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Abstract

The increasing availability and use of biometric data for authentication and other purposes
leads to situations when sensitive biometric data is to be handled or used in computation by
entities who may not be fully trusted or otherwise are not authorized to have full access to
such data. This calls for mechanisms of provably protecting biometric data while still allowing
the computation to take place. This work is motivated by the problem of privacy-preserving
matching of two fingerprints (used for secure fingerprint authentication or identification) using
traditional minutia-based representation of fingerprints that leads to the most discriminative
(i.e., accurate) fingerprint comparisons. Unlike previous work in the security literature, we
would like to focus on algorithms that are guaranteed to find the maximum number of minutiae
that can be paired together between two fingerprints leading to more accurate comparisons. To
address this problem, we formulate it as a flow network problem and reduce it to finding maxi-
mum matching size in bipartite graphs. The resulting problem is in turn reduced to computing
the rank of a (non-invertible) matrix, formed as a randomized adjacency matrix of the bipartite
graph. We then provide data-oblivious algorithms for matrix rank computation and consec-
utively finding maximum matching size in a bipartite graph and also extend the algorithms
to solve the problem of accurate fingerprint matching. These algorithms lead to their secure
counterparts using standard secure two-party or multi-party techniques as we show later in this
work. Lastly, we implement secure fingerprint matching in the secure two-party computation
setting using garbled circuit evaluation techniques. Our experimental results demonstrate that
the techniques are efficient, leading to performance similar to that of other fastest secure fin-
gerprint matching techniques, despite higher complexity of our solution that higher accuracy
demands.

1 Introduction

The motivation for this work comes from the need to protect sensitive biometric data when it is being
used in a growing range of applications. In particular, biometric authentication and other uses of
biometric data are becoming more prevalent today in a variety of applications, which was prompted
in part by recent advances in biometric recognition. Large-scale collections of biometric data in
use today include fingerprint, face, and iris images collected by the US Department of Homeland
Security (DHS) from visitors [44]; fingerprint and iris images collected by the government of India
from (more than billion) citizens [41]; iris, fingerprint, and face images collected by the United
Arab Emirates (UAE) Ministry of Interior from visitors [43]; and adoption of biometric passports
in several countries. It is evident that biometric authentication and identification have advantages
over alternative mechanisms such as good accuracy and unforgeability of biometry. Biometric data,
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however, is highly sensitive and, once leaked, cannot be revoked or replaced. This calls for stringent
protection of biometric data while at rest and when used in applications.

The above means that biometric data cannot be easily shared between organizations or agencies,
but there are often legitimate reasons for computing with biometric data that belong to different
entities. As an example, a private investigator can be interested in knowing whether a biometric
she captured appears in the government’s criminal database, but without disclosing the biometric
if no matches are found. Similarly, two organizations or collaborating governments might want to
determine which individuals, if any, appear simultaneously in their respective databases without
revealing any additional information. A solution to enabling such computation while protecting
privacy of the data is to employ secure multi-party computation techniques, which compute the
result without disclosing any additional information.

In this work we would like to specifically treat the problem of secure computation with finger-
print data due to popularity and good accuracy of this type of biometry. We would like to cover as
many settings where biometric data may used in computation by not fully trusted entities (or data
sharing is restricted by law or other provisions) as possible. At the most basic level the problem is
formulated as having one party A who possesses private input (fingerprint X) and another party B
who possesses another private input (fingerprint Y ). The parties would like to compute a function
of their private inputs without disclosing any information other than the agreed-upon computation
output. In the context of fingerprint matching, this can correspond to biometric authentication
(comparing X and Y ) and also biometric identification (when one party, e.g., B has a biometric
database D and the computation consists of securely comparing X to all Y ∈ D and identifying
all biometrics that matched (if any) or determining the closest match). Another setting in which
secure processing of biometric data is relevant is that of computation outsourcing by one or more
data owners. In such a case, the computation still consists of comparing two biometrics to each
other, but the security requirements are such that the servers that carry out the computation must
learn no information about the data they process. Regardless of the setting, the core of the com-
putation consists of comparing two fingerprints to each other, which is what we are to address.
When standard secure computation techniques are used for implementing this computation, other
described variants can be easily realized.

Prior literature [3, 10, 9, 36] already contains solutions for secure fingerprint matching. All
such publications introduce secure two-party computation protocols for fingerprint comparisons
after feature extraction and fingerprint alignment (if any). From this list, [10, 9, 36] offer solutions
for minutia-based representations of fingerprints, which have the most discriminative power and
are the only type of fingerprint representation suitable for biometric identification. What, however,
we aim in this work is improving the precision of the matching step while maintaining efficiency
of the algorithm. In particular, a minutia-based fingerprint representation consists of a number of
minutiae in a two-dimensional space.1 Roughly speaking, matching of minutiae from one finger-
print with minutiae from another fingerprint consists of computing distances between the minutiae
and marking two minutiae as a possible match if the corresponding distances are within certain
thresholds. The next step consists of pairing points from X with “possible match” points from Y
and the number of points that could be paired together determines whether the fingerprints were
a match or not. A simple way to determine the pairing is to associate a point from X to the
closest point from Y that has not already been paired with another point from X. A more involved
algorithm (as suggested in the fingerprint literature), on the other hand, would try to find a pairing

1In what follows, we refer to a single element of fingerprint representation as a minutia, which typically consists
of coordinates in a two-dimensional space, orientation, and optionally minutia type. The fingerprint representation
may also be expanded with additional information or extra fields associated with each minutia, which are the result
of fingerprint pre-processing.
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of the largest possible size, where a point from X is paired with a “possible match” point from Y ,
but not necessarily the closest to it. This results in more accurate matching of two fingerprints
[45, 24, 16], but incurs higher computational cost.

The latter approach has not been explored in the security literature and requires new techniques
for secure processing of the data. We note that the new techniques are necessary even if a general-
purpose mechanism for securing computation (such as garbled circuits or secret sharing) are to be
used. In this work, we reduce the problem to that of computing the size of the maximum flow
in a bipartite graph and build techniques for solving it in secure computation context. Thus, the
main contribution of this work consists of the design of a data-oblivious algorithm for maximum
matching size of a bipartite graph, which proceeds by computing the rank of a randomized adjacency
matrix of the graph and has complexity O(|V |3 log(|V |)). Data-oblivious execution is defined as
consisting of instructions and accessing memory locations independent of the data, which makes
such algorithms suitable for secure computation and outsourcing. To the best of our knowledge,
data-oblivious or privacy-preserving algorithms that protect the structure of the graph for the
problem of maximum matching in a flow network have been treated in the literature only for general
graphs and the available algorithms have complexities O(|V |4) and higher. Beyond the application
of the solution to fingerprint matching, the algorithm may be applicable to other domains and be of
independent interest. When the solution is used for fingerprint matching, despite higher complexity
of the algorithm than earlier techniques, we show through experimental evaluation that the solution
nevertheless offers good performance.

2 Related Work

Secure multi-party computation (SMC). Work on secure multi-party computation was initi-
ated in Yao’s seminal work [47] that showed that any computable function can be securely evaluated
by representing it as a boolean circuit. Since then a large number of both general and special-
purpose techniques followed and their overview is beyond the scope of this work. We only mention
that there are a number of tools and compilers such as (Fairplay [30], VIFF [13], Sharemind [12],
PICCO [48], and others) that can securely evaluate functions on private data in several settings.

Secure computation with biometric data. In the context of biometric matching, results
available today include work on secure face recognition ([14, 35] and others), DNA matching ([42,
7], and others), iris code comparisons ([9, 8]), fingerprint comparisons ([3, 10, 36]), and speaker
authentication ([34, 1]). Each biometric type has a unique representation and the corresponding
algorithm for comparing two biometrics, which prompted the need to design separate solutions for
different biometric modalities.

