
Recursive Trees for Practical ORAM

Tarik Moataz1,∗ Erik-Oliver Blass2 Guevara Noubir2
1Dept. of Computer Science, Colorado State University, Fort Collins, CO

and IMT, Telecom Bretagne, France
tmoataz@cs.colostate.edu

2College of Computer and Information Science, Northeastern University, Boston, MA
{blass|noubir}@ccs.neu.edu

Abstract—We present a general construction to reduce the
communication cost of recent tree-based ORAMs. Contrary to
trees with constant height and path lengths, our new construction
r-ORAM provides varying, shorter path lengths. Accessing an
element in the ORAM tree will have different communication cost
depending on the location of the element. The main idea behind
r-ORAM is a recursive ORAM tree structure, where nodes in
the tree are roots of other trees. While this approach results
in a worst-case access cost (tree height) at most as any recent
tree-based ORAM, we demonstrate that the expected cost saving
is around 35% for binary tree ORAMs. For a k-ary tree-based
ORAM, we still can reduce cost with r-ORAM, e.g., 20% for k =
4. Besides reducing communication cost, r-ORAM also reduces
storage overhead on the server by 20%. To prove r-ORAM’s
soundness, we conduct a detailed overflow analysis. We stress that
r-ORAM is general and can be applied to all recent tree ORAMs,
both constant memory or poly-log client memory ORAMs.

I. INTRODUCTION

Outsourcing data to external storage providers has become
a major trend in today’s IT landscape. Instead of hosting
their own data center, clients such as businesses and gov-
ernmental organizations can rent storage from, e.g., cloud
storage providers like Amazon or Google. The advantage of
this approach for clients is to use the providers’ reliable and
scalable storage, while benefiting from flexible pricing and
significant cost savings.

The drawback of outsourced storage is its potential security
implication. For various reasons, a client cannot always fully
trust a cloud storage provider. For example, cloud providers are
frequent targets of hacking attacks and data theft [14, 15, 27].
While encryption of data at rest is a standard technique for data
protection, it is in many cases not sufficient. For example, an
“adversary” might learn and deduce delicate information just
by observing the clients’ access pattern to their data.

Oblivious RAM (ORAM) [10], a traditional technique to
hide a client’s access pattern, has recently received new at-
tention. Its worst-cast communication complexity, dominating
the monetary cost in a cloud scenario, has been reduced
from being linear in the total number of data elements N
to being poly-logarithmic in N [7, 8, 19, 20, 24–26]. One
idea is to store the N elements in a (k-ary) tree of N leaves.
With constant client memory complexity, some results achieve
O(log3N) communication complexity, e.g., Shi et al. [24] and
derivatives, while poly-logarithmic client memory allows for
O(log2N) communication complexity, e.g., Stefanov et al.

∗Work done while at Northeastern.

[26]. Although poly-logarithmic communication complexity
renders ORAMs affordable, further reducing (monetary) cost
is still important for the real-world. To access an element in a
tree-based ORAM, the client has to download the whole path
of nodes, from the root of the ORAM tree to a specific leaf.
Each node, also called a bucket, contains logN [24] or z [26]
data elements, where z is a (small) security parameter such
as 4. So, downloading the whole path of nodes is a costly
operation, involving the download of multiple data elements
for each single element to be accessed.

A second cost factor for a client is the total storage required
on the cloud provider to hold the ORAM construction. For an
N element tree based ORAM with data elements of length l
bits, the total storage a client has to pay for computes to, e.g.,
at least (2N − 1) · logN · l [24] or (2N − 1) · z · l [26]. In
addition, a “map” translating ORAM addresses to leaves in the
tree needs to be stored, too. Although the overhead compared
to the minimum storage requirements of N · l is small, further
cost reductions are important topic in practice.

Technical Highlights: In this paper, we present a novel
technique to reduce the average or expected path length,
therefore reducing the cost to access elements in an ORAM in
practice. The idea behind our technique called r-ORAM is to
store data elements in a recursive tree structure. Starting from
an outer tree, each node in a tree is a root of another tree.
After r trees, the recursion stops in a leaf tree that contains
the actual ORAM data elements. The maximum, worst-case
path length of r-ORAM is equal to c · logN , with c = 0.78
where this worst-case situation occurs only rarely. Instead in
practice, the expected path length for the majority of operations
is c · logN , with c = 0.65 for binary trees. The shortest paths
in binary trees have length 0.4 · logN . In addition to saving
on communication, the r-ORAM approach also saves storage,
due to fewer nodes in the recursive trees, by a factor of 0.8.

r-ORAM is general in that it can be used as a building
block to improve any recent tree-based ORAM, both with O(1)
client memory such as Shi et al. [24], O(logN) client memory
such as Stefanov et al. [26], and O(log2N) client memory
such as Gentry et al. [8] – and variations of these ORAMs. In
addition to binary tree ORAM, r-ORAM can also be applied
to k-ary trees.

II. RECURSIVE BINARY TREES

A straightforward approach: To motivate the rationale
behind r-ORAM, we start by describing a straightforward
attempt to reduce the path length and therewith communication



Outer Tree 1st Level Inner Tree 2nd Level Inner Tree Leaf Tree 

r-1 Recursions 

! 

Fig. 1. Structure of an r-ORAM

cost. Currently, data elements added to an ORAM are inserted
to a tree’s root and then percolate down towards a randomly
chosen leaf. As a consequence, whenever a client needs to read
an element, the whole path from the tree’s root to a specific
leaf needs to be downloaded. This results in path lengths of
logN .

Now, one straightforward idea to reduce path lengths would
be to percolate elements to any node in the tree, not only
leafs, but also interior nodes. To cope with added elements
destined to interior nodes, the size of nodes, i.e., the number
of elements that can be stored in such buckets, would need to
be increased. At first glance, this reduces the path length. For
example, the minimum path length now becomes 1. However,
the distribution of path lengths with this approach is biased to
its maximum length of logN : for a tree of N nodes, roughly
N
2 are at the leaf level. Thus, the average or expected path

length would be ≈ log(N)− 1, not given much of a saving.

We can already see that another approach is required, where
the distribution of path lengths can be “adjusted”.

r-ORAM Overview: We first give an overview about the
structure of our new recursive ORAM constructions. In r-
ORAM, parameter r represents the recursion factor. Infor-
mally, an r-ORAM comprises a single outer binary tree, where
each node (besides the root) is the root of an inner binary tree.
Recursively, a node in an inner tree is a root of another inner
tree, cf. Fig. 1. After the outer tree and r − 1 inner trees, the
recursion ends in a binary leaf tree. That is, each node (besides
the root) in an (r−1)th inner tree is the root of a leaf tree. The
fact that a root of a tree is never a (recursive) root of another
tree simply avoids infinite duplicate trees in our construction.

Let the outer tree have y leaves and height log y, where
y is a power of two and log the logarithm base two. Also,
inner trees have y leaves and height log y. Leaf trees have x
leaves, respectively, and height log x. As in related work on
tree-based ORAM [24], the number of elements N that will
be stored in an r-ORAM equals the total number of leaves in
all leaf trees.

