] for more details.

17

MakePCDCircuitA(CH,α, CS,α→β , CV,β ,Π)

Output the Frα -arithmetic circuit Cpcd,α that, given input
xα ∈ Fnαrα and witness aα ∈ Fhαrα , works as follows:
1. Parse aα as (vkβ , z, zloc, ~zin, bbase, ~πin, bres).
2. Compute σvk,β := Cbits,α(vkβ).
3. Check that xα = CH,α(σvk,β‖Cbits,α(z)).
4. Check that Π(z, zloc, ~zin, bbase) = 0.
5. For each (zin, πin) ∈ (~zin, ~πin):

(a) Compute xin,α := CH,α(σvk,β‖Cbits,α(zin)) ∈ Fnαrα .

(b) Compute xin,β := CS,α→β(xin,α) ∈ Fnβ ·dlog rβe
rα .

(c) Check that CV,β
(
vkβ , xin,β , πin

)
= bres.

6. Check that bbase, bres ∈ {0, 1} and (1− bbase)(1− bres) = 0.

MakePCDCircuitB(pvkα, CS,α←β , C
online
V,α)

Output the Frβ -arithmetic circuit Cpcd,β that, given input

xβ ∈ Fnβrβ and witness aβ ∈ Fhβrβ , works as follows:
1. Parse aβ as a zk-SNARK proof πα.
2. Compute xα := CS,α←β(xβ) ∈ Fnα·dlog rαe

rβ .
3. Check that Conline

V,α

(
pvkα, xα, πα

)
= 1.

PARAMETERS. Message size nmsg ∈ N, local-data size nloc ∈ N, and arity s ∈ N.

PCD generator G
• INPUTS: a compliance predicate Π: Fnmsg

rα × Fnloc
rα × Fs·nmsg

rα × Frα → Flrα (for some l ∈ N)
• OUTPUTS: proving key pk and verification key vk

1. Set nα := dH,α and nβ := dnα·dlog rαe
blog rβc

e.

2. Construct CH,α, the Frα -arithmetic circuit implementing Hα : {0, 1}mH,α → FdH,αrα .
3. Construct CS,α→β , the Frα -arithmetic circuit implementing Sα→β : Fnαrα → Fnβ ·dlog rβe

rα .
4. Construct CS,α←β , the Frβ -arithmetic circuit implementing Sα←β : Fnβrβ → Fnα·dlog rαe

rβ .
5. Construct CV,β , the Frα -arithmetic circuit implementing Vβ for inputs of nβ elements in Frβ .
6. Construct Conline

V,α , the Frβ -arithmetic circuit implementing V online
α for inputs of nα elements in Frα .

7. Compute Cpcd,α := MakePCDCircuitA(CH,α, CS,α→β , CV,β ,Π).
8. Compute (pkα, vkα) := Gα(Cpcd,α).
9. Compute pvkα := V offline

α (vkα).
10. Compute Cpcd,β := MakePCDCircuitB(pvkα, CS,α←β , C

online
V,α).

11. Compute (pkβ , vkβ) := Gβ(Cpcd,β).
12. Set pk := (pkα, pkβ , vkα, vkβ) and vk := (vkα, vkβ).
13. Output (pk, vk).

PCD prover P
• INPUTS:

– proving key pk
– outgoing message z ∈ Fnmsg

rα

– local data zloc ∈ Fnloc
rα

– incoming messages ~zin ∈ Fs·nmsg
rα

– previous proofs ~πin (~πin = ⊥ in the base case, as there is no previous proofs)
• OUTPUTS: proof π for the outgoing message z

1. Compute xα := Hα(bitsα(vkβ)‖bitsα(z)) ∈ Fnαrα and xβ := Sα→β(xα) ∈ Fnβ ·dlog rβe
rα , and parse xβ as lying in Fnβrβ .

2. If base case (i.e., ~πin = ⊥), then set aα := (vkβ , z, zloc, ~zin, 1, ∗, ∗), where ∗ is any assignment (of the correct length).
3. If not base case (i.e., ~πin 6= ⊥), then set aα := (vkβ , z, zloc, ~zin, 0, ~πin, 1).
4. Compute πα := Pα(pkα, xα, aα).
5. Set aβ := (πα).
6. Compute π := Pβ(pkβ , xβ , aβ).
7. Output π.

PCD verifier V
• INPUTS: verification key vk, message z ∈ Fnmsg

rα , and proof π
• OUTPUTS: decision bit

1. Compute xα := Hα(bitsα(vkβ)‖bitsα(z)) ∈ Fnαrα and xβ := Sα→β(xα) ∈ Fnβ ·dlog rβe
rα , and parse xβ as lying in Fnβrβ .

2. Compute b := Vβ(vkβ , xβ , π) and output b.

Figure 2: Construction of a PCD system from two PCD-friendly preprocessing zk-SNARKs, along with other
arithmetic circuits.

18

5 Constructions of arithmetic circuits

In Section 4 we gave a construction of a PCD system (G,P,V) in terms of two preprocessing zk-SNARKs,
based on a PCD-friendly 2-cycle (Eα, Eβ), and various arithmetic circuits. We now discuss concrete
implementations of these arithmetic circuits, which determine the sizes of Cpcd,α and Cpcd,β (see Equation 1).

In our code implementation, (Eα, Eβ) equals (E4, E6), a specific 2-cycle based on MNT curves of
embedding degree 4 and 6, selected to have high 2-adicity (see Section 3.2). Thus, in the text below, “α = 4
and β = 6”.14 We obtain the following efficiency for the two circuits Cpcd,4 and Cpcd,6.

Lemma 5.1 (informal). Let Π: Fnmsg
r4 × Fnloc

r4 × Fs·nmsg
r4 × Fr4 → Flr4 be an Fr4-arithmetic compliance

predicate for message size nmsg, local-data size nloc, arity s (and some output size l). The Fr4-arithmetic
circuit Cpcd,4 and the Fr6-arithmetic circuit Cpcd,6 have the following number of gates.

Gate count for Cpcd,4

booleanity checks 11920 + (1 + s) · nmsg · 298
(1 + s) copies of CH,6 (1 + s)× 1
s copies of CS,4←6 s× 298
s copies of CV,6 for n6 = 2 s× 89113
Π |Π|
misc. 4

Total |Π|+ s · 89412
+(1 + s) · nmsg · 298 + 11925

Gate count for Cpcd,6

CS,4←6 298
Conline
V,4 for n4 = 1 31729

Total 32027

Next, we discuss the various subcircuits: for the zk-SNARK verifiers and for collision-resistant hashing.

Remark 5.2. We selected the PCD-friendly 2-cycle (E4, E6) to have high 2-adicity: it has ν2(r4 − 1) = 34
and ν2(r6 − 1) = 17. These values are not accidental, but were chosen so that the 2-cycle (E4, E6) suffices
for “essentially all practical uses” of our PCD system. Specifically, recall that we would like, for efficiency
reasons, that (i) ν2(r4 − 1) ≥ dlog |Cpcd,4|e and (ii) ν2(r6 − 1) ≥ dlog |Cpcd,6|e (see Section 3.2 and
Appendix C.2). First, since dlog |Cpcd,6|e = 15, Condition (ii) holds always. As for Condition (i), it depends
on Π; however, since ν2(r4 − 1) = 34 is so large, it is not a limitation for practically-feasible choices of Π.15

5.1 Arithmetic circuits for zk-SNARK verifiers

We seek arithmetic circuits for the two zk-SNARK verifiers: an Fr6-arithmetic circuit CV,4 implementing V4
and an Fr4-arithmetic circuit CV,6 implementing V6. Note the field characteristics: V4’s arithmetic operations
are over Fq4 (which is equal to Fr6) and V6’s operations are over Fq6 (which is equal to Fr4).

We design and construct CV,4 and CV,6, each consisting of two subcircuits for the “offline” and “online”
parts of the verifier (see Section 4.1), and achieve the following efficiency:

Lemma 5.3 (informal). Let n, l ∈ N.

• There is an Fq4-arithmetic circuit CV,4 with size

(10 · l − 4) · n+ 43,767

that implements V4 for all inputs x ∈ Fnr4 such that each xi has at most l bits. (Naturally, l ≤ dlog r4e.)
Moreover, CV,4 consists of two subcircuits, Coffline

V,4 and Conline
V,4 , implementing V offline

4 and V online
4 , with sizes

12270 and (10 · l − 4) · n+ 31,497 .
14The choice (Eα, Eβ) = (E4, E6), rather than (Eα, Eβ) = (E6, E4), is intentional. We expect Cpcd,α to be larger than Cpcd,β

(due to a larger number of checks), so that Eα should be the curve with the higher 2-adicity. In this case, E4 is twice as 2-adic as E6.
15More precisely, if we take |Π|+ s · 89412 to be the leading terms in |Cpcd,4| (which we expect to be the case), we obtain that

log(|Π|+ s · 89412) ≤ 1 + max{log |Π|, 17 + log s}, which is likely to be well below 34.

19

• There is an Fq6-arithmetic circuit CV,6 with size

(10 · l − 4) · n+ 83,181

that implements V6 for all inputs x ∈ Fnr6 such that each xi has at most l bits. (Naturally, l ≤ dlog r6e.)
Moreover, CV,6 consists of two subcircuits, Coffline

V,6 and Conline
V,6 , implementing V offline

6 and V online
6 , with sizes

23325 and (10 · l − 4) · n+ 59,856 .

(In, Cpcd,4 and Cpcd,6, we set (n, l) = (2, blog r6c) and (n, l) = (1, dlog r4e) for CV,6 and CV,4, respectively.
Also, in Lemma 5.1, the reported size for Conline

V,4 is even smaller than (10 · dlog r4e − 4) · 1 + 31,497 because
we hardcode the processed verification key pvk4 into Conline

V,4 , which provides additional savings.)

The zk-SNARK verifier protocol. The protocol of the zk-SNARK verifier V (recalled in Appendix C.3)
consists of two parts: (a) use the verification key vk and input ~x ∈ Fnr to compute an element vk~x ∈ G1; and
(b) use the verification key vk, element vk~x, and proof π, to compute 12 pairings for the required checks.

Prior techniques for fast program execution of V . The first part of V requiresO(n) scalar multiplications
in G1, and can be efficiently performed via a suitable choice of variable-base multi-scalar multiplication
techniques. The second part dominates V ’s efficiency for small n, and an efficient implementation is
algorithmically more complex. Ben-Sasson at al. [BCTV14] address this second part by (i) obtaining
optimized implementations of sub-components of a pairing, and then (ii) combining these in a way that is
tailored to V ’s protocol. In short, after breaking a pairing into its two main parts, the Miller loop and the
final exponentiation, and implementing both (using optimal pairings [Ver10] and other methods [SBCDPK09,
GS10, KKC13]), they apply precomputation techniques to the verification key [GHS02, BLS03, Sco07] and
share subcomputations of the Miller loop and final exponentiations across V ’s different pairing evaluations
[Sol03, Sco05, GS06, Sco07].

Our techniques for fast circuit verification of V . The high-level structure of our construction of CV,4 and
CV,6 mirrors that of our software implementation of V4 and V6, itself based on techniques from [BCTV14].
Namely, both CV,4 and CV,6 also break an (optimal) pairing into a Miller loop and final exponentiation, and
combine these components in a way that is tailored to the verifier protocol.

However, our construction differs in how these two components are implemented, especially with regard
to the Miller loop. This is because, in our setting, two main operations come “for free”: (a) field operations
over the circuit’s field, and (b) nondeterministic guessing (i.e., auxiliary advice). In particular, field divisions
cost the same as field multiplications (since we can guess the answer and check it).

Traditional software implemantions go to great lengths to avoid expensive field divisions (e.g., by use of
projective coordinates instead of affine ones, and in “addition” and “doubling” steps in the Miller loop). By
contrast, both CV,4 and CV,6 perform the Miller loop by using affine coordinates for both curve arithmetic
and divisor evaluations [LMN10], which can be done very efficiently by nondeterministic arithmetic circuits.

Moreover, sharing Miller loop subcomputation traditionally only applies to products of pairings, of which
there are only two in the verifier. Instead, in our setting, such techniques extend to ratios of products of
pairings, and can thus be applied to every pairing check in the verifier, to further improve efficiency.

Overall, in our software implementation, the number of field multiplications used to compute the checks
of V4, V6 is 3.8×, 3.2× more than the number of those used by CV,4, CV,6 to verify them, respectively.

5.2 Arithmetic circuits for collision-resistant hashing

We also require arithmetic circuits for hashing: an Fr4-arithmetic circuitCH,4 for a collision-resistant function
H4 : {0, 1}mH,4 → FdH,4r4 such that mH,4 ≥

(
`vk,6(ddH,4·dlog r4eblog r6c e) + nmsg

)
· dlog r4e; indeed, Cpcd,α uses

H4 to hash (the binary representation of) both the verification key vk6 and a message z.

20

We base collision-resistant hashing on subset-sum functions [Ajt96, GGH96], chosen to have an especially
compact representation as arithmetic circuits over the zk-SNARK’s “native field”.

Subset sums. For p, d,m ∈ N with p prime and M ∈ Zd×mp , the subset-sum function HM : {0, 1}m → Zdp
maps an m-bit string x to

∑m
i=1 xiM(i), where M(i) is the i-th column of M .16 Designing and constructing

an Fp-arithmetic circuit that verifies HM is straightforward, and only requires d gates (the j-th gate computes
the j-th linear combination). The entries ofM should be drawn at random. (To remove suspicion of trapdoors,
M can be chosen, e.g., according to the digits of π.)

Parameters. We set H4 := HM4 for a random matrix M4 ∈ ZdH,4×mH,4r4 and integers dH,4,mH,4 ∈ N. We
have fixed the prime of the subset sum to be r4; this ensures that CH,4, which is defined over Fr4 , works
over the correct ring, and only requires dH,4 gates. Next, for any given dimension dH,4 and PCD message
length nmsg, we set the input length to mH,4 :=

(
`vk,6(ddH,4·dlog r4eblog r6c e) + nmsg

)
· dlog r4e, to ensure the

aforementioned condition on the input and output lengths. There remains to fix the output length dH,4. This
is delicate, because it affects security (and recall we aim at 80-bit security). Since r4 is a 298-bit prime, it
appears heuristically sufficient to fix dH,4 = 1 [JJ98].17 In particular, this yields |CH,4| = 1.

