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Abstract—The security of public key validation protocols for
web-based applications has recently attracted attention because
of weaknesses in the certificate authority model, and consequent
attacks.

Recent proposals using public logs have succeeded in making
certificate management more transparent and verifiable. How-
ever, those proposals involve a fixed set of authorities which create
a monopoly, and they have heavy reliance on trusted parties that
monitor the logs.

We propose a distributed transparent key infrastructure
(DTKI), which greatly reduces the monopoly of service providers
and removes the reliance on trusted parties. In addition, this
paper formalises the public log data structure and provides a
formal analysis of the security that DTKI guarantees.

1 Introduction

The security of web-based applications such as e-
commerce and webmail depends on the ability of a user’s
browser to obtain authentic copies of the public keys for the
application website. For example, suppose a user wishes to
log in to her bank account through her web browser. The
web session will be secured by the public key of the bank.
If the user’s web browser accepts an inauthentic public key
for the bank, then the traffic (including login credentials) can
be intercepted and manipulated by an attacker.

The authenticity of keys is assured at present by certifi-
cate authorities (CAs). In the given example, the browser is
presented with a public key certificate for the bank, which
is intended to be unforgeable evidence that the given public
key is the correct one for the bank. The certificate is digitally
signed by a CA. The user’s browser is pre-configured to accept
certificates from certain known CAs. A typical installation of
Firefox has about 100 CAs in its database.

Unfortunately, numerous problems with the current CA
model have been identified. Firstly, CAs must be assumed
to be trustworthy. If a CA is dishonest or compromised, it
may issue certificates asserting the authenticity of fake keys;
those keys could be created by an attacker or by the CA itself.
Secondly, the assumption of honesty does not scale up very
well. As already mentioned, a browser typically has hundreds
of CAs registered in it, and the user cannot be expected to
have evaluated the trustworthiness and security of all of them.
This fact has been exploited by attackers [1], [2], [3], [4], [5],
[6]. In 2011, two CAs were compromised: Comodo [7] and
DigiNotar [8]. In both cases, certificates for high-profile sites
were illegitimately obtained, and in the second case, reportedly
used in a man in the middle (MITM) attack [9].

∗ Corresponding author.
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Proposed solutions

Several interesting solutions have been proposed to address
these problems. We briefly review some of the proposals. For
a comprehensive survey, see [10].
Certificate pinning: Certificate pinning [11] is a Google
project which addresses the problem of untrustworthy CAs, by
restricting in the client browser parameters the set of CAs that
are considered entitled to certify the key for a given domain.
However, the scalability is a challenge for certificate pinning.
DNS Adoption: Domain name system (DNS)-based authen-
tication of named entities (DANE [12], [13]) secures connec-
tions between clients and domain servers by binding public
keys to domain names. This binding is ensured by only
allowing CAs to sign domains in a certain scope, and the
scope can be verified by using DNS Security Extensions
(DNSSEC) [14]. DANE improves certificate security since the
compromised signing key of an authority only harms its sub-
domains. However, in DANE, parent domain servers are able
to issue fake certificates for their sub-domains without being
readily detected.

In 2013, Kasten, Wustrow and Halderman proposed CAge
[15] to restrict CA’s signing scope based on domain name.
Their research (based on the data observed and presented
in [16]) shows that CAs commonly sign for sites only in a
small subset of top-level domains (TLDs). In view of this
observation, CAge suggests to limit a CA’s signing scope by
only allowing a CA to issue certificates on a restricted set of
TLDs, in order to reduce the damage that a dishonest CA can
cause.
Difference Observation: This technique (a.k.a. crowd-
sourcing) has been proposed in order to detect untrustworthy
CAs, by enabling a browser to obtain warnings if the received
certificates are different from those that other people are being
offered [17], [18], [19], [20], [21], [22], [23], [24], [25]. In
2008, Wendlandt, Andersen and Perrig proposed Perspectives
[17] to improve secure shell (SSH)-style authentication secu-
rity by asking different observers to detect inconsistent public
keys. In Perspectives, to verify a certificate (received by a
client) of a domain, the client asks a set of network notaries
for all observed certificates for the domain, and checks the
consistency between the received certificate and the certificate
observed by each notary, then the client needs to make a
decision on whether to trust the received certificate based on
the checking result.

In 2009, however, Alicherry and Keromytis [26] pointed
out that Perspectives has privacy issues since network notaries
can get user browsing history. In addition, since network
notaries update the certificate information of all servers peri-
odically, clients may reject newly issued certificates while they
are not observed by all network notaries, but accept revoked
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ones. To solve these problems, they proposed DoubleCheck,
in which to verify a received certificate, the client queries
the certificate of the domain server again through Tor [27].
However, the use of Tor adds additional time cost (up to 15
seconds [23]) for each certificate verification. In addition, if
a domain server has multiple certificates, then clients will be
likely to get a false positive result.

In 2011, Marlinspike proposed Convergence to address
privacy concerns in Perspectives by enabling client side to
cache verified certificates, and by placing a randomly selected
notary as a proxy between the client and another selected
notary. Convergence effectively prevents numerous CA-based
attacks. However, it suffers the same problem as DoubleCheck
– if a domain server has multiple certificates, and a client
and a notary have received different authentic certificates, then
the client will receive a false positive result and thus reject
authentic certificates.

Trust assertions for certificate keys (TACK) [25] was
proposed by Marlinspike and Perrin in 2012. In TACK, a
domain server has two pair of keys, namely a TACK key
pair and a TLS key pair. The private part of TACK key is
used to sign the public part of TLS key. The domain name
and the associated public part of TACK key will be “pinned”
by clients after they observing the consistent TACK multiple
times. The “pin” will be valid for a period equal to the length
of time the pair has been observed. A TLS public key will
be accepted if it is signed by the private part of THE TACK
key, and the public part of the TACK key is included in a
valid “pin”. TACK releases clients from having to trust CAs.
However, since a new TACK key pair will only be accepted if
it has already been observed multiple times, the new key pair
suffers from an initial unavailability period.

The difference observation technique has effectively solved
many CA-based problems. However, the technique cannot
distinguish attacks from authentic certificate updates, and may
also suffer from an initial unavailability period.

Solutions for revocation management of certificates have
also been proposed (e.g. Certificate Revocation Lists (CRL)
[28], [29], [30] and On-line Certificate Status Protocol
(OCSP)). They mostly involve periodically pushing revocation
lists to browsers, in order to remove the need for on-the-fly
revocation checking. However, these solutions create a window
during which the browser’s revocation lists are out of date until
the next push.

Public log adoption: More recently, solutions involving pub-
lic append-only logs have been proposed to solve the above
mentioned problems. We consider the four leading proposals
here.

Sovereign Keys (SK) [31] aims to get rid of browser
certificate warnings, by allowing domain owners to establish a
long term (“sovereign”) key and by providing a mechanism
by which a browser can hard-fail if it doesn’t succeed in
establishing security via that key. The sovereign key is used to
cross-sign operational TLS [32], [33] keys, and it is stored in
an append-only log on a “timeline server”, which is abundantly
mirrored. However, in SK, internet users or domain owners
have to trust mirrors of timeline servers.

Certificate transparency (CT) [34] is a technique pro-
posed by Google that aims to efficiently detect fake public
key certificates issued by corrupted certificate authorities, by

making certificate issuance transparent. The core idea is that
an append-only public log is maintained, showing all the
certificates that have been issued. Web browsers using the log
can obtain two types of verifiable cryptographic proofs: (a) a
proof that the log contains a given certificate, and (b) a proof
that a snapshot of the log is an extension of another snapshot
(i.e., only appends have taken place between the two snapshot).
The time and size for proof generation and verification are
logarithmic in the number of certificates recorded in the log. So
internet users can verify them easily (in contrast with SK where
internet users have to trust what a mirror says). However, in
CT internet users still have to trust “monitors” for verifying
the behaviour of logs, and CT does not provide an efficient
scheme for key revocation.

Accountable key infrastructure (AKI) [35] also uses public
logs to make certificate management more transparent. By
using a data structure that is based on lexicographic ordering
rather than chronological ordering, they solve the problem of
key revocations in the log. In addition, AKI prevents attacks
that use fake certificates rather than merely detecting such
attacks (as in CT). However, as a result, AKI has a strong
assumption – CAs, public log maintainers, and validators do
not collude together; and heavily relies on third parties called
validators to ensure that the log is maintained without improper
modifications.

Extended certificate transparency (ECT) [36] is a proposal
for managing certificate for end-to-end encrypted email. It
proposes an idea to address the revocation problem left open
by CT, and the trusted party problem of AKI. It collects
ideas from both CT and AKI to provide transparent key
revocation, and reduces reliance on trusted parties by designing
the monitoring role so that it can be distributed among user
browsers. However, ECT can only detect attacks that use fake
certificates; it cannot prevent them. In addition, since ECT
was proposed for email applications, it does not support the
multiplicity of log maintainers that would be required for web
certificates.

In public log based systems, efforts have been made to
integrate revocation management with the certificate auditing.
CT introduced revocation transparency (RT) [37] to deal with
certificate revocation management; and in AKI, the public
log only stores currently valid certificates (revoked certificates
are purged from the log). However, the revocation checking
process in both RT and AKI are linear in the number of issued
certificates making it inefficient. ECT allows efficient proofs
of non-revocation, but it does not scale to multiple logs which
are required for web certificates.