A. r-ORAM Operations

First of all, r-ORAM is an ORAM tree height optimiza-
tion applicable to any kind of tree-based ORAM scheme. r-
ORAM follows the same semantics of previous tree-based
ORAMs [7, 8, 24, 26], i.e., it supports the operations Add ,
ReadAndRemove , and Evict. It follows the same strategy of
address mapping as the one defined in previous tree-based

ORAMs – we detail this in Section II-F. For now, assume
that every leaf in r-ORAM has a unique identifier called tag.
Every element a stored in an r-ORAM is uniquely defined by
its address d. We denote by P(t) the path (the sequence of
nodes) containing the set of buckets in r-ORAM starting from
the root of the outer tree to a leaf of a leaf tree identified by
its tag t. If P(t) and P(t′) represent two paths in r-ORAM,
the least common ancestor, LCA(t, t′), is uniquely defined
as the deepest (from the root of the outer tree) bucket in the
intersection P(t)

⋂
P(t′). In this paper, we use the terms node

and bucket interchangeably. Each bucket comprises a set of k
slots.

We follow ORAM operations introduced by Shi et al. [24]
that simulate the traditional Read and Write operations of
classical ORAMs [10]. To simulate Read(a) and Write(a, d),
the client performs a ReadAndRemove(a) followed by Add(a,
d). For the correctness of tree ORAM schemes, the client has
to invoke an Evict operation after every Add operation.

First, we detail Add and ReadAndRemove operations, and
we postpone the eviction operation to a subsequent paragraph
due to its complexity. We only overview the operations, for
details refer to Shi et al. [24].

• Add(a, d): To add data d at address a in r-ORAM, the
client first downloads and decrypts the bucket ORAM
of the root of the outer tree from the server. The client
then chooses a uniformly random tag t for a. The tag
t uniquely identifies a leaf in r-ORAM where d will
percolate to. The client writes d and t in an empty slot
of the bucket, IND-CPA encrypts the whole bucket,
and uploads the result to the root bucket. Finally, the
recursive map is updated, i.e., the address a is mapped
to t.

• ReadAndRemove(a): To read an element at address
a, the client fetches its tag t from the recursive map
which identify a unique leaf in r-ORAM. The client
then downloads and decrypts the path P(t). This
algorithm outputs d, the data associated to a, or ⊥
if the element is not found.

We apply r-ORAM to two different ORAM categories.
The first one is a “memoryless setting”, where the client has
constant size (in N ) memory available. The second one, “with
memory”, assumes that the client has poly-logarithmic in N
local memory available that he may use during operations.
For each category, we use different eviction techniques that
we present in the following two paragraphs.

a) Constant Client Memory: The eviction operation is
directly performed after an Add operation. The algorithm
Evict is similar to the one by Shi et al. [24]:

Evict(χ, t): Let S = {P , such that |P| = |
−→
Rt|} be the set

of all paths from the root R of the outer tree to any leaf of
a leaf tree that have the same length than the path from R to
the leaf tagged with t. We call the distance from a node on a
path in S its level L.

For each level L, 1 ≤ L ≤ |
−→
Rt|, the client chooses from

all nodes (from paths in S) that are on the same level L,
respectively, random subsets of χ ∈ N nodes. For every chosen



node, the client randomly selects a single block and evicts it
to one of its children.

b) Poly-Logarithmic Client Memory: For the case of
poly-logarithmic client memory, the eviction operation follows
that of Gentry et al. [8] and Stefanov et al. [26]:

Evict(t): Let P(t) denote the path from the root of the
outer tree R to the leaf with tag t. Every element of a node in
P(t) is defined by its data and unique tag t′. As eviction, the
client pushes every element from nodes in P(t) that is tagged
with leaf t′ to the bucket LCA(t, t′).

The eviction operation is performed at the same time as an
Add operation. Instead of storing the element read or written
in the root bucket during the Add operation, the client applies
Evict, so he stores and at the same times evicts all elements
as far as possible “down” on the path. Note that eviction can
also be deterministic [8], or randomized [26].

B. Security definition

As any ORAM construction, r-ORAM should meet the
typical obliviousness requirement that we briefly repeat for
completeness sake.

Definition II.1. Let −→a = {(op1, d1, a1), (op2, d2, a2), . . . ,
(opM , dM , aM )} be a sequence of M accesses (opi, di, ai),
where opi denotes a ReadAndRemove or an Add operation,
ai the address of the block and di the data to be written if
opi = Add and di = ⊥ if opi = ReadAndRemove.

Let A(−→a ) be the access pattern induced by sequence −→a .
We say that r-ORAM is secure iff, for any PPT adversary D
and any two same-length sequences −→a and

−→
b , access patterns

A(−→a ) and A(
−→
b ),

|Pr[D(A(−→a )) = 1]− Pr[D(A(
−→
b )) = 1]| ≤ ε(s),

where s is a security parameter, and ε(s) a negligible function
in s.

On a side note, we also assume that, as standard in ORAM,
all blocks are IND-CPA encrypted. Every time a block is
accessed by any type of operation, its bucket is re-encrypted.

C. Storage Cost

For a total number of N elements, we have N correspond-
ing leaves in r-ORAM. To compute the total number of nodes
ν, we start by counting the number of leaf trees in r-ORAM.
For the outer tree, we have 2y − 2 possible nodes which are
the root for another recursive inner tree. Each inner tree has
also 2y− 2 nodes and since we have r− 1 levels of recursion
aside from the outer tree, the following equality holds:

N = (2y − 2) · (2y − 2)r−1 · x
= (2y − 2)r · x (1)
= 2r · x · (y − 1)r. (2)

Each of the nodes in an r-ORAM is a bucket ORAM of size
k, where k is a security parameter, e.g., k > logN [24]. Note
that for x = 2 and y = 2, the r-ORAM structure is exactly a

full binary tree with a height equal to r+ 1. The total number
of nodes ν in an r-ORAM is the sum of all nodes of all leaf
trees plus the nodes of all inner trees, the outer tree, and its
root, i.e.,

ν = (2y − 2)r · (2x− 2) +

r∑
i=0

(2y − 2)i

(1)
= (2N − 2 · N

x
) +

1− (2y − 2)r+1

1− (2y − 2)

= 2N + (
2y − 2

2y − 3
− 2) · N

x
− 1

2y − 3
.

Thus, the total storage cost for r-ORAM is ν · k · l with
data elements of size l bits. For appropriate choices of x and
y that will be discussed in the next section, r-ORAM saves
storage costs compared to the (2N −1) ·k · l bits of storage of
related work. In particular, x ≥ 2, y ≥ 2 and 2y−2

2y−3 − 2 < 0.
So for example, with x = 2 and y = 4, the storage is equal
to 8N

5 resulting in a storage reduction by 20% compared to
existing tree-based ORAMs.

As of Eq. (2), for a given number of elements N , r-ORAM
depends on three parameters: recursion factor r, the number
of leaves of an inner/outer tree y, and the number of leaves
of a leaf tree x. We will now describe how these parameters
must be chosen to achieve maximum communication savings.

D. Communication Cost

In ORAM, the “communication cost” is the number of
bits transferred between client and server. We now determine
the communication cost of reading an element in r-ORAM,
e.g., during a ReadAndRemove operation. Reading an element
implies reading the entire path of nodes, each comprising of
k entries, and each entry of size l bits. Note that in related
work, any element requires the client to read a fixed number
of logN · l · k bits. For the sake of clarity in the text below,
we only compute the number of nodes read by the client, i.e.,
without multiplying by the number of entries k and the size
of each entry l.

A path going over a node on the ith level in the outer
tree requires reading one bucket ORAM more than a path
going over a node on the (i + 1)th level in the outer tree.
Consequently with r-ORAM, we need to analyze its best-case
communication cost (shortest path), worst-case cost (longest
path), and average-case cost (average length).

