
Strong Externalized Universal Composability?

Generalized UC Revisited

Jesper Buus Nielsen and Mario Strefler

Department of Computer Science, Aarhus University
{jbn|mstrefler}@cs.au.dk

Abstract. In this paper we revisit the notion of generalized universal composability (GUC) in-
troduced by Canetti, Dodis, Pass and Walfish in 2007[3]. The GUC model was intended to model
a practical setting where setup parameters, like a PKI or a CRS, are made public once and for
all and then used by many different protocols. We show that there exist protocols which can be
proven secure in the GUC model, but which are obviously insecure in practice, in the setting that
the GUC model was intended to capture. We then proceed to revise the GUC model to a version
that better models the intended practical setting. We call the new notion strong generalized UC.
We finally prove that the GUC protocols proposed by [3] are also strong GUC secure, i.e., whereas
there is a problem with the model in [3], the protocols seem to be secure in the intended setting.

Key words: Generalized Universal Composability

1 Introduction

In this paper we revisit the notion of generalized universal composability (GUC) introduced
by Canetti, Dodis, Pass and Walfish at TCC 2007[3]. The GUC model was intended to model
a practical setting where setup parameters, like a CRS, are published once and for all and
then used by many different protocols. We show that there exist protocols which can be proven
secure in the GUC model, but which are obviously insecure in practice, in the setting that the
GUC model was intended to capture. In [3], the authors present a simplified version of GUC
called EUC (externalized UC) and prove its equivalence to GUC. We revise the EUC model
to a version that better models the intended practical setting. We call the new notion Strong
Externalized UC (SEUC). We finally prove that the EUC protocol proposed by [3] is also SEUC
secure, i.e., whereas there is a problem with the model in [3], the protocols seem to be secure
in the intended setting.

1.1 A Brief History of UC and Externalized UC

The UC model[2] was developed to guarantee that a protocol proven secure is also secure in
practice, even if run concurrently with many copies of itself and many concurrent copies of
other secure and insecure protocols. This is a strong and desirable property. Unfortunately it
soon turned out that essentially all interesting tasks cannot be securely realized in the UC
model[4,5] unless some kind of setup assumption is provided, like a common reference string
(CRS)[6] or a key registration authority (KRA) where the parties give proofs that they know
their secret key[1]. The reason essentially is that the UC model is a simulation based model and
the simulator has no advantage over the real world adversary, like for instance rewinding, as is
the case in other, weaker models.

In the UC model, setup is traditionally modeled as a network resource, i.e., the protocol is
proven secure in a hybrid world where the parties have access to an ideal functionality for the

? Supported by European Research Council Starting Grant 279447. Supported by Danish Council for Indepen-
dent Research via DFF Starting Grant 10-081612.



given setup. Since such ideal functionalities used as a network resource are initialized together
with the protocol in the UC model, this means that each protocol will be given a fresh instance
of the ideal functionality. I.e., if the ideal functionality publishes a CRS, each (instance of a)
protocol will receive a fresh random string, generated after the protocol starts running and
unknown to all parties prior to the execution of the protocol. Similarly, if the ideal functionality
models a KRA, each (instance of a) protocol will have access to a fresh independent PKI which
was completely unused prior to the execution of the protocol, and which cannot be accessed by
other protocols. This very poorly models practice, where we envision that several or all protocols
share the same PKI or use the same common reference string, e.g., randomness obtained by
observing a random naturally noisy phenomenon. It is very impractical to assume that together
with each (instance of) a protocol a new PKI will occur or a fresh random string will appear in
the sky that cannot be observed by other protocols.

Given that some setup provably is needed for UC security, it is problematic that the model
does not properly model real world setup assumptions. The purpose of the EUC model is to
fix this, by proposing a model where the setup can be shared by several protocols and can be
observed by all protocols. This potentially allows to use a single PKI or rely on a single CRS,
generated for instance by observing sun spots[7]. Before we can describe how the EUC model
deviates from the UC model and what the problems with the EUC model are, we need to dive
a little deeper into the UC model.

Technically the UC model works by comparing a real world and an ideal world. In the real
world, a protocol π is present, consisting of the parties of the protocol, each modeled as a
poly-time interactive Turing machine (ITM).1 Furthermore, an adversary A is present. It is the
adversary which gives inputs to the corrupted parties and receives outputs from the corrupted
parties. Furthermore, A can see all messages sent and can schedule their delivery. Additionally,
A can fully control the actively corrupted (malicious) parties, i.e., send and receive messages
on their behalf. A protocol might also use an ideal functionality G as an additional resource.
Here G is just another poly-time ITM which can talk to all the parties. This can be used to
model the presence of for instance a PKI or a CRS. It is the adversary which gives inputs to G
on behalf of the malicious parties and which receives outputs from G intended for the corrupted
parties. However, A does not see the inputs and outputs of the honest parties. Finally there is
an environment Z. It is Z which gives inputs to the honest parties and receives outputs from the
honest parties. It can furthermore communicate with A at any time, in particular A might send
all collected information to the environment. The execution ends by Z outputting a bit, which
we think of as its guess at whether it interacted with the protocol or the ideal world. We denote
the distribution of this guess after an execution of protocol π using the ideal functionality G
under attack by A in the environment Z by execπ,G,A,Z .

The ideal world is specified by an ideal functionality F , which models the behavior that the
protocol is intended to have. There is also an ideal world adversary, or simulator, S. It is S
which gives inputs to F on behalf of the malicious parties and which receives outputs from F
intended for the corrupted parties. It is Z which gives inputs to F for the honest parties and
receives outputs from F to the honest parties. It can furthermore communication with S at
any time. The execution ends by Z outputting a bit, which we think of as its guess at whether
it interacted with the protocol or the ideal world. We denote the distribution of this guess by
execF ,S,Z .

The job of the simulator is to use its ability to give inputs on behalf of the corrupted parties
to make F give the same outputs as in the real world (showing correctness of the protocol) and
besides this the simulator should try to simulate the conversation that Z expects to have with
A (showing privacy of the protocol).

1 In the following all active entities are poly-time ITM’s, so we shall not mention this explicitly anymore.

2



Formally we require that for all protocol adversaries A there exists a simulator S such that
execπ,G,A,Z ≈c execF ,S,Z , where ≈c denotes that the guesses are computationally indistinguish-
able.

Notice that the simulator also simulates the ideal functionality G used as resource by π. This
means that if G for instance is a CRS, then it is S which picks the CRS. This allows S to pick
the CRS, crs, in such a way that it learns some trapdoor information about crs. It could, e.g.,
pick it as crs = P (r) for a uniformly random string r and a one-way permutation P . Now S
knows r and no protocol adversary A can learn r as crs is picked by G in the real world, so
learning r would involve inverting P on a uniformly random string. This now gives the simulator
an advantage over the adversary, and then essentially any task can be realized in a UC secure
way.

Note, however, that different simulators for different protocols might of course want to learn
different trapdoors, so if two protocol use the same CRS, then the simulation strategies might
not work together, as it might not be possible to learn both trapdoors – assuming, e.g., claw-free
permutations it is indeed easy to cook up such an example. This is the technical reason why
each protocol must be supplied with it own, fresh CRS.

The EUC model then proposes to model a global setup by running the ideal functionality
Ḡ used for setup out of control of the simulator. I.e., there will also be a copy of Ḡ in the ideal
world and Z can interact with this copy of Ḡ as in the protocol world. We denote this type of
ideal execution by execF ,Ḡ,S,Z . In short hand we then define the predicate

EUC(π,F) ≡ ∀A∃S∀Z(execπ,Ḡ,A,Z ≈c execF ,Ḡ,S,Z) . (1)

Notice that now, if Ḡ models a CRS, then it is the copy of Ḡ in execF ,Ḡ,S,Z which samples
crs, and the environment will be able to observe the value of crs. Hence the simulator cannot
pick the CRS, it is forced to simulate for the specific value crs chosen by Ḡ. Unfortunately,
this means that now the simulator cannot learn a trapdoor anymore, and hence again has no
advantage over the adversary. And, indeed, in [3] it is shown that a global CRS is not sufficient
to securely realize even the ideal functionality for commitment, Fcom. However, on the positive
side, the authors in [3] define a functionality called an augmented CRS (ACRS). This is an ideal
functionality which publishes a “normal” CRS crs, but in addition it allows a corrupted party
to ask for some trapdoor information associated with crs and the identity id of the corrupted
party. We do not allow honest parties to retrieve their associated trapdoors. An example could
be an identity based encryption scheme, where we might make the master public key the CRS
crs, and then we could allow a corrupted party id to get the secret key for identity id. We would
not allow honest parties to learn their secret key.

If we think of the corrupted parties as being on the team of the adversary and the honest
parties on the team of the simulator, then the advantage of the simulator now is that it knows
the trapdoor of all the players of the other team, whereas its opponent does not know any
trapdoor of the players on the simulators team. This allows to use the well known trick of giving
proofs of the form“either I’m running the protocol correctly, or I know the trapdoor information
associated with crs and your identity.” The authors of [3] use this trick plus a larger number of
other technical contributions to construct a protocol UAIBC (for UC Adaptive Identity-Based
Commitment) and show that it securely implements Fcom in the ACRS model. Via [1] one can
then get general multiparty computation from Fcom and standard computational assumptions.

The ACRS might look as a strange setup assumption, but notice that in practice we might
envision that such a CRS is set up by several highly trusted parties, like governments, standard-
ization bodies and the IACR once a year running a highly secure protocol or physical procedure
generating a random string crs, which is then published in an authenticated manner. There is
no need to actually provide a service which allows corrupted parties to learn their associated

3



trapdoor information, all that is needed is to publish a uniformly random string. The reason
why there is no reason to provide a service to learn trapdoor information is that only the cor-
rupted parties are allowed to learn this information anyway, and we have proven that even if we
allowed all corrupted parties to get their associated trapdoor information would the protocol
be secure. So, it clearly remains secure if we deny them this information.

1.2 The Problem: Targeted Protocols

The intention of the EUC framework is to model setup which is initialised in advance of the
protocol being executed and which may be used by arbitrary protocols.2 In considering arbitrary
protocols we should in particular consider protocols chosen by the adversary, maybe in some
subversion-of-security attack. As an illustration, consider the following scenario: a number of
highly trusted entities go together and once and for all generate a truly random string crs and
make crs public. Now a nicely specious adversary (NSA) mounts the following covert attack.
With crs in mind, it designs a protocol π which is insecure when run with exactly crs as
setup, but which is EUC secure when run with a random CRS. It then uses a full-fledged, well-
written proof that π is EUC secure to have π broadly accepted as being secure and eventually
standardized. Now honest parties will start running π, using the already set crs as the global
setup. In the following we call protocols which are provably secure in a given model M but which
are chosen by the adversary as to be insecure in a given practical setting a targeted protocol (of
M). This notion is related to the notion of security in the context of adaptive protocols, where
the adversary picks a devious protocol after seeing the supposedly secure protocol of the honest
protocol designer, and picks it to interact with the “honest” protocol in an insecure manner.
The difference is that with targeted protocols, the adversary first gets to see some internal state
of the honest protocol and even his own protocol before he has to design the targeted protocol.
This allows more devastating attacks.