Remaining problems

A foundational issue is the problem of monopoly, or
perhaps more accurately, oligopoly. The present-day certificate
authority model requires that the set of certificate authorities is
fixed and known to every browser, which implies an oligopoly.
Currently, the majority of CAs in browsers are organisations
based in the USA, and it is hard to become a browser-accepted
CA because of the strong trust assumption that it implies. This
means that a Russian bank operating in Russia and serving
Russian citizens living in Russia has to use an American CA
for their public key. This cannot be considered satisfactory
in the presence of mutual distrust between nations regarding
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cybersecurity and citizen surveillance, and also trade sanctions
which may prevent the USA offering services (such as CA
services) to certain other countries.

None of the previously discussed public log based system
(SK, CT, AKI or ECT) address this issue. In each of those
solutions, the set of log maintainers (and where applicable,
timeline servers, validators, etc.) is assumed to be known by
the browsers, and this puts a high threshold on the requirements
to become a log maintainer (or validators, etc.). Moreover,
none of them solve the problem that a multiplicity of log
maintainers reduces the usefulness of transparency, since a
domain owner has to check each log maintainer to see if it
has mis-issued certificates. This can’t work if there is a large
number of log maintainers operating in different geographical
regions, each one of which has to be checked by every domain
owner.

A second foundational issue of a different nature is that
of analysis and correctness. SK, CT, AKI and ECT are large
and complex protocols involving sophisticated data structures,
but none of them have been subjected to rigorous analysis. It
is well-known that security protocols are notoriously difficult
to get right, and the only way to avoid this is with systematic
verification. For example, we have identified an attack on ECT
which allows the log maintainer to insert fake certificates.
This attack is presented in our technical report (appendix A,
page 32) [38]. The flaw is easily fixed, but only once it has
been identified. It is therefore imperative that the first steps in
verification of this kind of protocol are carried out.

The third problem is the management of certificate revoca-
tion. As explained previously, existing solutions for managing
certificate revocation (e.g. CRL, OCSP, RT) are still unsatis-
factory.

This paper

We propose a new public log based architecture for man-
aging certificates, called Distributed Transparent Key Infras-
tructure (DTKI), with the following contributions.

• We identify anti-monopoly as an important property for
web certificate management which has hitherto not received
attention.

• Compared to its predecessors, DTKI is the first system
to have all desired features – it minimises the presence
of monopolies, prevents attacks that use fake certificates,
provides a way to manage certificate revocation, and does
not rely on any trusted party.

• We provide a formal analysis of DTKI. We formalise
the data structures needed for transparent public logs, and
provide rigorous proofs of their properties.

2 Overview of DTKI

Distributed Transparent Key Infrastructure (DTKI) is an
infrastructure for managing keys and certificates on the web
in a way which is transparent, minimises monopolies, and
eliminates the need for trusted parties. In DTKI, we mainly
have the following agents:

Certificate log maintainers (CLM): A CLM maintains a
database of all valid and invalid (e.g. expired or revoked)

certificates for a particular set of domains for which it is
responsible. It commits to digests of its log, and provides
efficient proofs of presence and absence of certificates in the
log with respect to the digest. CLMs behave transparently:
their actions can be verified and therefore they do not require
to be trusted.

A mapping log maintainer (MLM): To minimise monopoly,
DTKI does not fix the set of certificate logs. The MLM
maintains association between certificate logs and the domains
they are responsible for. It also commits to digests of the
log, and provides efficient proof of current association, and
behaves transparently without requiring to be trusted. MLM
has a strategic role of determining the authorised CLMs, and
therefore is governed by an international panel (e.g. ICANN).

Mirrors: Mirrors are servers that maintain a full copy of
the mapping log downloaded from the MLM. In other words,
mirrors are distributed copies of the mapping log. Anyone (e.g.
ISPs, CLMs, CAs, domain owners) can be a mirror.

Certificate authorities (CA): They check the identity of
domain owners, and create certificates for the domain owners’
keys. However, in contrast with today’s CAs, the ability of
CAs in DTKI is limited since the issuance of a certificate
from a CA is not enough to convince web browsers to accept
the certificate.

In DTKI, each domain owner has two types of certificate,
namely TLS certificate and master certificate. Domain owners
can have different TLS certificates but can only have one
master certificate. A TLS certificate contains the public key
of a domain server for a TLS connection, whereas the master
certificate contains a public key, called “master verification
key”. The corresponding secret key of the master certificate is
called “master signing key”, which is only used to validate a
TLS certificate (of the same subject) by signing it. This limits
the ability of certificate authorities since without having a valid
signature (issued by using the master signing key), the TLS
certificate will not be accepted.

After a domain owner obtains a master certificate or a TLS
certificate from a CA, he needs to make a registration request
to the corresponding CLM to publish the certificate into the
log. To do so, the domain owner signs the certificate using
the master signing key, and submits the signed certificate to
a CLM determined (typically based on the top-level domain)
by the MLM. The CLM checks the signature, and accepts the
certificate by adding it to the certificate log if the signature is
valid. The process of revoking a certificate is handled similarly
to the process of registering a certificate in the log.

When establishing a secure connection with a domain
server, the browser receives a corresponding certificate and
proofs from a mirror of the MLM and a CLM, and verifies the
certificate, the proof that the certificate is valid and recorded
in the certificate log, and proof that this certificate log is
authorised to manage certificates for the domain. Users and
their browsers only accept a certificate if the certificate is
issued by a CA, and validated by the domain owner, and
current in the certificate log.

Fake master certificates or TLS certificates can be easily
detected by the domain owner, because the CA will have had
to insert it into the log (in order to be accepted by browsers),
and is thus visible to the domain owner.
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Rather than relying on trusted parties (e.g. monitors in
CT and validators in AKI) to verify the healthiness of logs,
DTKI uses a crowdsourcing-like way to monitor the log. In
particular, the verification work in DTKI can be broken into
independent little pieces, and thus can be done by distributing
the pieces to users’ browsers. In this way, users’ browsers
can perform randomly-chosen pieces of the monitoring role in
the background. Thus, web users can collectively monitor the
integrity of the logs.

To avoid the case that attackers create a “bubble” (i.e.
an isolated environment) around a victim, we share the same
assumption as other existing protocols (e.g. CT and ECT) –
we assume that gossip protocols [39] are used to disseminate
digests of the log. So, users of logs can detect if a log
maintainer shows different versions of the log to different
sets of users. Since log maintainers sign and timestamp their
digests, a log maintainer that issues inconsistent digests can
be held accountable.

DTKI minimises monopolies, by having just one
lightweight “governing party” (our mapping log), which is not
required to be trusted, only needed for locating the authorised
certificate log for given top-level domains, and distributed to
mirrors.

3 The public log

DTKI uses append-only logs to record all requests pro-
cessed by the log maintainer. Our log structure enables log
maintainers to efficiently generate some proofs that can be
efficiently verified. These proofs mainly include the proof that
some data (e.g. a certificate or a revocation request) has or
has not been added to the log, that some data is current (e.g.
given a certificate in the log, that no revocation request on this
certificate has been added to the log), and that a log is extended
from a previous version. So, the log maintainer’s behaviour is
transparent to the public, and the public is not required to
blindly trust log maintainers.

This section defines two abstract data structures encap-
sulating the desired properties, then introduces how to use
the data structures to construct our public logs in a concrete
manner. The implementation of data structures is presented
in the Appendix. More details can be found in our technical
report [38].

3.1 Data structures

A chronological data structure is an append-only data struc-
ture, i.e. only the operation of adding some data is allowed.
With the append-only property, the chronological data structure
enables one to prove that a version of the data structure is an
extension of a previous version. We use the notion of digest
to represent a set of data, such that the size of a digest is a
constant. For example, a digest could be the hash value of a set
of data. We define the chronological data structure as follows.

Definition 1: Let X be a set and d some data. A chrono-
logical data structure over X is a data structure S with the
following operations.
• contents(S) is a sequence of values of X;
• digest(S) is a value of constant size, called the “digest” of
S;

• add(S, d) returns a chronological data structure;
such that the following hold.
• for all chronological data structure S′, if contents(S) ̸=
contents(S′), then digest(S) ̸= digest(S′);

• contents(add(S, d)) = contents(S) appended with d;
Moreover, there exists two boolean procedures VerifPoPc and
VerifPoEc, whose computation time is linear in the size of their
inputs, such that:
• for all d in X , we have d in contents(S), if and only

if there exists a value p of size O(log(|contents(S)|)),
called proof of presence of d in digest(S), such that
VerifPoPc(digest(S), d, p) = true; and

• for all value dg′ with integer N ′, we have that there exists a
chronological data structure S′ such that dg′ = digest(S′),
N ′ = |contents(S′)|, and contents(S′) is an initial sub-
sequence of contents(S), if and only if there exists a
value p of size O(log(N)), where N = |contents(S)|,
called proof of extension of (dg′, N ′) into (dg,N), such
that VerifPoEc((dg

′, N ′), (dg,N), p) = true.