The worst-case cost to read an element in r-ORAM occurs
when the path comprises nodes of the full height of every
inner tree until before its leaf level, before finally reading the
corresponding leaf tree. The worst-case cost C equals

C(r, x, y) = r · log y + log x. (3)

The best-case occurs when the path comprises only one
element of every inner tree before reading the leaf tree. The
best-case cost B equals:

B = r + log x. (4)



The worst-case cost in this setting is in function of three
parameters that must be carefully chosen to minimize worst-
and best-case cost. The following Theorem II.1 summarizes
how recursion factor r, the number of leaves y in inner trees,
and the number of leaves in leaf trees x have to be chosen.

Minimizing the worst-case path length is crucially impor-
tant, as it also determines the average path-length. We will
see later that the distribution of paths’ lengths (and therewith
the cost) follows a normal distribution. That is, minimizing the
worst case also leads to a minimal expected case and therewith
the best configuration for r-ORAM. Similarly, as the paths’
lengths follow a normal distribution, average and median cost
are equivalent.

So, a client can use the minimal worst-case parameters to
achieve the “cheapest configuration” for a r-ORAM structure
storing a given number of elements N .

Theorem II.1. If r = log((N2 )
1

2.7 ), x = 2, and y = 1
2 ·(

N
2 )

1
r +

1, C is minimal and equals

C = 1 + 2.08 · log((
N

2
)

1
2.7 ) ≈ 0.78 · logN.

The best-case cost B equals

B = 1 + log((
N

2
)

1
2.7 ) ≈ 0.4 · logN.

Proof: Function C depends on three variables that we can
reduce to two by plugging Eq. (2) into Eq. (3). From Eq. (2),
we have:

log x = log(N)− r − r · log(y − 1).

The worst-case cost then equals

C(r, y) = log(N)− r + r · log(
y

y − 1
). (5)

By fixing r > 0, the worst-case cost is a non-increasing
function in y, since y 7→ log( y

y−1 ) is a non-increasing function
for y > 1. Thus, for any non-negative r, the minimum value
of the worst cost is smaller for larger values of y.

Also, with x ≥ 2, the number of the leaves of inner trees
y is upper bounded:

N ≥ 2 · (2y − 2)r

⇒ y ≤ 1

2
· N

2

1
r

+ 1

For small x, we therewith get a larger upper bound for y.
By fixing x to its minimum 2, the optimum number of leaves
for the inner trees is y = 1

2 · (
N
2 )

1
r + 1. Putting these values

back in Eq. (5), results in C depending on only one variable
r, the recursion factor:

C(r) = 1 + r · log(
1

2
.(
N

2
)

1
r + 1) (6)

Finally, we derive the minimum of the worst-case cost by
computing the first derivative of the convex function C(r). The
derivative is

dC
dr

(r) = log(
1

2
· (N

2
)

1
r + 1)−

ln(N2 ) · (N2 )
1
r

2r · ( 1
2 · (

N
2 )

1
r + 1)

.

We achieve dC
dr (r) ≈ 0 for r′ ≈ log((N2 )

1
2.7 ). Since C(r) is

convex, the value of r′ is the minimum for any r ≤ log(N)−1.
We replace r′ in equations (4) and (6), and this concludes our
proof.

E. Average-Case Cost

While the parameters for a minimal worst-case cost also
lead to a minimal average-case cost, we still have to compute
the average-case cost. The cost of reading an element ranges
from B, the best-case cost, to C, the worst-case cost. Note that
due to the recursive structure of the r-ORAM, the average-case
cost is not uniformly distributed.

In order to determine the average-case cost, we count, for
each path length i, the number of leaves that be reached. That
is, we compute the distribution of leaves in an r-ORAM with
respect to their path length starting from the root of the outer
tree. Let non-negative integer i ∈ (B,B+1, . . . , C) be the path
length and therewith communication cost. We compute N (i),
the number of leaves in a leaf tree that can be reached by a
path of length i. Thus, the average cost, Av can be written as

Av =

C∑
i=B

i · N (i)

N
,

where N is the total number of elements and therefore leaves
in the r-ORAM.

Theorem II.2. Let log y be the hight of inner trees and log x
the height of leaf trees. The average cost is

Av =

C∑
i=B

i · N (i)

N
,

where

N (i) = 2i ·
r∑
j=0

(−1)j
(
r

j

)(
i− log(x)− j · log(y)− 1

r − 1

)

Proof: Note that counting the number of leaves for a path
of length i is equivalent to counting the number of different
paths of length i. The intuition behind our proof below is that
the number of different paths of length i can be computed
by the number of different paths in the r recursive trees R(i)
times the number of different paths in the leaf tree. So, N (i) =
R(i) · L(i).

As a binary leaf tree has height log x, L(i) = 2log x = x.

To compute R(i), we introduce an array Ar of r elements.
For a path P of length i, element Ar[j], 1 ≤ j ≤ r, stores the
number of nodes in the jth inner tree that have to be read, i.e.,
the maximum level in the jth tree that P covers. For a path P



of length i, we have i =
∑r
j=1Ar[j] + log(x). Note that for

all j, 1 ≤ Ar[j] ≤ log (y). For any path P of length i, we
can generate 2i−log(x) other possible paths covering exactly
the same number of nodes in every recursive inner tree, but
taking different routes on each of them. For illustration, let
path P go through two levels in the second inner tree – this
means that there are actually 22 other paths that go through the
same number of nodes. Therefore, if we denote the possible
number of original paths of length i by I(i), the total number
of paths equals

R(i) = 2i−log(x) · I(i),

for any integer i ∈ {B, . . . , C}.

We can compute I(i), by computing the number of solu-
tions of the equation

Ar[1] +Ar[2] + · · ·+Ar[r] = i− log x

⇔
(Ar[1]− 1) + (Ar[2]− 1) + · · ·+ (Ar[r]− 1)

= i− r − log x. (7)

Computing the number of solutions of Eq. (7) is equivalent
to counting the number of solutions of packing i − r − log x
(indistinguishable) balls in r (distinguishable) bins, where each
bin has a finite capacity equal to log(y)− 1. Here, Ar[j]− 1
denotes the size of the bin. This leads to

I(i) =

r∑
j=0

(−1)j
(
r

j

)(
i− log(x)− j · log(y)− 1

r − 1

)
.

With N (i) = 2i · I(i), we conclude our proof.

The average as formalized in the previous theorem does
not give any intuition about the behavior of the average cost.
For illustration, we plot the exact combinatorial behavior of
the distribution of the leaf nodes. We present two cases that
show the behavior of the leaf density, i.e., the probability to
access a leaf in a given level in r-ORAM. We compute as well
the average cost of accessing r-ORAM in two different cases,
for N = 232 and N = 242, see Fig. 2.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 10  15  20  25  30  35

A
c
c
e

s
s
 P

ro
b

a
b

ili
ty

Path Length

N=2
32

Average

N=2
42

Average

Fig. 2. r-ORAM path length distribution, N = 232 and N = 242 elements

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 12  14  16  18  20  22  24  26

In
s
e

rt
io

n
 W

a
y
s

Level

Normal Approximation

Exact distribution

Fig. 3. Normal approximation

Our average-case equation can be simplified: the number of
possibilities I of indistinguishable balls packing in distinguish-
able bins can be approximated by a normal distribution [3, 4],
such that for a given level i ∈ {B, · · · , C} we have:

I(i) ≈ A

s
√

2π
· e−

(i−r−log(x)− c
2
)2

2s2 , (8)

where c = r · (log(y) − 1), s =
c
2+1

z , A = r · log(y), and z
being the solution of the equation

ze−
z2

2 =

√
2π · ( c2 + 1)

A
.