We show that the EUC model allows a targeted protocol. In the above attack first the setup
is initialised, and then the protocol is chosen, and proved secure. In (1) we see that in EUC first
π is fixed, as part of the “inputs” to the security definition, and then only in the execution of
execπ,Ḡ,A,Z or execF ,Ḡ,S,Z is the setup Ḡ initialized. I.e., the PKI or the CRS is not known when
the protocol is designed. This allows the above targeted protocol to slip through.

To be more specific, assume that Ḡ is an ACRS functionality and that the ACRS once and
for all is set to be acrs0. Now take any secure protocol π for the EUC model, like the one in
[3], and construct the following protocol πacrs0 : it runs exactly as π, except that if the ACRS
is exactly acrs0, all parties will broadcast all their inputs and outputs.3 It is still the case that
EUC(πacrs0 ,F), as in execπacrs0 ,Ḡ,A,Z

and execF ,Ḡ,S,Z the ideal functionality Ḡ will sample a fresh
ACRS acrs, and hence acrs 6= acrs0 except with negligible probability.

One objection against this attack could be that eventually, after some years, the security
parameter will be increased and a new ACRS will be published, and then πacrs0 will run ex-
actly as π. So, asymptotically the protocols are still the same. This of course does not help
us in practice in those years where the system is insecure, and when the security parameter is
increased, the NSA just mounts the same attack again. Notice that we will not spot this attack
using current techniques for assessing the concrete security of protocols before deploying them
with a concrete security level. A concrete security analysis of π in the EUC model would notice

2 See for instance the quote “[T]he real-world phenomenon of setup that is set in advance and publicly known
throughout the system. The UC with joint state theorem (‘JUC Theorem’) [. . . ] allows several instances of
specifically-designed protocols to use the same setup, but it too does not capture the case of public setup that
can be used by arbitrary different protocols at the same time.”[3, page 3].

3 A note to the NSA: One can use, e.g., obfuscation to make a less overt version of this attack.

4



that acrs = acrs0 happens with appropriately low probability and then reduce to a concrete
security analysis of π.

1.3 Non-Uniform Protocols

Notice that our targeted protocol formally is non-uniform, as the adversary will pick a new
protocol whenever the ACRS is replaced. This is actually formally possible in the UC model as
adversaries are allowed to be non-uniform, via the auxiliary input of the environment.

However, the UC framework does not allow protocols to be non-uniform, so formally our
protocol πacrs is not an attack inside the model. Note, however, that this is not a way out of
the problem that we pinpoint, it is rather part of the problem, as there are protocols which can
be chosen by the class of adversaries that we want to consider but which are not considered
by the model. Furthermore, being given such a protocol in practice, we cannot see that it does
not fit the model, as we do not know how the NSA will pick the next level in the protocol and
whether it will be done uniformly.

One could then advertise the notion that adversaries and protocols alike should be uniform.
Then not even the adversary needed by the above targeted protocol attack would fit the model.
However, this seems more a closing of the eyes than a real fix, as the above attack applies in
practice whether or not the model recognizes it.

We therefore propose that adversaries and protocols alike should be modeled as non-uniform.
In particular so because even some naturally occurring “protocols” are non-uniformly specified,
like the US symmetric encryption standard: we had DES, now we have AES, and we do not yet
know the protocol for the key levels of 100 years.

1.4 Our Fix

Before describing how we model that protocols might depend on the (A)CRS, let us consider
two solutions that do not work.

An immediate idea for modeling that protocols might depend on the specific value, acrs,
of ACRS would be to have a model where we give acrs to the adversary, and then A gives us
back a protocol π. However, the security would then depend crucially on how A lets π depend
on acrs. If it outputs πacrs it should not be considered secure. If it outputs just π, the protocol
from [3] it should probably be considered secure, as the protocol indeed seems to be secure in
practice. However, in practice, when we want to judge whether π is secure or not, we are only
provided with π and F , the code of the adversary is hidden from our eyes, and hence so is the
dependence of π on the current instances of the ACRS(s) out in the real world. We could then
try to require that the formal definition of security gets as input along with the protocol also
a description of how the protocol depends on acrs. However, providing this description would
then be the job of the protocol designer, i.e., the adversary. The adversary would of course
subvert this by designing a protocol like πacrs0 and then just claim that there is no dependence
on the current ACRS(s) – it can simply claim that it would have output this exact protocol no
matter what the value of the ACRS(s) currently used in the real world is. We therefore need a
formal definition of security, which takes just π and F as input.

However, if π is an input to the security definition it seems we are back at the problem of
the EUC model: if now Ḡ samples acrs afresh, there will be no correlation between π and acrs
allowed. However, in picking π after seeing acrs, the temporal aspect is not that important,
the attack is based on a correlation between acrs and π. We can allow the adversary the same
attack if instead we allow A to pick acrs after seeing π. This is what we will do then: In our
formal model the adversary will get to pick the specific value of acrs to be used. Formally, we
will let it be up to the environment Z, as it is present in both execπ,Ḡ,A,Z and execF ,Ḡ,S,Z . It is,

5



indeed easy to see that this is a strictly stronger attack than the one we tried to capture: To
simulate the targeted protocol attack, the adversary/environment can sample acrs as Ḡ would,
then design π from acrs, and then mount an attack where in execπ,Ḡ,A,Z and execF ,Ḡ,S,Z it asks
Ḡ to use acrs.

Unfortunately, allowing the adversary to pick acrs is vastly too strong an ability to give
away, as it might choose to learn the trapdoors of all honest parties, and then the simulator has
no advantage anymore. We patch this hole using an idea by Rogaway. We will require from an
adversary that it does not learn the trapdoors of the honest parties, by saying that a protocol
is secure if it is secure against any adversary from which one cannot extract the trapdoor of
any honest party. This is inspired by the human-ignorance definition of security of a fixed hash
function. This restriction still allows the adversary to mount correlation attacks, but rules out
the trivial attacks where it uses the trapdoor of the honest parties.

1.5 Added Value: Weakly Random Setup

We set out to model setup which is set once and for all and can be shared by arbitrary protocols.
However, the notion of SEUC seems to provide more than just the ability to share setup. Note,
namely, that in our security game, the security of a protocol is proven against any environment
that is ignorant of the trapdoors of the honest parties. Hence, there is no reason that an ACRS
is uniformly random. All that is required is that it is random enough that the adversary cannot
learn the trapdoor.

1.6 Targeted Protocols, a Blind Spot?

We have shown that the EUC model is not sound, because it samples the global setup at random
after the protocol has been designed. This does not closely model the real-world phenomenon
that the setup “is set in advance”. However, the real problem, in our view, is a more general
one, not associated specifically to the EUC model. It seems that targeted protocols is a blind
spot of many of our security models.

The general goal of modern cryptography is to make no assumptions on the behavior of
the adversary, as it has proven hard to enumerate all possible attacks that an adversary might
mount. And, we go to great lengths to allow the adversary any possible behavior in our models,
sometimes imposing the only assumption that the adversary is efficient. However, most models
assume the attack begins along with the execution of the protocol, at which point the protocol
has already been fixed. In particular, few models pay explicit attention to targeted protocols.
It would be interesting to investigate whether more existing models allow targeted protocols.

It would also be interesting to formulate a general model of targeted protocols, where the
adversary is allowed to choose provably secure (sub-)protocols on the fly as part of the attack,
maybe even after having seen internal values of an execution of the protocol that the targeted
protocol should run along with or as a sub-protocol of. The techniques for modeling global
setup that we introduce in this paper do not seem to generalise to this broader setting in any
straight-forward manner.

1.7 Road Map

In section 2, we give some standard, basic definitions. In section 3, we introduce the SEUC
model and formulate and prove its composition theorem. In section 4, we separate the EUC
model and the SEUC model, by formalising our targeted protocol from above. In section 5, we
prove that the UAIBC protocol from [3] securely implements Fcom in the SEUC model, under
a slightly stronger assumption on one of the primitives than used by the original proof.

6



2 Definitions

We let N be the set of positive integers. A function ν : N→ [0, 1] is negligible, if for every c > 0
there is nc ∈ N such that ν(k) < k−c for all k > nc. We denote by Negl the set of negligible
functions. A function f : N→ N is superadditive, if ∀n,m ∈ N : f(n+m) ≥ f(n) + f(m).

In this paper, PPT (for probabilistic polynomial time) is the set of all algorithms whose
running time is polynomial in the total length of their input. We also define the set IPT (for
interactive probabilistic polynomial time) of ITMs whose running time is bounded by a super-
additive polynomial p in the following way: Let ij be the total number of bits written on all
the machine’s input tapes until step j, oj the total number of bits written by the machine on
all its output tapes until step j. Then at step j we have j ≤ p(ij − oj). Note that this implies
∀j ∈ N : ij > oj , since p(0) ≤ 0 by its superadditivity.

For a probabilistic algorithm A taking t inputs, y = A(x1, . . . , xt; r) is the output of A when
run on input x1, . . . , xt and coins r. Usually we assume that the coins r are drawn uniformly
at random and write only y ← A(x1, . . . , xt). [A(x1, . . . , xt)] is the set of y that have positive
probability of being output by A.

Let X,Y be two probabilistic algorithms N×{0, 1}∗ → {0, 1} that use a polynomial (in the
first parameter) number of random coins. For fixed inputs k ∈ N, z ∈ {0, 1}∗, we can see X(k, z)
and Y (k, z) as probability distributions. We define the (computational) distance between the
two probability distribution ensembles X = {X(k, z)}k∈N,z∈{0,1}∗ and Y = {Y (k, z)}k∈N,z∈{0,1}∗
as the function

∆(X,Y )(k) = max
z∈{0,1}∗

|Pr[X(k, z)→ 1]− Pr[Y (k, z)→ 1]|,

where the probabilities are over the random coins.
We say that two probability distribution ensembles X, Y are (computationally) indistin-

guishable (X ≈c Y ), if there is a negligible function ν such that

∆(X,Y )(k) < ν(k).