Intuitively, with the chronological data structure, one can
run VerifPoPc (“verify proof-of-presence”) to efficiently verify
the proof of presence that some data d is included in a set
contents(S) represented by the corresponding digest; and
can run VerifPoEc (“verify proof-of-extension) to verify the
proof of extension that a sequence of data represented by
its digest dg and size N is extended from another sequence
of data represented by digest dg′ and size N ′. In this way,
to verify that some data is included in a sequence of data
stored in a chronological data structure (of size N ), the verifier
only needs to download the corresponding digest, and the
corresponding proof of presence (with size O(log(N))). The
verification of proof of extension is similarly efficient. A
possible implementation was proposed in CT and is based on
binary Merkle hash trees [40].

To verify that a digest really corresponds to a well-formed
chronological data structure, one possible solution is letting
some trusted parties (e.g. the monitors in the CT) to download
the complete sequence of data and compute the corresponding
digest, then the web browsers could compare the digest they
have received with the digest that the monitor computed.
However, since one aim of DTKI is to remove the trusted
parties, we use another way, called random verification, to
verify the digest of a chronological data structure, without
requiring trusted parties.

Definition 2: We say that a chronological data structure
is randomly verifiable if there exists a boolean procedure
Rand∃C , whose computation time is linear in the size of its
inputs, such that:
• given a value dg, and N ∈ N, there exists S such that
dg = digest(S) and N = |contents(S)|, if and only if for
all n ∈ {1, . . . , N}, there exists a value p of size O(log(N))
such that Rand∃C(n, dg,N, p) = true;

• given the values dg, dg′, given the integers
n ≤ N ′ < N , if there exists pe such that
VerifPoEc((dg

′, N ′), (dg,N), pe) = true, then we have that
there exists p′ such that Rand∃C(n, dg′, N ′, p′) = true, if
and only if there exists p such that Rand∃C(n, dg,N, p) =
true.
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Intuitively, the second condition of the above definition
states that if Rand∃C returns true for a given element of a
data structure, then the result still holds for the same element
in any of its extension, thus does not need to be processed
again.

Thanks to Rand∃C , verifying that some value is a digest of
a chronological data structure can be divided into some smaller
verifications; and the time and size needed for each single piece
of verification is logarithmic in the size of the data. Thus, these
verifications can be distributed to the users’ browsers, and the
requirement for trusted monitors are eliminated.

The chronological data structure enables one to efficiently
verify whether some data was added in the log (by using
VerifPoPc), and to ensure that the log maintainer never remove
or modified anything from the log (by using VerifPoEc).
This is useful for our public log since it enables users to
verify the history of a log maintainer’s behaviours. However,
the chronological data structure does not provide all desired
features. For example, it is very inefficient to verify that some
data (e.g. a revocation request) is not in the chronological
data structure (the cost is O(N), where N is the size of the
data structure). To provide missing features, we introduce the
ordered data structure. (To enhance readability, we omitted
some technical constrains concerning the ordering relation;
these can be found in the definition in our technical report
[38].)

Definition 3: Let X be a partially ordered set, d some
data. An ordered data structure over X is a data structure S
with the following operations.

• contentsO(S) is a set of values of X;
• digestO(S) is the digest of S;
• addO(S, d) is the operation to add d into contentsO(S);
• delO(S, d) is the operation to delete d from contentsO(S);
• replO(S, d, d

′) is to replace data d ∈ contentsO(S) by
some value d′;

such that

• for all ordered data structure S′, contentsO(S) ̸=
contentsO(S

′) if, and only if, digestO(S) ̸= digestO(S
′);

• addO(S, d) succeeds if d ̸∈ contentsO(S), and
contentsO(S

′) = contentsO(S
′) ∪ {d}; and similar con-

ditions for delO(S, d) and replO(S, d, d
′).

Moreover, there exists the following five boolean procedures
whose computation time is linear in the size.

• VerifPoPO (resp. VerifPoAbsO) is a boolean procedure to
verify the proof of presence (resp. absence) of some data in
a digest.

• VerifPoAddO (resp. VerifPoDO and VerifPoMO) is a
boolean procedure to verify a proof that the addition (resp.
deletion and modification) of an element in a digest.

All the procedures presented in Definition 3 are crypto-
graphically sound and complete. Note that the ordered data
structure can prove that the current version of the data is
extended from a previous version, by using a series of com-
binations of proof of addition, deletion, and modification.
However, it is very inefficient since the number of proofs
needed is linear in the number of changes between the two

versions. In contrast, proof of extension for chronological data
structure is logarithmic.

To have all desired features, namely efficient proofs of
presence, absence, and extension, we combine both chronolog-
ical data structures and the ordered data structure in our log.
Intuitively, the log is organised by using the chronological data
structure, while each entry of the log is a request with some
digests, such that each of the digests represents an ordered
data structure storing data for different purposes. For example,
a digest could represent an ordered data structure storing all
revoked certificates. In this way, the history of the ordered data
structure is committed in the chronological data structure. So,
we can use the random checking to verify the extension of the
ordered data structure.

3.2 Mapping log

To minimise monopoly, DTKI uses multiple certificate
logs, and does not fix the set of certificate logs and the mapping
between domains and certificate logs. A mapping log is used
to record associations between domain names and certificate
log maintainers, and can provide efficient proofs regarding the
current association. It would be rather inefficient to explicitly
associate each domain name to a certificate log, due to the large
number of domains. To efficiently manage the association,
we use a class of simple regular expressions to present a
group of domain names, and record the associations between
regular expressions and certificate logs in the mapping log.
For example, the mapping might include (*\.org, Clog1) and
([a-h].*\.com, Clog1) to mean that certificate log maintainer
Clog1 deals with domains ending .org and domains starting
with letters from a to h ending .com.

Definition 4: A mapping log is a randomly verifiable
chronological data structure over a set of elements of the form
h(req, t, dgs, dgbl, dgr, dgi), where req is a request received
by the mapping log maintainer at time t, and dgs, dgbl, dgr, dgi

are digests, as follows:
• req mainly includes add(rgx, id), del(rgx, id), new(cert),
mod(cert, signsk(cert

′), signsk′(n, h, t)), bl(id), and end,
corresponding to a request to add a mapping (rgx, id), to
delete a mapping (rgx, id), to add a certificate cert of a new
certificate log, to change the certificate cert of a certificate
log to the cert′, to blacklist the identity id of an existing
certificate log, and to close the update request; where rgx is
a regular expression; sk and sk′ are signing keys associated
to the certificate cert and cert′, respectively; cert and cert′

share the same subject, and n, h, t are some values;
• dgs is the digest of an ordered data structure storing the

identity information of the form (cert, signsk(n, dg, t)) for
the currently active certificate logs, where cert is the cer-
tificate for the signing key sk of the certificate log, and n
and dg are respectively the size and digest of the certificate
log at time t. Data are ordered by the domain name in cert.

• dgbl is the digest of an ordered data structure storing
the domain names of blacklisted certificate logs. Data are
ordered by the stored domain names.

• dgr is the digest of an ordered data structure storing ele-
ments of the form (rgx, id), which represents the mapping
from regular expression rgx to the identity id of a certificate
log, data are ordered by rex;
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..

h(req, t, dgs, dgbl, dgr, dgi)
.

request req
received at
time t, where
req includes
add(rgx, id),
del(rgx, id),
new(cert),
mod(cert,
signsk(cert

′),
signsk′(n, h, t)),
bl(id), and end.

.

dgs is the
digest of an
ordered data
structure
storing (cert,
signsk(n, dg, t))

.

dgbl is the
digest of an
ordered data
structure
storing the
identity of
blacklisted
certificate logs

.

dgr is the
digest of
an ordered
data
structure
storing
(rgx, id)

.

dgi is the
digest of an
ordered data
structure
storing
(id, dgirgx),
where dgirgx

is the digest
of an ordered
data structure
storing a set
of rgx asso-
ciated to the
corresponding
id

Figure 1: A figure representation of the format of each record
in the mapping log defined in Definition 4.

• dgi is the digest of an ordered data structure storing elements
of the form (id, dgirgx), which represents the mapping from
identity id of a certificate log to a digest dgirgx of ordered
data structure storing a set of regular expressions, data are
ordered by id.

Intuitively, a mapping log is a randomly verifiable chrono-
logical data structure, which stores received requests with
digests of different ordered data structures representing the
status of the log. In particular, each record of the mapping
log contains a request req with different digests that is the
result of processing the request req on the digest stored in the
previous record.

The requests are used for modifying mappings or the
existing set of certificate log maintainers. When a request
del(rgx, id) has been processed, the maintainer of certificate
log with identity id needs to remove all certificates whose
subject is an instance of regular expression rgx; when a request
add(rgx, id) has been processed, the maintainer of certificate
log with identity id needs to download all certificates whose
subject is an instance of rgx from the previous authorised
log maintainer, and adds them into his log. These requests
require certificate logs to synchronise with the mapping log;
see Section 3.4.

3.3 Certificate logs

A certificate log records certificates of domains, such that
the domain name is an instance of the regular expression linked
to the certificate log. As we previously mentioned, a domain
owner has two types of certificate, namely TLS certificate and
master certificate. Each domain owner can only publish one
master certificate in the certificate log, but can publish many
TLS certificates. The corresponding signing key of the master
certificate is used as an extra way to authenticate TLS public
keys. In other words, in DTKI, a certificate issued by a CA
and recorded in the public log will not be accepted by the
users’ browsers, unless it has also been signed by the master
signing key corresponding to the unique master certificate in
the log. In this way, as long as the master certificate in the
log is authenticated, the fake certificates won’t be accepted. To
distinguish the master certificate and TLS certificate, certificate

..h(req,N, dgrgx) .

req mainly includes
reg(signsk(cert, t)),
rev(signsk(cert, t)),
upadd(h(id), h),

and updel(h(id), h)

.