The first privacy-preserving protocol for fingerprint identification is due to Barni et al. [3] who
utilize the so-called FingerCode approach [23] for comparing two fingerprints and built a solution
using a homomorphic encryption scheme. FingerCodes use texture information from a fingerprint to
compare two biometrics. The algorithm is not as discriminative as fingerprint matching techniques
based on location of minutiae points, but it was chosen by the authors as particularly suited for
efficient realization in the privacy-preserving framework. While the use of FingerCodes can result
in fast comparisons of fingerprints, the approach is not suitable for biometric identification.

Blanton and Gasti [10, 9] provide privacy-preserving protocols for both FingerCode and minutia-
based fingerprint representations. Their solution utilizes a combination of homomorphic encryption
and garbled circuit evaluation. In the minutia-based approach, each fingerprint X is represented
as a point in a 2-dimensional space together with its orientation. To compare fingerprints X and Y
consisting of mX and mY minutiae, respectively, the solution in [10] proceeds by first computing the
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adjacency matrix of size mXmY , which indicates which points from X and Y are a possible match.
That is, the cell at row i and column j is set if the spatial (Euclidean) distance between point i
in X and point j in Y as well as the difference in their orientation are within specific thresholds.
Then the algorithm considers each minutia i of X in turn matching it with the closest unmatched
minutia j in Y among its possible matches in the adjacency matrix. At the end, the size of the
computed matching is compared to the threshold to determine whether the fingerprints are related.
As mentioned earlier, this approach may fail to find the best matching for the input fingerprints,
and we use it as the starting point for our solution. The complexity of the approach from [10] for
two biometrics X and Y consisting of mX and mY minutiae, respectively, is O(mXmY ).

Lastly, Shahandashti et al. [36] design a privacy-preserving protocol for minutia-based finger-
print matching using homomorphic encryption. As before, each fingerprint consists of a number
of minutiae, but with this solution each minutia contains its type (in addition to its location and
orientation) and the types of two minutiae must match for them to be considered as a possible
match. The computation is based on evaluation of polynomials in encrypted form and a pair of
minutiae i ∈ X and j ∈ Y are added to the matching if they are a possible match. Note that the
computation introduces an error every time a minutia from X or Y has more than one possible
match. The complexity of the solution is dominated by O(mXmY (|T |+ |DE |+ |Da|)) cryptographic
operations, where |T | is the number of minutia types, |DE | is the number of all possible squared
Euclidean distances between two points (i.e., if xmax and ymax are maximum x and y coordinates,
respectively, then |DE | = x2

max + y2
max + 1), and |Da| is the number of all possible squared an-

gular distances between point orientations. Because the complexity is quadratic in the domain
size of point location values, this approach is substantially slower than others for a typical set of
parameters.

Data-oblivious protocols. Data-oblivious algorithms and their use in secure computation are
receiving an increasing amount of attention. Data-oblivious execution is defined as executing the
instructions and accessing memory locations independent of the data on which the computation
is run. When a data-oblivious algorithm is implemented using secure multi-party computation
techniques, where each operation is properly secured, the overall algorithm is guaranteed to leak no
information about the data (through its structure or accessed memory locations). In addition to
advances in the performance of secure multi-party computation techniques that make performance
of complex algorithms practical, the emergence of cloud computing also facilitated work on data-
oblivious algorithms suitable for computation outsourcing.

To the best of our knowledge, secure data-oblivious algorithms for maximum flow have appeared
in [2] and [11]. The complexity of the maximum flow algorithm from [2] that protects the structure
of the graph is O(|V |5) based on Edmonds-Karp algorithm and O(|V |4) for the solution based
on Push-Relabel algorithm, where |V | is the number of nodes in the graph. The data oblivious
algorithm for maximum flow proposed in [11] provides a solution of complexity O(|V |3|E| log(|V |))
based on Ford-Fulkerson algorithm, where |E| is the number of edges in the graph.

Oblivious RAM (ORAM). ORAM techniques ([19, 39] and others) were designed to hide mem-
ory access patterns from the external server where the memory resides and are applicable to the
secure multi-party computation framework. In our setting, they can be used to protect information
about what data item needs to be read (e.g., a specific vertex or edge of the graph) and thus can
be applied to make any algorithm data-oblivious. Each ORAM access (reading or writing a data
block) has complexity at least O(log n2), where n is the total memory size. ORAM constructions
assume there is a single client with a small amount of trusted memory who knows what block it
needs to read or write. When a non-oblivious algorithm is securely evaluated by a number of com-
putational parties, there is no such client (nor there is trusted memory available to the participants
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in the clear) and the client must be obliviously simulated by the computational parties. Currently,
there are still challenges for efficiently realizing ORAM techniques within the secure computation
framework. The publications we are aware on this topic are [29, 46] in the two-party setting, [15] in
the three-party setting, and [25] in the multi-party setting, where the cost of a single ORAM access
increases by a factor of O(log n). This work is complementary to ORAM as it provides an alterna-
tive mechanism for achieving data-obliviousness of a number of algorithms (and consecutively their
secure versions). Because the benefits of ORAM become significant only for large input sizes [25],
in our problem domain alternative techniques will be preferred as providing faster performance
(e.g., [25] compares ORAM-based techniques for SMC to a naive oblivious array implementation
that touches all elements of the array to retrieve an item at a private location and suggests that
ORAM techniques are faster only when the size of the data is over 1000 items).

3 Security model

In this work, we use standard security models for secure multi-party computation. We primarily
focus on security in presence of semi-honest participants (also known as honest-but-curious or
passive), who follow the prescribed behavior, but might try to compute additional information
from the information obtained during protocol execution. The protocols, however, can be extended
to achieve stronger security in presence of fully malicious (also known as active) adversaries who
can arbitrary deviate from the prescribed computation. Regardless of the model, it is required that
the participants do not learn anything about private input data beyond the agreed-upon output.
Consequently, security is defined using simulation argument: a protocol is secure if the view of
protocol execution for each party is computationally or information-theoretically indistinguishable
from the view simulated using that party’s input and output only. This implies that the protocol
execution does not reveal any additional information to the participants. The definition below
formalizes the notion of security for semi-honest participants:

Definition 1 Let parties P1, . . ., Pn engage in a protocol Π that computes function f(in1, . . ., inn) =
(out1, . . ., outn), where ini and outi denote the input and output of Pi, respectively. Let VIEWΠ(Pi)
denote the view of Pi during the execution of Π. That is, Pi’s view is formed by its input, internal
random coin tosses ri, and messages m1, . . .,mk passed between the parties during protocol execu-
tion: VIEWΠ(Pi) = (ini, ri,m1, . . .,mk). Let I = {Pi1 , Pi2 , . . ., Pit} denote a subset of the parties
for t < n and VIEWΠ(I) denote the combined view of the parties in I during the execution of Π
(i.e., the union of the views of the parties in I). We say that protocol Π is t-private in presence of
semi-honest adversaries if for each coalition I of size at most t there exists a probabilistic polynomial
time simulator SI such that {SI(inI , f(in1, . . ., inn)} ≡ {VIEWΠ(I), outI}, where inI =

⋃
Pi∈I{ini},

outI =
⋃
Pi∈I{outi}, and ≡ denotes computational or information-theoretic indistinguishability.

We choose to use a general setup with n parties carrying out the computation. For the problem
we study, the most common setting is going to be n = 2, but we also would like to offer a solution
that works for n > 2 and is also suitable for outsourcing to multiple computational nodes.

The second standard, and stronger, malicious security model assumes the participants can
behave arbitrarily including deviating from the computation and aborting the execution. Security
in this setting is shown using a different security definition, which we omit here and instead refer
the reader, e.g., to [18].