Remark 5.4 (boolean input). Ideally, we would like a collision-resistant function whose “natural” domain is
strings of Fr4-elements, rather than strings of bits (as in subset-sum functions). Indeed, converting a string
x ∈ Fmp to its binary representation s ∈ {0, 1}m·dlog pe (in order to “prepare” the function’s input) costs
m · dlog pe gates, which is a nontrivial contribution to the size of Cpcd,α unless one keeps m quite small
(see Section 4). While a subset-sum function HM : {0, 1}m → Zdp continues to remain collision-resistant
even for domains consisting of “small-norm” vectors (of which binary strings are a special case), HM is
not collision-resistant (or even one-way) when the domain is enlarged to include all elements in Zmp (simply
because, being a linear function, it can be efficiently inverted). It is an open question whether the cost of
converting to binary strings can be avoided, via some other choice of hash function.

6 Scalable zk-SNARKs

Having constructed a PCD system (see Section 4 and Section 5), we use it to obtain a new zk-SNARK that is
scalable (i.e., fully succinct and incrementally computable).

6.1 Specifying a machine

A notable feature of our zk-SNARK is generality: it can prove/verify correctness of executions on any given
random-access machine M, specified by a memory configuration and a corresponding CPU circuit. For
instance, M may encode a floating-point-arithmetic processor for running quantitative analysis programs; or,
M may encode a SIMD-based architecture for running multimedia programs.

Parameters. More precisely, a machine M is specified by a tuple (A,W,N,CPUexe,CPUver) where:
• A,W ∈ N specify that (random-access) memory contains A addresses each storing W bits, i.e., that

memory is a functionM : [A]→ {0, 1}W ;
• N ∈ N specifies the length, in bits, of a CPU state;
• CPUexe is a (stateful) function for executing the CPU;
• CPUver is an F-arithmetic circuit for verifying the CPU’s execution.
We now elaborate on the above parameters. For more details, see Appendix A.2.

16We do not require the hash function to be universal, so we do not need to add a random vector to the subset sum.
17Recent works [LM06, PR06, LMPR08, ADLM+08, BLPRS13] use a small modulus and larger dimension, but our “native”

modulus is already a large one.

21

Execution on M. A computation on M proceeds in steps, as determined by CPUexe, which can be
thought of as M’s “processor”: step after step, CPUexe takes the previous state and instruction (and its
address), executes the instruction, communicates with random-access memory, and produces the next state
and instruction address. More precisely, each step consists of two phases:

• Instruction fetch. Given the current CPU state scpu ∈ {0, 1}N and address apc ∈ [A] of the instruction to
be executed, the new instruction to be executed is fetched: vpc :=M(apc) ∈ {0, 1}W .

• Instruction execution. For an auxiliary input g ∈ {0, 1}W , CPUexe receives (scpu, apc, vpc, g) and outputs
(amem, vst, fst), where amem ∈ [A] is an address, vst ∈ {0, 1}W a value, and fst ∈ {0, 1} a store flag.
Afterwards, CPUexe receives vld :=M(amem) ∈ {0, 1}W (i.e., the value at the address) and outputs a new
CPU state s′cpu ∈ {0, 1}N , an address a′pc ∈ [A] for the next instruction, and a flag f ′acc ∈ {0, 1} denoting
whether the machine has accepted. Meanwhile, if a store was requested, it is performed: if fst = 1 then
M(amem) := vst. Finally, at the end of every step, CPUexe’s state is reset.

See Figure 3 for a diagram of these two phases.

Verification of the CPU. The circuit CPUver verifies the correct input/output relationship of CPUexe (but
not memory consistency). In other words CPUexe satisfies the following property:

Fix scpu, s
′
cpu ∈ {0, 1}N , apc, amem, a

′
pc ∈ [A], vpc, vst, vld, g ∈ {0, 1}W , fst, f

′
acc ∈ {0, 1}, and

let xver be the concatenation of all these. There is a witness aver such that CPUver(xver, aver) = 0
iff (amem, vst, fst)← CPUexe(scpu, apc, vpc, g) and, afterwards, (s′cpu, a

′
pc, f

′
acc)← CPUexe(vld).

Moreover, aver can be efficiently computed from xver.

While we do not care about how the function CPUexe is specified (e.g., it can be a computed program),
CPUver must be an arithmetic circuit; if CPUver is defined over F, we say that M has verification over F.

scpu apc

vpc
vpc M(apc)

CPUexe

vld M(amem)

if fst = 1

then M(amem) vst

(amem, vst, fst)

vld

s0cpu a0pc f 0acc

instruction
execution

instruction
fetch

g

1.

2.

...
...

Figure 3: The two phases in one step of execution of a random-access machine M.

6.2 Construction summary

The construction of the new zk-SNARK consists of the following transformation:

proof-carrying data system (G,P,V)
for F-arithmetic compliance predicates

⇓
scalable zk-SNARK (G?, P ?, V ?)

for any random-access machine M = (A,W,N,CPUexe,CPUver) with verification over F

22

The transformation’s outline is as follows (see Section 2.3). First, given M, we design a compliance predicate
ΠM,H for the incremental verification of M’s execution, when its random-access memoryM is delegated via
memory-checking techniques based on a collision-resistant hash H [BEGKN91, BCGT13a]. Then, we use
the PCD system (G,P,V) to enforce the compliance predicate ΠM,H , and thereby construct the algorithms
zk-SNARK (G?, P ?, V ?) of the new zk-SNARK, which is fully-succinct and incrementally-computable.

For the first part, we again use field-specific subset-sum functions for constructing circuits that verify
authentication paths (Section 6.3), and then combine these, together with M’s CPU circuit, to construct
ΠM,H (Section 6.4). For the second part, the construction of the new zk-SNARK’s three algorithms is fairly
straightforward in light of previous work, and we include its details for completeness (Section 6.5).

Later, in Section 7, we evaluate our scalable zk-SNARK when the machine M equals vnTinyRAM.

6.3 Arithmetic circuits for secure loads and stores

We construct arithmetic circuits for checking loads/stores of an untrusted random-access memory, relative to
a (trusted) root of a Merkle tree over the memory; this task is known as memory checking (see Remark 6.1).

Let A,W ∈ N specify that memory contains A addresses each storing W bits, i.e., that memory is
a functionM : [A] → {0, 1}W . Let H : {0, 1}m → {0, 1}` be a collision-resistant function suitable for
building binary Merkle trees overM (i.e., m ≥ W and m/` ≥ 2); we say that H is (A,W)-good. For a
field F, let CH be an F-arithmetic circuit that verifies H; we construct the following two F-arithmetic circuits.

Secure load. A secure-load circuit CSecLd that, for a given address a, checks the validity of a loaded value
v against a Merkle-tree root ρ. More precisely, the circuit CSecLd satisfies the following property: for any
root ρ ∈ {0, 1}`, address a ∈ [A], value v ∈ {0, 1}W , and authentication path p ∈ {0, 1}W+(dlogAe−1)`,
CSecLd(ρ, a, v,p) = 0 if and only if p is a valid authentication path for the value v as the a-th leaf in a Merkle
tree of root ρ. One can verify that the size of such a circuit is dlogAe · (|CH |+ 2`), because the check can
be performed via dlogAe invocations of H plus 2` gates per level.18

Secure load-then-store. A secure-load-then-store circuit CSecLdSt that, for a given address a, checks: (i) the
validity of a loaded value vld against a Merkle-tree root ρ; and (ii) the validity of storing vst, to the same
address, against a (possibly different) Merkle-tree root ρ′. More precisely, the circuit CSecLdSt satisfies the
following property: for any two roots ρ, ρ′ ∈ {0, 1}`, address a ∈ [A], two values vld, vst ∈ {0, 1}W , and
authentication path p ∈ {0, 1}W+(dlogAe−1)`, CSecLdSt(ρ, ρ

′, a, vld, vst,p) = 0 if and only if:
• p is a valid authentication path for the value vld as the a-th leaf in a Merkle tree of root ρ, AND
• p is a valid authentication path for the value vst as the a-th leaf in a Merkle tree of root ρ′.
One can verify that the size of such a circuit is dlogAe · (2|CH |+ 4`).

Instantiation with subset-sum functions. We are left to choose the function H and construct CH , required
to obtain the two circuits CSecLd and CSecLdSt.

As in Section 5.2, subset-sum functions are a natural candidate, for efficiency considerations. Namely,
since F has prime order p, its additive group is isomorphic to Zp; hence, for M ∈ Zd×mp , the subset-sum
function HM : {0, 1}m → Zdp can be computed with only d gates over F.

Unlike Section 5.2, however, both CSecLd and CSecLdSt require H’s outputs to be inputs to other invo-
cations of H . Thus, here we treat a subset-sum function as having binary output: HM : {0, 1}m → {0, 1}`
where ` := d · dlog pe. Doing so requires additional gates, summing up to a total of d+ ` = d · (1 + dlog pe)
gates over F to compute HM . Moreover, the condition on input length is different: here we need to ensure
that the function is (A,W)-good, which requires that m ≥ max{W, 2`} = max{W, 2ddlog pe}.

Overall, if we set H := HM (for a random M), we can achieve circuit sizes that are:
18Specifically, in the i-th level, ` gates ensure booleanity of the i-th chunk of the authentication path p, while another ` gates

prepare the correct input to the next invocation of H , depending on the i-th address bit.

23

|CSecLd| = dlogAe · d ·
(
1 + 3dlog pe

)
and |CSecLdSt| = dlogAe · d ·

(
2 + 6dlog pe

)
.

In terms of concrete numbers, recalling from Section 5.2 that d = 1 and dlog pe = 298, we get that

|CSecLd| = dlogAe · 895 and |CSecLdSt| = dlogAe · 1,790.

Remark 6.1 (memory checking). Memory checking was introduced by Blum et al. [BEGKN91]; they showed
how to use Merkle hashing to delegate a machine’s memory to an untrusted storage, and dynamically verify
its consistency using only a small poly(λ)-size “trusted” memory.

Blum et al. instantiated Merkle hashing with universal one-way hash functions [NY89, Rom90]. Yet, in
general, a machine’s computation includes a “nondeterministic component”, e.g., an auxiliary input. In such
a case (as in this paper), Merkle hashing must be based on hash functions that are collision resistant.

Memory checking techniques have found numerous practical applications for securing untrusted stor-
ages [MVS00, MS01, GSCvDD03, GSMB03, KRSWF03]. Ben-Sasson et al. [BCGT13a] suggested that
verification of memory via Merkle hashing can be a useful computational alternative to the information-
theoretic use of nondeterministic routing for efficient circuit generators. For instance, the recent circuit
generator of Braun et al. [BFRS+13] uses memory checking to verify accesses to an untrusted storage.

6.4 The RAM compliance predicate

Given a random-access machine M and a (suitable) collision-resistant function H , we construct a compliance
predicate ΠM,H that checks a step of execution of M. The transformation is:

random-access machine
M = (A,W,N,CPUexe,CPUver)

+ (A,W)-good collision-resistant
function H : {0, 1}m → {0, 1}` ⇒ predicate

ΠM,H

Briefly, a message z for ΠM,H encodes a short representation of M’s state at a given time step. Then, at
a node with input message zin and output message zout, the compliance predicate ΠM,H checks that the
transition from the state in zin to the state in zout is a valid transition of the machine M.

Below, we make this plan more concrete by describing the format of messages and local data for ΠM,H ,
and by describing the checks performed by ΠM,H . See Figure 5 for details (and Appendix A.2 as reference).

Format of messages. A message z summarizes M’s entire state at a given time t, by storing the following:
• a timestamp t, denoting how many computation steps have occurred;
• a root ρ of a Merkle tree of random-access memory (after t computation steps);
• a CPU state scpu (after t computation steps); and
• a flag facc denoting whether the machine has accepted (after t computation steps).
Furthermore, z also stores ρ0, the root of a Merkle tree over initial memory, so to “remember” M’s input.
Note that a message z is short because the large memory is “summarized” by the short root of a Merkle tree.

Format of local data. Now consider a node with input message zin and output message zout. The goal of
ΠM,H is to verify M’s transition from zin to zout, using two main tools:
• CPUver for checking CPU transitions, given consistent memory accesses (“what you store is what you get”);
• CSecLd and CSecLdSt for checking memory accesses.
Thus, in the local data zloc provided at a node, we store whatever auxiliary information is needed by ΠM,H to
evaluate CPUver (e.g., requested memory addresses, memory values, flags, etc.) and CSecLd and CSecLdSt

(e.g., addresses, values, and authentication paths). Furthermore, zloc includes a flag fhalt specifying whether
the computation should halt or not (as, in such a case, ΠM,H will perform a different set of checks).

Construction. The compliance predicate ΠM,H takes an input (zout, zloc, zin, bbase), where zout is the
outgoing message, zloc the local data, zin the incoming message, and bbase the base-case flag, and must verify
M’s transition from zin to zout. (Thus, ΠM,H has arity s = 1.) Our construction of ΠM,H goes as follows.

24

In the base case (i.e., bbase = 1), ΠM,H ensures that zin is correctly initialized: its timestamp, CPU state,
instruction address, accept flag should all be set to zero; ΠM,H also checks that the root of the Merkle tree of
memory is equal to that of the Merkle tree of initial memory.

Moreover, regardless of base case or not, ΠM,H always checks that the root of the Merkle tree of initial
memory is preserved from zin to zout, in order to not “forget” what the initial state of the machine was.

When the computation does not halt (i.e., fhalt = 0), ΠM,H checks that the timestamp is incremented by 1
and that CPUver (on the appropriate inputs) accepts; furthermore, it uses CSecLd to check that the instruction
was correctly loaded and CSecLdSt to check that the memory access (a load or a store) was correctly performed.

When the computation does halt (i.e., fhalt = 1), ΠM,H first of all ensures that the computation has in
fact accepted so far; then it clears out the root of the Merkle tree over memory and the CPU state (as these
may leak information about the private auxiliary input) and ensures that the time step in zout is at least as
large as the number of steps so far. (Again for privacy reasons, ΠM,H does not force zout to carry the exact
number of computation steps, but only a number that is at least that much.)

Overall, the above checks suffice for ΠM,H to ensure that any ΠM,H -compliant distributed computation
corresponds to correctly initializing, stepping through, and halting an accepting computation of M.
Efficiency. By implementing ΠM,H as an F-arithmetic circuit, we obtain the following efficiency:

|ΠM,H | = |CPUver|+ |CSecLd|+ |CSecLdSt|+ ε ,

where ε is a “small but ugly” term, depending on d,N,F, that can be upper bounded as follows

ε ≤ 2 ·
(

301 + 4N + 2`+

⌈
301 + 4N + 2`

blog |F|c

⌉)
+ 24

⌈
N

blog |F|c

⌉
+ 2N + 12

⌈
`

blog |F|c

⌉
+ `+ 10 .

Crucially, |ΠM,H | only depends (nicely) on M and H , but is independent of the computation length on M:
the term |CPUver| is the cost of verifying M’s CPU (and depends on “how complex” is the CPU); while the
term |CSecLd|+ |CSecLdSt| = dlogAe · d · (3 + 9dlog pe) is the per-cycle cost to ensure memory consistency
via collision-resistant hashing (see Section 6.3).