N is the size of
the mapping log
at the time that
req is processed

.

dgrgx is the digest
of an ordered data
structure storing a
set of elements of

the form (rgx, dgid)

.

dgid is the digest
of an ordered data
structure storing a
set of elements of
the form (h(id),

h(cert, dga, dgrv))

.

dga is the digest
of an ordered
data structure

storing all valid
certificates of id

.

dgrv is the digest
of an ordered
data structure

storing all revoked
certificates of id

Figure 2: A figure representation of the format of each record
in the certficate log defined in Definition 5.

authorities need to specify the certificate type in the certificate
extension field.

Definition 5: Let mlog be a mapping log. A certificate
log is a randomly verifiable chronological data structure over
a set of elements of the form h(req,N, dgrgx), where
• req includes reg(signsk(cert, t)), rev(signsk(cert, t)),
upadd(h(id), h), and updel(h(id), h), corresponding to
a request to register and revoke a certificate cert at an
agreed time t such that (cert, t) is additionally signed by
the master key sk, and update the certificate log by adding
and by deleting certificates of identity id according to the
changes of mlog, respectively.

• N is the size of mlog at the time req is processed;
• dgrgx is the digest of an ordered data structure storing

a set of elements of the form (rgx, dgid), where rgx is
a regular expression, and dgid the digest of an ordered
data structure storing a set of elements of the form (h(id),
h(cert, dga, dgrv)), where id is an instance of rgx and is
the subject of master certificate cert, and dga and dgrv are
digests of two ordered data structures each of which stores
a set of TLS certificates. In addition, data in the structure
represented by dgrgx and dgid are ordered by rgx and h(id),
respectively; data in the structure represented by dga and
dgrv are ordered by the subject of TLS certificates.

Intuitively, in a certificate log, each entry contains a
request, the size of the mapping log, and a digest dgrgx

of an ordered data structure. The size of the mapping log
indicates the status of the mapping log when the request is
processed; it helps a verifier to run the random checking to
verify whether the certificate log is authorised to manage the
request with regard to the mapping log. As it was the case in
the mapping log, the digest dgrgx in Definition 5 represents the
status of the certificate log after processing the request. dgrgx
represents all the regular expressions, which the certificate
log is associated to, with their corresponding dgid. dgid is
the digest of ordered data structure storing elements of the
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form (h(id), h(cert, dga, dgrv)), such that id is an instance
of the regular expression reg, and dga and dgrv respectively
represent the set of active and revoked certificates. In other
words, dgid represents all domains associated to rgx. Since
all active and revoked certificates are respectively stored in
ordered data structures represented by dga and dgrv , one can
easily verify whether a certificate is still active by checking
the proof of presence of the certificate in dga; and a domain
owner can easily detect fake certificates published in the
certificate log by downloading certificates stored in the set of
data represented by dga and dgrv.

Note that requests upadd(h(id), h) and updel(h(id), h) are
made according to the mapping log. Even though these mod-
ifications are not requested by domain owners, it is important
to record them in the certificate log to ensure the transparency
of the log maintainer’s behaviour. Request upadd(h(id), h)
states that the certificate log maintainer is authorised to manage
certificates for the domain name id from now on, and the
current status of certificates for id is represented by h, where
h = h(cert, dga, dgrv) for some certificate cert and some
digest dga and dgrv representing the active and revoked
certificates of id. h is the value obtained from the certificate
log that is previously authorised to manage certificates for
domain id. Similarly, request updel(h(id), h) indicates that the
certificate log cannot manage certificates for domain id any
more according to the request in the mapping log.

3.4 Synchronising the mapping log and certificate logs

The mapping log periodically (e.g. every day) publishes a
signature signsk(t, dg,N), called signed Mlog timestamp, on
a time t indicating the publishing time, and the digest dg and
size N of the mapping log. Mirrors of the mapping log need
to download this signed data, and update their copy of the
mapping log when it is updated. A signed Mlog timestamp is
only valid during the issue period (e.g. the day of issue). Note
that mirrors can provide the same set of proofs as the mapping
log maintainer, because the mirror has the copy of the entire
mapping log; but mirrors are not required to be trusted, they
do not need to sign anything, and a mirror which changed the
log by itself will not be able to convince other users to accept
it since the mirror cannot forge the signed Mlog timestamp.

When a mapping log maintainer needs to update the
mapping log, he requests all certificate log maintainers to
perform the required update, and expects to receive the digest
and size of all certificate logs once they are updated. After the
mapping log maintainer receives these confirmations from all
certificate log maintainers, he publishes the series of update
requests in the mapping log, and appends an extra constant
request end after them in the log to indicate that the update is
done.

Log maintainers only answer requests according to their
new updated log if the mapping log maintainer has published
the update requests in the mapping log. If in the log update
period, some user sends requests to the mapping log maintainer
or certificate log maintainers, then they give answers to the user
according to their log before the update started.

We say that the mapping log and certificate logs are
synchronised, if certificate logs have completed the log update
according to the request in the mapping log. Note that a mis-
behaving certificate log maintainer (e.g. one recorded fake

certificates in his log, or did not correctly update his log
according to the request of the mapping log) can be terminated
by the mapping log maintainer by putting the certificate log
maintainer’s identity into the blacklist, which is organised as
an ordered data structure represented by dgbl in Definition 4.

4 Distributed transparent key infrastructure

Distributed transparent key infrastructure (DTKI) contains
three main phases, namely certificate publication, certificate
verification, and log verification. In the certificate publication
phase, domain owners can upload new certificates and revoke
existing certificates in the certificate log they are assigned to;
in the certificate verification phase, one can verify the validity
of a certificate; and in the log verification phase, one can verify
whether a log behaves correctly.

We present DTKI using the scenario that a TLS user Alice
wants to securely communicate with a domain owner Bob who
maintains the domain example.com.

4.1 Certificate publication

To publish or revoke certificates in the certificate log, the
domain owner Bob needs to know which certificate log is
currently authorised to record certificates for his domain. This
can be done by communicating with a mirror of the mapping
log. We detail the protocol for requesting the mapping for
Bob’s domain.

4.1.1 Request mappings: Bob starts by sending a request
with his domain name to a mirror of the mapping log. Upon
receiving the request, the mirror locates the certificate cert
of the authorised certificate log maintainer and generates the
proofs that will be verified by Bob. To do so, the mirror obtains
the data of the latest element of its copy of the mapping log,
denoted h = h(req, t, dgs, dgbl, dgr, dgi), and generates the
proof of its presence in the digest (denoted dgmlog) of its
log of size N . Then, it generates the proof of presence of
the element (cert, signsk(n, dg, t)) in the digest dgs for some
signsk(n, dg, t), proving that the certificate log maintainer
whose cert belongs to is still active. Moreover, it generates the
proof of presence of some element (rgx, id) in the digest dgr
where id is the subject of cert and example.com is an instance
of the regular expression rgx, proving that id is authorised to
stores the certificates of example.com. The mirror then sends
to Bob the hash h, the signature signsk(n, dg, t), the regular
expression rgx, the three generated proofs of presence, and
the latest signed Mlog timestamp containing the time tMlog ,
and digest dgmlog and size N of the mapping log.

Bob first verifies the received signed Mlog timestamp with
the public key of the mapping log maintainer embedded in the
browser, and verifies whether tMlog is valid. Then Bob checks
that example.com is an instance of rgx, and verifies the three
different proofs of presence. If all checks hold, then Bob sends
the signed Mlog timestamp containing (t′Mlog, dg

′
mlog, N

′) that
he stored during a previous connection, and expects to receive
a proof of extension of (dg′mlog, N

′) into (dgmlog, N). If the
received proof of extension is valid, then Bob stores the current
signed Mlog timestamp, and believes that the certificate log
with identity id, certificate cert, and size that should be no

7



smaller than n, is currently authorised for managing certificates
for his domain.

4.1.2 Certificate publication: The first time Bob wants to
publish a certificate for his domain, he needs to generate a
pair of master signing key, denoted skm, and verification key.
The latter is sent to a certificate authority, which verifies Bob’s
identity and issues a master certificate certm for Bob. After
Bob receives his master certificate, he checks the correctness
of the information in the certificate. The TLS certificate can
be obtained in the same way.

Figure 3 presents the process to publish the master cer-
tificate certm. Bob signs the certificate together with the
current time t by using the master signing key skm, and
sends it together with the request to the authorised certificate
log maintainer whose signing key is denoted skclog . The
certificate log maintainer checks whether there exists a valid
master certificate for example.com; if there is one, then the
log maintainer aborts the conversation. Otherwise, the log
maintainer verifies the validity of time t and the signature.