Because this work treats a graph problem, where the graph is derived from private data, the
structure of the graph (e.g., node connectivity) is sensitive information that cannot be revealed to
the participants. For that reason, any solution must be data-independent or oblivious, in which
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the sequence of executed instructions and accessed memory locations must be independent of the
data. Achieving data-obliviousness can be realized by using a randomized algorithm (as in ORAM)
where these sequences must be indistinguishable for different inputs or a deterministic algorithm
where the sequences are the same for all possible inputs. In this work, we pursue the second option.

4 Fingerprint background

To understand how the solution we develop for maximum matching in bipartite graphs is used
to address the problem of fingerprint matching, we present the background related to fingerprint
representations and comparisons before moving to the algorithm itself.

Fingerprint identification is a well-studied area with many available approaches [31]. The most
popular and widely used techniques extract information about minutiae from a fingerprint and
store it as a set of points in the two-dimensional plane. Fingerprint matching normally con-
sists of finding a matching between two sets of points so that the number of minutiae pair-
ings is maximized. In more detail, a biometric X is often represented as a set of mX points
X = 〈(x1, y1, α1), . . ., (xnX , ynX , αnX )〉, where xi and yi denote the coordinates of minutia i and
αi denotes minutia’s orientation. Optionally, a minutia can also have its type included in the fin-
gerprint representation and biometric X might also include secondary features derived from the
minutiae. A minutia Xi = (xi, yi, αi) in X and minutia Yj = (x′j , y

′
j , α
′
j) in Y are considered match-

ing if the spatial distance (normally Euclidean distance) between them is smaller than a given
threshold d0 and the orientation difference between them is smaller than a given threshold α0. In
other words, assuming that Euclidean distance is used to measure spatial distances, the matching
condition for minutiae Xi and Yj is computed as:√

(x′j − xi)2 + (y′j − yi)2 < d0 ∧ min(|α′j − αi|, 360◦ − |α′j − αi|) < α0. (1)

The tolerance values d0 and α0 are necessary to account for errors introduced by feature extraction
algorithms (e.g., quantizing) and small skin distortions. Two points within a single fingerprint are
also assumed to lie within at least distance d0 of each other.

Before the fingerprint matching process is performed, the two fingerprints need to be pre-aligned,
which maximizes the number of matching minutiae. Alignment can be either absolute, in which
case each fingerprint is pre-aligned independently using the core point or other information, or
relative, in which case fingerprint features are used to guide fingerprint alignment relative to each
other. Relative alignment is more accurate that absolute, while absolute alignment is performed
much faster in the context of secure computation. In particular, if absolute alignment is used,
each fingerprint is aligned independently and locally without secure computation. To increase the
accuracy of matching when absolute alignment is used, a fingerprint can be stored using a small
number of slightly different alignments, all of which are compared to another fingerprint, and the
result of the comparison is a match if at least one representation matches the second biometric.
To the best of our knowledge, relative alignment has not been investigated in secure multi-party
computation literature and we leave it as a direction for future research. The matching step,
however, always needs to be performed, and this constitutes the focus of this work.

A simple way to determine a pairing between minutiae of fingerprints X and Y consists of
pairing a minutia Xi from X with the closest minutia Yj in Y that satisfies the matching constraint
and which has not already been paired with another minutia from X. That is, the pairing function
considers all Xi from X in turn and for each Xi finds the closest Yj that satisfies the matching
predicate in equation 1 and which has not been paired with another minutia from X. If no such
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minutia Yj from Y exists, Xi is not added to the pairing. We denote the result of applying the
minutia matching predicate in equation 1 to minutiae Xi and Yj by mm(Xi, Yj).

This approach was used in prior privacy-preserving fingerprint matching solutions, but it does
not find the optimum assignment (i.e., the one that maximizes the number of mates). That is,
there are circumstances when a minutia Xi should be paired with another minutia Yj , which is
not the closest to Xi, to result in an assignment of the largest size. According to fingerprint
literature [24, 45], the optimum pairing can be achieved by formulating the problem as an instance
of maximum flow, where fingerprints X and Y are used to create a flow network. In particular,
to represent fingerprints X and Y as a flow network, we form a bipartite graph in which minutia
points from X and Y form the nodes of the first and second partitions, respectively. The set of
edges is created as follows: there is an edge from node Xi ∈ X to Yj ∈ Y iff mm(Xi, Yj) = 1. To use
the resulting bipartite graph as a flow network, we create an additional source node s and connect
it to all nodes from X using (directional) edges of capacity 1. Similarly, we create a sink node and
connect each node from Y to the sink node t using edges of capacity 1. Then each edge from Xi to
Yj also has capacity 1 (in one direction only). We refer the reader to [24, 45] for additional detail.

The problem of fingerprint matching in the maximum flow formulation can be solved using one
of the known algorithms such as Ford-Fulkerson [17] and others. For n-minutia fingerprints, the
optimal pairing can be found in O(n2) time using Ford-Fulkerson algorithm because each node
Xi is connected to at most a constant number of nodes corresponding to minutiae from Y . In a
privacy-preserving setting, however, when information about connections between minutiae in X
and Y (and thus the structure of the graph) must remain private, the complexity of this algorithm
increases at least by a factor n. Finding a pairing of optimal size was considered impractical in [10],
but in this work we show that with the techniques we develop, performance of fingerprint matching
can be comparable to or even faster than performance of simpler and not as accurate matching
in [10] (which is currently the fastest secure minutia-based fingerprint matching).

Throughout this work, we assume that in order for two fingerprints X and Y to result in a
match, the number of paired minutiae needs to exceed a fixed (known to all parties) threshold T (T
can be a function of the number of minutiae in X and Y , but is fixed once the sizes are known).2

5 Working Toward the Solution

Our primary objective now is to provide an oblivious algorithm for solving the maximum flow
problem in a flow network formed by a bipartite graph (which in the fingerprint matching appli-
cation corresponds to two fingerprints X and Y ). Note that in our application it is not necessary
to compute the matching itself and instead the size of the matching is sufficient to determine if
two fingerprints X and Y are related. This means that it is sufficient to determine the rank of the
matrix formed as described above to solve the fingerprint matching problem.

In the search for an approach suitable for solving the maximum flow problem in a data-oblivious
way, we chose to concentrate on solutions that work with adjacency matrix representation of the
graph. Note that because our graph is bipartite, we only need to consider an approach that works
for a bipartite graph and not necessarily for a general graph.

Our starting point was the work of Mucha and Sankowski [32] that presents a randomized
algorithm for finding maximum matching in an n-node graph inO(nω) time, where ω is the exponent
of the best known matrix multiplication algorithm and currently ω < 2.38. The solution of [32]
assumes that a perfect matching of size n/2 is present, which it will compute. This is not the

2In the event that the value of T comes from one of the participants and needs to be protected, the solution can
be easily modified to compute with private T .
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Algorithm 1 A = RandAdjMat(A′ = {A′ij}1≤i≤nX ,1≤j≤nY )

1: for i = 0, . . ., nX do
2: for j = 0, . . ., nY do

3: rij
R← [1, R];

4: Aij = A′ij · rij ;
5: end for
6: end for
7: return A;

case for our application, and to use this solution on a graph without perfect matching, we resort
to techniques of Ibarra and Moran [21] (which are applicable to bipartite graphs only). The most
crucial result listed in [32] that we need is due to Lovasz [28] and can be stated as follows: Let
G = (V,U,E) be a bipartite graph with nodes V ∪ U and edges E, where |V | = |U | = n/2,
V = {v1, . . ., vn/2} and U = {u1, . . ., un/2}. Let an adjacency matrix A = A(G) be formed by
setting an element Aij of A at row i and column j to a random value from the set [1, R] for some
R if (vi, uj) ∈ E and to 0 otherwise. In other words, a matrix cell is set to a random value of a
predefined bitlength if the corresponding nodes are adjacent and to 0 otherwise. Then the rank of
A is at most the size of the maximum matching, where the equality holds with probability at least
1− n

2R . This means that if R is set to 2κ, where κ is a desired correctness parameter, the rank will
be equal to the size of the maximum matching with all but at most a negligible probability in κ.
For example, if we set κ = 20, computing the rank of the randomized adjacency matrix will give
the solution to the size of the maximum matching with probability 1− negl(20).