3 Strong Externalized UC

In this section we specify our model of strong externalized UC (SEUC, pronounced see-U-see).
We assume basic knowledge of the UC model. We reuse the basic model of Externalized UC
(EUC) from [3] and make a few changes.

A Crash Course on the EUC Model The EUC models starts from the UC model and
adds the notion of shared functionalities, which are allowed to interact with more than one
protocol session, and we denote them with a bar, as in Ḡ. We still assume that all protocols are
sub-routine respecting, except that they are allowed shared access to the shared functionalities
as Ḡ. We say that they are Ḡ-sub-routine respecting. In [3, sec. 2.2.3] the notion is stated as
follows: ”none of the sub-parties of an instance of π provides output to or receives input from
any ITI that is not also party/sub-party of that instance of π, except for communicating with
a single instance of the shared ITI Ḡ”.

Recall that in the UC model, the environment is only allowed to invoke a single copy of the
protocol π being proven secure, we call this the challenge protocol. It is in particular not allowed
to invoke or communicate with any protocol or ideal functionality used by π. This is to prevent
that π unknowingly starts using an instance of a sub-protocol or ideal functionality that the
environment has been playing with: only π gets to interact with its own sub-protocols.

7



The EUC model relaxes this requirement by requiring that the environment is only Ḡ-
externally constrained, i.e., it has the same restrictions as the environment of the UC model,
but is allowed to invoke the instance of Ḡ that is to be used by π. And, Z is allowed to arbitrarily
interact with Ḡ, except that it is not allowed to makes calls to Ḡ using the session identifier
of the challenge protocol π or any of its sub-instance, to maintain the requirement that the
environment is not allowed to directly observe or influence the network communications of the
challenge protocol. This will allow Z to internally emulate any other protocol also using Ḡ, but
will not allow it to interfere with the way π uses Ḡ.

Non-Uniform Protocols The first very minor change that we make is to allow protocols to
be non-uniform. Formally, a non-uniform π is a series of protocols π(k), where k is the security
parameter. Here each π(k) is a protocol in the usual sense. We measure the running time of a
party in π(k) as the size of the code of the ITM describing the party plus the usual running
time as defined in the UC model. Protocols are run as usual, except that at security level k, we
run the protocol π(k). We already argued in the introduction why it is more natural to model
protocols as non-uniform: the environment/adversary is non-uniform and we want to consider
all protocols that might be chosen by the adversary, and in addition, some natural protocols
are better modeled as being non-uniform.

Allowing Targeted Protocols Our next change is to allow protocols to be targeted, i.e., to
be chosen adversarially after playing with the shared functionality Ḡ for a while. As explained
in the introduction, in the real world, protocols can be constructed after global setup has been
made public, so we need to incorporate this into our model.

You are Given Just a Protocol What we ideally want is for our model to allow that π is
chosen after the setup functionality has been running for some period of time, and that π might
be chosen adversarially by the environment. However, definitions of the form that we allow
the adversary or environment to choose the protocol after seeing the setup does not lead to a
workable definition.4 Consider, e.g., a protocol π0 for a global CRS model which had been chosen
to be secure for all values of the CRS, except for one hardcoded value crs0. If the environment
designed π0 after seeing the global CRS, crs, and used crs0 = crs, then this protocol is not
secure. If, however, crs0 was chosen uniformly at random, then the corresponding protocol, π1

say, should probably be considered secure. However, when given a protocol in practice, we are
given one fixed protocol, not the distribution from which it was drawn, so we cannot distinguish
these two cases. In other words, if the definition of security depends on how the environment
chose the protocol, then we cannot analyze the protocol without knowing if it was chosen
adversarially or not and how the environment chose the protocol. It seems overly optimistic in
practice that the attacker will tell us how the protocol was chosen. Consequently, we need a
definition which takes a protocol as input and tells us whether it is secure or not.

Correlation is Sufficient Having the protocol π quantified/fixed first before we quantify over
all environments makes it impossible to let the protocol be chosen by the environment after the
environment sees the setup. We solve this apparent deadlock by instead letting the environment
chose the setup after seeing the protocol. The problem of the protocol having exactly the global
CRS hardcoded is a problem of correlation not a temporal problem per se: if we have a protocol
with a hard-coded ”trapdoor” CRS and the global CRS happens to be the same value, then the
protocol is insecure, it does not matter in which order this correlation came about.

4 In the following discussion we will for brevity use environment to mean environment or adversary.

8



Bear in mind, that letting the environment choose the setup is only a model choice made
to facilitate correlation between setup and protocols, it is not our goal to model that the en-
vironment actually chooses the setup, it is a tool. Our goal is just to allow that protocols and
global setups are adversarially correlated. It therefore makes sense to give the environment as
restricted a power as possible, which still allows it to create correlation between protocols and
the setup.

What we will do is say that the setup functionality will be the correct one, and during the
actual protocol run, it behaves exactly as expected. All the environment gets to do is run the
setup functionality for some period before the protocol gets to interact with it, and in this phase,
called the pre-execution phase, the environment determines the random coins rpre used by the
functionality – think that each time the setup functionality needs a random bit, it will ask the
environment to provide it. After the environment activates the challenge protocol the first time,
the setup functionality will use fresh, internal randomness for all future random choices. This is
exactly enough power that the environment can chose, e.g., a global CRS to be the hardcoded
”trapdoor” CRS of a protocol. Again, bear in mind, that we do not want to model that the
environment can control the setup functionality like this in practice, it is still just a tool. And,
as it happens, even this restricted tool that we used is too strong for the goal. This will cause
other problems, which we address soon.

First notice, however, that with the definition we have now, both π0 and π1 are consid-
ered insecure. This consequence of the definition actually makes sense: In practice we cannot
distinguish π0 and π1, and π0 is insecure. So, in practice we must also consider π1 insecure.

As said, we make a first attempt at defining security for a protocol π using a setup func-
tionality Ḡ by using an instance of Ḡ whose random tape rpre is chosen by the environment.
We move the ideal functionality to the superscript to reflect this special access. As in the EUC
model, we say that π securely realizes F , if

∀A ∈IPT ∃S ∈ IPT ∀Z ∈ IPT :

execḠF ,S,Z ≈c exec
Ḡ
π,A,Z .

The main change lies in the definition of the experiment execḠ·,Z , which has two phases: In the

first phase, Z is allowed to interact with Ḡ. During this phase, when Ḡ reads its random tape,
it will instead read a designated extra tape of Z containing a string which we will call rpre . The
environment gets to determine the value rpre . The ideal functionality has left-to-right read-only
access to rpre and Z has left-to-right write-only access to rpre . This first phase is the same in
the real and ideal executions. The second phase is an execution of the experiment as usual, and
we allow Ḡ to flip new coins during the second phase. We model this by letting the random tape
of Ḡ be reset to a uniformly random string independent of rpre at the beginning of the second
phase, and still allowing only left-to-right, read-only access. The pre-execution phase ends when
the environment activates the first entity which is not the copy of Ḡ to be used in the protocol.

After the pre-execution phase execḠπ,A,Z will then be executed exactly as in the EUC model,

except that π will use the instance of Ḡ initialized by the environment in the pre-execution
phase. Similarly, execḠF ,S,Z will be executed exactly as in the EUC model, except that S will

use the instance of Ḡ initialized by the environment in the pre-execution phase.

Environmental Ignorance A rather obvious problem with this definition is that the environ-
ment is allowed to pick and hence see the randomness of the setup functionality. We know that
any setup must contain a trapdoor for the simulator. In the formulation above, the environment
might chose to learn all these trapdoors and misuse them. Since this does not correspond to

9



any of the attacks we want to model in the actual real world, but is a consequence of having
used too strong a tool, we need to patch the definition to get rid of this problem.

A similar problem was treated by Rogaway [8]: For any collision-resistant hash-function
(CRHF) there is an adversary that finds a collision, because it is hard-coded into its description.
The solution Rogaway described was to give an explicit reduction from an adversary that breaks
a construction using a CRHF to an adversary breaking the collision-resistance. In that case the
scheme based on the hash-function is secure until at collision is found. We will follow a similar
approach.

Note that if the protocol is secure when the environment does not misuse any trapdoor,
then any noticeable difference in the distributions execḠF ,S,Z and execḠπ,A,Z must come from a
misuse of trapdoors. We can therefore still hope to prove security against environments that
do not know the trapdoors of honest parties: we call such an environment ignorant and we
call the principle that environments are not allowed to know/use trapdoors of honest parties
environmental ignorance. We will only prove security against ignorant environments.

We make the definition constructive by demonstrating that an environment breaking the
scheme has a trapdoor, by extracting the trapdoor from the environment. Essentially, there
should exist a poly-time algorithm Extract such that if it is not the case that

execḠF ,S,Z ≈c exec
Ḡ
π,A,Z ,

then

Pr[td← Extract(Z) and td is a valid trapdoor]

is non-negligible in k. Here Extract(Z) denotes that the extractor gets non-black-box access to
the environment.

We could have made a stronger definition, requiring that the probability of extracting being
equal to the distinguishing probability, but there is no need to do this. Note, namely that the
job of the extractor is only to show that the environment behaved in a way it should not: it
sometimes remembers a trapdoor. There is no reason that the extractor should be forced to
extract with probability equal to the distance. An environment having a hard-coded trapdoor
is considered outside the environment class, and we don’t care about an attack carried out by
a cheating environment from outside the environment class.

What is a Trapdoor? We are then left with deciding what it means for the extractor to pro-
duce a hardcoded trapdoor. Recall that what we want is that the extractor demonstrates that
the environment ”misused” the slightly too strong tool we gave it. We give it control over the
randomness of the setup to allow it to create correlation, not to let it read out ”trapdoors”. It is,
however, hard to give a generic definition of what a trapdoor is, save predicting what all future
global setups will look like. We therefore delegate this definition to the global setup. We will
require that all global setup functionalities take a special input from the adversary/simulator
of the form (trapdoor?, x). In response to such an input it will return a value (trapdoor, x, t),
to the adversary/simulator. Here t is a bit. The bit might depend on the state of the func-
tionality and who is corrupted, but the functionality is not allowed to communicate with any
other entities during the computation of t. We think of t = 1 as meaning that x was illegal
trapdoor information, which the adversary ought not know at this point in the execution, like
the secret key of an honest party. It should be hard to make the setup functionality output t = 1
when not controlling or seeing its random tape, but besides this we require nothing more from
this trapdoor-identification mechanism. The goal of the extractor is then to make the setup
functionality output (trapdoor, x, 1).