If they are all valid, the log maintainer updates the log,
generates the proof of presence of (h(id), h(certm, dga, dgrv))
in dgid, (rgx, dgid) in dgrgx, and h(reg(signskm(certm, t)),
Nmlog, dg

rgx) is the last element in the data structure rep-
resented by dgclog, where id is the subject of certm and
an instance of rgx; reg(signskm(certm, t)) is the register
request to adding certm into the certificate log with digest
dgclog at time t. The log maintainer then issues a signature
on (dgclog, N, h), where N is the size of the certificate log,
and h = h((rgx, dgid), dgrgx, P ), where P is the sequence
of the generated proofs, and sends the signature σ2 together
with (dgclog, N, rgx, dgid, dgrgx, dga, dgrv, P ) to Bob. If the
signature and the proof are valid, and N is no smaller than
the size n contained in the signed Mlog timestamp that
Bob received from the mirror, then Bob stores the signed
(dgclog, N, h), sends the previous stored (dg′clog, N

′) to the
certificate log maintainer, and expects to receive a proof of
extension of (dg′clog, N

′) into (dgclog, N). If the received proof
of extension is valid, then Bob believes that he has successfully
published the new certificate.

Note that it is important to send (dg′clog, N
′) after receiving

(dgclog, N), because otherwise the log maintainer could learn
the digest that Bob has, then give a pair (dg′′clog, N

′′) of digest
and size of the log such that N ′ < N ′′ < N . This may open
a window to attackers who wants to convince Bob to use a
certificate which was valid in dg′′clog but revoked in dgclog .

The process of adding a TLS certificate is similar to the
process of adding a master certificate, but the log maintainer
needs to verify that the TLS certificate is signed by the valid
master signing key corresponding to the master certificate in
the log. The process of adding a certificate revocation request is
also similar to the process of adding a new certificate. How-
ever, for a revocation request with signskm

(cert, t), the log
maintainer needs to additionally check that signskm

(cert, t′)
is already in the log and t > t′.

4.2 Certificate verification

When Alice wants to securely communicate with
example.com, she sends the connection request to Bob, and

Domain owner Bob
vk(sk), skm,

cache := (dg′clog, N
′, h′

1, σ
′)

Clog maintainer
sk, clog

σ1 := signskm
(certm, t)

(request, certm, t, σ1)

- Check that there is no existing master
certificate for Bob

- Verify certm, t, σ1

- add certm, t, σ1 to the log
- dgclog := digest of the log
- N := size of the log
- P1 := proof of presence of

(h(id), h(certm, dga, dgrv)) in dgid

- P2 := proof of presence of (rgx, dgid) in dgrgx

- P3 := proof of presence of
h(reg(signskm(certm, t)), Nmlog, dg

rgx) in dgclog
- P := (P1, P2, P3)
- m := (rgx, dgid, dgrgx, dga, dgrv, P )
- h := h(m)
- σ2 := signsk(dgclog, N, h)

(dgclog, N, σ2,m)

- Verify σ2

- Verify each proof in P

(dg′clog, N
′)

P2 := proof of extension of
(dg′clog, N

′) into (dgclog, N)

P2

Verify that
VerifPoEc((dg

′
clog, N

′), (dgclog, N), P2)
= true

Figure 3: The protocol presenting how domain owner Bob
communicates with certificate log (clog) maintainer to publish
a master certificate certm.

expects to receive a master certificate certm and a signed TLS
certificate signskm

(cert, t) from him. To verify the received
certificates, Alice checks whether the certificates are expired.
If both of them are still in the validity time period, Alice
requests (as described in 4.1.1) the corresponding mapping
from a mirror to find out the authorised certificate log for
example.com, and communicates with the authorised certifi-
cate log maintainer to verify the received certificate.

The Fig. 4 presents the process of verifying a certificate.
After Alice learns the identity of the authorised certificate log,
she sends the verification request with her local time tA and
the received certificate to the certificate log maintainer. The
time tA is used to prevent replay attacks, and will later be
used for accountability. The certificate log maintainer checks
whether tA is in an acceptable time range (e.g. tA is in the
same day as his local time). If it is, then he locates the
corresponding (rgx, dgid) in dgrgx in the latest record of his
log such that example.com is an instance of regular expression
rgx, locates (h(id), h(certm, dga, dgrv)) in dgid and cert in
dga, then generates the proof of presence of cert in dga,
(h(id), h(certm, dga, dgrv)) in dgid, (rgx, dgid) in dgrgx, and
h(req,N, dgrgx) is the latest record in the digest dgclog of the
log with size N . Then, the certificate log maintainer signs
(dgclog, N, tA, h), where h = h(dga, dgrv, rgx, dgid, dgrgx,
P ), and P is the set of proofs, and sends (dgclog, N, dga, dgrv,
rgx, dgid, dgrgx, σ, P ) to Alice.

After verifying the signature and proofs, Alice sends the
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previously stored dg′clog with the size N ′ to the log maintainer,
and expects to receive the proof of extension of (dg′clog, N

′)
into (dgclog, N). If they all valid, then Alice replaces the cor-
responding cache by the signed (dgclog, N, tA, h) and believes
that the certificate is an authentic one.

In order to preserve privacy of Alice’s browsing history,
instead of asking Alice to query all proofs from the log
maintainer, Alice can send the request to Bob who will redirect
the request to the log maintainer, and redirect the received
proofs from the log maintainer to Alice.

With DTKI, Alice is able to verify whether Bob’s domain
has a certificate by querying the proof of absence of certificates
for example.com in the corresponding certificate log. This
is useful to prevent TLS stripping attacks, where an attacker
can maliciously convert a HTTPS connection into a HTTP
connection.

Alice’s browser
vk(sk), certm, (cert, t),

cache := (dg′clog, N
′, t′A, h

′, σ′)

Certificate log maintainer
sk, clog

(req, tA, cert, certm)

- locate rgx, certm, cert
- P1 := proof of presence of cert in dga

- P2 := proof of presence of
(h(id), h(certm, dga, dgrv)) in dgid

- P3 := proof of presence of (rgx, dgid) in dgrgx

- P4 := proof of presence of h(req,N, dgrgx)
in dgclog

- P := [P1, . . . , P4]
- m := (dga, dgrv, rgx, dgid, dgrgx, P )
- σ := signsk(dgclog, N, tA, h(m))

(dgclog, N,m, σ)

Verify tA and signature with vk(sk)
Verify each proof in P

(dg′clog, N
′)

P5 := proof of extension of
(dg′clog, N

′) into (dgclog, N)

P5

Verify that
VerifPoEc((dg

′
clog, N

′), (dgclog, N), P5)
= true

Figure 4: The protocol for verifying a certificate with the
corresponding certificate log maintainer.

4.3 Log verification

To verify whether a certificate log authorised for Bob’s
domain contains fake certificates, Bob needs to periodically
check that all certificates for his domain recorded in the
certificate log are authentic. To do so, he can check all
certificates for his domain stored in the certificate log, and
verify the proof that the corresponding digest (i.e. dga and
dgrv) are recorded in the certificate log. Note that every time
when a certificate log maintainer is blacklisted by the mapping
log maintainer, Bob needs to run this verification to check his
certificates.

In addition, we need to ensure that the mapping log
maintainer and certificate log maintainers behaved honestly. In
particular, we need to ensure that the mapping log maintainer
and certificate log maintainers did update their log correctly
according to the request, and certificate log maintainers did
follow the latest mappings specified in the mapping log.

These checks can be easily done if there are trusted
third parties (TTPs) who can monitor the log. However,
since we aim to provide a TTP-free system, DTKI uses a
crowdsourcing-like method, based on random checking, to
monitor the correctness of the public log. The basic idea of
random checking is that each user randomly selects a record
in the log, and verifies whether the request and data in this
record have been correctly managed. If all records are verified,
the entire log is verified. Users only need to run the random
checking periodically (e.g. once a day). The full version
(with formalisation) of random checking can be found in our
technical report. We give a flavour here by providing some
examples. Example 1 presents the random checking process
to verify the correct behaviour of the mapping log.

Example 1: If the verifier has randomly selected the kth

record labelled by h(add(rgx, id), tk, dg
s
k, dg

bl
k , dg

r
k, dg

i
k) in

the mapping log, then it means that all digests in this record
are updated from the (k−1)th record by adding a new mapping
(rgx, id) in the mapping log at time tk.

Let the label of the (k − 1)th record be
h(reqk−1, tk−1, dg

s
k−1, dg

bl
k−1, dg

r
k−1, dg

i
k−1), then to verify

the correctness of this record, the verifier should run the
following process:

• verify that dgsk = dgsk−1 and dgblk = dgblk−1; and
• verify that dgrk is the result of adding (rgx, id) into dgrk−1

by using VerifPoAddO, and id is an instance of rgx; and
• verify that (id, dgirgxk ) is the result of replacing (id, dgirgxk−1 )

in dgik−1 by (id, dgirgxk ) by using VerifPoMO; and

• verify that dgirgxk is the result of adding rgx into dgirgxk−1 by
using VerifPoAddO.

Note the all proofs required in the above are given by the log
maintainer. If the above tests succeed, then the mapping log
maintainer has behaved correctly for this record.

The verification on the certificate log is similar to the
mapping log. However, there is one more thing needed to be
verified – the synchronisation between the mapping log and
certificate logs. This verification includes that the certificate log
only manage the certificates for domains they are authorised
to (according to the mapping log); and if there are modi-
fications on the mapping, then the corresponding certificate
log maintainer should add or remove all certificates according
to the modified mapping. We present an example to show
what a verifier should do to verify that the certificate log was
authorised to add or remove a certificate.