Because the algorithm above assumes a randomized adjacency matrix as the input, the pre-
processing step will consist of creating such a matrix. If a regular adjacency matrix is given, it can
be randomized using a simple approach shown in Algorithm 1. In other cases, the matrix needs
to be computed, and we defer the description of how it can be done in the context of fingerprint

matching to Section 7. In Algorithm 1, notation z
R← S denotes that the value of z is chosen

uniformly at random from set S.
The next step is to compute the rank of A. A standard way to achieve this is to apply Gaussian

elimination (LU decomposition) to A. The simplest algorithm for doing so runs in O(n3) time
for an n× n matrix and asymptotically lower solutions (of the same complexity as that of matrix
multiplication) are possible. Before we proceed with further discussion, we include a (non-secure)
solution of complexity O(n3) based on Gaussian elimination. When it is applied to a bipartite graph
with nX and nY nodes in the first and second partition, respectively, its complexity is O((nX)2nY )
assuming that nX ≤ nY (and O((nY )2nX) otherwise).

The Gaussian elimination algorithm that takes a randomized adjacency matrix A and converts
it to a row echelon form is given in Algorithm 2. It assumes that nX ≤ nY ; otherwise, the matrix
dimensions are swapped by using the transpose of A. Following [21], after forming adjacency matrix
A, we carry out all operations in a field (of size R) in this and other algorithms. That is, we treat
A as consisting of random field elements and all consecutive operations are in a field (which is the
reason for using multiplicative inverse in place of division). We present the simplest version of
the Gaussian elimination algorithm that works only for invertible matrices (with nX = nY ) and
which results in a matrix with only non-zero entries on the diagonal formed by elements Aii and
zero elements below the diagonal. In a more general case, some of the matrix rows or columns
may either be initially zero or become zero during the computation, and the matrix does not have
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Algorithm 2 B = GE(A = {Aij}1≤i≤nX ,1≤j≤nY )

1: for i = 1, . . ., nX do
2: for j = i+ 1, . . ., nX do
3: for k = i, . . ., nY do
4: Ajk = Ajk −Aik ·A−1

ii ·Aji
5: end for
6: end for
7: end for

to be square. In those cases, during the ith iteration, the algorithm may swap row i + 1 with
another row at a higher index so that row i+1 contains a non-zero element at the leftmost position
(or lowest column index) among all rows with indices i + 1 and higher. A column may also be
“skipped” during the computation if all of its entries at row i and below are zero, i.e., the leftmost
non-zero element at row i is at position > i. In that case, the computation will be of the form
Ajk = Ajk − Aik · A−1

it · Ajt for t > i. We note that in the application of fingerprint matching
the adjacency matrix is likely to contain a large number of zero elements and we need to use the
general algorithm that works for arbitrary matrices. Then the rank of the matrix is computed as
the number of non-zero rows (or columns) once the matrix has been converted to a row echelon
form.

Lastly, we note that in the traditional setting, when some rows and/or columns are initially
zero, they can be eliminated from the matrix before the algorithm is executed because they cannot
contribute to the matrix rank. This reduces complexity of the algorithm for sparse matrices in the
regular setting, but is not applicable to secure computation because the size of the reduced matrix
is likely to reveal information about the size of the matching.

Returning to our prior discussion of rank computation, recall that the asymptotic complexity of
rank computation can be lower than O(n3) for n×n matrices and equal to the complexity of matrix
multiplication. Upon examining matrix multiplication algorithms of sub-cubic time, we came to
the conclusion that only Strassen’s algorithm [40] has practical importance to matrices those size is

not huge. Its complexity is O(nlog2 7) ≈ O(n2.807) for n× n matrices or O(n
log2 3.5
X nY ) for matrices

of size nX × nY with nX ≤ nY . While this algorithm has reduced numerical stability, it is not
an issue when the computation is carried out in a finite field (i.e., on integers without rounding
errors).

The original Strassen’s algorithm proposed in [40] is applicable only to invertible matrices.
Solodovnikov [38] later showed how the algorithm can be extended to solving an arbitrary system
of equations or finding the rank of an arbitrary matrix, which can be used as a starting point
for a secure solution. The algorithm is rather complex involving several matrix transformations
and produces matrices the size of which determines the rank. We note that while it is possible
to make the algorithm oblivious (the most important change will be to force matrices to always
be of the same size by padding them with dummy rows or columns), we choose not to expand on
this further due to the limited applicability of the algorithm to fingerprint matching. In particular,
Strassen’s matrix multiplication outperforms the standard matrix multiplication of cubic complexity
on matrices with sizes ≥ 100 for each dimension, but the number of minutiae in a fingerprint (which
define the matrix size) is normally much lower.

To fully explore our options, we consider another approach that uses Gram-Schmidt orthogo-
nalization process for computation of the rank of a matrix. In particular, Gram-Schmidt process
takes a set of vectors {x1, . . .,xn} and produces an orthogonal set of basis vectors {y1, . . .,yn} that
span the same subspace as the original vectors (i.e., the basis for span{x1, . . .,xn}). The algorithm
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Algorithm 3 rank = GSRank({Aij}1≤i≤nX ,1≤j≤nY )

1: for i = 1, . . ., nX do
2: for j = 1, . . ., nY do
3: Bij = Aij ;
4: end for
5: end for
6: for i = 2, . . ., nX do
7: for j = 1, . . ., i− 1 do
8: set ztj =

∨nY
j=1Bij

9: if (ztj 6= 0) then
10: set 〈yj ,yj〉 =

∑nY
k=1(Bjk)

2 and 〈xi,yj〉 =
∑nY

k=1AikBjk
11: for k = 1, . . ., nY do
12: set Bik = Bik − 〈xi,yj〉〈yj ,yj〉−1Bjk
13: end for
14: end if
15: end for
16: end for
17: set rank = 0;
18: for i = 1, . . ., nX do
19: if (zti 6= 0) then
20: rank = rank + 1;
21: end if
22: end for
23: return rank

proceeds with re-expressing all xi’s in terms of new orthogonal basis starting from x1. It starts by
setting y1 = x1 and for i = 2, . . ., n computes yi = xi −

∑i−1
j=1 projyj

(xi). Here projyj
(xi) denotes

orthogonal projection of vector xi onto the line spanned by vector yj and thus
∑i−1

j=1 projyj
(xi)

is the orthogonal projection of xi+1 onto span{y1, . . . ,yj}. The projection operator is defined as

projyj
(xi) =

〈xi,yj〉
〈yj ,yj〉

yj , where 〈xi,yj〉 denotes the inner product of vectors xi and yj . Also, when

yj = 0, projyj
(xi) = 0 for any vector xi. If we treat vectors xi’s collectively as a matrix and

apply Gram-Schmidt process to it to obtain another matrix formed by vectors yi’s, then the num-
ber of non-zero yi’s will correspond to the rank of the matrix. We provide our rank computation
algorithm in a finite field based on Gram-Schmidt process in Algorithm 3. In the algorithm, lines
1–16 correspond to the Gram-Schmidt process and lines 17–22 count non-zero rows in the resulting
matrix. The variable ztj tests whether vector yj contains at least one non-zero element. If yj is
zero, then any projection projyj

is zero and yi does not need to be modified (which corresponds to
skipping lines 10–13 when ztj is zero). As before, we assume that nX ≤ nY , and the algorithm’s
complexity is O((nX)2nY ).