10



Definition 1 (Well-formedness of setup). For an ideal functionality Ḡ, let π be the dummy
protocol with the session identifier being that of the challenge protocol and with access to Ḡ. We
say that Ḡ is well-formed for global setup if for all environments Z and the dummy adversary A
it holds that the probability that Ḡ outputs a value of the form (trapdoor, ·, 1) in execπ,A,Z(k)
is negligible in k. Furthermore, if a well-formed functionality is activated by the environment,
then it will never give output to any other party but the environment in that activation.

Recall that we defined that the pre-execution phase ends when the environment activates
the first entity different from Ḡ. Combining this with Ḡ returning the activation to Z when
activated by Z we get that when the pre-execution phase ends, no entities except Z and Ḡ were
activated or received any inputs. It is to get this property that we require that Ḡ does not pass
the activation to any other instance but Z. As a consequence, when Ḡ is well-formed for global
setup, then execḠπ,A,Z(k, z) does not depend on π or A during the pre-execution phase,5 and we

will therefore write execḠZ(k, z).

As an example, it was shown in [3] that it is impossible to EUC-realize Fcom in the standard
CRS model. To circumvent this result, the authors propose a global setup, ACRS, that allows
for per-user secrets. The environment/adversary/simulator are only allowed to ask for secrets
for the corrupted parties. We can then define a bad trapdoor to be the secret of an honest party,
i.e., we extend [3] to return t = 1 when presented with the secret of an honest party. We return
to this example formally later, but for now, let us get the definition finished.

Extraction Success We first define a notion of extraction success, where an extractor is given
an environment in a state at which the pre-execution phase has just ended. Then it must extract
a trapdoor, i.e., make Ḡ output t = 1.

Definition 2 (Extraction success). For an ITM Ḡ well-formed for global setup, an un-
bounded time ITM Extract, a Ḡ-externally constrained, IPT environment Z and a natural number
c, define the following experiment: ExpḠExtract,Z,c(k, z) ≡

1. First run execḠZ(k, z) until the pre-execution phase ends, i.e., Z writes a message intended

for an ITM other than Ḡ. At this point, let σḠ denote the current state of Ḡ in execḠZ and
similarly let σZ denote the state of Z. We allow that Z deletes part of its state at the end
of the pre-execution phase and we let σZ denote the pruned state.

2. Let Extract(σZ) denote the ITM Extract with σZ placed on the input tape.

3. Let Ḡ(σḠ) be a copy of Ḡ in state σḠ, i.e., it is the ideal functionality which ignores the initial
input containing k given to it by the UC framework, and then it runs from the state σḠ.

4. Run exec
Ḡ(σḠ)

Extract(σZ)(k, z) for kc steps. Note that k and z are given as input to Extract(σZ) by
the execution logic of the UC framework.

5. If during the execution in Step 4 the ideal functionality Ḡ outputs a value of the form
(trapdoor, ·, 1), then output 1. Otherwise, output 0.

We define the family of random variables SuccḠExtract,Z,c(k, z) = Pr[1← ExpḠExtract,Z,c(k, z)].

Remark 3. – The reason why we allow Z to delete part of its state between the pre-execution
phase and the protocol-execution phase is that we made the model choice that Ḡ reads its
random choices from Z during the pre-execution phase, so even in the benign case where the
environment would let these choices be random and not look at them, the extractor could

5 Except that Z is restricted by the presence of π to not activate Ḡ on the session identifier of the challenge
session.

11



inspect Z to get the randomness used by Ḡ. This would allow the extractor to demonstrate
misuse when there was none, giving a nonsensical definition. We therefore only consider
trapdoor information a misuse on behalf of the environment if it is passed from the pre-
execution phase to the protocol-execution phase by the environment.

– Recall that exec
Ḡ(σḠ)

Extract(σZ)(k) denotes running the dummy protocol for Ḡ and the dummy

adversary, with Extract(σZ) as environment. Hence inputs to the dummy protocol from
Extract(σZ) goes to Ḡ with the session identifier of the challenge protocol, and the corre-
sponding outputs go back to Extract(σZ). Hence Extract(σZ) has the power to provide all
inputs to and see all outputs from Ḡ. Furthermore, it has full access to special communica-

tion with Ḡ via the dummy adversary. Hence, exec
Ḡ(σḠ)

Extract(σZ)(k) is just a convenient way to

say that we give Extract(σZ) full non-rewinding black-box access to Ḡ(σḠ). We define the
black-box access like this to not have to explicitly define what it means that the extractor
has non-rewinding black-box access to the setup ”as in the UC execution”.

Definition 4 (Environmental ignorance, well-formedness for environments).

Let SuccḠExtract,Z,c denote the family of distributions {SuccḠExtract,Z,c(k, z)}k∈N,z∈{0,1}∗. Let 0 de-
note the family of distributions {0}k∈N,z∈{0,1}∗. We say that Z is ignorant of trapdoors for

honest parties in Ḡ if for all Extract ∈ ITM and all c ∈ N it holds that SuccḠExtract,Z,c ≈c 0. We

say that Z is well-formed for global setup Ḡ if Z is a Ḡ-externally constrained environment and
Z is ignorant of trapdoors for honest parties in Ḡ.

Note that Z being Ḡ-externally constrained means that in the pre-execution phase it does not
activate Ḡ on the session identifier of the challenge protocol. Furthermore, when Ḡ is activated
by Z it always returns the activation to Z, so it never sends messages to any other party but
Z. In particular, Ḡ never sent messages with the session identifier of the challenge protocol, nor
did it send messages to the adversary. Hence, right after the pre-execution phase 1) only Z and
Ḡ were ever activated, and 2) neither Z nor Ḡ sent messages for the challenge protocol or the
adversary. We say that the system consisting of the two ITMs Z and Ḡ is open for the session
identifier of the challenge protocol, meaning that any protocol with the session identifier of the
challenge protocols can be plugged into the system {Z, Ḡ} and run in the UC framework.

Lemma 5 (Pre-execution lemma). Let Z(σZ) denote the environment which ignores the
inputs k and z and then continues from state σZ . Let π be a Ḡ-sub-routine respecting protocol. Let
Z be Ḡ-externally constrained. Then first running execḠZ(k, z) to get σḠ and σZ and then running

exec
Ḡ(σḠ)

π,A,Z(σZ)(k, z) will give exactly that same output as running execḠπ,A,Z(k, z). Similarly, first

running execḠZ(k, z) to get σḠ and σZ and then running exec
Ḡ(σḠ)

F ,S,Z(σZ)(k, z) will give exactly that

same output as running execḠF ,S,Z(k, z).

Defining Security In defining security we will only address the notion of securely realizing
an ideal functionality. We will furthermore only address real-world and hybrid-world executions
with the dummy adversary. When A is the dummy adversary we write execπ,A,Z as execπ,Z for
brevity. The definition easily extend to the notion of protocol emulation and general adversaries.

Definition 6 (SEUC Security). Let Ḡ be any ideal functionality well-formed for global setup.
Let π be any Ḡ-sub-routine respecting protocol. Let Z range over all IPT environments that
are well-formed for global setup Ḡ. Let S range over all IPT simulators. Let F be an ideal
functionality. We say that π SEUC realizes F with global setup Ḡ if

∃S ∀Z(execḠF ,S,Z ≈c exec
Ḡ
π,Z) .

12



We say that a SEUC environment is a benign environment if it provides Ḡ with uniformly
random bits in the pre-execution and then deletes these bits, i.e., it passes on the state σZ = ⊥.
We define non-uniform EUC as SEUC, but restricted to benign environments. This is essentially
the notion of EUC, except that we allow protocols to be non-uniform.

One could expect most proofs relative to the above definition to be of the following form: First
a simulator S is constructed. Then the simulator is proved to work by a proof of contradiction:
Given an environment Z such that execḠF ,S,Z is not indistinguishable from execḠπ,Z , construct
an extractor Extract that demonstrates that Z is not ignorant according to Definition 4, i.e., it
uses the state of Z at the end of the execution phase to produce a trapdoor, i.e., it makes Ḡ
output t = 1 while acting just as a normal IPT UC environment towards Ḡ. In doing this, it
is important that Extract can run in IPT and still at least run Z, so we will discuss this issue
briefly now.

Recall that the notion of polynomial time of an ITM in [2] is constructed such that execḠF ,S,Z(k, z)

and execḠπ,Z(k, z) can be run in standard polynomial time in k for some polynomial. So, since we
allow Extract a polynomial running time kc which might depend on Z (as c is quantified after

Z), it can run execḠF ,S,Z(k, z) and execḠπ,Z(k, z) internally. If it needs to run them many times,
say to allow rewinding, one can just choose c high enough to allow this too in Definition 4.

SEUC implies EUC implies UC Note that for any c, the experiment ExpḠExtract,Z,c(k, z)
can be run in poly-time. If furthermore Z is a benign environment, then σZ would be empty

and independent of σḠ . Hence exec
Ḡ(σḠ)

Extract(σZ)(k, z) would have exactly the same distribution

as execḠExtract(⊥)(k, z). Since Extract(⊥) is poly-time it then follows from Definition 1 that the

probability that Ḡ outputs t = 1 in execḠExtract(⊥)(k, z) is negligible. From this it then follows

that the probability that Ḡ outputs t = 1 in execḠExtract(σZ)(k, z) is negligible. Hence a benign

environment Z is well-formed for global setup Ḡ. From this it follows that SEUC implies EUC,
and since EUC implies UC, we also get that SEUC implies UC. Strictly speaking SEUC only
implies non-uniform EUC, as EUC of a non-uniform π is not defined, but if π is uniform poly-
time then non-uniform EUC and EUC are clearly equivalent.

3.1 Composability

We have to show that the composition theorem still holds. Since we have presented the security
definition in terms of securely realizing ideal functionalities, we present also composition only
in these terms.

Theorem 7 (composition). Let Ḡ be any ideal functionality well-formed for global setup. Let
π1 and π2 be any Ḡ-sub-routine respecting protocols. Let F1 and F2 be ideal functionalities.

Assume that π1 is for the F2-hybrid model. Let π
π2/F2

1 denote the usual EUC composition, i.e.,
it is the protocol which runs as π1 except that calls to F2 are replaced by calls to π2, and when
π1 and π2 make calls to Ḡ, they both use the shared functionality Ḡ.

If π1 SEUC realizes F1 with global setup Ḡ and π2 SEUC realizes F2 with global setup Ḡ,

then π
π1/F1

2 SEUC realizes F1 with global setup Ḡ.

Proof. The proof proceeds exactly along the lines of the proofs of the UC and EUC composition.
We therefore only sketch the main structure of the proof and refer to [2] for the details. Then
we will zoom in on the parts that need modification.