In Section 7, we consider the case when M equals vnTinyRAM (a simple RISC von Neumann machine),
with wordsizes w ∈ {16, 32} and k = 16 registers. In Figure 4 we report, for these cases, the size of ΠM,H ,
its sub-circuits, and the resulting PCD circuits Cpcd,4 and Cpcd,6 (which affect the PCD system’s efficiency).

16-bit vnTinyRAM 32-bit vnTinyRAM
(w, k) = (16, 16) (w, k) = (32, 16)

|CPUver| 766 1,108

|CSecLd| 12,530 25,955

|CSecLdSt| 25,060 51,910

ε 3501 4867

|ΠM,H | 41,857 83,840

|Cpcd,4| 146,174 189,349

|Cpcd,6| 32,027 32,027

Figure 4: Sizes of the compliance predicate ΠM,H (and its sub-circuits) and the corresponding PCD circuits, for
16-bit and 32-bit vnTinyRAM.

Remark 6.2. The per-cycle cost of ensuring memory consistency via collision-resistant hashing (i.e.,
|CSecLd| + |CSecLdSt|) is typically much larger than that incurred when using nondeterministic routing
(in [BCTV14], it is less than 1000). However, collision-resistant hashing ultimately enables scalability,
whereas nondeterministic routing is not known to be useful for scalability (also see Section 8).

25

In particular, while in Section 7 we focus on the case M = vnTinyRAM, for which |CPUver| ≈ 103,
we could have chosen more complex machines. Indeed, even if CPUver had a few tens of thousands of
gates, the size of ΠM,H would remain on the order of 105 gates. In other words, our scalable zk-SNARK can
accommodate much more complex machines at a relatively small additional cost.

Format of messages for ΠM,H . A message z for the compliance predicate ΠM,H is a tuple

z = (ρ0, t, ρ, scpu, facc)

where:
• ρ0 ∈ {0, 1}` is an output of H; allegedly, it is the root of a Merkle tree whose leaves are a program P (i.e., initial memory).
• t ∈ {0, 1}300 is a timestamp; allegedly, it is the number of computation steps so far.

(For concreteness, we bound all computations to 2300 steps, which is big enough to accommodate computations in the foreseeable future.)
• ρ ∈ {0, 1}` is an output of H; allegedly, it is the root of a Merkle tree whose leaves areMt (memory after t steps).
• scpu ∈ {0, 1}N is a CPU state; allegedly, it is the machine’s CPU state after t steps of computation.
• facc ∈ {0, 1} is a flag which denotes whether the machine has accepted so far or not.
The length nmsg of a message is equal to 2`+ 300 +N + 1.

Format of local data for ΠM,H . Local data zloc for the compliance predicate ΠM,H is a tuple

zloc = (apc, amem, a
′
pc, vpc, vst, vld, g, fst, fhalt, aver,ppc,pmem)

where:
• apc, amem, a

′
pc ∈ [A] are memory addresses.

• vpc, vst, vld ∈ {0, 1}W are memory values.
• g ∈ {0, 1}W is a non-deterministic guess.
• fst, fhalt ∈ {0, 1} are flags.
• aver is a witness for the F-arithmetic circuit CPUver.
• ppc,pmem ∈ {0, 1}W+(dlogAe−1)` are authentication paths for Merkle trees over memory.
The length nloc of local data is equal to (3 + 2`) · dlogAe+ 6W + 2− 2`+ |aver|.

Compliance predicate ΠM,H .
• INPUTS:

– output PCD message zout = (ρ′0, t
′, ρ′, s′cpu, f

′
acc) ∈ {0, 1}nmsg

– local data zloc = (apc, amem, a
′
pc, vpc, vst, vld, g, fst, fhalt, aver,ppc,pmem) ∈ {0, 1}nloc

– input PCD message zin = (ρ0, t, ρ, scpu, facc) ∈ {0, 1}nmsg

– base case flag bbase ∈ {0, 1}
• OUTPUTS: 0 iff all checks passed

1. If bbase = 1 (i.e., base case):
(a) Check that t = 0, scpu = 0N , apc = 0, facc = 0.
(b) Check that the root of the Merkle tree of current memory is correctly initialized: ρ′ = ρ0 .

2. Check that the root of the Merkle tree of initial memory is copied over: ρ′0 = ρ0 .
3. If fhalt = 0 (i.e., do not halt):

(a) Check that the timestamp is incremented: t′ = t+ 1 .
(b) Set xver := (scpu, s

′
cpu, apc, amem, a

′
pc, vpc, vst, vld, g, fst, f

′
acc) and check that CPUver(xver, aver) = 0 .

(c) Check that the instruction is correctly loaded: CSecLd(ρ, apc, vpc,ppc) = 0 .
(d) If fst = 0 (i.e., no store), then check that vld = vst.
(e) Check that the load-then-store is correct: CSecLdSt(ρ, ρ

′, amem, vld, vst,pmem) = 0 .
4. If fhalt = 1 (i.e., do halt):

(a) Check that the machine has accepted: facc = 1 .
(b) Check that the root and the CPU state have been cleared: ρ′ = 0`, s′cpu = 0N .
(c) Check that the timestamp is not less than the computation time: t′ ≥ t.
(d) Check that the accept flag is copied over: f ′acc = facc .

Figure 5: Construction of the compliance predicate ΠM,H from M and H .

26

6.5 The new zk-SNARK construction

We now explain how to use a PCD system (G,P,V), invoked on ΠM,H , to construct a scalable zk-SNARK
for random-access machines; see Figure 6 for the construction’s pseudocode.

Construction of G?. The key generator G? takes a random-access machine M as input, and must output a
key pair that enables anyone to prove/verify correctness of computations on M. Recall that the PCD generator
G expects as input an F-arithmetic compliance predicate. Thus, G? constructs the F-arithmetic compliance
predicate ΠM,H , for a suitable choice of collision-resistant function H; it invokes G on ΠM,H to generate a
key pair (pkpcd, vkpcd); and, finally, it outputs (pk, vk) where pk := (M, H, pkpcd) and vk := (M, H, vkpcd).

More precisely, the key pair (pk, vk) allows to prove/verify membership of instances in the language LM of
accepting computations on M, i.e., the language consisting of pairs (P, T) such that: (i) P is a program for
M (a program is just an initial memory state); (ii) T is a time bound; (iii) there exists an auxiliary input G
such that M(P;G) accepts in at most T steps. (See Definition A.2 for a more formal discussion of LM.)

Construction of P ?. The prover P ? takes as input a proving key pk, program P , time bound T , and
auxiliary input G, and must output a proof π for the claim “(P, T) ∈ LM”. Recall that the PCD prover
P expects as input a proving key pkpcd, output message z, local data zloc, input message zin, and (in the
non-base case) also a corresponding proof πin. Thus, P ? steps through the computation of M on P , at each
step generating a new message and proof, by using a previous message and proof; throughout, P ? maintains
a Merkle tree over random-access memory. Concretely, at each step, P ? executes the CPU of M, handles any
memory loads or stores, and prepares the necessary ΠM,H -compliant inputs for P in order to compute the
next proof; and then it continues to the next step. After T steps of computation, P ? produces a final proof,
relative to a specially-constructed message zfin, which clears from a message all but essential information (so
not to compromise zero knowledge), and outputs the final proof.

Construction of V ?. The verifier V ? takes as input a verification key vk, program P , time bound T , and
proof π , and must output a bit indicating whether π is a convincing proof for the claim “(P, T) ∈ LM”.
Recall that the PCD verifier V expects as input a verification key vkpcd, message z, and proof π. Thus,
V ? constructs a message z, corresponding to a “halted and accepted” computation of M on P (cf. the
construction of ΠM,H), and then accepts if and only if V(pkpcd, z, π) does.

Preparing the message z requires computing the root ρ0 of a Merkle tree over the program P .19 In fact,
computing ρ0 can be done even before receiving the proof π, as it only requires knowledge of H and P .

Security. Suppose that V ? accepts a proof π for an instance (P, T). Then the PCD verifier V accepted π
for a message z, constructed from P and T , that corresponds to a “halted and accepted” computation. By
construction of the compliance predicate ΠM,H and the security of V, we deduce that (P, T) ∈ LM. (And
proof of knowledge is inherited from the proof of knowledge of the PCD system.)

Scalability. From the above description (and the pseudocode in Figure 6), one can verify that (G?, P ?, V ?)
is both fully succinct and incrementally computable.

19Of course, to perform this step in time O(|P|), one should not explicitly build a Merkle tree over all of memory, but instead
build the Merkle tree by considering only the non-zero memory entries specified by P .

27

New zk-SNARK generator G?

• INPUTS: a random-access machine M = (A,W,N,CPUexe,CPUver) with verification over F
• OUTPUTS: proving key pk and verification key vk

1. Select any (A,W)-good collision-resistant hash function H .
2. Construct CH , an F-arithmetic circuit implementing H .
3. Use M and CH to construct the compliance predicate ΠM,H .
4. Compute (pkpcd, vkpcd) := G(ΠM,H).
5. Set pk := (M, H, pkpcd) and vk := (M, H, vkpcd).
6. Output (pk, vk).

New zk-SNARK prover P ?

• INPUTS: proving key pk, program P , time bound T , and auxiliary input G = (g0, g1, . . . , gT−1)
• OUTPUTS: proof π for the instance (P, T)

1. Use H to compute ρ0, the root of the Merkle tree over P .
2. Initialize memory to the given program:M0 := P .
3. Initialize the CPU state and instruction address to zero: scpu,0 := 0N and apc,0 := 0.
4. Initialize the first message: zmsg,0 := (ρ0, 0, ρ0, scpu,0, 0).
5. Initialize the first proof to empty: π0 := ⊥.
6. For i = 0, . . . , T − 1, compute the next message zmsg,i+1 and proof πi+1 as follows:

(a) Give CPUexe

• the current CPU state (scpu,i ∈ {0, 1}N),
• address of the instruction to be executed (apc,i ∈ [A]),
• instruction to be executed (vpc,i :=Mi(apc,i) ∈ {0, 1}W), and
• guess (gi ∈ {0, 1}W).

(b) Get from CPUexe

• an address (amem,i ∈ [A]),
• value (vst,i ∈ {0, 1}W), and
• store flag (fst,i ∈ {0, 1}).

(c) Give CPUexe the value at the address (vld,i :=Mi(amem,i) ∈ {0, 1}W).
(d) SetMi+1 to equalMi; if a store was requested (i.e., fst,i = 1), do it (i.e.,Mi+1(amem,i) := vst,i).
(e) Compute ρi+1 (the root of the Merkle tree overMi+1) from ρi.
(f) Get from CPUexe

• a new CPU state (scpu,i+1 ∈ {0, 1}N),
• an address for the next instruction (apc,i+1 ∈ [A]), and
• a flag denoting whether the machine has accepted (facc,i+1 ∈ {0, 1}).
Reset CPUexe’s state.

(g) Create the next message: zmsg,i+1 := (ρ0, i+ 1, ρi+1, scpu,i+1, facc,i+1).
(h) Deduce aver from xver := (scpu,i, scpu,i+1, apc,i, amem,i, apc,i+1, vpc,i, vst,i, vld,i, gi, fst,i, facc,i+1).
(i) Let ppc,i (resp., pmem,i) be the authentication path for address apc,i (resp., amem,i) inMi.
(j) Create local data: zloc,i+1 := (apc,i, amem,i, apc,i+1, vpc,i, vst,i, vld,i, gi, facc,i+1, 0, aver,ppc,i,pmem,i).
(k) Compute the next proof: πi+1 := P(pkpcd, zmsg,i+1, zloc,i+1, zi, πi).

7. Prepare the final message: zmsg,fin := (ρ0, T, 0
`, 0N , 1).

8. Prepare the final local data: zloc,fin := (∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, 1, ∗, ∗, ∗), where ∗ can be set to anything of the right length.
9. Compute the final proof: π := P(pkpcd, zmsg,fin, zloc,fin, zT , πT).

10. Output π.

New zk-SNARK verifier V ?

• INPUTS: verification key vk, program P , time bound T , and proof π
• OUTPUTS: decision bit

1. Use H to compute ρ0, the root of the Merkle tree over P . (This can also be done beforehand.)
2. Construct the message z := (ρ0, T, 0

`, 0N , 1).
3. Accept if and only if V(vkpcd, z, π) = 1.

Figure 6: Construction of a scalable zk-SNARK for random-access machines.

28

7 Evaluation on vnTinyRAM

We evaluate our scalable zk-SNARK when the given random-access machine M equals vnTinyRAM, a simple
RISC von Neumann architecture [BCTV14, BCGTV13b]. For comparison, we also compare [BCTV14]’s
preprocessing zk-SNARK (which also supports vnTinyRAM) with our scalable zk-SNARK.

We ran our experiments on a desktop PC with a 3.40 GHz Intel Core i7-4770 CPU and 16 GB of RAM
available. Unless otherwise specified, all times are in single-thread mode; as for our multi-core experiments,
we enabled one thread for each of the CPU’s 4 cores (for a total of 4 threads).

Recalling vnTinyRAM. The architecture vnTinyRAM is parametrized by the word size, denoted w, and the
number of registers, denoted k. In terms of instructions, vnTinyRAM includes load and store instructions for
accessing random-access memory (in byte or word blocks), as well as simple integer, shift, logical, compare,
move, and jump instructions. Thus, vnTinyRAM can efficiently implement control flow, loops, subroutines, re-
cursion, and so on. Complex instructions (e.g., floating-point arithmetic) are not directly supported and can be
implemented “in software”. See Appendix A.3 for how vnTinyRAM can be expressed in our random-access
machine formalism (i.e., given w, k, how to construct M to express w-bit vnTinyRAM with k registers).

Costs on vnTinyRAM. The performance of our zk-SNARK (G?, P ?, V ?) on vnTinyRAM is easy to
characterize, because it is determined by few quantities. For the key generator G?, the relevant quantities are:
• the constant time and space complexity of G?, when given as input a description of vnTinyRAM; and
• the constant sizes of the generated proving key pk and verification key vk.
For the proving algorithm P ?, which proceeds step by step alongside the original computation, they are:
• the constant time necessary to incrementally compute the new (constant-size) proof at each step; and
• the constant space needed to compute the new proof (on top of the space needed by the original program).20

Finally, the verifier V ? takes as input a program P and a time bound T , and runs in time O(|P|+ log T); in
our implementation, we fix T ≤ 2300 (plenty enough), so that V ? runs in time O(|P|).

In Figure 7, we report our measurements for two settings of vnTinyRAM: (w, k) = (16, 16) and
(w, k) = (32, 16), i.e., 16-bit and 32-bit vnTinyRAM with 16 registers. (The same settings as in [BCTV14].)