Figure 3 depicts the accuracy of a normal approximation,
by comparing I(i) and the normal approximation for N = 232.

As both best- and worst-case path lengths are in O(logN),
the average-case length is in Θ(log(N)). Further simplification
of the average cost will result in very loose bounds. Targeting
practical settings, we calculate average page lengths for various
configurations and compare it to related work in Table I.

F. r-ORAM Map addressing

In order to access a leaf in the r-ORAM structure, we
have to create an encoding which uniquely maps to every leaf.
This will enable us to retrieve the path from the root to the
corresponding leaf node. The encoding is similar to the existing
ones [8, 24, 26]. The main difference is the introduction of the
new recursion that we have to take into account. Every node
in the outer or inner trees can have either two children in the
same inner tree or/and two other children as a consequence of
the recursion. Consequently, we need two bits to encode every
possible choice for each node from the root of the outer tree
to a leaf. For the non-recursive leaf trees, one bit is sufficient
to encode each choice.

We define a vector v composed of two parts, a variable-
size part vv and a constant-size part vc, such that v = (vv, vc).
For the encoding, we will associate to every node in the outer
and inner trees two bits. For every node in the leaf tree only



r Recursions

00 01

00 01

01

10 11

11

0 1

Outer tree 1st level inner tree 2nd level inner tree Leaf tree

11

10 11

01

0 1

01

Fig. 4. r-ORAM Map addressing

one bit. Above, we have shown that the shortest path to a leaf
node has length r + log(x) while the longest path has length
r · log(y) + log(x). Consequently, for the variable-size vector
vv , we need to reserve at least 2 · r bits and up to 2 · r · log(y)
bits for the worst case.

The total size of the mapping vector v, |v| = |vv| + |vc|,
is bound by

2r + log(x) ≤ |v| ≤ 2r · log(y) + log(x),

which is in Θ(log(N)). Figure 4 shows an address mapping
example for two leaf nodes.Finally the mapping is stored in a
position map structure following the recursive construction in
[26]. To access the position map, the communication cost has,
as in r-ORAM, a best-case equal to O(B · log2(n) ·k) bits and
a worst case equal to O(C · log2(n) · k) bits, where k is the
number of entries.

III. K-ARY TREES

So far, we have used a binary tree for the recursion in
r-ORAM. In this section, we apply r-ORAM applied to k-
ary trees, cf. Gentry et al. [8]. Generally, usage of k-ary trees
reduces the height by a multiplicative factor equal to 1

ln(k) .
We will now show that applying r-ORAM to a k-ary tree
will further decrease the communication complexity compared
to the original k-ary construction. For example, if we choose
branching factor k = logN , communication complexity de-
creases by a multiplicative factor equal to log logN .

For parameters x and y as above, the number of elements
N can be computed by calculating the number of nodes in the
outer/inner k-ary tree for r recursions:

N = (

logk y∑
i=0

ki − 1)r · x

= (
1− k1+logk y

1− k
− 1)r · x

= (
k

k − 1
· (y − 1))r · x (9)

The following theorem underlines how one should choose
the recursion factor r, the height of the inner trees log x and
leaf trees log x to minimize cost.

Theorem III.1. If r = logk((Nk )
1

f(k) ), x = 2, and y = k−1
k ·

(Nk )
1
r +1, the optimum values for the best and worst-case cost

equal

C = 1 + logk((
N

k
)

1
f(k) ) · logk((k − 1) · kf(k)−1 + 1),

and
B = 1 +

1

f(k)
· logk(

N

k
),

where f(k) > 1 is a decreasing function in k.

The decreasing function f depends on the choice of k, the
branching factor. For k = 4, f(4) ≈ 2, while for k = 16,
f(16) ≈ 1.6. The proof of the Theorem III.1 is similar to
the proof of Theorem II.1, so we will only sketch this proof,
highlighting differences.

Proof (Sketch): The first step in the proof is to rep-
resent the number of leaves x as a function of N , y, r,
and k the branching factor. That is, we decrease the number
of variables in our optimization problem by one, such that
logk(x) = logk(k−1k N) − r · logk(y − 1) – which is just the
result of applying the logarithm over Eq. (9). Since our first
goal is the minimization of the worst-case cost, we substitute
logk(x) in the worst-case cost Eq. (3) by the value computed
in the above equation and we try to minimize the new function
of the worst-case cost, which has one variable less. Note that
the logarithm is base k instead of 2 in the worst-case cost
formula.

For simplicity, we consider the branching factor as a (given)
constant, as it has an impact on the overflow probability. So, we
assume a fixed branching factor matching a given bucket size.
Finally, we follow the same steps as the proof of Theorem II.1
to find the optimal recursive factor r, the number of leaf tree
leaves x, and the number of inner/outer tree leaves y.

Example: For k = 4, the optimum values for the best and
worst-case cost are C = 0.95 logN and B = 0.55 · logN.

IV. PERFORMANCE ANALYSIS

Even if the worst-case complexity is in O(log(N)), the
constants gained with r-ORAM are significant. Table I com-
pares between the height of a binary tree, as the one used in
recent tree-based ORAMs [7, 20, 24, 26] and the new height of
the r-ORAM structure. Also, we compare r-ORAM on k-ary
trees, instead of binary ones, and we show that the recursive
k-ary tree r-ORAM provides better performances in terms of
height access communication cost.

Table I has been generated using parameters from theo-
rems II.1 and III.1. Note that this table compares only the
complexity of accessing an element in the tree (i.e., going
from the root to the leaf), it does not take the communication
overhead of accessing the position map into account. Also,
Table I computes only the number and not the size of nodes
accessed. The overall communication complexities will vary
from one scheme to the other, and we detail costs below. In
Table II, we show the gain in percentage of r-ORAM applied



Number of elements
210 220 240 260

Binary ORAM tree [7, 20, 24, 26] 10 20 40 60

binary r-ORAM tree
Best case 5 8 16 23

Average case 6 14 26 40
Worst case 8 16 31 47

4-ary ORAM tree [7, 8, 26] 5 10 20 30

4-ary r-ORAM tree Best case 3 6 11 16
Average case 5 8 16 24
Worst case 5 10 19 28

TABLE I. TREE’S HEIGHT COMPARISON BETWEEN THE BINARY/4-ARY
ORAM TREE AND BINARY/4-ARY r-ORAM

Gain in %
Best-case Average-case Worst-case

Binary Tree based ORAM [7, 20, 24, 26] 60 35 22.5
4-ary Tree based ORAM [7, 8, 26] 45 20 5

TABLE II. TREE BASED ORAM GAIN PERCENTAGE

to binary ORAM trees, not distinguishing whether the scheme
has constant or poly-log memory complexity..

As you can see, we gain on average 35% when r-ORAM
is applied to any binary tree ORAM and 20% when applied
to 4-ary ORAM trees. Compared to binary trees, the gain for
k-ary trees is less due to the reduction of the height of the
tree. Trees are already “flat”, so the recursion effect loses its
impact.