13



By the premise of the theorem we know that there exist simulators S1 and S2 such that for
all Z1 and Z2 well-formed for global setup Ḡ it holds that

execḠF1,S1,Z1
≈c execḠπ1,Z1

(2)

execḠF2,S2,Z2
≈c execḠπ2,Z2

. (3)

We have to prove that there exists a simulator S such that for all Z well-formed for global setup
Ḡ it holds that

execḠF1,S,Z ≈c exec
Ḡ
π
π2/F2
1 ,Z

. (4)

So, consider any environment Z for π
π2/F2

1 . From Z, we can construct a series of environments
Zπ1,i which are environments for a single instance of π2 that internally run Z and π1 together.
Recall that π1 makes calls to F2. The jth time π1 invokes F2, proceed as follows: If i < j, then
create internally a new instance πj2 of π2 and let π1 interact with this copy as in execḠ

π
π2/F2
1 ,Z

.

This is possible, as each time πj2 makes a call to Ḡ, Zπ1,i is free to make the same call, as this
instance of π2 is not the challenge instance. If i = j, then make this instance the challenge
instance of the game, i.e., in execḠ

π2,Zπ1,i
the environment Zπ1,i will relay all communication to

and from πj2 to the copy π2 in the game execḠ
π2,Zπ1,i

. We write πi2 = π2. Note that if we run the

same environment in execḠF2,S2,Zπ1,i
, then it is no longer the case that πi2 = π2. Instead πi2 is

simulated by F2 and S2. With this in mind, if i > j, then Zπ1,i will create new copies Sj2 and

F j2 of S2 and F2 and then let π1 interact with the simulation {F j2 ,S
j
2} instead of a copy of π2,

exactly as is done for i = j in execḠF2,S2,Zπ1,i
.

It then follows by construction that

execḠ
π2,Zπ1,i

= execḠF2,S2,Zπ1,i+1

for all i. It follows from (3) that

execḠF2,S2,Zπ1,i
≈c execḠπ2,Zπ1,i

for all i, as long as each Zπ1,i is well-formed for global setup Ḡ. From this and transitivity of
≈c it follows that for any c ∈ N.

execḠF2,S2,Zπ1,0
≈c execḠπ2,Zπ1,k

c .

Using that, by construction and the environment being poly-time, there is a c such that

execḠ
π2,Zπ1,k

c = execḠ
π
π2/F2
1 ,Z

we get that
execḠF2,S2,Zπ1,0

≈c execḠ
π
π2/F2
1 ,Z

.

What remains to prove (4) is then to show that there exist a simulator S such that for all Z it
holds that

execḠF1,S,Z ≈c exec
Ḡ
F2,S2,Zπ1,0

. (5)

Note that in execḠF2,S2,Zπ1,0
, the environment never calls the ideal functionality or simulator

of the game. It is internally running π1 and simulating each call to π2 by running the copies
{F j2 ,S

j
2}. We will now refactor this into a protocol π1 and an environment Z2 which runs only

14



the copies Sj2 . Recall that the protocol π1 makes calls to F2. I.e., in execπ1,Z1 the execution of
π1 will contain many copies of F2. Call them F1

2 ,F2
2 , . . . in the order the instances are created.

The environment Z1 will run Z internally. Furthermore, for each F j2 it will create an instance

Sj2 of the simulator S2 and let Z and Sj2 interact as inside Zπ1,0 and it will also let F j2 and Sj2
interact as inside Zπ1,0. By construction we get that

execḠπ1,Z1
= execḠF2,S2,Zπ1,0

.

If Z1 is well-formed for global setup Ḡ, then we get from from (2) that

execḠF1,S1,Z1
≈c execḠF2,S2,Zπ1,0

.

Recall then that inside the environment Z1 we are running Z and several instance Sj2 of S2.

We can move these Sj2 to the simulator, as follows. Define S to be the simulator for the setting

execḠF1,S,Z which internally runs S1 and lets it interact with F1 exactly as in execḠF1,S1,Z1
. Fur-

thermore, create the instances S1
2 exactly as Z1 would have done and let S1 and the instances

Sj2 interact exactly as the instances inside Z1 interact with S1 in execḠF1,S1,Z1
. And, let the Z in

execḠF1,S,Z and the instances Sj2 inside S interact exactly as the instances Sj2 inside Z1 interact

with the instance of Z inside Z1 in execḠF1,S1,Z1
. By construction

execḠF1,S,Z = execḠF1,S1,Z1
.

By transitivity this gives (5).

What remains is to show that if Z is well-formed for global setup Ḡ, then also each Zπ1,i

and Z1 as defined above are well-formed for global setup Ḡ. It is easy to see that they are
Ḡ-externally constrained, as an Ḡ-externally constrained environment Z makes no calls to Ḡ for
the challenge instance or any of its sub-protocols.

To see that Z1 is ignorant, notice that if it is not ignorant, then neither is Z. The reason for
this is that the pre-execution phase of Z1 and Z ends at the same time, as the pre-execution
phase of Z1 exactly is the pre-execution phase of Z. Hence, given a state of Z at the end of the
pre-execution phase it is also a state of Z1 at the end of its pre-execution phase, and then we
can apply the extractor for Z1. The formal reduction is a special case of the harder one to come
now, so we leave the details to the reader.

We show that Zπ1,i is ignorant, by showing that if Zπ1,i is not ignorant, then neither is
Z. Assume that we have an extractor Extract2(σ2) taking as input a pre-execution state σ2 of
Zπ1,i. We produce an extractor Extract(σ) taking as input a pre-execution state σ of Z. Given
σ, notice that trivially σ is a possible state of the copy of Z inside Z2 = Zπ1,i. So, Extract can
create an instance of Z2 and can initialize the state of the Z inside Z2 to be σ, i.e., run Z(σ)
inside Z2. Denote the joint state of Z2 after initializing Z with σ by Z2(σ). Note that since
Z(σ) so far did not activate any other entity than Ḡ, neither would Z2(σ) have done this, as
Z2 only activates other entities than Ḡ when the inner Z does so. Hence Z2(σ) is a state of
Z2 still in the pre-execution phase. Let σ′Ḡ denote the state of Ḡ at the time where Z ended

the pre-execution phase and produced σ, i.e., the execution was in state exec
Ḡ(σ′Ḡ)

Z(σ) . Now Extract

can use its black-box access to Ḡ(σ′Ḡ) in exec
Ḡ(σ′Ḡ)

Extract(σ) to simulate a run of exec
Ḡ(σ′Ḡ)

Z2(σ) until the
pre-execution phase of Z2 ends. When this happens denote the current state of Z2 by σ2 and
denote the new state of Ḡ by σḠ . We have that Extract can compute σ2 simply by inspecting
its instance of Z2. By the pre-execution lemma, we get that producing σḠ and σ2 like this gives

15



them the same distributions as producing them by running execḠZ2
until the end of the pre-

execution phase. So, from now on Extract(σ) will run exactly as Extract2(σ2), and it follows that

exec
Ḡ(σ′Ḡ)

Extract(σ) and exec
Ḡ(σḠ)

Extract2(σ2) have the same distribution. In particular, since by assumption

exec
Ḡ(σḠ)

Extract2(σ2) will make Ḡ output t = 1, so will exec
Ḡ(σ′Ḡ)

Extract(σ). Since the running time of Extract
clearly is polynomial in the running time of Extract2, the theorem follows. ut

4 Separating the EUC and the SEUC Framework

We have argued that SEUC security implies EUC security. In this section we will give an example
of a protocol which is EUC secure, but which is not SEUC secure, showing that SEUC security
is a strictly stronger security notion than EUC security.

Let F be the ideal functionality for commitment between S and R, with S being the commit-
ter, and with messages from {0, 1}k. By the results in [3] we can under standard computational
assumptions construct a protocol π which EUC securely realizes F with global setup being an
ACRS. Let S denote the simulator for the case where S is corrupted and R is honest. Note that
S can extract the message from a commitment done by the possibly corrupted S.

Now let C = {(crsk, rk)}k∈N be a family of ACRS’s, where crsk is a random ACRS set up by
S for security level k and rk is the randomness used to generate crsk. Let πC be the non-uniform
protocol, where the sender S in π(k) runs exactly as π, except that if the ACRS crs returned
by the shared ideal functionality Ḡ is exactly crs = crsk, where k is the security parameter,
the sender will at the end of the commitment phase send the committed message m to R in
plaintext.

It is clear that πC is not SEUC secure. The environment Z will at security level k let Ḡ use
randomness rk when generating crs, leading to crs = crsk. It can “guess” rk via its auxiliary
input z. Then it will ask S to commit to a random m and inspect the communication between
S and R to see if m is sent at the end of the commitment phase. If so, it guesses that it is in the
real world. Otherwise, it guesses that it is in the ideal world. Since the simulator in the ideal
world gets no information on m, this strategy will clearly distinguish.

It is also clear that πC is non-uniform EUC secure. Assume namely that it was not. Then it
must clearly be because crs = crsk with non-negligible probability. However, if this was the case
then Z could attack the honest sender in the underlying protocol π. Namely, we can without
loss of generality assume that at security level k, the environment has crsk and rk hardcoded (it
can guess them via z) and that it knows the code of S. It can then corrupt R when it happens
that Ḡ sets up crs = crsk. Then Z asks S to commit to a uniformly random m and it lets the
honest S interact with the corrupted receiver S(rk). In the real world this leads to S extracting
m except with negligible probability. In the ideal world the simulator of S has no information
on m, so the extraction will yield m with probability at most 2−k.

Above we present a protocol which is secure in the EUC model but insecure in the SEUC
model. As elaborated on in the introduction, we believe that πC should be consider insecure.
Protocols with hard coded bad ACRS’s could have been designed with the current value of the
ACRS(s) in mind and hence be insecure. A formal security notion cannot make references to
such real world phenomena as the current value of the ACRS(s). We therefore have to consider
πC insecure. We believe that this shows that the EUC model is unsound relative to practice.

Since we cannot make formal statements relating to the world, we cannot prove that the
SEUC model is sound. The above example, however, shows that at least it seems to be more
sound relative to practice than the EUC model.

16



5 Fixing the Protocol

The original GUC paper presented a GUC-secure commitment scheme named UAIBC (UC
Adaptive Identity-Based Commitment) based on a global functionality providing an augmented
CRS. We examine this scheme and find that the construction is sound and can be proven secure
in our model, although we need to make slightly stronger assumptions on some of the primitives.
These stronger assumptions are necessary, since the environment can choose the randomness
which is the master secret key of the global functionality. This needs to be reflected in the
properties of the building blocks.

We believe that proving this scheme secure in our model can be instructive and shed some
light on the differences to GUC. We retrace the construction and proofs and highlight and
motivate the differences.