Example 2: If the verifier has randomly selected the kth

record labelled by h(reg(signsk(certTLS , t)), Nk, dg
rgx
k ) in

the certificate log, where dgrgxk is the digest of ordered
sequence of format (rgx, dgidk ), dgidk is the digest of ordered
sequence of format (h(id), h(certm, dgak , dg

rv
k )), certm is a

master certificate, and certTLS is a TLS certificate. Let dgrgxk
be the digest dgrgx in the k − 1th record, and similarly for
dgidk−1, dgak−1 ,dgrvk−1. Let the subject of certTLS be id′. The
verifier should verify the following tests:
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• Verify that signsk(certTLS , t) is correctly signed according
to certm; and

• Verify that certm is not expired, and shares the same subject
id′ with certTLS , and id′ = id; and

• Verify that dgak is the result of adding certTLS into dgak−1;
and

• Verify that dgidk is the result of re-
placing (h(id), h(certm, dgak−1, dg

rv
k−1)) by

(h(id), h(certm, dgak , dg
rv
k )) in dgidk−1; and

• Verify that dgrvk = dgrvk−1; and
• Verify that dgrgxk is the result of replacing (rgx, dgidk−1) by
(rgx, dgidk ) in dgrgxk−1; and

• Verify that (rgx′, id′′) is in the dgrNk
in the N th

k element
of the mapping log, such that rgx′ = rgx, and id′ is the
identity of the certificate log.

If the above tests succeed, then the certificate log maintainer
behaves correctly on this record.

4.4 Performance Evaluation

In this section, we measure the cost of different protocols
in DTKI.
Assumptions: We assume that the size of a certificate log is
108 (the total number of registered domain names currently
is 2.71 × 108 [41], though only a fraction of them have
certificates). In addition, we assume that the number of stored
regular expressions, the number of certificate logs, and the
size of the mapping log are 1000 each. (In fact, if we assume
a different number or size (e.g. 100 or 10000) for them, it
makes almost no difference to the conclusion). Moreover, in
the certificate log, we assume that the size of the set of data
represented by dgrgx is 10, by dgid is 105, by dga is 10,
and by dgrv is 100. These assumptions are based on the fact
that dgrgx represents the set of regular expressions maintained
by a certificate log; the dgid represents the set of domains
which is an instance of a regular expression; and dga and dgrv

represent the set of currently valid certificates and the revoked
certificates, respectively. Furthermore, we assume that the size
of a certificate is 1.5 KB, the size of a signature is 256 bytes,
the length of a regular expression and an identity is 20 bytes
each, and the size of a digest is 32 bytes.
Space: Based on these assumptions, the approximate size of
the transmitted data in the protocol for publishing a certificate
is 4 KB, for requesting a mapping is 3 KB, and for verifying
a certificate is 5 KB. Since the protocols for publishing a
certificate and requesting a mapping are run occasionally,
we mainly focus on the cost of the protocol for verifying a
certificate, which is required to be run between a log server
and a web browser in each secure connection.

By using Wireshark, we1 measure that the size of data
for establishing an HTTPS protocol to login to the internet
bank of HSBC, Bank of America, and Citibank are 647.1
KB, 419.9 KB, and 697.5 KB, respectively. If we consider
the average size (≈588 KB) of data for these three HTTPS
connections, and the average size (≈6 KB) of date for their
corresponding TLS establishment connections, we have that in
each connection, DTKI incurs 83% overhead on the cost of the

1We use the MacBook Air 1.8 GHz Intel Core i5, 8 GB 1600 MHz DDR3.

TLS protocol. However, since the total overhead of a HTTPS
connection is around 588 KB, so the cost of DTKI only adds
0.9% overhead to each HTTPS connection, which we consider
acceptable.
Time: Our implementation uses a SHA-256 hash value as the
digest of a log and a 2048 bit RSA signature scheme. The
time to compute a hash2 is ≈ 0.01 millisecond (ms) per 1KB
of input, and the time to verify a 2048 bit RSA signature is
0.48 ms. The approximate verification time on the user side
needed in the protocol for verifying certificates is 0.5 ms.

Hence, on the user side, the computational cost on the
protocol for verifying certificates incurs 83% on the size of
data for establishing a TLS protocol, and 9% on the size of
data for establishing an HTTPS protocol; the verification time
on the protocol for verifying certificates is 1.25 % of the time
for establishing a TLS session (which is approximately 40 ms
measured with Wireshark on the TLS connection to HSBC
bank).

5 Security statement and analysis

We consider an adversary who can compromise the private
key of all infrastructure servers in DTKI. In other words,
the adversary can collude with all log servers and certificate
authorities to launch attacks.

Main result: Our security analysis shows that

• if the distributed random checking has verified all required
tests, and domain owners have successfully verified their
initial master certificates, then DTKI can prevent attacks
from the adversary; and

• if the distributed random checking has not completed all
required tests, or domain owners have not successfully
verified their initial master certificates, then an adversary can
launch attacks, but the attacks will be detected afterwards.

The fully detailed analysis is presented in our technical report
[38], and we only give a reduced analysis here due to the space
limitation.

Consider a scenario where an internet user Alice wants to
share some secret data with a domain owner Bob by running
the TLS protocol. The main purpose of DTKI is to enable Alice
to verify that the certificate she received in the TLS session is
indeed a valid certificate of Bob. In DTKI, a valid certificate
means that the certificate is active. A certificate is active if
the certificate is authentic and not revoked; and a certificate
is authentic if the certificate’s subject has run the registration
protocol to register it.

To formally define an authentic certificate and an active
certificate, we define a function keysB to model the status of
all public keys of B. We present time by integers e.g. seconds,
consider that all protocols are run within one unit of time, and
denote the infinite set of all public keys by PK.

Definition 6: Let B be a domain. A key function keysB
for B is a function from N to a set of finite sets of elements
in PK × {0, 1} such that for all pk ∈ PK, for all t ∈ N, pk

2SHA-256 on 64 byte size block.
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occurs at most once in keysB(t). Moreover, for all pk ∈ PK,
if there exists t such that pk occurs in keysB(t) then:
• either there exists treg, trev ∈ N such that for all t < treg ,
pk does not occur in keysB(t); and for all treg ≤ t < trev,
(pk, 1) ∈ keysB(t); and for all t ≥ trev, (pk, 0) ∈ keysB(t);

• or there exists treg ∈ N such that for all t < treg, pk
does not occur in keysB(t); and for all t ≥ treg , (pk, 1) ∈
keysB(t).

We say that a public key pk ∈ PK is authentic (w.r.t
domain B) at time t if (pk, b) ∈ keysB(t) for some b ∈ {0, 1};
and pk is active at the time t if (pk, 1) ∈ keysB(t).

In addition, given user A and log maintainer L, we consider
a function digsz(A,L) such that given a time t as input,
digsz(A,L)(t) outputs the pair of values (expected to be the
digest and size, respectively, of L’s log) given by L, and
stored in the cache of A’s browser at time t. Note that we
have digsz(A,L)(0) = (null, 0) for participants A and L, where
null is the null bitstring.

We assume that both Alice and Bob are honest, meaning
that they run the protocols of DTKI correctly. We say that
(dg,N) represents a chronological log S if digest(S) = dg
and |contents(S)| = N . We have the following lemma
to show that if a participant stores a pair of values after
successfully running a protocol with a log maintainer L at
time t, and the pair of values are indeed the digest and size
of a log, then all previously stored values associated to L are
also pairs of digest and size of a historic version of the log.

Lemma 1: Let A be an honest participant, and L a log
maintainer. If there exists a time t ∈ N and a log S such
that digsz(A,L)(t) represents S at time t, then for all t′ ≤ t,
there exists a log S′ such that digsz(A,L)(t

′) represents S′ and
content(S′) ⊆ contents(S).

Informally, the above lemma holds because A, being hon-
est, will run the verification of proof of extension, and will
accept and store the digest at time t only if it was successful;
and a valid proof of extension ensures that a chronological
data structure represented by the newly received digest is
an extension of a chronological data structure represented
by a previously stored digest. In addition, the condition that
digsz(A,L)(t) represents S at the time t will be verified by the
random checking procedure Rand∃C .

When a participant wants to register (or revoke, or verify)
a certificate, she requests the corresponding certificate log
information (e.g, the certificate of the log maintainer, the digest
and size of the log) from the mapping log maintainer, then
runs the corresponding protocol for registering (or revoking,
or verifying) a certificate with the certificate log maintainer.
In the protocol, she obtains a digest and size of the certificate
log. She should verify that the pair of digest and size is a latter
(or the same) version of the pair received from the mapping
log maintainer. This is formally described as follows.

Lemma 2: Let A be an honest participant running the
protocol for verifying (resp. registering, revoking) a certificate
cert at time t. Let M be the mapping log maintainer. If
the protocol was successful, then there exists a certificate
log maintainer C, called designated certificate log maintainer,
such that if there exists a mapping log SM and a certificate log

SC such that digsz(A,M)(t) represents SM and digsz(A,C)(t)
represents SC , then the following properties hold:

• there exists req,N, dg such that h(req,N, dg) is the last
element of contents(SC) and N = |contents(SM )|; and

• there exists t′, dgs, dgbl, dgr and dgi such that h(end, t′, dgs,
dgbl, dgr, dgi) is the last element of contents(SM ); and

• t′ ≤ t; and
• dgs is the digest of an ordered data structure Ss

such that there exists certc, sk, n′ and dg′ such
that (certc, signsk(n

′, dg′, t′)) ∈ contentsO(Ss), C
is the subject of certc, n′ ≤ |contents(SC)| and
(digest(SC), |contents(SC)|) is an extension of (dg′, n′);
and

• dgr is the digest of an ordered data structure Sr such that
there exists (rgx, id) ∈ contentsO(Sr), where id is the
identity of C and is an instence of regular expression rgx.