Lastly, we note that with finite precision arithmetic the algorithm can be unstable. This, how-
ever, is not an issue for us because we use precise computation in a field. The use of field operations,
however, may introduce an error which is specific to that type of arithmetic. In particular, for a
non-zero vector yj , it is possible that with a small probability 〈yj ,yj〉 will evaluate to 0 on line 10 of
the algorithm. The probability of this happening in any given round of computation can be shown
to be less than 1/R. If this however happens, it means that the inverse 〈yj ,yj〉−1 is not going to
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exist and an error may be introduced into the result (i.e., the computed rank may be off by 1). To
eliminate the error, we suggest that the value of 〈yj ,yj〉 is compared to 0 after its computation
on line 10. If it is 0 at any iteration of the algorithm, then the algorithm can be restarted using
new randomness in forming A. Note that because the probability of this happening is small, the
expected number of times that this algorithm will have to be restarted is near 0.

6 Oblivious Rank Computation Algorithms

Developing data-oblivious algorithms for computing the rank of a non-invertible matrix of size
nX × nY constitutes the core of this work. In this section, we describe the intuition behind our
solution for rank determination followed by its detailed description.

To ensure data-oblivious execution, we must require that the sequence of executed instruction
does not depend on the data. This, in particular, means that execution associated with conditional
statements is to be modified. In all algorithms we develop, we always execute both branches of
conditional statements and the values which may be modified inside conditional statements will be
set based on the result of evaluating the condition. In more detail, statements of the type

if (cond) then a = v1 else a = v2

will be transformed into evaluating the condition cond first and then setting

a = cond · v1 + (1− cond) · v2 = (cond ∧ v1) ∨ (cond ∧ v2) (2)

Here, ∨ and ∧ denote bitwise OR and AND, respectively. When only one branch is present, the
branch gets executed, but the affected values are either updated or kept unchanged depending on
the result of the condition evaluation. For example, statements of the type

if (cond) then a = v1

can be rewritten as
a = a+ cond · (v1 − a).

6.1 Rank determination using Gaussian elimination

When working on Gaussian elimination suitable for secure computation, a major issue we are
to overcome is to make the execution oblivious in presence of zero rows and columns. That is,
regardless of having zero columns (that need to be skipped) or zero rows (that need to be swapped),
we want the algorithm to always execute the same instructions and always access the same matrix
cells. For that reason, at each iteration of the solution, we choose to push all zero columns to the
right and all zero rows to the bottom. This will allow us to work with row i and column i during
the ith iteration of the algorithm (assuming that some non-zero row and column still remain at
iteration i). Furthermore, once all non-zero rows and columns have been processed, we cannot
reveal this fact and have to continue the computation without affecting its correctness.

To realize swapping of zero rows and columns in an oblivious way, we utilize data-oblivious
compaction. Compaction of a sequence of values allows one to move all non-zero elements to the
beginning and thus any zero element will appear only after all non-zero elements. Our goal of
pushing zero columns and rows to the end can also be achieved by using oblivious sorting, but we
choose compaction for performance reasons. Thus, as the first step of each iteration i, we compute
whether any given (partial) row and column at position i and higher contains at least a single
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non-zero element. Note that we only need to consider matrix elements with both row and column
indices i and higher and this is why only a part of each row and column is checked. For example,
for row j ≥ i only cells at position i ≤ k ≤ nY can be non-zero and are checked. Similarly, for
column j ≥ i only cells at rows i ≤ k ≤ nX are relevant and checked. After this step, all zero rows
and columns are pushed to the end using oblivious compaction.

At this point we know that the current row and column with index i have at least one non-zero
element, but the algorithm requires that the leading coefficient of the (partial) current row i is non-
zero. To satisfy this, we add all rows with indices i+1 and higher to the current row i. This has no
effect on correctness of the computation (and is a common operation in Gaussian elimination), but
ensures that the element Aii 6= 0. This is because when (partial) column i has at least one non-zero
element, the probability that the sum of its elements (which are random values from [1, R]) results
in 0 is 1/R. Thus, with overwhelming probability (in R’s bitlength) Aii 6= 0 when (partial) column
i has at least one non-zero element and correctness of the computation is preserved.

The only part of the algorithm that remains to be modified for oblivious execution is ensuring
that the computation can proceed in exactly the same way once all non-zero rows and columns
have been processed. That is, for some iteration i of the algorithm all remaining (partial) rows and
columns will be zero. To ensure that the algorithm can execute exactly the same steps without re-
vealing this fact and without affecting correctness, the only place we have to modify is computation
of the inverse of Aii. When Aii = 0, Aii does not have a multiplicative inverse, and we set Aii = 1
in that case. Then because 1−1 = 1, multiplying any value by 1−1 (as on line 4 of Algorithm 2)
will have no effect. To ensure that Aii is unchanged when Aii 6= 0, we set Aii to Aii + c, where c is
the bit corresponding to the result of comparing Aii to 0.

The overall oblivious algorithm for computing matrix rank based on Gaussian elimination is
given in Algorithm 4. Lines 2–5 and 7–10 compute row and column flags, respectively, that indicate
whether the (partial) rows/columns consist of only zero elements. These flags are used in row-wise
and column-wise compaction on lines 6 and 11, respectively. Lines 12–16 update row i to ensure
that its leading element is non-zero if non-zero rows still remain. Line 17 adjusts the element Aii
for the purpose of computing its inverse as described above. Next, lines 18–23 compute the ith
iteration of Gaussian elimination. After executing lines 1–24, matrix A is in a row echelon form and
all that remains is to compute its rank by adding the number of non-zero elements on the diagonal
Aii. This is performed on lines 25–28, after which the rank is returned.

To realize oblivious compaction, we build on tight order-preserving compaction from [20], which
was subsequently used for SMC in [6]. The algorithm proceeds in log2 n rounds on input of a
sequence of n values. At round i (for 0 ≤ i ≤ log n−1), an element at position j is either obliviously
moved 2i elements left or is not moved. The former happens when the ith least significant bit in
the number countj of zero elements that precede the jth element is 1. We refer the reader for
additional details to [20, 6] and provide our realization of it with new optimizations in Algorithm 5.
It is written for the special case when the input consists of bits and moves all non-zero elements
to the beginning of the input sequence. When this algorithm is used in Algorithm 4, it will take
1-bit rj ’s or cj ’s according to which the values need to be moved, but instead of moving individual
elements, the entire (partial) rows or columns are moved.

In the most general case, the element xj at position j is either kept unchanged or replaced
with element xj+2i during the ith iteration of the algorithm. This corresponds to the computation
xj = (1− bi,j)xj + bi,j+2i · xj+2i , where bi,j is the ith least significant bit of countj . At most one of
xj and xj+2i is guaranteed to be non-zero at any given time. When, however, j + 2i exceeds the
total number of elements, xj is either kept or erased, i.e., xj = (1 − bi,j)xj . In addition, for the
first 2i − 1 elements of the sequence, bi,j is always 0, which means that we do not need to multiply
xj by (1− bi,j) and instead set xj = xj + bi,j+2i · xj+2i . This logic (for one general and two special
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Algorithm 4 rank = OblGERank({Aij}1≤i≤nX ,1≤j≤nY )

1: for i = 1, . . ., nX − 1 do
2: for j = i, . . ., nX do
3: Set rowflagj =

∨nY
k=iAjk;

4: Set rj = (rowflagj
?
6= 0);

5: end for
6: Use compaction to “sort” partial rows i, . . ., nX using keys rj , where row j is (Aji, . . ., AjnY ),

so that all rows with rj = 0 are moved to the bottom of A.
7: for j = i, . . ., nY do
8: Set colflagj =