Comparison with [BCTV14]. In Figure 8, we compare the efficiency of [BCTV14]’s preprocessing
zk-SNARK and our scalable zk-SNARK, for a (random) program P of 104 instructions, as a function of T
(the number of vnTinyRAM computation steps).

The (approximate) asymptotic efficiency for [BCTV14] was obtained by linearly interpolating [BCTV14]’s
measurements (which were collected on a machine with similar characteristics as our benchmarking machine).
As for our measurements, we use the relevant numbers from Figure 7.

Conclusion. Our experiments demonstrate that, as expected, our approach is slower for small computations
but, on the other hand, offers scalability to large computations by avoiding any space-intensive computations.

Indeed, [BCTV14] (as well as other preprocessing zk-SNARK implementations [PGHR13, BCGTV13a])
require space-intensive computations to maintain their efficiency. As T grows, such approaches simply run
out of memory, and must resort to “computing in blocks”, sacrificing time complexity.21

In contrast, our zk-SNARK, while requiring more time per execution step, merely requires a constant
amount of memory to prove any number of execution steps. In particular, our zk-SNARK becomes more
space-efficient than [BCTV14]’s zk-SNARK when T > 422 for 16-bit vnTinyRAM, and when T > 321 for
32-bit vnTinyRAM; moreover, these savings in space grow unbounded as T increases.

20The prover also needs to store the Merkle tree’s intermediate hashes, which incurs a linear overhead in the program’s space
complexity. Since this overhead is small, and can even be reduced by saving only the high levels of the Merkle tree (and recomputing,
“on demand”, the local neighborhood of accessed leaves), we focus on the fixed additive overhead needed to generate the proof.

21Extending known preprocessing zk-SNARK implementations with block-computing techniques, and precisely quantifying their
cost, remains a challenging open question that we leave to future work.

29

16-bit vnTinyRAM 32-bit vnTinyRAM
(w, k) = (16, 16) (w, k) = (32, 16)

key generator G?

TIME
1 thread 4 threads 1 thread 4 threads

total 33.8 s 12.9 s 42.0 s 15.5 s

SPACE
memory 861MB 1,125MB 1,068MB 1,343MB
pk size 43MB 55MB
vk size 1.3 kB 1.3 kB

prover P ?

TIME
1 thread 4 threads 1 thread 4 threads

per step 24.2 s 8.3 s 26.2 s 9.0 s

SPACE
memory 800MB 1,063MB 993MB 1,268MB
proof 374B 374B

verifier V ?

TIME
|P| = 10 23.2ms 23.9ms
|P| = 102 23.7ms 24.5ms
|P| = 103 29.8ms 30.8ms
|P| = 104 90.9ms 94.2ms
in general ≈ (23.08 + 0.00676|P|)ms ≈ (23.78 + 0.00702|P|)ms

Figure 7: Performance of our scalable zk-SNARK on 16-bit and 32-bit vnTinyRAM. (The reported times are the
average of 20 experiments, with standard deviation less than 1%.)

key generator key sizes prover verifier
TIME SPACE |pk| |vk| TIME SPACE TIME

16-bit vnTinyRAM [BCTV14] 0.08 · T s 1.8 · T MB 0.3 · T MB 40.4 kB 0.04 · T s 1.9 · T MB 24.2 ms

(w, k) = (16, 16) this work 33.8 s 861 MB 43 MB 1.3 kB 24.2 · T s 800 MB 90.9 ms

32-bit vnTinyRAM [BCTV14] 0.13 · T s 3.1 · T MB 0.4 · T MB 80.3 kB 0.05 · T s 3.1 · T MB 41.0 ms

(w, k) = (32, 16) this work 42.0 s 1,068 MB 55 MB 1.3 kB 26.2 · T s 993 MB 94.2 ms

Figure 8: Comparison between [BCTV14]’s preprocessing zk-SNARK and our scalable zk-SNARK.

30

VIPS. Finally, being scalable, our zk-SNARK implementation is the first to achieve a well-defined clock
rate of verified instructions per second (VIPS). For vnTinyRAM, we obtain the following VIPS values:

16-bit vnTinyRAM 32-bit vnTinyRAM
(w, k) = (16, 16) (w, k) = (32, 16)

1 thread VIPS = 1
24.2

Hz VIPS = 1
26.2

Hz

4 threads VIPS = 1
8.3

Hz VIPS = 1
9.0

Hz

While perhaps too slow for most applications, our prototype empirically demonstrates the feasibility of the
bootstrapping approach as a way to achieve scalability of zk-SNARKs and, more generally, to achieve the
rich functionality of proof-carrying data.

8 Open problems

Higher clock rate. There are ample opportunities for improving the clock rate of “verified instructions per
second”. Besides potential improvements in the cryptographic protocol and elliptic curves, there is also an
engineering challenge. In particular, the algorithms are highly amenable to parallelism and hardware support.
Since each step of proof generation in our zk-SNARK is a constant-size operation, it could even be carefully
optimized and wholly implemented in a fixed-sized, general-purpose “proving processor” hardware.

Other PCD-friendly cycles. The PCD-friendly 2-cycle proposed in this paper facilitates a great im-
provement in the efficiency of recursively composing pairing-based zk-SNARKs. Do there exist any other
PCD-friendly 2-cycles, not based on MNT curves? Or cycles of length greater than 2? Are these easier to
find, achieve smaller bit size and higher 2-adicity, or admit faster nondeterministic pairing verification? Inves-
tigating these questions may lead to further efficiency improvements to recursive proof composition. Another
consideration is that, with MNT-based PCD-friendly cycles, increasing the security level is costly, since one
of the curves has low embedding degree (k = 4, for which 128-bit security requires q4 ≥ 2750 [FST10]).

Alternative zk-SNARKs constructions. What are the advantages or disadvantages of pairing-based
zk-SNARKs in which the pairing is not instantiated via a pairing-friendly elliptic curve, but instead via lattice
techniques [GGH13]? Moreover, are there preprocessing zk-SNARKs that are not based on pairings? (E.g.,
can they be based on groups without bilinear maps?)

Acknowledgments

We thank Andrew V. Sutherland for generous help in running the CM method on elliptic curves with large
discriminants. We thank Damien Stehlé and Daniele Micciancio for discussions about the security of
subset-sum functions. We thank Koray Karabina for answering questions about algorithms in [KT08].

This work was supported by: the Broadcom Foundation and Tel Aviv University Authentication Initiative; the
Center for Science of Information (CSoI), an NSF Science and Technology Center, under grant agreement
CCF-0939370; the Check Point Institute for Information Security; the European Community’s Seventh
Framework Programme (FP7/2007-2013) under grant agreement number 240258; the Israeli Centers of
Research Excellence I-CORE program (center 4/11); the Israeli Ministry of Science and Technology; the
Leona M. & Harry B. Helmsley Charitable Trust; the Simons Foundation, with a Simons Award for Graduate
Students in Theoretical Computer Science; and the Skolkovo Foundation with agreement dated 10/26/2011.

31

A Computation models

We introduce notions and notations for two computation models used in this paper: arithmetic circuits (see
Appendix A.1) and random-access machines (see Appendix A.2).

A.1 Arithmetic circuits

We work with circuits that are not boolean but arithmetic. Given a field F, an F-arithmetic circuit takes
inputs that are elements in F, and its gates output elements in F. We naturally associate a circuit with the
function it computes. The circuits we consider only have bilinear gates,22 and a circuit’s size is defined as the
number of gates. To model nondeterminism we consider circuits with an input x ∈ Fn and an auxiliary input
a ∈ Fh, called a witness. Arithmetic circuit satisfiability is analogous to the boolean case, as follows.

Definition A.1. Let n, h, l ∈ N respectively denote the input, witness, and output size. The circuit satisfac-
tion problem of an F-arithmetic circuit C : Fn × Fh → Fl (with bilinear gates) is defined by the relation
RC = {(x, a) ∈ Fn × Fh : C(x, a) = 0l}; its language is LC = {x ∈ Fn : ∃ a ∈ Fh, C(x, a) = 0l}.

At times, we also write C(x, a) = 0 to mean C(x, a) = 0l for an unspecified l. All the arithmetic circuits we
consider are over fields Fp with p prime (that is at most exponential in the security parameter λ).

A.2 Random-access machines

There are many possible definitions of random-access machines [CR72, AV77]. Here we formulate a concrete,
yet relatively flexible, definition that suffices for the purposes of this paper. Informally, a machine is specified
by a configuration for random-access memory (number of addresses, and number of bits stored at each
address) and a CPU. At each step, the CPU gets the current state and the next instruction from memory;
executes the instruction; communicates with memory (by storing or loading data); and then outputs the next
state and the address for the next instruction. (Thus, random-access memory contains both program and data.)

More precisely, a (non-deterministic) random-access machine with verification over a finite field F is a
tuple M = (A,W,N,CPUexe,CPUver) where:
• A,W ∈ N specify that (random-access) memoryM contains A addresses each storing W bits (i.e., that

memory is a functionM : [A]→ {0, 1}W).
• N ∈ N specifies the length, in bits, of a CPU state.
• CPUexe is a (stateful) function for executing the CPU (see below).
• CPUver is an F-arithmetic circuit for verifying the CPU’s execution (see below).
The machine M takes as input a program P and an auxiliary input G, and computes on them. More precisely:
• A program for M is a function P : [A] → {0, 1}W that specifies the initial memory contents. The

program P is typically represented in sparse form, by listing the (few) addresses and values for non-zero
memory entries, which may store any code and data to the machine.
• An auxiliary input for M is a sequence G = (g0, g1, g2, . . .). Each gi consists of W bits and is accessed

at the i-th computation step. The auxiliary input is treated as a nondeterministic guess.
Then, the computation of M on program P and auxiliary input G, denoted M(P;G), proceeds as follows.
Initialize the CPU state and instruction address to zero: scpu,0 := 0N , apc,0 := 0. Next, for i = 0, 1, 2 . . . :

1. CPUexe is given the current CPU state (scpu,i ∈ {0, 1}N), address of the instruction to be executed
(apc,i ∈ [A]), instruction to be executed (vpc,i :=Mi(apc,i) ∈ {0, 1}W), and guess (gi ∈ {0, 1}W).

2. CPUexe outputs an address (amem,i ∈ [A]), a value (vst,i ∈ {0, 1}W), and a store flag (fst,i ∈ {0, 1}).
22A gate with inputs x1, . . . , xm ∈ F is bilinear if the output is (α0 +

∑m
i=1 αixi) · (β0 +

∑m
i=1 βixi) for some α, β ∈ Fm+1.

In particular, these include addition, multiplication, and constant gates.

32

3. CPUexe is given the value at the address (vld,i :=Mi(amem,i) ∈ {0, 1}W).
SetMi+1 equal toMi; if a store was requested (i.e., fst,i = 1), do it (i.e.,Mi+1(amem,i) := vst,i).

4. CPUexe outputs a new CPU state (scpu,i+1 ∈ {0, 1}N), an address for the next instruction (apc,i+1 ∈ [A]),
and a flag denoting whether the machine has accepted (facc,i+1 ∈ {0, 1}). CPUexe’s state is reset.

Thus CPUexe can be thought of as M’s “processor”: step after step, CPUexe takes the previous state and
instruction (and its address), executes the instruction, communicates with random-access memory, and
produces the next state and instruction address. In contrast, CPUver is a predicate that verifies the correct
input/output relationship of CPUexe. In other words CPUexe satisfies the following property:

Fix scpu, s
′
cpu ∈ {0, 1}N , apc, amem, a

′
pc ∈ [A], vpc, vst, vld, g ∈ {0, 1}W , fst, f

′
acc ∈ {0, 1}, and

let xver be the concatenation of all these. There is a witness aver such that CPUver(xver, aver) = 0
iff (amem, vst, fst)← CPUexe(scpu, apc, vpc, g) and, afterwards, (s′cpu, a

′
pc, f

′
acc)← CPUexe(vld).

Moreover, aver can be efficiently computed from xver.

Of course, CPUver may simply internally execute CPUexe to perform its verification; but, having access to
additional advice aver, CPUver may instead perform “smarter”, and more efficient, checks.

We are not concerned about how the function CPUexe is specified (e.g., it can be a computed program),
but CPUver must be specified as an F-arithmetic circuit (for an appropriate F that we will discuss).
The language of accepting computations. We define the language of accepting computations on M. A
program P is treated as “given”, while the auxiliary input G is treated as a nondeterministic advice.

Definition A.2. For a random-access machine M, the language LM consists of pairs (P, T) such that:
• P is a program for M;
• T is a time bound;
• there exists an auxiliary input G such that M(P;G) accepts in at most T steps.
We denote byRM the relation corresponding to LM.

In this paper we obtain an implementation of scalable zk-SNARKs for proving/verifying membership in the
above language (see Appendix E for a definition). We evaluate our system for a specific choice of machine:
vnTinyRAM, a simple RISC von Neumann architecture introduced by [BCTV14] (see below). Of course,
other choices of random-access machines are possible, and our implementation supports them.

A.3 The architecture vnTinyRAM

We evaluate our scalable zk-SNARK on an architecture that previously appeared in (preprocessing) zk-SNARK
implementations: vnTinyRAM [BCTV14]. (See Section 7.) We explain how to set “M = vnTinyRAM”, i.e.,
how to specify the architecture vnTinyRAM via the formalism introduced above (and used by our prototype).

Given w, k, we want to construct a tuple M = (A,W,N,CPUexe,CPUver) that implements w-bit
vnTinyRAM with k registers. First we need to specify the parameters A,W ∈ N for random access memory.
vnTinyRAM accesses memory, consisting of 2w bytes, either as bytes or as words; moreover, vnTinyRAM
instructions (which are stored in memory) take two words to encode in memory. Thus, we set A,W so that
memory consists of A := 8·2w

2w addresses, each storing W := 2w bits. Next, we set the CPU state length
to N := (1 + k)w + 1 because, in vnTinyRAM, a CPU state consists of the program counter (w bits), k
general-purpose registers (each of w bits), and a (condition) flag (1 bit). Finally, CPUexe can be chosen to be
any program implementation of vnTinyRAM’s CPU, while CPUver can be chosen to be any F-arithmetic
circuit for verifying the input-output relationship of CPUexe. In our implementation, F is a prime field of 298
bits (since F = Fr4), and we get the following sizes for the two settings we consider:
• for (w, k) = (16, 16), |CPUver| = 766; and
• for (w, k) = (32, 16), |CPUver| = 1108.

33

B Pairings and elliptic curves

The cryptographic primitives we study are based on pairings, which we briefly recall in Appendix B.1.
Pairings can, in turn, be based on pairing-friendly elliptic curves; in Appendix B.2 we review basic notions
about these.