We have the following theorem.

Theorem 1: Let M be the mapping log maintainer; Bob
an honest participant having a master certificate and some TLS
certificates, and having successfully verified his certificates at
time tB with the designated certificate log maintainer CB ;
and Alice an honest participant having successfully verified
a certificate cert, whose subject is B, by running certificate
verification protocol at time tA ≥ tB with the designated
certificate log maintainer CA. Assume that:

• there exists a mapping log SM and certificate logs
SC1 . . . , SCn such that SM and SC1 . . . , SCn are synchro-
nised; and

• there exists i, j ∈ {1, . . . n} such that CA = Ci and CB =
Cj ; and

• (digest(SM ), |contents(SM )|) = digsz(A,M)(tA); and
• (digest(SCA

), |contents(SCA
)|) = digsz(A,CA)(tA); and

• (digest(SM ), |contents(SM )|) is an extension of
digsz(B,M)(tB); and

• (digest(SCB ), |contents(SCB )|) is an extension of
digsz(B,CB)(tB); and

• between the time that digsz(B,M)(tB) and digsz(A,M)(tA)
were generated, no new certificate log maintainer was black-
listed by the mapping log maintainer.

We have that the public key contained in cert is active at the
time that digsz(A,CA)(tA) was generated.

Loosely speaking, to convince Alice to accept a TLS cer-
tificate, an attacker needs to make some fake proofs (detailed
in the section 4.2) and to forge a signature corresponding
to the master certificate. However, if the master certificate
that Alice received is the same as the master certificate Bob
published, then the attacker cannot forge such a signature on
TLS certificates, though an attacker who colluded with the
corresponding certificate log maintainer could forge the proofs
(but it would be detected later).

Consider the scenario that an internet user Alice wants to
securely communicate with a domain owner Bob who has
successfully registered a master certificate and some TLS
certificates. Let tB be the time when Bob has successfully
verified his certificates by communicating the mapping log

11



maintainer M and a certificate maintainer CB . We show how
to achieve the conditions listed in the theorem 1 to guarantee
the certificate Alice received in the TLS session is active w.r.t.
Bob’s domain.

After Alice receives a certificate cert from Bob, Alice con-
tacts the mapping log maintainer M and obtains the identity
information of the authorised certificate log maintainer CA for
Bob’s domain, then runs the certificate verification protocol
with CA. Let tA > tB be the time when Alice has successfully
verified cert with CA.

Condition 1 is a property that expresses the existence and
synchronisation of logs, and condition 1 states that the logs
of the designated log maintainers are part of the synchronised
set of logs. Both condition 1 and 1 are ensured in practice
by using the distributed random checking. As discussed in the
section of log verification (Section 4.3), the full coverage of
the random verification can be expected to be achieved because
of the large number of internet users.

Conditions 1 and 1 ensure that the mapping log and
certificate log maintained by the designated log maintainers
are represented by the pairs of digit and size that they sent
to Alice; and conditions 1 and 1 indicates that Bob (or Alice)
was not in a “bubble” created by the attacker. These conditions
can be guaranteed by using the gossip protocol.

The last condition requires that no new certificate log
maintainer is blacklisted between time tb that Bob verified
his certificates with CB and tA that Alice verified cert with
CA. Since we assume that Bob is an honest participant, then
as required by the protocol, he will verify his certificates at
least when a certificate log maintainer is blacklisted by the
mapping log maintainer.

Thus, thanks to Theorem 1, by the end of the protocol,
Alice can be sure that the certificate she received from the
TLS session is active.

6 Discussion

Coverage of random checking: As mentioned, several as-
pects of the logs are verified by user’s browsers performing
randomly-chosen checks. The number of things to be checked
depends on the size of the mapping log and certificate logs.
The size of the mapping log mainly depends on the number of
certificate logs and the mapping from regular expressions to
certificate logs; and the size of certificate logs mainly depends
on the number of domain servers that have a TLS certificate.
Currently, there are 2.71×108 domains [41] (though not every
domain has a certificate), and 3×109 internet users [42]. Thus,
if every user makes one random check per day, then everything
will on average, be checked 10 times per day.
Gossip protocol: As mentioned in the overview, to avoid
victims being trapped in a “bubble” created by very powerful
attackers who controls the network and all service infrastruc-
tures such as ISPs and log maintainers, DTKI assumes the
existence of a gossip protocol [39] that can be used for users to
detect if a log maintainer shows different versions (i.e. different
pairs of digest and size) of the log to different sets of users. The
gossip protocol allows client browsers to exchange with other
users the digest and size of the log that they have received in
the DTKI protocols. The gossip protocol provides a means for
a browser to identify peers with whom to exchange digests.

The mobility of phones and laptops help ensure maximum
gossip performance. At any time, a user can request a proof
that the pair of digest and size currently offered by the log is
an extension of a previous pair of digest and size of the log
received from other users via the gossip protocol.

Accountability of mis-behaving parties: The main goal of
new certificate management schemes such as CT, AKI and
DTKI is to address the problem of mis-issued certificates, and
to make the mis-behaving (trusted) parties accountable.

In DTKI, a domain owner can readily check for rogue
certificates for his domain. First, he queries a mirror of the
mapping log maintainer to find which certificate log main-
tainers (CLM) are allowed to log certificates for the domain
(section 4). Then he examines the certificates for his domain
that have been recorded by those CLMs. The responses he
obtains from the mirror and the CLMs are accompanied
by proofs. If he detects a mis-issued certificate, he requests
revocation in the CLM. If that is refused, he can complain
to the top-level domain, who in turn can request MLM to
change the CLM for his domain (after that, the offending
CLM will no longer be consulted by browsers). This request
can’t be refused because MLM is governed by an international
panel. The intervening step, of complaining to the top-level
domain, reflects the way domain names are actually managed
in practice. Different Top-level domains have different terms
and conditions, and domain owners take them into account
when purchasing domain names. In DTKI, log maintainers
are held accountable because they sign and timestamp their
outputs. If a certificate log maintainer issues inconsistent
digest, this fact will be detected and the log maintainer can
be blamed and blacklisted. If the mapping log misbehaved,
then its governing panel must meet and resolve the situation.

In certificate transparency, this process is not as smooth.
Firstly, the domain owner doesn’t get proof that the list of
issued certificates is complete; he needs to rely on monitors
and auditors. Next, the process for raising complaints with
log maintainers who refuse revocation requests is less clear
(indeed, the RFC [34] says that what domain owners should
do if they see an incorrect log entry is beyond scope of their
document). In CT, a domain owner has no ability to dissociate
himself from a log maintainer and use a different one.

AKI addresses this problem by saying that log maintainer
that refuses to unregister an entry will eventually lose cred-
ibility through a process managed by validators, and will be
subsequently ignored. The details of this credibility manage-
ment are not very clear, but it does not seem to offer an easy
way for domain owners to control which log maintainers are
relied on for their domain.

Avoidance of monopoly: As we mentioned in the introduc-
tion, the predecessors (SK, AKI, E(CT)) of DTKI do not solve
a foundational issue, namely monopoly (or oligopoly). These
proposals require that all browser vendors agree on a fixed
list of log maintainers and/or validators, and build it into their
browsers. This means there will be a large barrier to create a
new log maintainer.

CT has some support for multiple logs, but it doesn’t
have any method to allocate different domains to different
logs. In CT, when a domain owner wants to check whether
misissued certificates are recorded in logs, he needs to contact
all existing logs, and download all certificates in each of the
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logs, because there is no way to prove to the domain owner
that no certificates for his domain is in the log, or to prove
that the log maintainer has showed all certificates in the log for
his domain to him. Thus, to be able to detect fake certificates,
CT has to keep a very small number of log maintainers. This
prevents new log providers being flexibly created, creating an
oligopoly.

In contrast to its predecessors, DTKI does not have a
fixed set of certificate log maintainers (CLMs) to manage
certificates for domain owners, and it is easy to add or remove a
certificate log maintainer by updating the mapping log. DTKI
only has one lightweight governing party, i.e. the mapping
log maintainer (MLM), which needs to be built into browsers.
However, we minimise the monopoly on the MLM (it is hard
to be avoid), because
• the MLM has no bias on certain countries since it is

maintained by an international panel; and
• the MLM modifies the mapping log only for strategic and

long term reasons; it only periodically (e.g. every day)
publishes a signed Mlog timestamp; and it is not involved
in day-to-day management (which is the work of CLMs and
mirrors of the mapping log); and

• the MLM is not required to be trusted by users’ browsers.
Additional latency: DTKI introduces additional round-trips
in the TLS connecion to verify certificates and prevent po-
tential attacks. This will add some extra latency to the TLS
connection. This may be considered justified by the fact that
DTKI offers a strong security guarantee.