We also present a monetary comparison of communication
and storage overhead between tree based ORAM constructions
(with constant and poly-log client memory). For this, we have
taken blocks with size equal to 1 KBytes, and the number
of entries (blocks) in every node is equal to log(N) where
N is the number of elements stored in the ORAM. For this
evaluation, we take communication and storage overhead of
the position map into account as well as the overhead induced
by eviction.

First, Fig. 5 depicts the communication cost per access,
i.e., the number of bits transmitted between the client and the
server for any read or write operation. The graph shows that
r-ORAM applied to Path ORAM (z = 4) gives the smallest
communication overhead. For example, with a dataset of 1 TB,
an access will cost 178 KBytes in total. Moreover, if we set
the number of entries z to 2 instead of 4 [7], communication
cost will be divided by 2.

The storage overhead induced by tree based ORAMs is still
significant. Poly-log client memory ORAMs perform better,
but still induce a factor of 10. r-ORAM reduces this overhead
down to a factor of 8, i.e., a reduction by 20%. Based on
Amazon prices [1], storing 1 TB of data cost around 225 USD
per month.

Finally, we calculate the cost in USD associated to every
access, shown in Fig. 6. Since we obtain the best communica-
tion overhead using r-ORAM over Path ORAM, one would
expect this to be the cheapest construction, too. However,
Amazon S3 prices rules are based not only on the communica-
tion in term of transferred bits, but also on the number of HTTP
operations performed, e.g., GETs and PUTs. Surprisingly, the
construction by Gentry et al. [8] with a k-ary and branching
factor k = log(N), is cheaper as it involves fewer operations
compared to Path ORAM.

 0.1

 1

 10

 100

 0.001  0.01  0.1  1  10  100  1000

C
o

m
m

u
n

ic
a

ti
o

n
 (

M
B

)

Dataset (TB)

Shi et al.

Shi-r-ORAM

Path-ORAM

Path-r-ORAM

Gentry et al.

Gentry-r-ORAM

Fig. 5. Comparison of communication in MB per access

 0.001

 0.01

 0.1

 1

 10

 0.001  0.01  0.1  1  10  100  1000

C
o
s
t 
(U

S
D

)

Dataset (TB)

Shi et al.

Shi-r-ORAM

Gentry et al.

Gentry-r-ORAM

Path-ORAM

Path-r-ORAM

Fig. 6. Comparison of communication cost in USD per access

V. SECURITY ANALYSIS

A. Privacy analysis

Theorem V.1. r-ORAM is a secure ORAM following Defini-
tion II.1, if every node (bucket) in r-ORAM is a secure ORAM.

Proof (Sketch): If the ORAM buckets are secure ORAMs,
we only need to show that two access patterns induced by
two same-length sequences −→a and

−→
b are indistinguishable.

To prove this, we borrow the idea from Stefanov et al. [26]
and show that the sequence of tags t in an access pattern is
a indistinguishable from a sequence of random strings of the
same length.

To store a set of N elements, r-ORAM will comprise
N leaves and N different paths. During Add and ReadAn-
dRemove ORAM operations, tags are chosen uniformly and
independently from each other. Since the access pattern A(−→a )
induced by sequence −→a consists of the sequence of tags
(leaves) “touched” during each access, an adversary observes
only a sequence of strings of size logN , chosen uniformly
from random.



The nodes in r-ORAM are bucket ORAMs, i.e., for an
ORAM operations they are downloaded as a whole, IND-CPA
re-encrypted, and uploaded exactly as in related work, they are
secure ORAMs, too.

B. Overflow probability

We now determine the ORAM overflow probability for two
cases, r-ORAM applied in a constant client memory and with
poly-log client memory.

For the first case, we consider an eviction similar to the one
used by Shi et al. [24]. That is, for every level, we will evict
χ buckets towards the leaves, where χ is called the eviction
rate. For the second case, we consider a deterministic reverse-
lexicographic eviction as the one used by Gentry et al. [8].
The main difference between the computation of the overflow
probability in r-ORAM and related work is the irregularity of
path lengths of our recursive trees. To better understand the
differences, we start by presenting a different model of our
construction in 2-dimensions.

c) Description: A 2-dimensional representation of r-
ORAM consists of putting all the recursive inner trees as well
as the leaf trees in the same dimension as the outer tree.
Consequently, the outer tree, the recursive inner trees, as well
as the leaf trees will together constitute only one single tree we
call the general tree. The main difficulty of this representation
is to determine to which level a given recursive inner tree is
mapped to in the general tree.

The general tree, by definition, will have leaves in different
levels. This can be understood as a direct consequence of the
recursion, i.e., some leaves will be accessed with shorter paths
compared to others. Moreover, the nodes of the recursive trees
will be considered as interior nodes of the general tree with
either 4 children or 2 children. Any interior node of an inner or
outer tree is a root for a recursive inner tree which means that
any given interior node of an inner/outer tree has 2 children
related to the recursion as well as another 2 children related to
its inner/outer tree. These 4 children belong to the same level
in our general tree.

Also, leaf nodes of inner or outer trees have only 2 children.
At the end, we will have different distributions of interior
nodes as well as leave nodes throughout the general tree. In
the following, we will use the term of interior node as well as
a leaf node in the proofs of our theorems to denote an interior
or leaf node of the general tree. Refer to Fig. 7 for a high-level
overview of this general tree model of r-ORAM.

In the ith level, we may have leaf nodes as well as interior
nodes. Also note that the leaf/interior nodes reside in different
levels with different non-uniform probabilities. Therefore, we
will first approximate the distribution of the nodes in a given
level of the r-ORAM structure by finding a relation between
the leaf nodes and interior nodes of any level of r-ORAM.
Then, we compute the relation between the number of nodes
in the ith and (i + 1)th level. This last step will help us to
compute the expected value of number of nodes in any interior
nodes in poly-log client memory scenarios. Finally we will
conclude with the overflow theorems and their proofs for each
scenario.

leaf node

1st recursion node

2nd recursion node

Fig. 7. Structure of an r-ORAM

We present a relation between I(i), the interior nodes, and
N (i), the leaf nodes, for a level i > r, where r is the recursion
factor. Note that, for other levels i ≤ r, there cannot be leaf
nodes. Also, note that the leaves of the genral tree are the
leaves of the leaf trees.

Lemma V.1. For any i > r, the following inequalities hold.

e−f(r,x,y) ≤ I(i)

N (i)
≤ 2− log(x) · r, (10)

where f(r, x, y) = 1+r log(y)−r−2 log(x)
2s2 and s > 0.

Proof: First, we determine the number of interior nodes
for i > r. In the same spirit as the proof of Theorem II.2, we
denote by Aj an array of j ∈ [r] positions that has all positions
initialized to zero. Aj represents the number of possible paths
to a given level. The difference between counting the number
of leaves and the number of interior nodes consists of the
fact that an interior node may exist in any level without going
through all recursions, i.e., it may happen that we reach a level
without going through the last level of recursions. This means
that elements of the array are equal to zero.

Counting of interior nodes boils down to divide Eq. (7)
of Theorem II.2 in r sub-equations, where each will count the
number of ways to reach a specific level while all the positions
of the array are still equal to 1. Therefore, the set of solutions
of the following sub-equations has an empty set intersection.

A1[1]− 1 = i− 1− log(x),

(A2[1]− 1) + (A2[2]− 1) = i− 2− log(x),

· · ·
(Ar[1]− 1) + · · ·+ (Ar[r]− 1) = i− r − log(x),

where, for each j ∈ [r], we have 1 ≤ Aj [i] ≤ log(y).