B.1 Pairings

Let G1 and G2 be cyclic groups of a prime order r. We denote elements of G1,G2 via calligraphic letters
such as P,Q. We write G1 and G2 in additive notation. Let P1 be a generator of G1, i.e., G1 = {αP1}α∈Fr ;
let P2 be a generator for G2. (We also view α as an integer, so that αP1 is well-defined.)

A pairing is an efficient map e : G1 ×G2 → GT , where GT is also a cyclic group of order r (which we
write in multiplicative notation), satisfying the following properties:
• BILINEARITY. For every nonzero elements α, β ∈ Fr, it holds that e(αP1, βP2) = e(P1,P2)αβ .
• NON-DEGENERACY. e(P1,P2) is not the identity in GT .
When describing cryptographic primitives at high level, the choice of instantiation of G1,G2,GT , e often
does not matter. In this paper, however, we discuss implementation details, and such choices matter a great
deal. Typically, pairings are based on (pairing-friendly) elliptic curves, discussed next.

B.2 Elliptic curves

We assume familiarity with elliptic curves; here, we only recall the basic definitions in order to fix notation.
See, e.g., [Was08, Sil09, FST10, CFAD+12] for more details.

Definition and curve groups. Given a field K, an elliptic curve E defined over K, denoted E/K, is a
smooth projective curve of genus 1 (defined over K) with a distinguished K-rational point. We denote by
E(K) the group of K-rational points on E; when finite, we denote the cardinality of this group by #E(K).
For any r ∈ N, E[r] denotes the group of r-torsion points in E(K), and E(K)[r] the group of r-torsion
points in E(K). In this paper, we only consider elliptic curves where K is a finite field Fq; so the definitions
below are specific to this case.

Trace and CM discrminant. The trace of E/Fq is t := q + 1 −#E(Fq). The Hasse bound states that
|t| ≤ 2

√
q. If gcd(q, t) = 1, then E/Fq is ordinary; otherwise, it is supersingular. If E/Fq is ordinary, the

CM discriminant of E is the square-free part D of the integer 4q − t2, non-negative by the Hasse bound.23

ECDLP. The elliptic-curve discrete logarithm problem (ECDLP) is the following: given E/Fq, P ∈ E(Fq),
and Q ∈ 〈P〉, find a ∈ N such that Q = aP . There are several methods to solve, with different time and
space complexities, the ECDLP. For instance: the Pohlig–Hellman algorithm [PH78] (which reduces the
problem to subgroups of prime order); Shanks’ [Sha71] baby-step-giant-step method; Pollard’s methods (the
rho method [Pol78] and the kangaroo method [Pol00], and their parallel variants by van Oorschot and Wiener
[vOW99]); the Menezes–Okamoto–Vanstone (MOV) attack using the Weil pairing [MOV91]; the Frey–Rück
attack using the Tate pairing [FR94]; and the SSSA attack for curves of trace t = 1 [Sem98, Sma99, SA98].

Cryptographic uses require the ECDLP to be hard (typically, intractable for polynomial-time adversaries).
For points P of large prime order r, this is widely believed to be the case. Thus, one only considers curves E
with trace t 6= 1 and having cyclic subgroups of E(Fq) of large prime order r. So #E(Fq) is either a prime
r, or hr for a small cofactor h.

Pairings. For cryptographic uses that require efficient computation of pairings (such as the uses considered
in this paper), suitable elliptic curves need to satisfy additional requirements, as we now recall.

23Alternatively, some authors define the discriminant to be −D, or the discriminant of the imaginary quadratic field Q(
√
−D).

34

For any r ∈ N with gcd(q, r) = 1, the embedding degree k of E/Fq (with respect to r) is the smallest
integer such that r divides qk − 1; for such r, a bilinear map er : E[r]× E[r]→ µr can be defined, where
µr ⊂ F∗

qk
is the subgroup of r-th roots of unity in Fq. The map er is known as the Weil pairing.

The Weil pairing is not the only bilinear map that can be defined. Depending on properties of the curve
E other, sometimes more efficient, pairings can be defined, e.g., the Tate pairing [FR94, FMR06], the
Eta pairing [BGOhM07], and the Ate pairing [HSV06]. In each of these cases, the pairing computation
requires arithmetic in Fqk , so that k cannot be too large. On the other hand, the ECDLP can be translated
(via the pairing itself [MOV91, FR94]) to the discrete logarithm problem over F∗

qk
, which is susceptible

to subexponential-time attacks via index calculus [Odl85], so that k has to be large enough to achieve the
desired level of hardness for the DLP in F∗

qk
.

In light of the above considerations, an (ordinary) elliptic curve E/Fq is said to be pairing friendly if (i)
E(Fq) contains a subgroup of large prime order r, and (ii) E has embedding degree k (with respect to r) that
is not too large (i.e., computations in the field Fqk are feasible) and not too small (i.e., the DLP in F∗

qk
is hard

enough). The ideal case is when E has prime order r, and the embedding degree k is such that the ECDLP in
E(Fq) and the DLP in F∗

qk
have approximately the same hardness, i.e., are balanced.

Instantiations of pairings. A pairing is specified by a prime r ∈ N, three cyclic groups G1,G2,GT of
order r, and an efficient bilinear map e : G1 ×G2 → GT . (See Appendix B.1.) Suppose one uses a curve
E/Fq with embedding degree k to instantiate the pairing. Then GT is set to µr ⊂ F∗

qk
. The instantiation of G1

and G2 depends on the choice of e; typically, G1 is instantiated as an order-r subgroup of E(Fq), while, for
efficiency reasons [BKLS02, BLS04], G2 as an order-r subgroup of E′(Fk/d) where E′ is a d-th twist of E.

35

C Preprocessing zk-SNARKs for arithmetic circuit satisfiability

At high-level, a preprocessing zk-SNARK for arithmetic-circuit satisfiability is a cryptographic primitive that
provides short and easy-to-verify non-interactive zero-knowledge proofs of knowledge for the satisfiability of
arithmetic circuits. A public proving key is used to generate proofs, and a public verification key is used to
verify them; the two keys are jointly generated once, and can then be used any number of times. The adjective
“preprocessing” denotes the fact that the key pair depends on the arithmetic circuit C whose satisfiability is
being proved/verified; in particular, the time to generate a key pair for C is at least linear in the size of C.
Below, we informally define this primitive; we refer the reader to, e.g., [BCIOP13] for a formal definition.

Given a field F,24 a preprocessing zk-SNARK for F-arithmetic circuit satisfiability (see Appendix A.1)
is a triple of polynomial-time algorithms (G,P, V), with V deterministic,25 working as follows.

• G(1λ, C) → (pk, vk). On input a security parameter λ (presented in unary) and an F-arithmetic circuit
C, the key generator G probabilistically samples a proving key pk and a verification key vk. We assume,
without loss of generality, that pk contains (a description of) the circuit C.

The keys pk and vk are published as public parameters and can be used, any number of times, to prove/verify
membership in the language LC , as follows.

• P (pk, x, a)→ π. On input a proving key pk and any (x, a) ∈ RC , the prover P outputs a non-interactive
proof π for the statement “x ∈ LC”.

• V (vk, x, π)→ b. On input a verification key vk, an input x, and a proof π, the verifier V outputs b = 1 if
he is convinced by π that x ∈ LC .

The triple (G,P, V) satisfies the following properties.
Completeness. The honest prover can convince the verifier for any instance in the language. Namely, for
every security parameter λ, F-arithmetic circuit C, and instance x ∈ LC with a witness a,

Pr

[
V (vk, x, π) = 1

∣∣∣∣ (pk, vk)← G(1λ, C)
π ← P (pk, x, a)

]
= 1 .

Succinctness. For every security parameter λ, F-arithmetic circuit C, and (pk, vk) ∈ G(1λ, C),
• an honestly-generated proof π has Oλ(1) bits;
• V (vk, x, π) runs in time Oλ(|x|).
Above, Oλ hides a (fixed) polynomial factor in λ.
Proof of knowledge (and soundness). If the verifier accepts a proof for an instance, the prover “knows” a
witness for that instance. (Thus, soundness holds.) Namely, for every constant c > 0 and every polynomial-
size adversary A there is a polynomial-size witness extractor E such that, for every large-enough security
parameter λ, for every F-arithmetic circuit C of size λc,

Pr

 V (vk, x, π) = 1
(x, a) /∈ RC

∣∣∣∣∣∣
(pk, vk)← G(1λ, C)

(x, π)← A(pk, vk)
a← E(pk, vk)

 ≤ negl(λ) .

Statistical zero knowledge. An honestly-generated proof is statistical zero knowledge. Namely, there
is a polynomial-time stateful simulator S such that, for all stateful distinguishers D, the following two
probabilities are negligibly-close:

24More precisely, a field family indexed by the security parameter λ where the field size grows at most exponentially in λ.
25In this paper we use the technique of recursive proof composition, which relies on V being deterministic (i.e., no coin flips are

needed during proof verification). All known zk-SNARK constructions satisfy this property, so this is effectively not a restriction.

36

Pr

 (x, a) ∈ RC
D(π) = 1

∣∣∣∣∣∣∣∣
C ← D(1λ)

(pk, vk)← G(1λ, C)
(x, a)← D(pk, vk)
π ← P (pk, x, a)

 and Pr

 (x, a) ∈ RC
D(π) = 1

∣∣∣∣∣∣∣∣
C ← D(1λ)

(pk, vk)← S(1λ, C)
(x, a)← D(pk, vk)

π ← S(x)

 .

Remark C.1. All known preprocessing zk-SNARK constructions can in fact be made perfect zero knowledge,
at the only expense of a negligible probability of error in completeness.

C.1 Known constructions and security

There are many preprocessing zk-SNARK constructions in the literature [Gro10, Lip12, BCIOP13, GGPR13,
PGHR13, BCGTV13a, Lip13, BCTV14]. The most efficient ones are based on quadratic arithmetic programs
(QAPs) [GGPR13, BCIOP13, PGHR13, BCGTV13a, BCTV14]; such constructions provide a linear-time G,
quasilinear-time P , and linear-time V .

Three of the above works [PGHR13, BCGTV13a, BCTV14] also investigate and provide implementations
of preprocessing zk-SNARKs. As we discuss in Section 3.3, in this work we follow the implementation
of [BCTV14], which, at the time of writing, is the fastest one.

Security of zk-SNARKs is based on knowledge-of-exponent assumptions and variants of Diffie–Hellman
assumptions in bilinear groups [Gro10, BB04, Gen04]. Knowledge-of-exponent assumptions are fairly strong,
but there is evidence that such assumptions may be inherent for constructing zk-SNARKs [GW11, BCCT12].

Remark C.2 (auxiliary input). More generally, the security of zk-SNARKs relies on the extractability of
certain functions. Extractability is a delicate property that, depending on how it is stated, yields conditions
of different relative strength. One aspect that affects this is the choice of auxiliary input (a discussion of
which was omitted in the informal definition above). For instance, if the adversary is allowed any auxiliary
input (perhaps even by way of maliciously chosen circuits C), extraction may be difficult because the
auxiliary input may encode an obfuscated strategy [BCCT12]; such intuition can in fact be formalized to yield
limitations to extractability [BCPR13]. On the other end of the spectrum, certain notions of extractability can
be achieved [BCP13], and also no limitations are known for certain ‘benign looking’ inputs.

The focus of this paper is practical aspects of zk-SNARKs so our perspective on extractability here is
that, similarly to the Fiat–Shamir paradigm [FS87], knowledge-of-exponent assumptions, despite not being
fully understood, provide solid heuristics in practice since no effective attacks against them are known.

C.2 Instantiations via elliptic curves

Known preprocessing zk-SNARK constructions are based on pairings (see Appendix B.1), which can in turn
be based on pairing-friendly elliptic curves (see Appendix B.2). We recall two facts, used in this paper.

Field for the circuit language. Let E be an elliptic curve that is defined over a finite field Fq, has a group
E(Fq) of Fq-rational points with a prime order r (or order divisible by a large prime r), and has embedding
degree k with respect to r. Suppose that a preprocessing zk-SNARK (G,P, V) is instantiated with E. Then,

(G,P, V) works for Fr-arithmetic circuit satisfiability,
but all of V ’s arithmetic computations are over Fq (or extensions of Fq up to degree k).26

This fact motivates most of the discussions in Section 3.1.
26Intuitively, this is because: (a) the groups G1 and G2 for a pairing e : G1 ×G2 → GT on E have prime order r, so that discrete

logarithms for elements in G1 and G2, which encode information about the arithmetic circuit, “live” in Fr; while (b) G1-arithmetic,
G2-arithmetic, and pairing computations are conducted over Fq (or extensions of Fq up to degree k).

37

2-adicity of a curve. Prior work identified the 2-adicity of a curve as an important ingredient for efficient
implementations of the generator and, especially, the prover [BCGTV13a, BCTV14].

An elliptic curve E/Fq has 2-adicity 2` if the large prime r dividing #E(Fq) is such that 2` divides r− 1.
This property ensures that the multiplicative group of Fr contains a 2`-th root of unity, which significantly
improves the efficiency of interpolation and evaluation of functions defined over certain domains in Fr.

When instantiating a preprocessing zk-SNARK (G,P, V) withE, the zk-SNARK works for Fr-arithmetic
circuit satisfiability, and both G and P need to solve interpolation/evaluation problems over domains of
size |C|, where C is the Fr-arithmetic circuit given as input to G. Thus, efficiency can be improved if E is
sufficiently 2-adic. Concretely, to fully take advantage of the efficiency benefits of 2-adicity, one requires that
2` ≥ |C|, i.e., ν2(r − 1) ≥ dlog |C|e where ν2(·) denotes the 2-adic order function.

This fact motivates much of the extensive search for suitable curve parameters, described in Section 3.2.

Remark C.3 (lack of 2-adicity). One can consider other/weaker requirements (e.g., ν3(r−1) ≥ dlog3 |C|e, or
r−1 is divisible by a smooth numberM ≥ |C|) which would still somewhat simplify interpolation/evaluation
problems over |C|-size domains in Fr. The above requirement that ν2(r − 1) ≥ dlog |C|e is, in a sense,
the “ideal” one. Moreover, even if E does not satisfy these other/weaker requirements, it is still possible to
instantiate the zk-SNARK, but at a higher computational cost (both asymptotically and in practice), due to
the necessary use of “heavier” techniques applying to “generic” fields [PGHR13].

C.3 The zk-SNARK verifier protocol

The (pairing-based) preprocessing zk-SNARKs that we use follow those of [BCTV14] (see Section 3.3); in
turn, these improve upon and implement those of [PGHR13]. In this paper, we construct arithmetic circuits
for verifying the evaluation of the zk-SNARK verifier V : a circuit CV,4 for an instantiation based on the
curve E4, and a circuit CV,6 for one based on the curve E6 (see Section 5.1). For completeness, in Figure 9
we summarize V ’s abstract protocol.