5.1 Identity-based Trapdoor Commitments from Σ-Protocols

The main building block of UAIBC is an identity-based trapdoor commitment (IBTC), which is
based on Σ-protocols for EUF-CMA signatures. We first define Σ-protocols and some properties,
then define what we expect from the IBTC, and finally show that the IBTC construction from
[3] is secure according to the stronger security notions we define, under the original security
assumptions on theΣ-protocol. This immediately implies that the existence of OWFs is sufficient
for the existence of IBTCs fulfilling our security notions. [3, Sec. 5.2.3]

Σ-Protocols

Definition 8 (Σ-Protocol). Let X,W and L ⊂ X be sets, R a relation for L such that ∀x ∈
L∃w ∈W : (x,w) ∈ R, and R is efficiently testable (in time polynomial in |x|). An augmented
Σ-protocol for the language L is a tuple of deterministic poly-time algorithms (A,Z,B) run
between a prover P (x,w; ra) and a verifier V (x; c) (where |c| ≤ poly(|x|)) in the following way.

1. P sends a← A(x,w; ra)

2. V sends c

3. P sends z ← Z(x,w, c; ra)

4. V outputs B(x, a, c, z).

The completeness condition must hold: If (x,w) ∈ R, then after an interaction with P (x,w),
V (x) outputs 1 with overwhelming probability.

[3] defines three security properties for Σ-protocols: Special HVZK (Honest Verifier Zero
Knowledge), reverse state construction (RSC) and special soundness.

The first property models the expectation that even without the witness, one can produce
a transcript indistinguishable from an actual protocol run. The indistinguishability even holds
if the distinguisher chooses the witness; this is the reason why special HVZK is stronger than
HVZK.

Definition 9 (Special HVZK). A Σ-protocol Π = (A,Z,B) is special HVZK, if there exists
an algorithm ZKSim ∈ PPT such that for any PPT distinguisher D, the advantage Advhvzk

Π,ZKSim,D(k)

of D in the experiment Exphvzk−b
Π,ZKSim,D(k) defined below is negligible.

1. (x,w, c)← D(1k)

2. r
$←− {0, 1}poly(k); a0 ← A(x,w; r); z0 ← Z(x,w, c; r); (a1, z1)← ZKSim(x, c; r)

3. b̂← D(ab, zb)

17



We define the advantage to be

Advhvzk
Π,ZKSim,D(k) = |Pr[1← Exphvzk−1

Π,ZKSim,D(k)]− Pr[1← Exphvzk−0
Π,ZKSim,D(k)]|.

As in [3], we require ZKSim to either output an error symbol, or a pair (a, z) that causes B to
output 1 (accept).

The next property ensures that it is possible to find random coins after a protocol run such
that the coins and the transcript could also have come from a simulator ZKSim. This implies
special HVZK. Again, the indistinguishability even holds if the distinguisher chooses the witness.

Definition 10 (RSC). A Σ-protocol Π has the RSC property, if there exists an algorithm
RSC ∈ PPT such that for any PPT distinguisher D, the advantage Advrsc

Π,RSC,D(k) of D in the

experiment Exprsc−b
Π,ZKSim,D(k) defined below is negligible.

1. (x,w, c)← D(1k)

2. ra, r1
$←− {0, 1}poly(k); a0 ← A(x,w; ra); z0 ← Z(x,w, c; ra); r0 ← RSC(x,w, c; ra); (a1, z1) ←

ZKSim(x, c; r1)

3. b̂← D(ab, zb, rb)

We define the advantage to be

Advrsc
Π,RSC,D(k) = |Pr[1← Exprsc−1

(Π,ZKSim,D(k)]− Pr[1← Exprsc−0
Π,ZKSim,D(k)]|.

The last property guarantees the existence of a successful rewinding extractor.

Definition 11 (Special soundness). A Σ-protocol Π = (A,Z,B) has special soundness, if
there exists a rewinding extractor E ∈ PPT such that for any PPT distinguisher D, the success
probability SuccspsoundΠ,E,D of D in the experiment Expspsound

Π,E,D (k) defined below is negligible.

1. (x, a, c, z, c′, z′)← D(1k)

2. w ← E(x, a, c, z, c′, z′)

3. if c 6= c′ ∧ (B(x, a, c, z) = B(x, a, c′, z′) = 1) ∧ (x,w) /∈ R then return 1, else return 0.

We define the success probability to be

SuccspsoundΠ,E,D (k) = Pr[1← Expspsound
Π,E,D (k)].

IBTC An IBTC is a commitment scheme where a committer who knows the receiver’s secret
key can equivocate the commitment. We recall the definition of IBTC from [3], where a party
decommits by sending the randomness used to commit.

Definition 12 (IBTC). An identity-based trapdoor commitment is a five-tuple of PPT algo-
rithms IC = (Setup,KeyGen,Com,ECom,Eqv). We additionally specify the set D from which the
randomness used to commit and decommit is drawn.

– Setup takes as input MSK ∈ {0, 1}k and outputs a public key PK.

– KeyGen on input (MSK,PK, id) outputs skid.

– Com on input (PK, id,m; d) outputs a commitment κ to the message m for identity id using
randomness d ∈ D.

– ECom on input (skid,PK, id) outputs (κ, α) to be used with Eqv.

– Eqv on input (skid,PK, id, κ, α,m) produces d ∈ D such that κ = Com(PK, id,m; d).

18



Since the commitment randomness is used to decommit, correctness is trivial. [3] defines
two properties for IBTC: binding and equivocability. We need the binding property for the well-
formedness of the global setup functionality, but need to define a different but related property
for the security proof, which we call key extractability. Key extractability is incomparable to
binding: On the one hand, the adversary can choose the master secret key, on the other hand,
it needs to additionally beat any extractor.

Definition 13 (Binding). We define the following experiment Expbind
IC,A(k) for an adversary

A against an IBTC IC.

1. The challenger draws MSK
$←− {0, 1}k,PK = Setup(MSK) and sends PK to A.

2. (id, d,m, d′,m′)← AKeyGen(MSK,PK,·)(PK).

3. if id was not queried to the KeyGen oracle, m 6= m′, and Com(PK, id,m; d) = Com(PK, id,m′; d′)
then return 1, else return 0.

IC is binding if the success probability of any A ∈ PPT is negligible in k.

SuccbindIC,A(k) = Pr[1← Expbind
IC,A(k)].

Definition 14 (Key extractability). An IBTC IC is key extractable if there is a PPT extrac-
tor E that outputs the secret key skid of user id on input a tuple (PK, id, d,m, d′,m′), m 6= m′, for
which Com(PK, id,m; d) = Com(PK, id,m′; d′). This should hold even if the adversary chooses

MSK and therefore PK. We define the following experiment Expkey-extr
IC,E,A(k).

1. (MSK, id, d,m, d′,m′)← A(1k)

2. PK = Setup(MSK)

3. if m 6= m′∧Com(PK, id,m; d) = Com(PK, id,m′; d′)∧E(PK, id, d,m, d′,m′) /∈ [KeyGen(MSK,PK, id)]
then return 1, else return 0.

IC is key extractable, if the success probability of any A ∈ PPT against our extractor is negligible
in k.

Succkey-extr
IC,E,A(k) = Pr[1← Expkey-extr

IC,E,A(k)].

We strengthen the notion of equivocability by changing one detail: The adversary A can
choose MSK himself instead of receiving it from the challenger.

Definition 15 (Strong equivocability). We define the following experiment Expequivoc−b
IC,A (k).

1. (MSK, id,m)← A(1k)

2. d0
$←− D; PK = Setup(MSK); skid ← KeyGen(MSK,PK, id); (κ, α) ← ECom(skid,PK, id);

d1 ← Eqv(skid,PK, id, κ, α,m).

3. b̂← A(db).

IC is strongly equivocable, if the advantage of any A ∈ PPT is negligible in k.

Advequivoc
IC,A (k) = |Pr[1← Expequivoc−1

IC,A (k)]− Pr[1← Expequivoc−0
IC,A (k)]|.

Just to have everything in one place, we recall the construction of IBTC from [3]. The
construction of the IBTC is as follows: The CRS is the verification key of a signature scheme,
party secret keys are signatures on the party identifier. To open, the sender proves that either
the revealed value is the committed value, or the sender knows a signature on the receiver’s pid.

19



Definition 16. Let Υ = (KeyGen,Sign,Verify) be a signature scheme.6 We define the relation
RΥ such that (x,w) ∈ RΥ if x = (vk,m) and w = σ such that Υ.Verify(vk,m, σ) = 1 and let ΠΣ

be a Σ-protocol for RΥ . We define the following identity-based trapdoor commitment IBT C =
(Setup,KeyGen,Com,ECom,Eqv), where the set D is the randomness used by ΠΣ .ZKSim.

– Setup on input MSK ∈ {0, 1}k runs (vk, σk) ← Υ.KeyGen(1k;MSK) and outputs the public
key PK = vk.

– KeyGen on input (MSK,PK, id) runs Υ.KeyGen(1k;MSK) to obtain σk and outputs skid =
Υ.Sign(σk, id).

– Com on input (PK, id,m; d) computes (a, z) ← ΠΣ .ZKSim(x = 〈PK, id〉, c = m; d) and out-
puts a commitment κ = a.

– ECom on input (skid,PK, id) draws ra
$←− {0, 1}poly(k), computes a = A(x = (PK, id), w =

skid; ra) and outputs (κ, α) = (a, ra) to be used with Eqv.
– Eqv on input (skid,PK, id, κ, α,m) computes rs = RSC(x = 〈PK, id〉, w = skid, c = m; ra = α)

and returns d = rs.

We prove that IBT C fulfills our stronger notions under the original assumptions on the
Σ-protocol. That is, we prove stronger properties for the same protocol using the same building
blocks.

Theorem 17. IBT C is binding, key extractable, and strongly equivocable, if the underlying sig-
nature scheme Υ is EUF-CMA, and ΠΣ has special soundness and the reverse state construction
property.

The theorem follows from the following three lemmata.

Lemma 18 (Th. 5.2 in [3]). IBT C is binding if the underlying signature scheme Υ is EUF-CMA.

∀A ∈ IPT ∃B ∈ IPT
(

Advbind
IBT C,A ≤ Adveuf-cma

Υ,B

)
.

Lemma 19. IBT C is key extractable if the Σ-protocol ΠΣ has special soundness.

∀A ∈ IPT ∃B ∈ IPT
(
Succkey-extr

IBT C,A ≤ SuccspsoundΠΣ ,B

)
.