Discussion: To have an intuition about these partitions, con-
sider an example where r = 4 and y = 16. We have 4 sub-
equations, where each represents the possible ways to reach an
interior node in, e.g., the 4th level. The first array has only one
position that can take values from 1 to 4. The first sub-equation
will count the number of ways to get to an interior node at level
4 under the constraint that we have to stay in one recursion.
In this case, the array can have only one value which is 4. For
the second equation, we can have different combinations such
that (2, 2) or (3, 1) etc. but we do not have (4, 0) because it
is already accounted for in the first sub-equation. We continue
like this for the other sub-equations.

So, I(i) = S1 + · · · + Sr, the total number of solutions
of the sub-equations. Also, we have Sr ≥ Sj for any j ∈



[r − 1], that is, I(i) ≤ r · Sr. From Theorem II.2, we know
that the number of solutions for the last equation Sr equals
2i−log x · I(i). Therefore, with the result of Theorem II.2, we
can conclude that:

I(i) ≤ 2i−log(x) · r · I(i).

Also from Th. II.2, the number of leaves N (i) = 2i · I(i).
This leads to our first inequality

I(i)

N (i)
≤ 2− log(x) · r.

For our second inequality, notice that for any interior node
of any level i > r, I(i) ≥ N (i+1)

2 . This follows from the
property that the ancestors of leaves in the (i + 1)th level
are interior nodes in the upper level. Using equality N (i) =
2i · I(i),

I(i)

N (i)
≥ N (i+ 1)

2N (i)

=
I(i+ 1)

I(i)

We have previously shown that I can be approximated by
normal distribution, cf. Eq. (8). Using this approximation, we
continue

I(i)

N (i)
≥ e−

1+2i−2r−2 log(x)−c
2s2 .

Finally, since c = r(log(y)− 1), we have for s > 0:

I(i)

N (i)
≥ e−

1+r log(y)−r−2 log(x)

2s2

This concludes our proof.

Now, we will show that once we have found a relation
between leaves and interior nodes of the same level, finding
the relation between any nodes of two different levels will be
straightforward. We write the number of nodes as a sum of
leaf nodes and interior nodes, such that L(i) = N (i) + I(i).
Recall that for i ≤ r, we have N (i) = 0. We write µ = L(i+1)

L(i)
(this will represent the expected value in Theorem V.3). We
present our result in the following lemma.

Lemma V.2. For 1 ≤ i ≤ C, µ is bounded by

2 ·X(i) ≤ µ ≤ 4 ·X(i), (11)

where X(i) = 1− N (i)
L(i) .

Proof: This results follows from two observations. First,
the total number of interior nodes for the ith level is always
larger than the total number of nodes in the (i + 1)th level
divided by 4. The second observation is that the total number
of interior nodes for the ith level is always smaller than the
total number of nodes in (i+1)th divided by 2. Consequently,

L(i+ 1)

4
≤ I(i) ≤ L(i+ 1)

2
.

The second inequality follows from r-ORAM’s structure
where every interior node v has at least 2 children and at most
4 children. The recursion as previously represented in a 2-
dimensional plane where an interior node in the outer or inner
tree has 4 children, and every leaf node has exactly 2 children.
So, every level has at least twice the number of interior nodes
of the previous level.

We bound µ by algebraic transformations:

L(i+ 1)

4
+N (i) ≤ L(i) ≤ L(i+ 1)

2
+N (i)

µ

4
+
N (i)

L(i)
≤ 1 ≤ µ

2
+
N (i)

L(i)

Finally,

2 · (1− N (i)

L(i)
) ≤ µ ≤ 4 · (1− N (i)

L(i)
).

From this result, for i ≤ r, we have 2 ≤ µ ≤ 4, as N (i) =
0.

Now, we are ready to present our two main theorems:
the first one will tackle the constant client memory setting,
and we compute the overflow probability of interior nodes.
The overflow probability computation for leaf nodes, either
for constant client memory or with poly-log client memory,
is similar to the one presented by Shi et al. [24], based on a
standard balls into bins game. We omit details for this specific
case.

Theorem V.2. For eviction rate χ, if the number of data
elements in an interior node is equal to k, the overflow
probability of an interior node in the ith level is at most θki ,
where, for i ≤ r

θi =
2s

2χ
,

and for i > r

θi =
2s

2χ
· ( 1

1 + x
r

)i−r,

with s = dlog4(χ)e

Proof:

The buckets of r-ORAM can be considered as queues [16].
Every bucket at the ith level has its service rate ηi and its
arrival rate λi. The probability that the bucket contains k
elements is given by: p(k) = (1 − ρi) · ρni , where ρi = λi

ηi
.

This a result of M/M/1 queues [17]. The probability that
the bucket will have strictly less than k elements equals∑k−1
i=0 p(i) = 1 − ρki . The probability to overflow (to have



more than k elements) equals ρki . In the following, it suffices
to compute ρi for every level in our r-ORAM structure.

Consider eviction rates that are powers of 2. Then, for i ≤
dlog4(χ)e, we have ηi = 1 and λi ≤ 1

2i (because for level 1
and deeper, buckets may have up to 4 children).

For i > dlog4(χ)e, the chance that a given bucket will be
evicted is equal to

ηi =
χ

I(i)
,

where I(i) is the number of interior nodes in the ith level.

λi = I(i)
L(i+1) · Pr(parent gets selected) ·

Pr(parent is not empty), such that Pr(parent gets selected) =
ηi−1 and Pr(parent is not empty) = 1− pi−1(0) = ρi−1. The
ratio I(i)

L(i+1) denotes the probability for a real element to be
evicted, in the case of a binary tree the ratio is equal to 1

2 .
Then, we have:

λi =
I(i)

L(i+ 1)
· λi−1.

By induction, the arrival rate equals λi = 1
L(i+1 ·

I(i)·I(i−1)···I(s+1)
L(i)·L(i−1)···L(s+1) · I(s) · λs, where s = dlog4(χ)e. With
λs ≤ 1

2s and I(s) ≤ 4s (because we can have at most 4
children for every interior node), this equation can be upper-
bounded such that:

λi ≤
2s

L(i+ 1)
· 1

1 + N (i)
I(i)

· · · 1

1 + N (s+1)
I(s+1)

. (12)

We to simplify the above inequality. First, notice that for
every s < i ≤ r

1

1 + N (i)
I(i)

= 1, (13)

because N (i) = 0 (there is no leaf node for i ≤ r). For
i > r, using the result of Lemma V.1.

1

1 + N (i)
I(i)

≤ 1

1 + x
r

, (14)

where x is the number of leaves. For buckets at level i > r,
we plug the result of equations 13 and 14 in 12 and we divide
by the service rate ηi such that:

ρi ≤
I(i)

L(i+ 1)
· ( 1

1 + x
r

)i−r · 2s

χ
,

From Lemma V.2, we have shown that I(i)
L(i+1) <

1
2 , because

there are at least twice more nodes than interior nodes in the
upper level (they may be leaves or interior nodes). Then:

ρi ≤ (
1

1 + x
r

)i−r · 2s

2χ
,

In this case ρi is upper-bounded by θi = ( 1
1+ x

r
)i−r · 2s

2χ ,

and the overflow probability is then equal to θki .

For i ≤ r, there are no leaves (i.e. N (i) = 0), and the
arrival rate is always bounded from Eq. 12 such that

λi ≤
2s

L(i+ 1)
.