∨nX
k=iAkj ;

9: Set cj = (colflagj
?
6= 0);

10: end for
11: Use compaction to “sort” partial columns i, . . ., nY using keys cj , where column j is

(Aij , . . ., AnXj), so that all columns with cj = 0 are moved in the right in A.
12: for j = i+ 1, . . ., nX do
13: for k = i, . . ., nY do
14: Set Aik = Aik +Ajk;
15: end for
16: end for
17: Set Aii = Aii + (Aii

?
= 0);

18: Compute A−1
ii ;

19: for j = i+ 1, . . ., nX do
20: for k = i, . . ., nY do
21: Set Ajk = Ajk −Aik ·A−1

ii ·Aji;
22: end for
23: end for
24: end for
25: Set ranksum = 0;
26: for i = 1, . . ., nX do

27: Set ranksum = ranksum + (Aii
?
6= 0);

28: end for
29: Return ranksum;

cases) is presented on lines 8–13 of Algorithm 5 in an optimized form.
The complexity of the oblivious compaction algorithm in which we build is O(n log n) for an

n-element input. In our case, each invocation of compaction is executed on mX − i + 1 rows
(resp., mY − i + 1 columns) each of size mY − i + 1 (resp., mX − i + 1). This gives us that
the total cost of compaction at all iterations of the algorithm is O(m2

XmY logmX) for rows and
O(m2

XmY logmY ) columns. This dominates the algorithm’s complexity, as the remaining work is
O(m2

XmY ). However, according to our experimental results in Section 9, the cost of compaction is
small compared to the remaining computation.
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Algorithm 5 〈y1, . . ., yn〉 = Comp(〈x1, . . ., xn〉)
1: count1 = 1− x1;
2: for i = 2, . . ., n do
3: counti = counti−1 + 1− xi;
4: end for
5: Let bi,j denote the ith least significant bit of countj for j = 1, . . ., n and i = 0, . . ., dlog ne − 1
6: for i = 0, . . ., dlog ne − 1 do
7: for j = 1, . . ., n do
8: if j ≥ 2i then
9: xj = (1− bi,j)xj ;

10: end if
11: if j + 2i ≤ n then
12: xj = xj + bi,j+2i · xj+2i ;
13: end if
14: end for
15: end for
16: Return 〈x1, . . ., xn〉;

6.2 Rank determination using Gram-Schmidt process

To obtain a data-oblivious algorithm for matrix rank computation based on the Gram-Schmidt
process, we notice that the only computation that is not data-oblivious in the conventional approach
in Algorithm 3 is the conditional statement on lines 9–14. To eliminate this conditional logic, we
can use a similar mechanism to that utilized in oblivious rank computation based on Gaussian
elimination. That is, when vector yj is zero, so is 〈yj ,yj〉, in which case we set 〈yj ,yj〉 to 1. Then
the inverse of 1 is always computable (and equal to 1), but the projection is still 0 because all
elements of yj are 0 (and thus 〈xi,yj〉 is also 0).

As discussed in Section 5, there is a small possibility that 〈yj ,yj〉 = 0 when yj is non-zero.
Then to ensure that the algorithm always computes the result correctly, we would like to implement
error reporting, which will notify the parties that the result may be unreliable and let them restart
the execution using new randomness for the adjacency matrix. Note that unlike non-oblivious
execution, we cannot report the error at the point of its occurence because the fact that an error
happened can reveal unintended information. For instance, if an error is reported during iteration
i of the algorithm, at the very least, the participants will learn that the ith row of the adjacency
matrix was non-zero, which cannot be deduced from the output that the parties learn. Thus, the
computation needs to proceed until the end even if an error is detected, and the error is returned
at the end of the computation by outputting a special value. Once again, the probability of the
error happening is negligible in the correctness parameter (which determines the bitlength of the
field elements), which means that the computation almost never will need to be restarted.

We provide our data-oblivious algorithm for rank computation based on Gram-Schmidt process
in Algorithm 6. The algorithm is structured in such a way as to minimize the overall amount of
computation; namely, any quantity used in the computation multiple times without being modified
in between is computed only once. In particular, because row i is updated only during iteration i
of the loop, each yi is updated only once. This means that we can take the computation of 〈yj ,yj〉
and its inverse outside of the loop over j and instead compute 〈yi,yi〉 once for each i.

The algorithm checks whether 〈yi,yi〉 = 0 and if so, sets it to 1. Also, if yi is non-zero, but
〈yi,yi〉 = 0, an error is set. We maintain that variable error is a bit, which after being set to
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Algorithm 6 rank = OblGSRank({Aij}1≤i≤mX ,1≤j≤mY )

1: for i = 1, . . .,mX do
2: for j = 1, . . .,mY do
3: Bij = Aij ;
4: end for
5: end for
6: set error = 0
7: for i = 2, . . .,mX do

8: compute zti = (
∨mY
j=1Bij

?
= 0)

9: compute 〈yi,yi〉 =
∑mY

j=1(Bij)
2

10: compute b = (〈yi,yi〉
?
= 0) and set 〈yi,yi〉+ b

11: set error = error + (1− zti)b(1− error)
12: compute 〈yi,yi〉−1

13: for j = 1, . . ., i− 1 do
14: compute 〈xi,yj〉 =

∑mY
k=1AikBjk

15: for k = 1, . . .,mY do
16: set Bik = Bik − 〈xi,yj〉〈yj ,yj〉−1Bjk
17: end for
18: end for
19: end for
20: set ranksum = 0;
21: for i = 1, . . .,mX do
22: ranksum = ranksum + zti;
23: end for
24: return (1− error) · ranksum + error · (mX + 1);

1 remains 1 until the end of the algorithm. That is, its value is incremented (from 0 to 1) only
when the current row yi is non-zero, 〈yi,yi〉 = 0, and error is currently 0 (line 11). The algorithm
outputs either the computed rank or an error. In the exceptional case of when the error was set,
the algorithm outputs an illegal value of the rank, which exceeds the dimensions of the matrix (and
thus the valid range of rank values), which is served as an indication of an error.

7 Oblivious Fingeprint Macthing Algorithms

Now we proceed with showing how the above rank computation algorithm can be used to realize
oblivious fingerprint matching. To accomplish this, we first need to obliviously build a randomized
adjacency matrix from the information contained in two fingerprints. We also need to modify
the rank computation algorithms to implement its over-the-threshold version, in which instead of
reporting the rank, the output consists of a single bit indicating whether the rank is above the
desired threshold.

The regular (non-oblivious) way of computing the adjacency matrix according to equation 1 is
presented in Algorithm 7. It simply consists of comparing each minutia from X to each minutia
in Y and setting the corresponding matrix cell to a random element if the minutiae are a possible
match and to 0 otherwise.

To make the algorithm oblivious, we have to restructure the computation associated with the
conditional statement. Our oblivious algorithm for computation of the adjacency matrix is given
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Algorithm 7 A = AdjMat(X = 〈xi, yi, αi〉1≤i≤mX , Y = 〈x′i, y′i, α′i〉1≤i≤mY )

1: for i = 0, . . .,mX do
2: for j = 0, . . .,mY do

3: if (
√

(x′j − xi)2 + (y′j − yi)2 < d0) ∧ (min(|α′j − αi|, 360◦ − |α′j − αi|) < α0) then

4: Aij
R← [1, R];

5: else
6: Aij = 0;
7: end if
8: end for
9: end for

10: return A;

Algorithm 8 A = OblAdjMat(X = 〈xi, yi, αi〉1≤i≤mX , Y = 〈x′i, y′i, α′i〉1≤i≤mY )

1: for i = 0, . . .,mX do
2: for j = 0, . . .,mY do

3: c1 = ((x′j − xi)2 + (y′j − yi)2
?
< (d0)2);

4: c2 = (αi

?
≥ α′j);

5: a1 = αi − α′j ;
6: a2 = α′j − αi;
7: a3 = c2 · a1 + (1− c2)a2;

8: c3 = (a3
?
< α0);

9: c4 = ((360− a3)
?
< α0);

10: c = c1 ∧ (c3 ∨ c4);

11: rij
R← [1, R];

12: Aij = c · rij ;
13: end for
14: end for
15: return A;

as Algorithm 8. For performance reasons, we eliminate square root computation when computing
the Euclidean distance (instead, squared Euclidean distances are used). Also, in the algorithm a3

corresponds to |αi − α′j | and (c3 ∨ c4) to min(|α′j − αi|, 360◦ − |α′j − αi|)
?
< α0.