Proof. Let A be a successful adversary against the key extractability of IBT C. We construct
an adversary B against the special soundness of ΠΣ . Special soundness of ΠΣ means that there
is an extractor EΠ such that for any two polynomially computable accepting transcripts with
different c, z, EΠ forges a signature. We show that any good extractor for ΠΣ can be turned
into a good key extractor for IBT C.

On input 1k, A returns a tuple (PK, id, d,m, d′,m′) and with non-negligible probability
m 6= m′, Com(PK, id,m; d) = Com(PK, id,m′; d′). B computes (κ, z) ← ZKSim(〈PK, id〉,m, d)
and (κ′, z′) ← ZKSim(〈PK, id〉,m′, d′) and we have κ = κ′. B sets x = 〈PK, id〉 and sends
(x, κ,m, z,m′, z′) to the challenger.

The challenger computes w ← EΠ(x, κ,m, z,m′, z′). If Verify(vk, id, w) = 1, then σkid = w.
Else, the challenger uses w to generate a key pair and signs id. Then he outputs the secret key
of id. We have B(x, a, c, z) = B(x, a, c′, z′) = 1 by the correctness of ZKSim, and if (x,w) ∈ RΥ ,
then σkid ∈ [KeyGen(MSK,PK, id)] for a7 MSK for which PK = Setup(MSK).

If (x,w) ∈ RΥ , then given a successful EΠ , there is an extractor for IBT C with w ∈
[KeyGen(MSK,PK, id)]. ut
6 We require that on input 1k, KeyGen uses k bits of randomness. We can transform any scheme where KeyGen

uses more randomness into a scheme fulfilling this definition by using a PRG to expand a k-bit seed.
7 If Setup is not injective, there may be several such MSK

20



Lemma 20. IBT C is strongly equivocable if the reverse state construction property of the Σ-
protocol holds.

∀A ∈ IPT ∃B ∈ IPT
(

Advequivoc
IBT C,A ≤ Advhvzk

ΠΣ ,B

)
.

Proof. Let A be a successful adversary against the strong equivocability of IBT C. We construct
an adversary B against the reverse state construction of ΠΣ . On input 1k, A returns a tuple
(MSK, id,m). B computes PK = Setup(MSK) and skid = KeyGen(MSK,PK, id), sets x = (PK, id),
w = skid, c = m, and outputs (x,w, c).

He receives the challenge rb, which is either r1, which is is drawn at random, or r0 ←
RSC(x,w, c) = Eqv(skid,PK, id, κ, α,m) for (κ, α) = Com(PK, id,m). This is exactly what A
expects to see, so B sends rb to A and forwards the guess bit b̂.

5.2 The Augmented CRS Model

To match our definition, we first need to modify Ḡacrs so that it answers queries of the form
(trapdoor?, x). ḠSetup,KeyGenacrs is parametrized by two functions Setup and KeyGen, which are part
of an IBTC, and takes as input the security parameter k.

– Initialization phase: At the first activation, draw MSK
$←− {0, 1}k and compute a CRS PK =

Setup(MSK), then record the pair (PK,MSK).
– Providing the public value: Upon receipt of a message (crs) by any party P (or the adver-

sary), return PK to the requesting party (respectively the adversary).
– Dormant phase: Upon receipt of a message (retrieve, sid, pid) from a corrupt party P with

PID pid, return the value skpid = KeyGen(MSK,PK, pid) to P . (Receipt of this message from
honest parties is ignored.)

– Trapdoor test: Upon receipt of a message (trapdoor?, (x, pid)) from Z, set t = 1 if x =
KeyGen(MSK,PK, pid) and party pid has not been corrupted, t = 0 otherwise. Return
(trapdoor, (x, pid), t) to Z.

We have to be able to check whether x is a trapdoor. Since, as in [3], KeyGen is a function, it
is deterministic.

Well-formedness of Setup We first have to show that the modified functionality Ḡacrs is well
formed according to Definition 1. We show that if the IBTC were not well-formed, it would not
be binding.

Theorem 21.

∀Z ∈ IPT ∃B ∈ IPT : Pr[((trapdoor, ·, 1)← execḠIBT Cacrs ,Z(k)] ≤ q(k)Advbind
IBT C,B(k)

where Z asks at most q(k) trapdoor? queries.

Proof. Let Z be an IPT ITM which asks at most q(k) trapdoor? queries and makes Ḡacrs
output a message of the form (trapdoor, ·, 1) with nonnegligible probability. Then we construct
an adversary B which uses Z to break the binding property of the IBTC by simulating Ḡacrs. B
receives PK from its challenger and uses it to answer all crs queries. If B receives a retrieve

query for party pid, it queries pid to its KeyGen oracle.

B draws a value i
$←− [1, q(k)]. If B receives a query of the form (trapdoor?, (x, pid)) where

pid is corrupted, he returns 0. On the i-th query, if pid is not corrupted, B computes (κ, α) =
ECom(PK, pid, x), chooses two different messages m0,m1, obtains db = Eqv(PK, pid, x, κ, α,mb)
for b = 0, 1 and outputs (pid, d0,m0, d1,m1). Clearly, B wins if x was a valid secret key for party
pid.

If Z wins the game, it has to output at least one valid secret key, which is used by B with
probability at least 1/q(k).

21



5.3 UC Adaptive Identity-Based Commitments from IBTC and Dense PRC

We are now ready to present the construction of UC Adaptive Identity-Based Commitments
(UAIBC) from IBTC in the augmented CRS model. UC commitments need to be equivocable
and extractable. Extractability is added to the IBTC by first executing a coin flipping protocol
to choose the public key for an encryption scheme. This necessitates the use of a special kind
of PKE, which we present first.

PKE In the definition of dense PRC encryption, we follow a different approach by building
on the definition of PKE in two steps. This makes it possible to point out more clearly which
properties we will reduce to in the proof.

Definition 22 (PKE). A public-key encryption scheme is a three-tuple of PPT algorithms
PKE = (Gen,Enc,Dec) with a message space M, which fulfills the correctness definition in
Def. 23.

– Gen takes as input the security parameter k in unary and outputs a key pair (ek, dk). We
suppose that ek and dk are of length at least k.

– Enc takes as input a public key ek and a message m ∈M and outputs a ciphertext c.

– Dec is deterministic and takes as input a secret key dk and a ciphertext c and outputs a
message m or an error symbol ⊥.

Definition 23 (Correctness). We say that a PKE scheme PKE is correct, if the decryption
error

εcorrPKE(k) = sup
(pk,sk)∈[Gen(1k)],m∈M

Pr
r

[Dec(dk,Enc(ek,m; r)) 6= m]

is negligible.

Definition 24 (Dense PKE). For a PKE scheme PKE, we denote the set of possible public
keys for security parameter k with Φk, or just Φ, if k is clear from the context. We say that
PKE is dense, if the following conditions hold.

1. Φ is an abelian group with efficiently computable inverse and group operations.

2. Membership in Φ is efficiently testable.

3. The uniform distribution on Φ is efficiently samplable.

4. The distribution of public keys produced by Gen is computationally indistinguishable from the
uniform distribution on Φ:

Advkey-ind
PKE,A(k) = Pr[(ek, dk)← Gen(1k); 1← A(1k, ek)]− Pr[ek

$←− Φ; 1← A(1k, ek)]

is negligible for all A ∈ PPT .

Definition 25 (Dense PRC). A dense PKE scheme PKE is said to have pseudo-random
ciphertexts (PRC), if

Advprc
PKE,A(k) = Pr[1← ALOR(·,0)(1k)]− Pr[1← ALOR(·,1)(1k)]

is negligible for all A ∈ PPT , where LOR(m, 0) computes (ek, dk) ← Gen(1k), and returns

(ek,Encek(m)) and LOR(m, 1) draws ek
$←− Φ, c

$←− [Encek(m)]8 and returns (ek, c).

8 We slightly relax the definition from [3], which allows us to capture ElGamal encryption.

22



The UAIBC protocol builds on identity-based trapdoor commitments (IBTC) to securely
implement Fcom.

UAIBC adds extractability to realize Fcom against adaptive adversaries. Both parties per-
form a coin toss to get a PKE encryption key using the IBTC. Then the sender commits to its
bit using the IBTC and additionally encrypts the decommitment information if its bit is 0, else
a random string.

Definition 26. Let IBT C = (Setup,KeyGen,Com,ECom,Eqv) be an identity-based trapdoor
commitment with randomness in D, PKE = (Gen,Enc,Dec) a dense PKE scheme with public
keys in Φ, ciphertexts in C and randomness in R. The UAIBC protocol is run between a com-
mitter C, who wants to commit to a bit b, and a receiver R. Both have access to a functionality
ḠSetup,KeyGenacrs . Then UAIBC[IBT C,PKE ] is the protocol with the following three phases:

Initialization Phase Both R and C are initialized with the CRS PK produced by ḠSetup,KeyGenacrs ,
which is a public key for IBT C.

Commit Phase The commit phase begins when C receives its input (commit, sid, pidC , pidR, b)
from the environment. All messages are sent over a secure channel and prefixed with a flow
identifier, sid, pidC , pidR.

1. C → R : commit, sid, pidC , pidR
2. R

(a) ρ1
$←− Φ

(b) d1
$←− D

(c) κ1 = Com(PK, pidC , ρ1; d1)
(d) R→ C : κ1

3. C
(a) ρ2

$←− Φ
(b) C → R : ρ2

4. R
(a) ρ = ρ1 · ρ2

(b) R→ C : d1, ρ1

5. C
(a) κ1

?
= Com(PK, pidC , ρ1; d1)

(b) ρ = ρ1 · ρ2

(c) d
$←− D

(d) κ = Com(PK, pidR, b; d)

(e) if b = 0 then r
$←− R;ϕ = Encρ(d; r) else ϕ

$←− C
(f) C → R : κ, ϕ

At the end of the commit phase, R outputs (receipt, sid, pidC , pidR).

Reveal Phase The reveal phase begins when C receives its input (reveal, sid) from the en-
vironment. All messages are sent over a secure channel and prefixed with a flow identifier,
sid, pidC , pidR.

1. C → R : d, b and r, if b = 0.

2. R checks κ
?
= Com(PK, pidR, b; d) and, if b = 0, ϕ

?
= Encρ(d; r). At the end of the reveal

phase, R outputs (reveal, sid, pidC , pidR, b) if all checks pass.

Inspection confirms that IBT C is Ḡacrs-subroutine respecting.