We see that V ’s protocol consists of two main parts: (a) use the verification key vk and input ~x ∈ Fnr
to compute vk~x (see Step 1); and (b) use the verification key vk, value vk~x, and proof π, to compute 12
pairings and perform the required checks (see Step 2, Step 3, Step 4). Thus, the first part requires O(n) scalar
multiplications in G1, while the second part requires O(1) pairing evaluations.

For additional details regarding V (and, more generally, the preprocessing zk-SNARK construction), we
refer the reader to [BCTV14, PGHR13]. Indeed, our focus in this work is not why V executes these checks,
but how we can efficiently verify its checks via suitable arithmetic circuits.

38

ALGEBRAIC SETUP. A prime r, two cyclic groups G1 and G2 of order r with generators P1 and P2 respectively, and a pairing
e : G1 ×G2 → GT , where GT is also cyclic of order r. (See Appendix B.1 for a pairing’s definition.)

zk-SNARK verifier V for inputs of size n
• INPUTS:

– verification key vk = (vkA, vkB, vkC, vkγ , vk
1
βγ , vk

2
βγ , vkZ, vkIC), where

∗ vkB, vk
1
βγ are in G1

∗ vkA, vkC, vkγ , vk
2
βγ , vkZ are in G2

∗ vkIC = (vkIC,0, vkIC,1, . . . , vkIC,n) ∈ G1+n
1

– input ~x = (x1, . . . , xn), where xi ∈ Fr
– proof π = (πA, π

′
A, πB, π

′
B, πC, π

′
C, πK, πH), where πA, π

′
A, π
′
B, πC, π

′
C, πK, πH ∈ G1 and πB ∈ G2

• OUTPUTS: decision bit

1. Compute vk~x := vkIC,0 +
∑n
i=1 xivkIC,i ∈ G1.

2. Check validity of knowledge commitments: e(πA, vkA) = e(π′A,P2) , e(vkB, πB) = e(π′B,P2) , e(πC, vkC) = e(π′C,P2).
3. Check same coefficients were used: e(πK, vkγ) = e(vk~x + πA + πC, vk

2
βγ) · e(vk1

βγ , πB).
4. Check QAP divisibility: e(vk~x + πA, πB) = e(πH, vkZ) · e(πC,P2).
5. Accept if and only if all the above checks succeeded.

Figure 9: Summary of the checks performed by the zk-SNARK verifier V .

39

D Proof-carrying data for arithmetic compliance predicates

We define a proof-carrying data system (PCD system), which is a cryptographic primitive that captures
the notion of proof-carrying data [CT10, CT12]. More precisely, we define preprocessing PCD systems
[BCCT13]. The definitions here are somewhat informal; for details, we refer the reader to [BCCT13].
Proof-carrying data at a glance. Fix a predicate Π. Consider a distributed computation where nodes
perform computations; each computation takes as input messages and outputs a new output message. The
security goal is to ensure that each output message is compliant with the predicate Π. Proof-carrying data
ensures this goal by attaching short and easy-to-verify proofs of Π-compliance to each message.

Concretely, a key generator G first sets up a proving key and a verification key. Anyone can then use a
prover P, which is given as input the proving key, prior messages ~zin with proofs ~πin, and an output message
z, to generate a proof π attesting that z is Π-compliant. Anyone can use a verifier V, which is given as input
the verification key, a message z, and a proof, to verify that z is Π-compliant.

Crucially, proof generation and proof verification time are “history independent”: the first only depends
on the time to execute Π on input a node’s messages, while the second only on the message length.

We now spell out more details, by first specifying the notion of distributed computation, and then that of
compliance with a predicate Π. Our discussion is specific to predicates specified as F-arithmetic circuits.
Transcripts. Given nmsg, nloc, s ∈ N and field F, an F-arithmetic transcript (for message size nmsg,
local-data size nloc, and arity s) is a triple T = (G, loc, data), where G = (V,E) is a directed acyclic graph
G, loc : V → Fnloc are node labels, and data : E → Fnmsg are edge labels. The output of T, denoted out(T),
equals data(ũ, ṽ) where (ũ, ṽ) is the lexicographically-first edge with ṽ a sink.

Intuitively, the label loc(v) of a node v represents the local data used by v in his local computation; the
edge label data(u, v) of a directed edged (u, v) represents the message sent from node u to node v. Typically,
a party at node v uses the local data loc(v) and “input messages”

(
data(u, v)

)
u∈parents(v)

to compute an
“output message” data(v, w) for each child w ∈ children(v).
Compliance. Given field F and nmsg, nloc, s ∈ N, an F-arithmetic compliance predicate Π (for message
size nmsg, local-data size nloc, and arity s) is an F-arithmetic circuit with domain Fnmsg × Fnloc × Fs·nmsg × F.
The compliance predicate Π specifies whether a given transcript T is compliant or not, as follows. Consider
any transcript T with message size nmsg, local-data size nloc, and arity s. We say that T = (G, loc, data) is
Π-compliant, denoted Π(T) = 0, if, for every v ∈ V and w ∈ children(v), it holds that

Π
(
data(v, w), loc(v),

(
data(u, v)

)
u∈parents(v)

, bbase

)
= 0 ,

where bbase ∈ {0, 1} is the base case flag (i.e., equals 1 if and only if v is a source). Furthermore, we say that
a message z is Π-compliant if there is T such that Π(T) = 0 and out(T) = z.

We are now ready to describe the syntax, semantics, and security of a proof-carrying data system.

Given a field F, a (preprocessing) proof-carrying data system (PCD system) for F-arithmetic compliance
predicates is a triple of polynomial-time algorithms (G,P,V) working as follows.

• G(1λ,Π)→ (pk, vk). On input a security parameter λ (presented in unary) and an F-arithmetic compliance
predicate Π, the key generator G probabilistically samples a proving key pk and a verification key vk. We
assume, without loss of generality, that pk contains (a description of) the predicate Π.

The keys pk and vk are published as public parameters and can be used, any number of times, to prove/verify
Π-compliance of messages.

• P(pk, z, zloc, ~zin, ~πin)→ π. On input a proving key pk, outgoing message z, local data zloc, and incoming
messages ~zin with proofs ~πin, the prover P outputs a proof π for the statement “z is Π-compliant”.

40

• V(vk, z, π)→ b. On input a verification key vk, a message z, and a proof π, the verifier V outputs b = 1 if
he is convinced by π that z is Π-compliant.

The triple (G,P,V) satisfies the following properties.
Completeness. The honest prover can convince the verifier that the output of any compliant transcript
is indeed compliant. Namely, for every security parameter λ, F-arithmetic compliance predicate Π, and
distributed-computation generator S (see below),

Pr

[
Π(T) = 0

V
(
vk, out(T), π

)
6= 1

∣∣∣∣ (pk, vk)← G(1λ,Π)
(T, π)← ProofGen(S, pk,P)

]
= 0 .

Above, ProofGen is an interactive protocol between a distributed-computation generator S and the PCD
prover P, in which both are given the compliance predicate Π and the proving key pk. Essentially, at every
time step, S chooses to do one of the following actions: add a new unlabeled vertex to the computation
transcript so far (this corresponds to adding a new computing node to the computation), label an unlabeled
vertex (this corresponds to a choice of local data by a computing node), or add a new labeled edge (this
corresponds to a new message from one node to another). In case S chooses the third action, the PCD prover
P produces a proof for the Π-compliance of the new message, and adds this new proof as an additional label
to the new edge. When S halts, the interactive protocol outputs the distributed computation transcript T,
as well as T’s output and corresponding proof. Intuitively, the completeness property requires that if T is
compliant with Π, then the proof attached to the output (which is the result of dynamically invoking P for
each message in T, as T was being constructed by S) is accepted by the verifier.
Succinctness. For every security parameter λ, F-arithmetic predicate Π, and (pk, vk) ∈ G(1λ,Π),
• an honestly-generated proof π has Oλ(1) bits;
• V(vk, z, π) runs in time Oλ(|z|).
Above, Oλ hides a (fixed) polynomial factor in λ.
Proof of knowledge (and soundness). If the verifier accepts a proof for a message, the prover “knows” a
compliant transcript T with output z. (Thus, soundness holds.) Namely, for every constant c > 0 and every
polynomial-size adversary A there is a polynomial-size witness extractor E such that, for every large-enough
security parameter λ, for every F-arithmetic compliance predicate Π of size λc,

Pr

 V(vk, z, π) = 1(
out(T) 6= z ∨ Π(T) 6= 0

) ∣∣∣∣∣∣
(pk, vk)← G(1λ,Π)

(z, π)← A(pk, vk)
T← E(pk, vk)

 ≤ negl(λ) .

Statistical zero knowledge. An honestly-generated proof is statistical zero knowledge.27 Namely, there
is a polynomial-time stateful simulator S such that, for all stateful distinguishers D, the following two
probabilities are negligibly-close:

Pr

 Φ = 1

∣∣∣∣∣∣∣∣
Π← D(1λ)

(pk, vk)← G(1λ,Π)
(z, zloc, ~zin, ~πin)← D(pk, vk)

π ← P(pk, z, zloc, ~zin, ~πin)

 and Pr

 Φ = 1

∣∣∣∣∣∣∣∣
Π← D(1λ)

(pk, vk)← S(1λ,Π)
(z, zloc, ~zin, ~πin)← D(pk, vk)

π ← S(z)

 ,

where, above, Φ = 1 if and only if: (i) if ~πin = ⊥, then Π(z, zloc, ~zin, 1) = 0; (ii) if ~πin 6= ⊥, then
Π(z, zloc, ~zin, 0) = 0 and, for each corresponding pair (zin, πin), V(vk, zin, πin) = 1; and (iii) D(π) = 1.

27In this paper, we construct PCD systems from preprocessing zk-SNARKs. Hence, analogously to preprocessing zk-SNARKs
(cf. Remark C.1) perfect zero knowledge can be achieved at the only expense of a negligible error in completeness.

41

E Scalable zk-SNARKs for random-access machines

At high-level, a zk-SNARK for random-access machines is a cryptographic primitive that provides short and
easy-to-verify non-interactive zero-knowledge proofs of knowledge for the correct execution of programs. A
public proving key is used to generate proofs, and a public verification key is used to verify them; the two
keys are jointly generated once, and can then be used any number of times.

In this work, we seek, and obtain an implementation of, zk-SNARKs that are scalable, i.e., that are:

• Fully succinct. This property requires that a single pair of keys suffices for computations of any (polyno-
mial) size. In particular, the time to generate a key pair is short (i.e., bounded by a fixed polynomial in the
security parameter) and so is the key length.

• Incrementally computable. This property requires that proof generation is carried out incrementally,
along the original computation, by updating, at each step, a proof of correctness of the computation so far.

Below, we informally define fully-succinct zk-SNARKs for random-access machines, as well as the additional
property of incremental computation. We refer the reader to, e.g., [BCCT13] for a formal treatment. (Also
see Remark C.2 for a technical comment that applies here too.)

A fully-succinct zk-SNARK for random-access machines (see Appendix A.2) is a triple of polynomial-time
algorithms (G?, P ?, V ?) working as follows.

• G?(1λ,M) → (pk, vk). On input a security parameter λ (presented in unary) and a random-access
machine M, the key generator G? probabilistically samples a proving key pk and a verification key vk.
We assume, without loss of generality, that pk contains (a description of) the machine M.

The keys pk and vk are published as public parameters and can be used, any number of times, to prove/verify
membership of instances in the language LM of accepting computations on M (see Definition A.2). The key
generator G? is thus succinct and universal (i.e., it does not depend on the program P , or even computation
size, but only on the machine M used to run programs). The keys pk and vk are used as follows.28

• P ?(pk,P, T,G) → π. On input a program P , time bound T , and auxiliary input G such that M(P;G)
accepts in ≤ T steps, the prover P ? outputs a non-interactive proof π for the statement “ (P, T) ∈ LM ”.

• V ?(vk,P, T, π)→ b. On input a program P , time bound T , and proof π, the verifier V ? outputs b = 1 if
he is convinced by π that (P, T) ∈ LM.

The triple (G?, P ?, V ?) satisfies the following properties.

Completeness. The honest prover can convince the verifier for any instance in the language. Namely, for
every security parameter λ, random-access machine M, and instance (P, T) ∈ LM with a witness G,

Pr

[
V ?(vk,P, T, π) = 1

∣∣∣∣ (pk, vk)← G?(1λ,M)
π ← P ?(pk,P, T,G)

]
= 1 .

Succinctness. For every security parameter λ, random-access machine M, and (pk, vk) ∈ G?(1λ,M),
• an honestly-generated proof π has Oλ,M(1) bits;
• V ?(vk,P, T, π) runs in time Oλ,M(|P|+ log T).

28Both pk and vk are public and only consist of Oλ,M(1) bits; so, one could think of them as a single common reference string
crs := (pk, vk). We choose not to do so, because it will be more natural to think of them as separate data structures.

42

Above, Oλ,M hides a (fixed) polynomial factor in λ and |M|. (In our implementation, λ, |M| are constants.)

Proof of knowledge (and soundness). If the verifier accepts a proof for a polynomial-size computation,
the prover “knows” a witness for the instance. (Thus, soundness holds.) Namely, for every constant c > 0
and every polynomial-size adversary A there is a polynomial-size witness extractor E such that, for every
large enough security parameter λ, for every random-access machine M,

Pr

 T ≤ λc
V ?(vk,P, T, π) = 1(

(P, T),G
)
/∈ RM

∣∣∣∣∣∣
(pk, vk)← G?(1λ,M)
(P, T, π)← A(pk, vk)

G ← E(pk, vk)

 ≤ negl(λ) .

Statistical zero knowledge. An honestly-generated proof is statistical zero knowledge.29 Namely, there
is a polynomial-time stateful simulator S such that, for all stateful distinguishers D, the following two
probabilities are negligibly-close:

Pr

 ((P, T),G
)
∈ RM

D(π) = 1

∣∣∣∣∣∣∣∣
M← D(1λ)

(pk, vk)← G?(1λ,M)
(P, T,G)← D(pk, vk)
π ← P ?(pk,P, T,G)

 and Pr

 ((P, T),G
)
∈ RM

D(π) = 1

∣∣∣∣∣∣∣∣
M← D(1λ)

(pk, vk)← S(1λ,M)
(P, T,G)← D(pk, vk)

π ← S(P, T)

 .