Consequently, dividing by ηi and using the result of
Lemma V.2 I(i)

L(i+1) <
1
2 we get:

ρi ≤
2s

2χ
.

Considering θi = 2s

2χ for i ≤ r concludes our proof.

Note that in practice the eviction rate is equal to 2 and s
is then equal to 1.

Let us now take the case where r-ORAM is applied over
tree ORAMs with client memory.

Theorem V.3. For any interior node v, the probability that the
node has size at least equal to (1 + δ) · µ is at most e−

δ2·µ
1+δ ,

where

F1 ≤ µ ≤ F2,

For i ≤ r:

F1 = 2 and F2 = 4,

for i > r:

F1 = 4·(1− 1

1 + 2− log(x) · r
) and F2 = 2·(1− 1

1 + e−f(x,y,r)
),

where f(r, x, y) = 1+r log(y)−r−2 log(x)
c and c > 0

Proof:

Let us fix an interior node v in r-ORAM belonging to the
ith level. We are interested in the behavior of the node’s load
after a number of operations including eviction and adding
operations. Let L(i) denote the number of nodes residing in
the ith level of the r-ORAM tree (these include the interior and
the leaf nodes). Since the eviction is reverse-lexicographic and
deterministic, we are sure that any element inserted before the
time interval T = [t−L(i+1)+1, · · · , t] has been evicted from
the ith level. Therefore, if we denote the number of elements
residing in the node v, St(v), we are sure that St(v) = 0
just a step before the interval T . Consequently, it remains to
determine the load of the interior node v for all the steps of
the interval T , i.e. the load of the node v in the (possible)
presence of at most L(i+1) elements in the ith level or above.
Let us associate for every element j in T , an indicator random
variable χj which is equal to 1 if the element was assigned
path going through the interior node v. All elements in T are
i.i.d. and their assignment probability, Pr(χj = 1) = 1

L(i) . We



have also St(v) ≤
∑
j∈[I(i+1)] χj , which follows from the fact

that all elements inserted in the interval T may at most all of
them be assigned paths that go through v. In order to compute
Chernoff bound, we calculate the expected value of the sum
of the indicator random variables:

E(
∑

j∈[L(i+1)]

χj) = µ =
L(i+ 1)

L(i)

The exact value cannot be determined without computing
the number of nodes existing in the ith level. What we can
do is computing a tight bound of the expected value and then
apply the Chernoff bound. Note that this expected value will
be different from one level to the other.

Lemma V.2 gives a bound on the expected value. This
bound involves a relation between the leaf node and the interior
nodes of the given level that we have computed in Lemma V.1.
For i ≤ r, from Lemma V.2, we know that 2 ≤ µ ≤ 4. For
i > r, plug the first lemma in the second:

2 · (1− 1

1 + e−f(x,y,r)
)︸ ︷︷ ︸

F1

≤ µ ≤ 4 · (1− 1

1 + 2− log(x) · r
)︸ ︷︷ ︸

F2

Now, wrapping up with the Chernoff bound, for any δ > 0
and for both cases:

Pr(St(v) ≥ (1 + δ) · µ) ≤ Pr(
∑

j∈[L(i+1)]

χj ≥ (1 + δ) · µ)

≤ e−
δ2·µ
2+δ .

This concludes our proof.

d) Discussion: To get an idea about the values of F1

and F2, we calculate them for N = 232: F1 = 2
5 and

F2 = 3.42. The theorem above represents a general bound
to understand the overflow probability behavior. Since the
expected value µ varies depending on the level, buckets sizes
vary on every level. Consequently, fixing the expected value
for every level results in much better bounds. For example, if
for the level i, µ = 1, then the the probability of overflow with
a bucket size equal to 64 = 1 + δ is at most 2−88, while for
µ = 4, the probability of overflow with the same bucket size
is equal to 2−82.

VI. RELATED WORK

ORAM, first presented by Goldreich and Ostrovsky [10]
has recently received a lot of attention [2, 5–13, 19, 20, 22–
24, 26, 28, 29]. The current state of the art on ORAM can
be divided into two mains categories. The first one comprises
schemes where a client is only required to feature constant
memory on his side. The second category assumes the client
having sub-linear local memory.

A. Constant client memory

Constant client-side memory schemes are very useful for
scenarios with very limited memory devices such as embedded
devices. Recent works have been able to enhance amortized
and worst-case communication complexity [11, 12, 19, 20, 22–
24]. Goodrich and Mitzenmacher [11] and Pinkas and Reinman
[23] introduce schemes with a poly-logarithmic amortized cost
in O(log2(N)). However, the worst-case cost remains linear.
Goodrich et al. [12] present a better worst-case communication
overhead, O(

√
N · log2(N)).

All schemes prior to the one by Shi et al. [24] differentiate
between worst-case and amortized-case overhead. The worst-
case scenario in these ORAM constructions occurs when a
reshuffling is performed. Shi et al. [24] present a tree-based
ORAM, where the node of the tree are small bucket ORAMs,
see also [10, 21]. Accessing an element in this structure
consists of accessing a path of the tree. After each access,
a partial reshuffling confined to only the path accessed in the
tree is performed. The worst-case and amortized case overhead
achieved with such construction are both equal and poly-
logarithmic, i.e., O(log3(N)).

Gentry et al. [8] enhance previous work by modifying
the structure of the tree. Instead of a binary tree, a multi-
dimensional tree with a branching factor k is used. If the num-
ber of data elements stored in every node and the branching
factor are equal to O(log(N)), the worst-case communication
overhead is in log3(N)

log(log(N)) . Gentry et al. [8] also introduce
a reverse lexicographic eviction that is used in recent poly-
logarithmic client memory schemes. However, the scheme by
Gentry et al. [8] suffers from not being fully applicable in a
memoryless setting. This is due to its eviction algorithm, where
the client has to memorize elements in order to percolate them
towards leaves.

Mayberry et al. [20] improve complexity of the tree-based
ORAM by Shi et al. [24]. Instead of using traditional ORAM
bucket nodes in the tree, a PIR [18] is used to retrieve a data
element from a specific node. Mayberry et al. [20] show that
therewith the worst-case communication complexity equals
O(log2(N)). Note that this complexity can be enhanced by
using a k-ary tree instead of a binary tree.

Kushilevitz et al. [19] present a hierarchical solution that
enhances the asymptotic communication complexity defined in
previous works with a worst case equal to O( log2(N)

log(log(N)) ). In
practice, the scheme suffers from hidden constants that render
it practically less efficient compared to, e.g., [20, 24].

B. Sub-linear client memory

Recent research with O(
√
N) client-side memory [28, 29]

has sub-linear amortized communication complexity, but linear
worst-case complexity. Boneh et al. [2] improve the worst
case to be in O(

√
N), however still with O(

√
N) client-side

memory. Stefanov et al. [25] present how to reduce amortized
cost to be poly-logarithmic in O(log2(N)), but again with a
large O(

√
N) client memory.

Stefanov et al. [26] present a Path ORAM, a seminal
tree-based ORAM construction, based on Shi et al. [24], but
including a client-side memory stash of size O(log(N)). This



results in O(log2(N)) communication complexity. Fletcher
et al. [7] present some enhancements upon Path ORAM. They
enhance communication costs by 6 ∼ 7%. Also, authors reduce
“latency” by decreasing the number of encryptions performed
on the client side.