In fact, the additional latency can be eliminated by delaying
the added verification process from the user side. In this
case, users obtain a slightly weaker security guarantee: they
are still able to verify the authenticity of received certificates
afterwards and therefore can detect misissued certificates.
Synchronization concerns: The synchronization among a
large number (e.g. thousands) of participants is normally a
difficult task. However, in DTKI, the synchronization among
the MLM and CLMs is not expected to be a problem. First,
the mapping log is rarely changed – it will be changed only if
a new CLM has been added or terminated. In the steady state,
this is likely to be no more than a few times per year. Second,
the MLM can send the corresponding update request to CLMs
in advance, and the synchronization process is allowed to take
an acceptable time period. During this time period, users will
use the current logs until all logs are synchronised. Third, the
MLM can terminate a CLM that has failed to update on time
(e.g. have not finished the update process in a certain time
period). So, in a long run, all parties will be able to do their
work properly.

7 Conclusions and future work

Sovereign keys (SK), certificate transparency (CT), ac-
countable key infrastructure (AKI), and enhanced certificate
transparency (ECT) are recent proposals to make public key
certificate authorities more transparent and verifiable, by using
public logs. CT is currently being implemented in servers
and browsers. Google is building a certificate transparency log
containing all the current known certificates, and is integrating
verification of proofs from the log into the Chrome web
browser.

Unfortunately, as it currently stands, CT risks creating a
monopoly or small oligopoly of log maintainers (as discussed
in section 6), of which Google itself will be a principal one.
Therefore, adoption of CT risks investing more power about
the way the internet is run in a company that arguable already
has too much power.

In this paper we proposed DTKI – a TTP-free public key
validation system using an improved construction of public
logs. DTKI can prevent attacks based on mis-issued certifi-
cates, and minimises undesirable oligopoly situations by using
the mapping log. In addition, we formalised the public log
structure and its implementation; such formalisation work was
missing in the previous systems (i.e. SK, CT, AKI, and ECT).
Since devising new security protocols is notoriously error-
prone, we provide a formalisation of DTKI, and correctness
proofs.
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Appendix

Implementation of data structures

This section shows the implemetation of the chronological
data structure and ordered data structure. We give some
examples to show how the proofs could be done. Full details
can be found in our technical report. We consider a secure
hash function (e.g. SHA256), denoted h.

Chronological data structure: The chronological data struc-
ture is implemented based on Merkle tree structure that we
call ChronTree.

A ChronTree T is a binary tree whose nodes are labelled
by bitstrings such that:

• every non-leaf nodes in T has two children, and is labeled
with h(tℓ, tr) where tℓ (resp. tr) is the label of its left child
(resp. right child); and

• the subtree rooted by the left child of a node is perfect, and
its height is greater than or equal to the height of the subtree
rooted by the right child.

Here, a subtree is “perfect” if its every non-leaf node has two
children and all its leaves have the same depth.

Note that a ChronTree is a not necessarily a balanced tree.
The two trees in Figure 5 are examples of ChronTrees where
the data stored are the bitstrings denoted d1, . . . , d6.

..h(h(d1, d2), d3).

h(d1, d2)

.

d1

.

d2

.
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.
r

(a) ChronTree Ta
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h(h(h(d1, d2), h(d3, d4)), h(d5, d6))

. h(d5, d6).

d5

.

d6

.h(h(d1, d2), h(d3, d4)).

h(d1, d2)

.

d1

.

d2

.

h(d3, d4)

.

d3

.

d4

.
r

.

ℓ

.
ℓ

(b) ChronTree Tb

Figure 5: Example of two ChronTrees, Ta and Tb.

Given a ChronTree T with k leaves, we denote by S(T ) =
[d1, . . . , dk] the sequence of bitstrings stored in T . Note that a
ChronTree is completely defined by the sequence of data stored
in the leaves. Moreover, we say that the size of a ChronTree
is the number its leaves.

Given a bitstring d and a ChronTree T , the proof of
presence of d in T exists if there is a leaf n1 in T labeled
by d; and is defined as (w, [b1, . . . , bk]) such that:

• w is the position in {ℓ, r}∗ of n1 (that is, the sequence of
left or right choices which lead from the root to n1), and
|w| = k; and

• if n1, . . . , nk+1 is the path from n1 to the root, then for all
i ∈ {1, . . . , k}, bi is the label of the sibling node of ni.

Intuitively, a proof of presence of d in T contains the
minimum amount of information necessary to recompute the
label of the root of T from the leaf containing d.

Example 3: Consider the ChronTree Tb of Figure 5. The
proof of presence of d3 in Tb is the tuple (w, seq) where:

• w = ℓ · r · ℓ
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..

d6, h(d6, h(d4, h(d2, h1, h3), h5), h(d10, h(d8, h7, h9), h(d12, h11, null)))

. d10, h(d10, h(d8, h7, h9), h(d12, h11, null)).

d8, h(d8, h7, h9)

.

d7, h7

.

d9, h9

.

d12, h(d12, h11, null)

.

d11, h11

.d4, h(d4, h(d2, h1, h3), h5).

d2, h(d2, h1, h3)

.

d1, h1

.

d3, h3

.

d5, h5

Figure 6: An example of a LexTree Tc, where hi = h(di, null, null) for all i = {1, 3, 5, 7, 9, 11}

• seq = [d4, h(d1, d2), h(d5, d6)]

Note that the size of the proof of presence is logarithmic
in the size of the tree; even if the tree grows considerably, the
size of the proof does not increase much.

Let T ′ and T be ChronTrees of size N ′ ≤ N respectively,
containing the data S(T ) = [d1, . . . , dN ′ , . . . , dN ],
and S(T ′) = [d1, . . . , dN ′ ] for some bitstrings
d1, . . . , dN ′ , . . . , dN . Let m be the smallest position of
the bits 1 in the binary representation of N ′; and let (d,w) be
the (m+ 1)th node in the path of the node labeled by dN ′ to
the root in T , where d is a bitstring and w ∈ {ℓ, r}∗ indicates
the position. At last, let (w, seq′) be the proof of presence of
d in T . The proof of extension of T ′ into T is defined as the
sequence seq of bitstrings such that

• if N ′ = 2k for some k, then seq = seq′; otherwise
• seq = d :: seq′, where :: is the concatenation operation.

Example 4: The proof of extensions of Ta into Tb (Fig-
ure 5) is the sequence seq = [d3, d4, h(d1, d2), h(d5, d6)].

While a proof of presence is the minimal amount of infor-
mation necessary to recompute the hash value of a ChronTree
from the leaf containing some particular data, the proof of
extension is the minimal amount of information necessary to
recompute the hash value of ChronTree T from the hash value
of a ChronTree T ′ where T is an extension of T ′. Intuitively,
the proof of extension of a ChronTree T ′ into a ChronTree T
is the proof of presence in T of the last inserted data of T ′,
i.e. dN ′ when S(T ′) = [d1, . . . , dN ′ ]. With this proof and the
sizes of both trees, we can reconstruct the label of the root T
but also the label of the root of T ′ as means to verify the proof
of extension. Note that when N ′ = 2k for some k, it implies
that the tree T ′ is perfect and so the label of the root of T ′

is also a label of a node in T . Therefore, to reconstruct the
label of the root of T , we only need a fragment of the proof
of presence of dN ′ in T .

Example 5: Coming back to Example 4, consider the
bitstrings hb = h(h(h(d1, d2), h(d3, d4)), h(d5, d6)) and ha =
h(h(d1, d2), d3). seq proves the extension of ha of size 3
into hb of size 6. Figure 5 is the graphical representation
of the verification of seq given ha and hb. In particular,
(ℓ · r · ℓ, [d4, h(d1, d2), h(d5, d6)]) proves the presence of d3
in hb and (r, [h(d1, d2)]) proves the presence of d3 in ha.

Ordered data structure: The ordered data structure is im-
plemented as the combination of a binary search tree and a
Merkle tree. The idea is that we can regroup all the information
about a subject into a single node of the binary search tree,

and while being able to efficiently generate and verify the
proof of presence. We consider a total order on bitstrings
denoted ≤. This order could be the lexicographic order in the
ASCII representations but it could be any other total order on
bitstrings. The implementation is called LexTree.

A LexTree T is a binary search tree over pairs of bitstrings
• for all two pairs (d, h) and (d′, h′) of bitstrings in T , (d, h)

occurs in a node left of the occurrence of (d′, h′) if and only
if d ≤ d′ lexicographically;

• for all nodes n ∈ T , n is labeled with the pair
(d, h(d, hℓ, hr)) where d is some bistring and (dℓ, hℓ) (resp.
(dr, hr)) is the label of its left child (resp. right child) if it
exists; or the constant null otherwise.
Note that contrary to a ChronTree, the same set of data

can be represented by different LexTrees depending on how
the tree is balanced. To avoid this situation, we assume that
there is a pre-agreed way for balancing trees.

Example 6: The tree in Figure 6 is an example of LexTree
where d1 ≤ d2 ≤ . . . ≤ d12.

Example 7: Consider the LexTree T of Figure 6. The
proof of presence of d8 in T is the tuple (hℓ, hr, seqd, seqh)
where:
• hℓ = h7 and hr = h9; and
• seqd = [d10, d6]

• seqh = [h(d12, h11, null), h(d4, h(d2, h1, h3), h5)]

Like in ChronTrees, verifying the proof of presence of
some data d in a LexTree T consists of reconstructing the
hash value of the root of T .

Example 8: Consider the Tc of Figure 6. Consider some
data d such that d7 ≤ d ≤ d8. The proof of absence of d in
Tc is the tuple (null, null, seqd, seqh) where:
• seqd = [d7, d8, d10, d6]

• seqh = [h9, h(d12, h11, null), h(d4, h(d2, h1, h3), h5)]
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