To obtain an over-the-treshold version of the rank computation algorithm, we note that the
necessary changes are rather simple. In particular, to produce of an over-the-threhold version of

Algorithm 4, all we need is to return the result of comparison (ranksum
?
≥ T ) on line 29 instead of

ranksum itself. Modification of the GS-based Algorithm 4 should take into account the possibility
of error. Thus, instead of reporting a single bit that correspond to the result of comparing the rank
to the threshold, we make the algorithm output a value from the set {0, 1, 2}, where 2 indicates an

error. Then the returned value is computing by first executing b = (ranksum
?
≤ T ) after line 23 and

then returning (1− error) · b+ 2 · error.

8 Secure Protocols

The data-oblivious algorithms that we developed lead to secure protocols for computing maximum
bipartite matching size, matrix rank, and fingerprint matching in secure multi-party computation
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framework. In particular, because the execution is now data-oblivious, we can combine each algo-
rithm with available secure arithmetic techniques to provably protect private data throughout the
computation. We list two such possibilities.

The first solution that we list is to employ two-party garbled circuit evaluation (originally
proposed in [47]). This technique represents the function to be evaluated as a Boolean circuit and
one participant, circuit generator, encodes the circuit using two random labels for each (binary)
wire. The second participant, circuit evaluator, evaluates the garbled circuit on private inputs in
a way that it sees the labels used during function evaluation, but their meaning (i.e., 0 or 1) is
not known. After the evaluator computes the output labels, it sends them to the circuit generator,
who determines their meaning (it is also possible for the evaluator to learn the output or for both
parties to learn the same or individual outputs). To choose labels corresponding to the private
inputs, the parties engage in Oblivious Transfer (OT), as a result of which the evaluator obtains
labels corresponding to its inputs and the other party learns nothing. This allows the evaluator to
obtain labels for its private inputs and the labels for the circuit generator’s inputs are sent directly
to the evaluator (who does not know their meaning). There are many available OT realizations
and their extensions such as, e.g., [33] and [22].

Using garbled circuit evaluation, we can state the following result:

Theorem 1 Assuming the existence of secure garbled circuit evaluation techniques and OT, our
algorithms result in 1-private protocols for maximum bipartite matching size, matrix rank, and
fingerprint matching with two participants P1 and P2.

Proof. Given secure implementation of garbled circuit evaluation and OT, two participants can
1-privately evaluation any function f on their private inputs in1 and in2 and learn outputs out1 and
out2, respectively. The only part to be shown is that the function can be represented as a Boolean
circuit. We specify our algorithms using a data-independent sequence of instructions consisting of
Boolean and integer operations, which have known Boolean circuit representations. This means
that the functions can be securely evaluated in the garbled circuit framework, resulting in 1-private
protocols for fingerprint matching, maximum bipartite matching size, and matrix rank. �

The second technique we suggest is threshold linear secret sharing in the multi-party setting
(such as Shamir’s secret sharing [37]). It allows n > 2 parties to securely evaluate a function on
shares of private data. Before the computation starts, all private data are split into shares and the
shares are distributed among the computational parties who carry out the computation on protected
data. After the computation, the shares of the result are communicated to the participants who
are entitled to learning the result and reconstruct the output from the shares. Note that the
participants who provide the data do not have to coincide with computational parties, but instead
the sets of input providers, output recipients, and computational parties can be arbitrary with
respect to each other. This makes the framework suitable for a variety of settings including secure
computation outsourcing by one or more clients to a number of servers.

With linear secret sharing techniques, any linear combination of secret shared data is computed
locally by each participant, but multiplication requires their interaction and constitutes a basic
(interactive) building block of larger computations. With (n, t)-threshold linear secret sharing
techniques, each private value is split into n shares (and distributed to n participants) such that t
or fewer shares information-theoretically reveal no information about the shared value, while t+ 1
shares allow the value to be reconstructed. For semi-honest participants, it is typically the case that
t < n/2. Any function can be expressed in this framework, and optimized designs of commonly
used operations are available.
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Theorem 2 Assuming the existence of secure (n, t)-threshold linear secret sharing scheme, our
algorithms result in t-private protocols for maximum bipartite matching size, matrix rank, and
fingerprint matching with n participants and t < n/2.

The argument for this proof proceeds in the same way as for Theorem 1: because our algorithms
are oblivious, the straightforward application of threshold linear secret sharing techniques results
in secure protocols for fingerprint matching as well as maximum bipartite matching size and matrix
rank in the multi-party setting.

For both two-party techniques based on garbled circuit evaluation and multi-party techniques
based on linear secret sharing, there are general mechanisms for converting solutions secure in the
semi-honest model to solutions secure in the stronger malicious model (see, e.g., [27] for garbled
circuits and [4] for secret sharing among many others). This means that if we apply such techniques
to our computation, we automatically obtain protocols secure in the malicious model. We omit the
details here.

9 Implementation and Performance

To evaluate performance of our techniques, we implement our oblivious fingerprint matching al-
gorithms using both Gaussian elimination and Gram-Schmidt approaches in a secure computation
framework. Our implementation is based on two-party garbled circuit evaluation and utilizes a tool
called JustGarble [5] for efficient circuit garbling and garbled circuit evaluation.

We build Boolean circuits for Algorithm 8 followed by the over-the-threshold version of Algo-
rithm 4 (as described in section 7), and also for Algorithm 8 followed by the over-the-threshold
version of Algorithm 6, with optimizations tailored to specifics of modern garbling techniques. In
particular, recent garbled circuit-based techniques allow for XOR gates to be implemented without
any use of cryptographic operations, which allows them to become virtually free [26]. This means
that a circuit that minimizes the use of non-XOR gates will have performance advantages over other
circuits of comparable size with a smaller percentage of XOR gates. One specific optimization that
we were able to apply is minimizing the number of non-XOR gates in evaluation of conditional
statements. In detail, recall that conditional statements are re-written as given in equation 2.
The second formula, expressed in terms of Boolean operations, is more suitable for use in Boolean
circuits, but we also notice that the bitwise OR operation can be replaced with bitwise XOR op-
eration. This is due to the fact that at most one clause (i.e., c ∧ v1 or c ∧ v2) can be non-zero at
any time and thus XOR would accomplish the same functionality as OR or addition. This applies
to computation in all of Algorithms 4, 5, 6 and 8. Also note that in the compaction algorithm
extracting individual bits of counts requires no computation because of bitwise representation of
all values.