Finally, a fully-succinct zk-SNARK is also incrementally computable if there exist two algorithms, a
computation supervisor SV and a sub-prover SP, such that, for every security parameter λ, random-access
machine M, instance (P, T) ∈ LM with a witness G = (g0, . . . , gT−1), key pair (pk, vk) ∈ G?(1λ,M), and
letting πT := P ?(pk,P, T,G), the following holds.
• For i = 1, . . . , T , πi = SP(pk, auxi, πi−1).
• For i = 1, . . . , T , auxi is the final state of memory when SV(M, gi) has read-write random access to a

memory initialized to the state auxi−1. Moreover, each auxi has size Oλ,M(Si), where Si is the space
usage of M(P;G) at time i.30

• The proof π0 is defined as ⊥, and aux0 as P .
In particular, SV and SP have time and space complexity Oλ,M(1); these costs are incurred each time a new
proof is generated from an old one.

E.1 Known constructions and security

Theoretical constructions of fully-succinct zk-SNARKs are known, based on various cryptographic assump-
tions [Mic00, Val08, BCCT13]. Despite achieving essentially-optimal asymptotics [BFLS91, BGHSV05,
BCGT13b, BCGT13a, BCCT13] no implementations of them have been reported in the literature to date.

Of the above, the only approach that also achieves incremental computation is the one of Bitansky et
al. [BCCT13], which we follow in this paper. Security in [BCCT13] is based on the security of preprocessing
zk-SNARKs (see Appendix C.1) and collision-resistant hash functions.

29In this paper, we construct fully-succinct zk-SNARKs from preprocessing ones. Hence, analogously to preprocessing
zk-SNARKs (cf. Remark C.1) perfect zero knowledge can be achieved at the only expense of a negligible error in completeness.

30In our implementation, auxi has size ≈ Si. Thus, the effective space overhead, compared to the original computation, is the
additive, constant cost to run SV and SP.

43

References
[ADLM+08] Yuriy Arbitman, Gil Dogon, Vadim Lyubashevsky, Daniele Micciancio, Chris Peikert, and Alon Rosen. SWIFFTX: a

proposal for the SHA-3 standard, 2008.

[Ajt96] Miklós Ajtai. Generating hard instances of lattice problems. In Proceedings of the 28th Annual ACM Symposium on
the Theory of Computing, STOC ’96, pages 99–108, 1996.

[AM93] A. O. L. Atkin and F. Morain. Elliptic curves and primality proving. Mathematics of Computation, 61:29–68, 1993.

[AV77] Dana Angluin and Leslie G. Valiant. Fast probabilistic algorithms for hamiltonian circuits and matchings. In
Proceedings on 9th Annual ACM Symposium on Theory of Computing, STOC ’77, pages 30–41, 1977.

[BB04] Dan Boneh and Xavier Boyen. Secure identity based encryption without random oracles. In Proceedings of the 24th
Annual International Cryptology Conference, CRYPTO ’04, pages 443–459, 2004.

[BBFR15] Michael Backes, Manuel Barbosa, Dario Fiore, and Raphael M. Reischuk. ADSNARK: nearly practical and privacy-
preserving proofs on authenticated data. In Proceedings of the 36th IEEE Symposium on Security and Privacy,
S&P ’15, pages 271–286, 2015.

[BCCT12] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. From extractable collision resistance to succinct
non-interactive arguments of knowledge, and back again. In Proceedings of the 3rd Innovations in Theoretical
Computer Science Conference, ITCS ’12, pages 326–349, 2012.

[BCCT13] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. Recursive composition and bootstrapping for
SNARKs and proof-carrying data. In Proceedings of the 45th ACM Symposium on the Theory of Computing,
STOC ’13, pages 111–120, 2013.

[BCGG+14] Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers, Eran Tromer, and Madars Virza.
Zerocash: Decentralized anonymous payments from Bitcoin. In Proceedings of the 2014 IEEE Symposium on
Security and Privacy, SP ’14, pages 459–474, 2014.

[BCGT13a] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, and Eran Tromer. Fast reductions from RAMs to delegatable
succinct constraint satisfaction problems. In Proceedings of the 4th Innovations in Theoretical Computer Science
Conference, ITCS ’13, pages 401–414, 2013.

[BCGT13b] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, and Eran Tromer. On the concrete efficiency of probabilistically-
checkable proofs. In Proceedings of the 45th ACM Symposium on the Theory of Computing, STOC ’13, pages
585–594, 2013.

[BCGTV13a] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and Madars Virza. SNARKs for C: Verifying
program executions succinctly and in zero knowledge. In Proceedings of the 33rd Annual International Cryptology
Conference, CRYPTO ’13, pages 90–108, 2013.

[BCGTV13b] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and Madars Virza. TinyRAM architecture
specification v2.00, 2013. URL: http://scipr-lab.org/tinyram.

[BCIOP13] Nir Bitansky, Alessandro Chiesa, Yuval Ishai, Rafail Ostrovsky, and Omer Paneth. Succinct non-interactive arguments
via linear interactive proofs. In Proceedings of the 10th Theory of Cryptography Conference, TCC ’13, pages 315–333,
2013.

[BCP13] Nir Bitansky, Ran Canetti, and Omer Paneth. How to construct extractable one-way functions against uniform
adversaries. Cryptology ePrint Archive, Report 2013/468, 2013.

[BCPR13] Nir Bitansky, Ran Canetti, Omer Paneth, and Alon Rosen. Indistinguishability obfuscation vs. auxiliary-input
extractable functions: One must fall. Cryptology ePrint Archive, Report 2013/641, 2013.

[BCTV14] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. Succinct non-interactive zero knowledge for a
von Neumann architecture. In Proceedings of the 23rd USENIX Security Symposium, Security ’14, pages 781–796,
2014. Available at http://eprint.iacr.org/2013/879.

[BDSMP91] Manuel Blum, Alfredo De Santis, Silvio Micali, and Giuseppe Persiano. Non-interactive zero-knowledge. SIAM
Journal on Computing, 20(6):1084–1118, 1991.

[BEGKN91] Manuel Blum, Will Evans, Peter Gemmell, Sampath Kannan, and Moni Naor. Checking the correctness of memories.
In Proceedings of the 32nd Annual Symposium on Foundations of Computer Science, FOCS ’91, pages 90–99, 1991.

[BFLS91] László Babai, Lance Fortnow, Leonid A. Levin, and Mario Szegedy. Checking computations in polylogarithmic time.
In Proceedings of the 23rd Annual ACM Symposium on Theory of Computing, STOC ’91, pages 21–32, 1991.

[BFM88] Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-knowledge and its applications. In Proceedings
of the 20th Annual ACM Symposium on Theory of Computing, STOC ’88, pages 103–112, 1988.

44

http://scipr-lab.org/tinyram
http://eprint.iacr.org/2013/879

[BFRS+13] Benjamin Braun, Ariel J. Feldman, Zuocheng Ren, Srinath Setty, Andrew J. Blumberg, and Michael Walfish.
Verifying computations with state. In Proceedings of the 25th ACM Symposium on Operating Systems Principles,
SOSP ’13, pages 341–357, 2013.

[BGHSV05] Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil Vadhan. Short PCPs verifiable in
polylogarithmic time. In Proceedings of the 20th Annual IEEE Conference on Computational Complexity, CCC ’05,
pages 120–134, 2005.

[BGOhM07] Paulo S. Barreto, Steven D. Galbraith, Colm Ó hÉigeartaigh, and Scott Michael. Efficient pairing computation on
supersingular abelian varieties. Designs, Codes and Cryptography, 42(3):239–271, 2007.

[BKLS02] Paulo S. L. M. Barreto, Hae Yong Kim, Ben Lynn, and Michael Scott. Efficient algorithms for pairing-based
cryptosystems. In Proceedings of the 22Nd Annual International Cryptology Conference, CRYPTO ’02, pages
354–368, 2002.

[BLPRS13] Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and Damien Stehlé. Classical hardness of learning
with errors. In Proceedings of the 45th Annual ACM Symposium on Symposium on Theory of Computing, STOC ’13,
pages 575–584, 2013.

[BLS03] Paulo S. L. M. Barreto, Ben Lynn, and Michael Scott. Constructing elliptic curves with prescribed embedding
degrees. In Proceedings of the 3rd International Conference on Security in Communication Networks, SCN ’02,
pages 257–267, 2003.

[BLS04] Paulo S. L. M. Barreto, Ben Lynn, and Michael Scott. Efficient implementation of pairing-based cryptosystems.
Journal of Cryptology, 17(4):321–334, 2004.

[BS10] Naomi Benger and Michael Scott. Constructing tower extensions of finite fields for implementation of pairing-based
cryptography. In Proceedings of the 3rd International Conference on Arithmetic of Finite Fields, WAIFI ’10, pages
180–195, 2010.

[BSW12] Dan Boneh, Gil Segev, and Brent Waters. Targeted malleability: Homomorphic encryption for restricted computations.
In Proceedings of the 3rd Innovations in Theoretical Computer Science Conference, ITCS ’12, pages 350–366, 2012.

[BW05] Friederike Brezing and Annegret Weng. Elliptic curves suitable for pairing based cryptography. Designs, Codes and
Cryptography, 37(1):133–141, 2005.

[CFAD+12] Henri Cohen, Gerhard Frey, Roberto Avanzi, Christophe Doche, Tanja Lange, Kim Nguyen, and Frederik Vercauteren.
Handbook of Elliptic and Hyperelliptic Curve Cryptography. Chapman & Hall/CRC, 2 edition, 2012.

[CFHK+15] Craig Costello, Cédric Fournet, Jon Howell, Markulf Kohlweiss, Benjamin Kreuter, Michael Naehrig, Bryan Parno,
and Samee Zahur. Geppetto: Versatile verifiable computation. In Proceedings of the 36th IEEE Symposium on
Security and Privacy, S&P ’15, pages 253–270, 2015.

[CMT12] Graham Cormode, Michael Mitzenmacher, and Justin Thaler. Practical verified computation with streaming interactive
proofs. In Proceedings of the 4th Symposium on Innovations in Theoretical Computer Science, ITCS ’12, pages
90–112, 2012.

[CP01] C. Cocks and Richard G. E. Pinch. Identity-based cryptosystems based on the weil pairing. Unpublished manuscript,
2001.

[CR72] Stephen A. Cook and Robert A. Reckhow. Time-bounded random access machines. In Proceedings of the 4th Annual
ACM Symposium on Theory of Computing, STOC ’72, pages 73–80, 1972.

[CRR11] Ran Canetti, Ben Riva, and Guy N. Rothblum. Practical delegation of computation using multiple servers. In
Proceedings of the 18th ACM Conference on Computer and Communications Security, CCS ’11, pages 445–454,
2011.

[CT10] Alessandro Chiesa and Eran Tromer. Proof-carrying data and hearsay arguments from signature cards. In Proceedings
of the 1st Symposium on Innovations in Computer Science, ICS ’10, pages 310–331, 2010.

[CT12] Alessandro Chiesa and Eran Tromer. Proof-carrying data: Secure computation on untrusted platforms (high-level
description). The Next Wave: The National Security Agency’s review of emerging technologies, 19(2):40–46, 2012.

[CTV13] Stephen Chong, Eran Tromer, and Jeffrey A. Vaughan. Enforcing language semantics using proof-carrying data.
Cryptology ePrint Archive, Report 2013/513, 2013.

[CTV15] Alessandro Chiesa, Eran Tromer, and Madars Virza. Cluster computing in zero knowledge. In Proceedings of the
34th Annual International Conference on Theory and Application of Cryptographic Techniques, EUROCRYPT ’15,
pages 371–403, 2015.

[DEM05] Régis Dupont, Andreas Enge, and François Morain. Building curves with arbitrary small MOV degree over finite
prime fields. Journal of Cryptology, 18(2):79–89, 2005.

45

[DFGK14] George Danezis, Cédric Fournet, Jens Groth, and Markulf Kohlweiss. Square span programs with applications to
succinct NIZK arguments. In Proceedings of the 20th International Conference on the Theory and Application of
Cryptology and Information Security, ASIACRYPT ’14, pages 532–550, 2014.

[ES10] Andreas Enge and Andrew V. Sutherland. Class invariants by the CRT method. In Proceedings of the 9th International
Symposium on Algorithmic Number Theory, ANTS ’10, pages 142–156, 2010.

[FMR06] Gerhard Frey, Michael Müller, and Hans-Georg Rück. The Tate pairing and the discrete logarithm applied to elliptic
curve cryptosystems. IEEE Transactions on Information Theory, 45(5):1717–1719, 2006.

[FR94] Gerhard Frey and Hans-Georg Rück. A remark concerning m-divisibility and the discrete logarithm in the divisor
class group of curves. Mathematics of Computation, 62(206):865–874, 1994.

[FS87] Amos Fiat and Adi Shamir. How to prove yourself: practical solutions to identification and signature problems. In
Proceedings of the 6th Annual International Cryptology Conference, CRYPTO ’87, pages 186–194, 1987.

[FST10] David Freeman, Michael Scott, and Edlyn Teske. A taxonomy of pairing-friendly elliptic curves. Journal of
Cryptology, 23(2):224–280, 2010.

[Gen04] Rosario Gennaro. Multi-trapdoor commitments and their applications to proofs of knowledge secure under concurrent
man-in-the-middle attacks. In Proceedings of the 24th Annual International Cryptology Conference, CRYPTO ’04,
pages 220–236, 2004.

[GGH96] Oded Goldreich, Shafi Goldwasser, and Shai Halevi. Collision-free hashing from lattice problems. Technical report,
1996. ECCC TR95-042.

[GGH13] Sanjam Garg, Craig Gentry, and Shai Halevi. Candidate multilinear maps from ideal lattices. In Proceedings of the
32nd Annual International Conference on Theory and Application of Cryptographic Techniques, EUROCRYPT ’13,
pages 1–17, 2013.

[GGPR13] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. Quadratic span programs and succinct
NIZKs without PCPs. In Proceedings of the 32nd Annual International Conference on Theory and Application of
Cryptographic Techniques, EUROCRYPT ’13, pages 626–645, 2013.

[GHS02] Steven D. Galbraith, Keith Harrison, and David Soldera. Implementing the Tate pairing. In Proceedings of the 5th
International Symposium on Algorithmic Number Theory, ANTS ’02, pages 324–337, 2002.

[GLS09] Parikshit Gopalan, Shachar Lovett, and Amir Shpilka. On the complexity of boolean functions in different character-
istics. In Proceedings of the 24th Annual IEEE Conference on Computational Complexity, CCC ’09, pages 173–183,
2009.

[Gro10] Jens Groth. Short pairing-based non-interactive zero-knowledge arguments. In Proceedings of the 16th International
Conference on the Theory and Application of Cryptology and Information Security, ASIACRYPT ’10, pages 321–340,
2010.

[GS06] R. Granger and Nigel Smart. On computing products of pairings. Cryptology ePrint Archive, Report 2006/172, 2006.

[GS10] Robert Granger and Michael Scott. Faster squaring in the cyclotomic subgroup of sixth degree extensions. In
Proceedings of the 13th international conference on Practice and Theory in Public Key Cryptography, PKC’10,
pages 209–223, 2010.