23



5.4 Security of the UAIBC Protocol

Theorem 27. UAIBC[IBT C,PKE ] GUC-realizes Fcom given access to Ḡacrs, if IBT C is bind-
ing and equivocable and PKE is a dense PRC secure. Party corruptions can be adaptive as long
as they are PID-wise. More exactly, if we define Z to be the set of non-uniform IPT environments
Z which are well-formed for Ḡacrs according to definition 4, we have

∀A ∈ IPT ∃S ∈ IPT ∀Z ∈ Z∃B1,B2,B3,B4,B5,B6 ∈ IPT

∆(execḠacrsUAIBC[IBT C,PKE],A,Z ,exec
Ḡacrs
Fcom,S,Z) ≤

4 ·
(

Advprc
PKE,B1

+ Advkey-ind
PKE,B2

)2
+ Advkey-ind

PKE,B3

+ Advequivoc
IBT C,B4

+ Advequivoc
IBT C,B5

+ Succkey-extr
IBT C,B6

+ εcorrPKE .

Proof. We first consider the pre-execution phase, in which Z determines the random coins of
Ḡacrs. This allows the environment to fix MSK,PK, and the first q1 keys of corrupted parties,
i.e., it can query to get the keys of corrupted parties, and it can then specify the randomness
used by the ideal functionality when these keys are computed. We let q1 denote the number of
such keys. The rest of the proof proceeds as in the original paper.

We proceed by game-hopping. Let I0 be the Ḡacrs-hybrid real-world setting.

We first introduce a conceptual change. In game I ′0, we magically provide C with skR if R
is corrupt, and R with skC if C is corrupt. This does not change the output distribution of Z,
since honest users do not make use of this information, and corrupted users can be assumed to
already know the keys of other corrupt users.

Game 1 In game I1, if R is corrupt, C changes its behaviour as follows.

5. C

(c) (κ̂, α)← ECom(PK, pidR, skR)

(d) d← Eqv(PK, pidR, skR, κ̂, α, b)

Lemma 28. The difference between I ′0 and I1 is bounded by the advantage against the equivo-
cability of IBT C.

∃B4 ∈ IPT
(
∆(I ′0, I1) ≤ Advequivoc

IBT C,B4

)
.

Proof. We want to show that if some B can distinguish between I ′0 and I1, then we can use B
to attack the equivocability of IBT C.

We build an attacker B4 against the equivocability of IBT C as follows. B4 receives MSK as
input and runs the parties Ḡacrs and C of I ′0 in his head until step 5b, then he sends (pidR, b) to
the challenger. He receives d and continues at step 5d. At the end of the experiment, B outputs
his guess bit b′ to indicate his belief that he was involved in an execution of Ib′ . B4 forwards
this bit as his guess.

Game 2 In game I2, we employ the full strategy of the committer.

5. C

(d) db̂ ← Eqv(skR, R, κ̂, α, b̂) for b̂ = 0, 1

(e) r
$←− R; ϕ̂ = Encρ(d

0; r)

24



Lemma 29. The difference between I1 and I2 is bounded by the advantage against the pseudo-
randomness and the key-indistinguishability of PKE.

∃B1,B2 ∈ IPT
(
∆(I1, I2) ≤ 4 ·

(
Advprc

PKE,B1
+ Advkey-ind

PKE,B2

)2
)

Proof. In order to reduce to the security of PKE , the public key needs to be random. We use
Shoup’s coin-tossing lemma [3, Lemma 5.3 in the full version] to replace the coin-toss in the
first three rounds with a random choice, then we apply the reduction.9

We first define a game Î1, which is the same as I1, except that C chooses ρ at random.

2. R do nothing

3. C

(a) ρ
$←− Φ

(b) C → R : ρ

4. R do nothing

5. C

(a)

(b)

(c) d
$←− D

(d) κ = Com(PK, pidR, b; d)

(e) if b = 0 then r
$←− R;ϕ = Encρ(d; r) else ϕ

$←− C
(f) C → R : κ, ϕ

We define another game Î2, with the same changes as in I2. By the coin-tossing lemma,

∆(I1, I2)(k) ≤ 4
(
∆(Î1, Î2)(k)

)2
.

In order to put a bound on ∆(Î1, Î2)(k), we define some intermediate games. In game Î ′1

3. C

(a) if b = 0 then (ρ, dk)← Gen(1k) else ρ
$←− Φ

Clearly there exists B2 ∈ IPT such that ∆(Î1, Î
′
1)(k) ≤ Advkey-ind

PKE,B2
(k). It is also easy to see

that there exists B1 ∈ IPT such that ∆(Î ′1, Î2)(k) ≤ Advprc
PKE,B1

(k), and the lemma follows.

Game 3 In game I3, we change the commitment used by the receiver. Remember that R is
magically provided with skC if C is corrupt. In this case, R changes its behaviour as follows.

2. R

(b) (κ̂1, α)← ECom(PK, skC , C)

(c) d̂1 ← Eqv(skC , C, ρ1)

Lemma 30. The difference between I2 and I3 is bounded by the advantage against the equivo-
cability of IBT C.

∃B5 ∈ IPT
(
∆(I2, I3)(k) ≤ Advequivoc

IBT C,B5

)
9 The wording of the coin-tossing lemma is complex, but it allows us to do exactly what we do: Replace a

randomly chosen string with the result of a coin tossing protocol.

25



Proof. Let B be a distinguisher between I2 and I3. We build an attacker B5 against the equivoc
of IBT C as follows. B5 gets as input MSK and runs the parties Ḡacrs and R in his head until
step 2a, then he sends pidC , b to the challenger. He receives d and continues at step 2d, setting
d̂1 = d. If d was chosen at random, we are in game I2, if it was generated using Eqv, we are in
game I3. At the end of the experiment, B outputs his guess bit b′, which B5 forwards.

In game I ′3, we change the computation of ρ.

2. R

(a) ρ̄
$←− Φ

(b) (κ̂1, α)← ECom(PK, skC , C)

(c)

(d) R→ C : κ̂1

4. R

(a) ρ̂1 = ρ̄ · ρ−1
2

(b) d̂1 ← Eqv(skC , C, ρ̂1)

(c) R→ C : d̂1, ρ̂1

Lemma 31. The games I3 and I ′3 are perfectly indistinguishable.

∆(I3, I
′
3)(k) = 0

Proof. Moving the computation of d̂1 to step 4 makes no difference, since d̂1 is only revealed
afterwards. The distribution of ρ̂1 is identical to the distribution of ρ1: both are uniform in Φ.

In I ′′3 , we substitute key generation for the random choice of ρ̄.

2. R

(a) (ρ̄, skρ̄)← Gen(1k)

Lemma 32. The difference between I ′3 and I ′′3 is bounded by the advantage against the key
indistinguishability of PKE.

∃B3 ∈ IPT
(
∆(I ′3, I

′′
3 ) ≤ Advkey-ind

PKE,B3

)
Proof. Let B be a distinguisher between I ′3 and I ′′3 . We build an attacker B3 against the key-ind
of PKE as follows. B3 takes as input an encryption key ek and simulates the game I ′3 to B,
setting ρ̄ = ek. If ek was drawn at random from Φ, this is game I ′3, if it was generated using
Gen, this is game I ′′3 .

Game 4 In game I4, we delay computation of protocol flows until they are observable by A.

Lemma 33. The games I ′′3 and I4 are perfectly indistinguishable.

∆(I ′′3 , I4) = 0

Proof.

26



Game 5 Game I5 is the simulation in the ideal world.

Lemma 34. The difference between I4 and I5 is bounded by the decryption error probability of
PKE and the advantage against the key extractability of IBT C.

∃B6 ∈ IPT
(
∆(I4, I5) ≤ Succkey-extr

IBT C,B6
+ εcorrPKE

)
.

Proof. The simulator can equivocate using IBT C and the receiver’s secret key. To extract the
commitment from a corrupted sender at the end of step 5, the simulator decrypts ϕ using skρ̄
to obtain d, then checks whether κ = Com(PK, pidR, b; d). If this is the case, he commits to 0,
else to 1.

There are two ways this can fail: Either ϕ was a valid encryption that the simulator could
not decrypt, which contradicts the correctness of PKE and happens with at most negligible
probability. Or the simulator decrypted ϕ to obtain a valid d, but the commitment is later
opened to 1.

We first define an intermediate game I ′4, where decryption errors never happen. We have
∆(I4, I

′
4)(k) ≤ εcorrPKE(k).

The difference between I ′4 and I5 can only stem from errors of the second kind. Then we can
use the key extraction of IBT C to extract the secret key skR of the honest party R.

Assume the simulator decrypts and obtains a valid d0 opening the commitment to 0, but
is later presented with a d1 opening the commitment to 1. The simulator runs the extractor E
on input (PK, id, d0, 0, d1, 1). If the output is a valid secret key skid for identity id, then skid is
a valid trapdoor, so this happens only with negligible probability by the well-formedness of the
environment. If the output is not a valid secret key, this yields a successful adversary against
the key extractability. ut

References

1. B. Barak, R. Canetti, J. B. Nielsen, and R. Pass. Universally composable protocols with relaxed set-up
assumptions. In FOCS, pages 186–195. IEEE Computer Society, 2004.

2. R. Canetti. Universally composable security: a new paradigm for cryptographic protocols. In FOCS 2001,
pages 136–145. IEEE, October 2001. Full version at http://eprint.iacr.org/2000/067/20011009:204202.

3. R. Canetti, Y. Dodis, R. Pass, and S. Walfish. Universally composable security with global setup. In TCC
2007, volume 4392 of LNCS, pages 61–85. Springer, 2007. Full version at http://eprint.iacr.org/2006/432.

4. R. Canetti and M. Fischlin. Universally composable commitments. In J. Kilian, editor, CRYPTO, volume
2139 of Lecture Notes in Computer Science, pages 19–40. Springer, 2001.

5. R. Canetti, E. Kushilevitz, and Y. Lindell. On the limitations of universally composable two-party computation
without set-up assumptions. In E. Biham, editor, EUROCRYPT, volume 2656 of Lecture Notes in Computer
Science, pages 68–86. Springer, 2003.

6. R. Canetti, Y. Lindell, R. Ostrovsky, and A. Sahai. Universally composable two-party and multi-party secure
computation. In J. H. Reif, editor, STOC, pages 494–503. ACM, 2002.

7. R. Canetti, R. Pass, and A. Shelat. Cryptography from sunspots: How to use an imperfect reference string.
In FOCS, pages 249–259. IEEE Computer Society, 2007.

8. P. Rogaway. Formalizing human ignorance. In Vietcrypt 2006, volume 4341 of LNCS, pages 211–228. Springer,
2006.

27

http://eprint.iacr.org/2000/067/20011009:204202
http://eprint.iacr.org/2006/432

	
	Jesper Buus Nielsen and Mario Strefler