We measure performance of the algorithms for different numbers of minutiae in fingerprints
being compared and different values of the correctness parameter. Note that using synthetic data
affects neither performance nor accuracy of the secure algorithm. We varied the number of minutiae
in both fingerprints from 10 to 30 and also varied the size of the field FR with R’s bitlength ranging
from 10 to 20. Recall that according to [28], the probability that the rank of a randomized adjacency
matrix is not equal to the size of the maximum matching is at most n/R for n-minitia fingerprints.
This means that in our experiments the probability that the result is incorrect is approximately
between ≤ n/103 and ≤ n/106. In the implementation, we assume that coordinates xi, yi of each
minutia are represented in a 2-dimensional space of size 250 × 250 (i.e., xi, yi ∈ [0, 249]) and thus
the bitlength of each coordinate is 8. Then angle αi is provided in degrees from range [0, 359] and
thus each αi is represented using 9 bits. In our experiments, circuits with 30 million gates and
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Biometric Correctness GE Scheme GS Scheme
size parameter TG TE Gates TG TE Gates

10 minutiae
10 81.80 50.49 1,843,602 81.24 51.84 3,830,374
15 81.30 52.12 4,307,707 80.69 52.70 8,818,644
20 80.66 53.02 8,392,862 80.74 53.32 16,450,214

15 minutiae
10 84.05 53.18 5,238,622 81.27 53.03 11,798,434
15 83.18 53.37 11,496,802 81.72 53.68 26,427,929
20 82.35 53.92 21,156,282 81.03 53.71 47,858,974

20 minutiae
10 85.29 53.91 11,543,713 82.96 54.00 26,865,777
15 84.33 54.16 24,619,823 81.44 53.32 59,565,747
20 83.15 54.25 43,964,983 80.46 53.29 106,524,267

25 minutiae
10 85.99 54.85 21,741,388 83.27 54.03 51,343,112
15 85.25 54.57 45,690,373 81.67 53.50 113,323,432
20 82.77 53.80 80,226,158 81.44 53.23 201,405,552

30 minutiae
10 87.14 54.74 36,796,263 82.93 53.96 87,541,197
15 85.05 54.12 76,695,248 81.56 53.75 192,792,367
20 82.85 53.56 133,311,283 81.32 53.63 341,462,337

Table 1: Performance of fingerprint matching using JustGarble based on Gaussian Elimination
(GE) or Gram-Schmidt (GS) approaches.

larger were divided into sub-circuits as the current implementation of JustGarble requires that the
entire circuit resides in memory for garbling/evaluation. All experiments were run on a 3.2 GHz
machine with Red Hat Linux and 4GB of memory and are given in Table 1. Each experiment was
run 100 times, and the double median (i.e., the median of 10 medians) is reported.

In Table 1, TG denotes the time it takes to garble the circuit measured in the average number
of CPU cycles per gate (as in [5]). Similarly, TE indicates evaluation time, also measured in the
number of CPU cycles per gate. We also provide the total number of gates for each circuit. Note
that the number of cycles per gate can vary in different circuits, which is often because circuits
contain different percentages of XOR gates (which require substantially less work to create and
evaluate than other gates). From Table 1, we can see a slight increase in the per-gate runtimes
as the number of minutiae in fingerprints increases and a slight decrease in the runtimes as the
correctness parameter decreases. This can be attributed to the varying composition of the circuits
from XOR and non-XOR gates. For example, when the correctness parameter increases, a larger
portion of the circuit corresponds to field operations that have a higher percentage of XOR gates
than other operations. We also observed that paritioning a circuit into small circuits and evaluating
the sub-circuits circuits results in slightly faster overall per-gate time compared to the original
time, which is due to improved cache performance. We can see from the table that the circuits
corresponding to the GE solution are smaller by a factor of 2–3 than circuits corresponding to the
GS solution. This is most likely due to a larger number of field operations (while the structure of
the algorithms is similar).

We note that the overall execution consists of circuit garbling, oblivious transfer (OT) for one of
the parties’ inputs, and garbled circuit evaluation. Circuit garbling and transfer of the garlbed cir-
cuit can typically be performed in advance, assuming that the sizes of inputs are known. Similarly,
the most expensive portion of OT (which uses public-key operations) can be performed in advance.
This means that the online phase will consist of garbled circuit evaluation and communication of
inputs associated with the remaining portion of OT. Using an OT extension [22], the number of
public-key operations associated with any number of input bits is reduced to a constant corre-
sponding to a security parameter (on the order of 96–128). Furthermore, all public-key operations
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Figure 1: Performance of garbled circuit evaluation for fingerprint matching.

can be performed in the offline phase and the online phase involves only communicating a number
of bits linear in the number of inputs of the circuit evaluator and performing a similar number of
hash function operations. Recall that in our application the number of inputs for each party is the
number of bits in fingerprint representation (i.e., 25mX or 25mY ), which is very small compared
to the size of the computation. This means that the cost of OT will not have a noticeable impact
on the overall runtime of our solution.

To provide additional information about runtime of our secure fingerprint identification proto-
cols, we translate the numbers from Table 1 into execution times in Figure 1. In Figure 1, we report
circuit evaluation times for experiments with 15 and 20 minutiae. The runtimes were computed
from the circuit sizes, per-gate evaluation times, and the machine’s clock rate. We obtain runtimes
on the order of a second or less, which is an acceptable delay for fingerprint authentication.

Before we conclude this section, we comment on the performance of our solution compared
to that of other secure fingerprint matching protocols. As mentioned earlier, the only secure
fingerprint matching protocols that use minutia representations we are aware of are from [10] and
[36]. They are based on pairing a minutia with the closest possible match minutia and all possible
match minutiae, respectively, which does not achieve the same accuracy as in our solution and
requires substantially less work. Implementation results are only given in [10] and the runtimes are
similar to what we obtain in our solution. (And while no implementation results were reported in
[36], we anticipate that performance of that solution will be substantially slower than the solution
from [10].) The computation in [10] was structured as comparing fingerprint X to a number of
fingerprints Y in a database D. This incurs a one-time cost (per X) and a recurring cost per record
Y in D. This means that if we compare X to a single fingerpring Y , the one-time cost will still be
present. For fingerprints consisting of 20 minutiae, [10] reports about 5 seconds of offline work per
Y (total for both parties) and about 4 more seconds for one-time offline work. The online work is
approximately 0.85 second per Y . We note that our solution requires even lower overall work for
the same fingerprint sizes, but the online work may be higher for large values of the correctness
parameter. If we increase the number of minutia points in a fingerprint, the runtime of our solution
is expected to increase more rapidly than the runtime of the solution from [10] because of higher
complexity of the algorithm we use.
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10 Conclusions

This work is motivated by privacy-preserving fingerprint matching in the secure computation frame-
work, using standard minutia-based representation of fingerprints. We show that the maximum
(optimal) number of minutiae that match between two fingerprints can be determined by modeling
the problem as a flow network in bipartite graphs. Towards this end, we investigate the problem
of maximum matching size in a bipartite graph and reduce it to the problem of finding the rank
of an adjacency matrix, which has the same complexity as that of matrix multiplication. We build
data-oblivious algorithms for rank computation based on Gaussian elimination and Gram-Schmidt
process, the complexity of which is cubic in the number vertices in the graph (or the number of
minutiae in fingerprints). While it is possible to make algorithms of lower asymptotic complexity
(such as Strassen’s matrix multiplication and its extension to rank computation for non-singular
matrices) data-oblivious, we choose to concentrate on simpler algorithms because of smaller con-
stants behind the big-O notation. More advanced techniques of lower asymptotic complexity are
also of limited applicability to the problem of fingerprint matching because simpler solutions with
higher complexity outperform them on rather small input sizes (the number of minutiae) used in
fingerprint matching. Our data-oblivious algorithms for matrix rank, maximum flow size in bipar-
tite graphs and fingerprint matching consequently lead to secure protocols for respective problems
using available secure two-party and multi-party techniques. Our implementation builds and eval-
uates secure two-party protocol for fingerprint matching put forward in this work. Despite having
more complex computation to achieve improved accuracy, we show through experiments that per-
formance of our techniques is suitable for this application and is comparable to the performance of
other secure fingerprint matching techniques that perform simpler minutia matching.
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