[GSCvDD03] Blaise Gassend, G. Edward Suh, Dwaine E. Clarke, Marten van Dijk, and Srinivas Devadas. Caches and hash trees
for efficient memory integrity verification. In Proceedings of the 9th International Symposium on High-Performance
Computer Architecture, HPCA ’03, pages 295–306, 2003.

[GSMB03] Eu-Jin Goh, Hovav Shacham, Nagendra Modadugu, and Dan Boneh. SiRiUS: Securing remote untrusted storage. In
Proceedings of the Network and Distributed System Security Symposium, NDSS ’03, 2003.

[GW11] Craig Gentry and Daniel Wichs. Separating succinct non-interactive arguments from all falsifiable assumptions. In
Proceedings of the 43rd Annual ACM Symposium on Theory of Computing, STOC ’11, pages 99–108, 2011.

[HSV06] F. Hess, N. P. Smart, and F. Vercauteren. The Eta pairing revisited. IEEE Transactions on Information Theory,
52(10):4595–4602, 2006.

[JJ98] Antoine Joux and Stern Jacques. Lattice reduction: A toolbox for the cryptanalyst. Journal of Cryptology, 11(3):161–
185, 1998.

[KKC13] Taechan Kim, Sungwook Kim, and Jung Hee Cheon. On the final exponentiation in Tate pairing computations. IEEE
Transactions on Information Theory, 59(6):4033–4041, 2013.

[KPPS+14] Ahmed E. Kosba, Dimitrios Papadopoulos, Charalampos Papamanthou, Mahmoud F. Sayed, Elaine Shi, and Nikos
Triandopoulos. TRUESET: Faster verifiable set computations. In Proceedings of the 23rd USENIX Security
Symposium, USENIX Security ’14, pages 765–780, 2014.

46

[KRSWF03] Mahesh Kallahalla, Erik Riedel, Ram Swaminathan, Qian Wang, and Kevin Fu. Plutus: Scalable secure file sharing
on untrusted storage. In Proceedings of the 2003 Conference on File and Storage Technologies, FAST ’03, 2003.

[KT08] Koray Karabina and Edlyn Teske. On prime-order elliptic curves with embedding degrees k = 3, 4, and 6. In
Proceedings of the 8th International Conference on Algorithmic Number Theory, ANTS-VIII ’08, pages 102–117,
2008.

[Lip12] Helger Lipmaa. Progression-free sets and sublinear pairing-based non-interactive zero-knowledge arguments. In
Proceedings of the 9th Theory of Cryptography Conference on Theory of Cryptography, TCC ’12, pages 169–189,
2012.

[Lip13] Helger Lipmaa. Succinct non-interactive zero knowledge arguments from span programs and linear error-correcting
codes. In Proceedings of the 19th International Conference on the Theory and Application of Cryptology and
Information Security, ASIACRYPT ’13, pages 41–60, 2013.

[Lip14] Helger Lipmaa. Efficient NIZK arguments via parallel verification of Beneš networks. In Proceedings of the 9th
International Conference on Security and Cryptography for Networks, SCN ’14, pages 416–434, 2014.

[LM06] Vadim Lyubashevsky and Daniele Micciancio. Generalized compact knapsacks are collision resistant. In Proceedings
of the 33rd International Conference on Automata, Languages and Programming, ICALP ’06, pages 144–155, 2006.

[LMN10] Kristin Lauter, Peter L. Montgomery, and Michael Naehrig. An analysis of affine coordinates for pairing computation.
In Proceedings of the 4th International Conference on Pairing-based Cryptography, Pairing ’10, pages 1–20, 2010.

[LMPR08] Vadim Lyubashevsky, Daniele Micciancio, Chris Peikert, and Alon Rosen. SWIFFT: a modest proposal for FFT
hashing. In Proceedings of the 15th International Workshop on Fast Software Encryption, FSE ’08, pages 54–72,
2008.

[LN97] Rudolf Lidl and Harald Niederreiter. Finite Fields. Cambridge University Press, second edition edition, 1997.

[Mic00] Silvio Micali. Computationally sound proofs. SIAM Journal on Computing, 30(4):1253–1298, 2000. Preliminary
version appeared in FOCS ’94.

[MNT01] Atsuko Miyaji, Masaki Nakabayashi, and Shunzo Takano. New explicit conditions of elliptic curve traces for
FR-reduction. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences,
84(5):1234–1243, 2001.

[MOV91] Alfred Menezes, Tatsuaki Okamoto, and Scott Vanstone. Reducing elliptic curve logarithms to logarithms in a finite
field. In Proceedings of the 23rd Annual ACM Symposium on Theory of Computing, STOC ’91, pages 80–89, 1991.

[MS01] David Mazières and Dennis Shasha. Don’t trust your file server. In Proceedings of the 8th Workshop on Hot Topics
in Operating Systems, HotOS ’01, pages 113–118, 2001.

[MVS00] Umesh Maheshwari, Radek Vingralek, and William Shapiro. How to build a trusted database system on untrusted
storage. In Proceedings of the 4th Conference on Symposium on Operating System Design & Implementation, OSDI
’00, pages 10–10, 2000.

[NY89] Moni Naor and Moti Yung. Universal one-way hash functions and their cryptographic applications. In Proceedings
of the 21st Annual ACM Symposium on Theory of Computing, STOC ’89, pages 33–43, 1989.

[NY90] Moni Naor and Moti Yung. Public-key cryptosystems provably secure against chosen ciphertext attacks. In
Proceedings of the 22nd Annual ACM Symposium on Theory of Computing, STOC ’90, pages 427–437, 1990.

[Odl85] Andrew M. Odlyzko. Discrete logarithms in finite fields and their cryptographic significance. In Proceedings of the
3rd Annual International Conference on Theory and Application of Cryptographic Techniques, EUROCRYPT ’85,
pages 224–314, 1985.

[PGHR13] Brian Parno, Craig Gentry, Jon Howell, and Mariana Raykova. Pinocchio: Nearly practical verifiable computation.
In Proceedings of the 34th IEEE Symposium on Security and Privacy, Oakland ’13, pages 238–252, 2013.

[PH78] Stephen Pohlig and Martin Hellman. An improved algorithm for computing logarithms over gf(p) and its crypto-
graphic significance. Journal IEEE Transactions on Information Theory, 24(1):106–110, 1978.

[Pol78] John M. Pollard. Monte Carlo methods for index computation (mod p). Mathematics of Computation, 32(143):918–
924, 1978.

[Pol00] John M. Pollard. Kangaroos, monopoly and discrete logarithms. Journal of Cryptology, 13:437–447, 2000.

[PR06] Chris Peikert and Alon Rosen. Efficient collision-resistant hashing from worst-case assumptions on cyclic lattices. In
Proceedings of the 3rd Conference on Theory of Cryptography, TCC ’06, pages 145–166, 2006.

[Raz87] Alexander A. Razborov. Lower bounds on the size of bounded depth circuits over a complete basis with logical
addition. Mathematical notes of the Academy of Sciences of the USSR, 41(4):333–338, 1987.

47

[Rom90] John Rompel. One-way functions are necessary and sufficient for secure signatures. In Proceedings of the 22nd
Annual ACM Symposium on Theory of Computing, STOC ’90, pages 387–394, 1990.

[SA98] Takakazu Satoh and Kiyomichi Araki. Fermat quotients and the polynomial time discrete log algorithm for anomalous
elliptic curves. Commentarii Mathematici Universitatis Sancti Pauli, 47(1):81–92, 1998.

[SB06] Michael Scott and Paulo S. Barreto. Generating more MNT elliptic curves. Designs, Codes and Cryptography,
38(2):209–217, 2006.

[SBCDPK09] Michael Scott, Naomi Benger, Manuel Charlemagne, Luis J. Dominguez Perez, and Ezekiel J. Kachisa. On the
final exponentiation for calculating pairings on ordinary elliptic curves. In Proceedings of the 3rd International
Conference Palo Alto on Pairing-Based Cryptography, Pairing ’09, pages 78–88, 2009.

[SBVB+13] Srinath Setty, Benjamin Braun, Victor Vu, Andrew J. Blumberg, Bryan Parno, and Michael Walfish. Resolving the
conflict between generality and plausibility in verified computation. In Proceedings of the 8th EuoroSys Conference,
EuroSys ’13, pages 71–84, 2013.

[SBW11] Srinath Setty, Andrew J. Blumberg, and Michael Walfish. Toward practical and unconditional verification of remote
computations. In Proceedings of the 13th USENIX Conference on Hot Topics in Operating Systems, HotOS ’11,
pages 29–29, 2011.

[Sco05] Michael Scott. Computing the Tate pairing. In Proceedings of the The Cryptographers’ Track at the RSA Conference
2005, CT-RSA ’05, pages 293–304, 2005.

[Sco07] Michael Scott. Implementing cryptographic pairings. In Proceedings of the 1st First International Conference on
Pairing-Based Cryptography, Pairing ’07, pages 177–196, 2007.

[Sem98] Igor A. Semaev. Evaluation of discrete logarithms in a group of p-torsion points of an elliptic curve in characteristic
p. Mathematics of Computation, 67(221):353–356, 1998.

[Sha71] Daniel Shanks. Class number, a theory of factorization, and genera. Symposia on Pure Mathematics, 20:415–440,
1971.

[Sil09] Joseph H. Silverman. The Arithmetic of Elliptic Curves. Springer, 2 edition, 2009.

[Sma99] Nigel P. Smart. The discrete logarithm problem on elliptic curves of trace one. Journal of Cryptology, 12(3):193–196,
1999.

[SMBW12] Srinath Setty, Michael McPherson, Andrew J. Blumberg, and Michael Walfish. Making argument systems for
outsourced computation practical (sometimes). In Proceedings of the 2012 Network and Distributed System Security
Symposium, NDSS ’12, 2012.

[Smo87] Roman Smolensky. Algebraic methods in the theory of lower bounds for boolean circuit complexity. In Proceedings
of the 19th Annual ACM Symposium on Theory of Computing, STOC ’87, pages 77–82, 1987.

[Sol03] Jerome A. Solinas. Id-based digital signature algorithms. http://cacr.uwaterloo.ca/conferences/
2003/ecc2003/solinas.pdf, 2003.

[SS11] Joseph H. Silverman and Katherine E. Stange. Amicable pairs and aliquot cycles for elliptic curves. Experimental
Mathematics, 20(3):329–357, 2011.

[Sut11] Andrew V. Sutherland. Computing Hilbert class polynomials with the Chinese remainder theorem. Mathematics of
Computation, 80(273):501–538, 2011.

[Sut12] Andrew V. Sutherland. Accelerating the CM method. LMS Journal of Computation and Mathematics, 15:172–204,
12 2012.

[SVPB+12] Srinath Setty, Victor Vu, Nikhil Panpalia, Benjamin Braun, Andrew J. Blumberg, and Michael Walfish. Taking
proof-based verified computation a few steps closer to practicality. In Proceedings of the 21st USENIX Security
Symposium, Security ’12, pages 253–268, 2012.

[Tha13] Justin Thaler. Time-optimal interactive proofs for circuit evaluation. In Proceedings of the 33rd Annual International
Cryptology Conference, CRYPTO ’13, pages 71–89, 2013.

[TRMP12] Justin Thaler, Mike Roberts, Michael Mitzenmacher, and Hanspeter Pfister. Verifiable computation with massively
parallel interactive proofs. CoRR, abs/1202.1350, 2012.

[Val08] Paul Valiant. Incrementally verifiable computation or proofs of knowledge imply time/space efficiency. In Proceedings
of the 5th Theory of Cryptography Conference, TCC ’08, pages 1–18, 2008.

[Ver10] Frederik Vercauteren. Optimal pairings. IEEE Transactions on Information Theory, 56(1):455–461, 2010.

[vOW99] Paul C. van Oorschot and Michael J. Wiener. Parallel collision search with cryptanalytic applications. Journal of
Cryptology, 12(1):1–28, 1999.

48

http://cacr.uwaterloo.ca/conferences/2003/ecc2003/solinas.pdf
http://cacr.uwaterloo.ca/conferences/2003/ecc2003/solinas.pdf

[Was08] Lawrence C. Washington. Elliptic Curves: Number Theory and Cryptography. Chapman & Hall/CRC, 2 edition,
2008.

[WSRBW15] Riad S. Wahby, Srinath Setty, Zuocheng Ren, Andrew J. Blumberg, and Michael Walfish. Efficient RAM and control
flow in verifiable outsourced computation. In Proceedings of the 22nd Network and Distributed System Security
Symposium, NDSS ’15, 2015.

[ZPK14] Yupeng Zhang, Charalampos Papamanthou, and Jonathan Katz. Alitheia: Towards practical verifiable graph
processing. In Proceedings of the 21st ACM Conference on Computer and Communications Security, CCS ’14, pages
856–867, 2014.

49

	Abstract
	Contents
	1 Introduction
	1.1 Scalability limitations of prior zk-SNARK implementations
	1.2 What we know from theory
	1.3 Contributions
	1.4 Summary of challenges and techniques
	1.5 Follow-up work
	1.6 Roadmap

	2 Preliminaries
	2.1 Preprocessing zk-SNARKs for arithmetic circuits
	2.2 Proof-carrying data
	2.3 The bootstrapping approach

	3 PCD-friendly preprocessing zk-SNARKs
	3.1 PCD-friendly cycles of elliptic curves
	3.2 Two-cycles based on MNT curves
	3.3 A matched pair of preprocessing zk-SNARKs
	3.4 A higher-security 2-cycle

	4 Proof-carrying data from PCD-friendly zk-SNARKs
	4.1 Intuition
	4.2 Construction
	4.3 Security

	5 Constructions of arithmetic circuits
	5.1 Arithmetic circuits for zk-SNARK verifiers
	5.2 Arithmetic circuits for collision-resistant hashing

	6 Scalable zk-SNARKs
	6.1 Specifying a machine
	6.2 Construction summary
	6.3 Arithmetic circuits for secure loads and stores
	6.4 The RAM compliance predicate
	6.5 The new zk-SNARK construction

	7 Evaluation on vnTinyRAM
	8 Open problems
	Acknowledgments
	A Computation models
	A.1 Arithmetic circuits
	A.2 Random-access machines
	A.3 The architecture vnTinyRAM

	B Pairings and elliptic curves
	B.1 Pairings
	B.2 Elliptic curves

	C Preprocessing zk-SNARKs for arithmetic circuit satisfiability
	C.1 Known constructions and security
	C.2 Instantiations via elliptic curves
	C.3 The zk-SNARK verifier protocol

	D Proof-carrying data for arithmetic compliance predicates
	E Scalable zk-SNARKs for random-access machines
	E.1 Known constructions and security

	References