Our work r-ORAM can be considered as a general tech-
nique that is applicable to and improves any tree-based ORAM
construction – either in settings with constant client memory
or sub-linear client memory.

VII. CONCLUSION

r-ORAM is a technique for ORAM cost reduction in
practice. r-ORAM improves both communication cost as well
as storage cost. For any binary tree based ORAM, the average
cost is reduced by 35%, and storage cost is reduced by 20%.
We have formally shown that r-ORAM preserves the same
overflow probability as related work. r-ORAM is general and
can be applied to any existing as well as future derivations
of tree based ORAMs. In future work, we investigate the
dynamics of r-ORAM, i.e., instead of considering constant
height for outer and inner trees, we aim at varying the height,
which promises even further cost reductions.

REFERENCES

[1] Amazon. Amazon s3 pricing. http://aws.amazon.com/s3/
pricing/, 2014. [Online; accessed 31-July-2014].

[2] Dan Boneh, David Mazières, and Raluca Ada Popa. Re-
mote oblivious storage: Making oblivious RAM practical.
http://dspace.mit.edu/bitstream/handle/1721.1/62006/MIT-
CSAIL-TR-2011-018.pdf, March 1996.

[3] Kevin Brown. Balls in bins with limited capacity. http:
//www.mathpages.com/home/kmath337.htm, 2014. [On-
line; accessed 30-July-2014].

[4] G. Casella and R.L. Berger. Statistical inference.
Duxbury advanced series in statistics and decision sci-
ences. Thomson Learning, 2002. ISBN 9780534243128.

[5] Kai-Min Chung and Rafael Pass. A Simple ORAM. IACR
Cryptology ePrint Archive, 2013:243, 2013.

[6] Ivan Damgård, Sigurd Meldgaard, and Jesper Buus
Nielsen. Perfectly Secure Oblivious RAM without Ran-
dom Oracles. In Proceedings of Theory of Cryptography
Conference –TCC, pages 144–163, Providence, RI, USA,
March 2011.

[7] Christopher W. Fletcher, Ling Ren, Albert Kwon, Marten
van Dijk, Emil Stefanov, and Srinivas Devadas. RAW
Path ORAM: A Low-Latency, Low-Area Hardware
ORAM Controller with Integrity Verification. IACR
Cryptology ePrint Archive, 2014:431, 2014.

[8] Craig Gentry, Kenny A. Goldman, Shai Halevi, Cha-
ranjit S. Jutla, Mariana Raykova, and Daniel Wichs.
Optimizing ORAM and Using It Efficiently for Secure
Computation. In Proceedings of Privacy Enhancing
Technologies, pages 1–18, 2013.

[9] Oded Goldreich. Towards a Theory of Software Protec-
tion and Simulation by Oblivious RAMs. In Proceedings
of the 19th Annual ACM Symposium on Theory of Com-
puting –STOC, pages 182–194, New York, NY, USA,
1987.

[10] Oded Goldreich and Rafail Ostrovsky. Software protec-
tion and simulation on oblivious rams. J. ACM, 43(3):
431–473, 1996.

[11] Michael T. Goodrich and Michael Mitzenmacher.
Privacy-preserving access of outsourced data via obliv-
ious ram simulation. In Proceedings of Automata,
Languages and Programming –ICALP, pages 576–587,
Zurick, Switzerland, 2011.

[12] Michael T. Goodrich, Michael Mitzenmacher, Olga Ohri-
menko, and Roberto Tamassia. Oblivious ram simulation
with efficient worst-case access overhead. In Proceedings
of the 3rd ACM Cloud Computing Security Workshop –
CCSW, pages 95–100, Chicago, IL, USA, 2011.

[13] Michael T. Goodrich, Michael Mitzenmacher, Olga Ohri-
menko, and Roberto Tamassia. Privacy-preserving group
data access via stateless oblivious RAM simulation. In
Proceedings of the Symposium on Discrete Algorithms
–SODA, pages 157–167, Kyoto, Japan, 2012.

[14] Google. A new approach to China,
2010. http://googleblog.blogspot.com/2010/01/
new-approach-to-china.html.

[15] D. Gross. 50 million compromised in Evernote
hack, 2013. http://www.cnn.com/2013/03/04/tech/web/
evernote-hacked/.

[16] J Hsu and P Burke. Behavior of tandem buffers with
geometric input and markovian output. Communications,
IEEE Transactions on, 24(3):358–361, 1976.

[17] Leonard Kleinrock. Theory, Volume 1, Queueing Systems.
Wiley-Interscience, 1975. ISBN 0471491101.

[18] Eyal Kushilevitz and Rafail Ostrovsky. Replication is
not needed: Single database, computationally-private in-
formation retrieval. In Proceedings of Foundations of
Computer Science –FOCS, pages 364–373, Miami Beach,
FL, USA, 1997.

[19] Eyal Kushilevitz, Steve Lu, and Rafail Ostrovsky. On
the (in)security of hash-based oblivious ram and a new
balancing scheme. In Proceedings of the Symposium
on Discrete Algorithms –SODA, pages 143–156, Kyoto,
Japan, 2012.

[20] Travis Mayberry, Erik-Oliver Blass, and Agnes Hui Chan.
Path-pir: Lower worst-case bounds by combining oram
and pir. In Proceedings of the Network and Distributed
System Security Symposium, San Diego, CA, USA, 2014.

[21] Rafail Ostrovsky. Efficient computation on oblivious
rams. In Proceedings of the Symposium on Theory
of Computing –STOC, pages 514–523, Baltimore, MD,
USA, 1990.

[22] Rafail Ostrovsky and Victor Shoup. Private information
storage (extended abstract). In Proceedings of the Sym-
posium on Theory of Computing –STOC, pages 294–303,
El Paso, Texas, USA, 1997.

[23] Benny Pinkas and Tzachy Reinman. Oblivious ram
revisited. In Advances in Cryptology – CRYPTO, pages
502–519, Santa Barbara, CA, USA, 2010.

[24] E. Shi, T.-H.H. Chan, E. Stefanov, and M. Li. Oblivious
RAM with O(log3(N)) Worst-Case Cost. In Proceedings
of Advances in Cryptology – ASIACRYPT , pages 197–
214, Seoul, South Korea, 2011. ISBN 978-3-642-25384-
3.

[25] Emil Stefanov, Elaine Shi, and Dawn Xiaodong Song.
Towards practical oblivious ram. In Proceedings of the
Network and Distributed System Security Symposium,



San Diego, CA, USA, 2012. The Internet Society.
[26] Emil Stefanov, Marten van Dijk, Elaine Shi, Christo-

pher W. Fletcher, Ling Ren, Xiangyao Yu, and Srinivas
Devadas. Path ORAM: an extremely simple oblivious
RAM protocol. In ACM Conference on Computer and
Communications Security, pages 299–310, 2013.

[27] Techcrunch. Google Confirms That It Fired
Engineer For Breaking Internal Privacy Policies,
2010. http://techcrunch.com/2010/09/14/
google-engineer-spying-fired/.

[28] Peter Williams and Radu Sion. Usable pir. In Proceedings
of the Network and Distributed System Security Sympo-
sium, San Diego, CA, USA, 2008.

[29] Peter Williams, Radu Sion, and Bogdan Carbunar. Build-
ing castles out of mud: practical access pattern privacy
and correctness on untrusted storage. In ACM Conference
on Computer and Communications Security, pages 139–
148, Alexandra, Virginia, USA, 2008.


