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Abstract. Web search is increasingly becoming an essential activity as it is frequently
the most effective and convenient way of finding information. However, it can be a threat
for the privacy of users because their queries may reveal their sensitive information.
Private web search (PWS) solutions allow users to find information in the Internet while
preserving their privacy. In particular, cryptography-based PWS (CB-PWS) systems pro-
vide strong privacy guarantees.
This paper introduces a constant-round CB-PWS protocol which remains computation-
ally efficient, compared to known CB-PWS systems. Our construction is comparable to
similar solutions regarding users’ privacy.

1 Introduction

Private web search (PWS) is the problem of preventing web search service providers (e.g.,
Google and Yahoo) from building user profiles while still making users enjoy the search
functionality during web search. User profiling is usually defined as the process of implicitly
learning a user profile from search-engine queries submitted by the user. Then, performing
user profiling, web search service providers use a user profile to classify a given user into
predefined user segments (e.g., by demographics or tastes) or to capture the online behavior
of the user including the users private interests and preferences. This raises privacy concerns
because sensitive information such as a user’s name and location can be inferred from search-
engine queries. Aside from the query terms, other information such as the source IP address
and timestamp may reveal sensitive things about the user.

Different approaches (e.g., [10, 21, 8, 14, 20, 13]) have been proposed to tackle this prob-
lem. In these systems, the main measure of efficiency is the round complexity, and it is im-
portant to construct constant-round PWS systems while guaranteeing privacy. In some cases,
PWS schemes without strong privacy guarantees may suffice, and we know how to construct
such protocols, e.g., using a proxy. However, in this work, we focus on cryptography-based
PWS (CB-PWS) systems, where strong privacy is another important design goal.

To our knowledge, known CB-PWS constructions require O(n) rounds where n is the
number of users [5, 14, 20], or significantly restrict the length of messages to be encrypted and
hence do not lead to practical solutions to the problem [13]. In addition, the latter requires web
search engines to implement and run the protocols. Search engines however do not have any
incentives to implement costly protocols they cannot profit from. Unfortunately, there are no
known constructions of constant-round CB-PWS while being realistic in practice.

We briefly survey what’s known in this regard for private web search. We then summarize
our contributions and provide a high-level overview of our construction.

Proxy-based PWS. The first approach is the use of an anonymous proxy (e.g., [1, 2, 21]).
Users can expect that anonymizers prohibit the creation of user profiles through query un-
linkability. There are several options from simple mechanisms achieving just a low level of
anonymity in web searches to more reliable, but complicate systems based on onion rout-
ing [19] such as the Tor network [7]. However, the effectiveness of simple solutions is clearly
limited. Also, as pointed out by [5] Tor cannot be installed and configured with relative ease.
Further, it is well known that the HTTP requests over Tor get significantly slow [21]. For ex-
ample, it takes 10 seconds on average to submit a query to Google even in a setting of using
paths of length 2 (the default length is 3).



Obfuscation-based PWS. Another approach to provide privacy during web search is based
on a query obfuscation technique (e.g., [10, 8, 18, 3]). Roughly speaking, a class of solutions
using query obfuscation is to blend the real queries into a stream of fake queries so that
web search engines cannot create a correct profile. From the privacy point of view, these
obfuscation-based solutions have a critical drawback: automated queries have different fea-
tures from the actual queries entered by a user, such as randomness. The authors in [17]
demonstrated a concrete classifier that can distinguish real queries from fake queries generated
by TrackMeNot [3], only with a mean of misclassification around 0.02%.

Cryptography-based PWS. The last class of solutions is to use cryptographic algorithms
such as public-key encryption and shuffle. One of the main advantages of CB-PWS over other
approaches is that they provide strong privacy guarantees. Besides, they are not affected by
the misclassification issue, and are generally faster than anonymizer-based solutions. To our
knowledge, known solutions are [5, 14, 20, 13].

Their basic idea is that joining a small-sized group, each user encrypts his search query and
sends it to other members; then according to a predefined order, one user hands over a shuffled
list of encrypted queries to its neighbor and finally the last user broadcasts its shuffled version.
After group decryption, each user gets a set of queries but he can not know who submitted
which query. As a result, web search engines cannot build user profiles.

1.1 Our Contributions

Our main contribution is the first practical protocol that only has O(n) modular exponentia-
tions and a constant number of rounds in the user side, where n is the number of users (i.e., a
group size). According to our analysis of existing CB-PWS schemes (i.e., [5, 14, 20]), existing
solutions require O(n) computation complexity and O(n) rounds in the same conditions.

A user has words or sentences for a query, and then is about to submit it to a specific search
engine. Using our protocol, the user first disperses his query term into n pieces using Shamir’s
secret sharing scheme. This can be very efficiently done in a finite field (see Section 4.1). Then
encrypting each share into n ciphertexts under a public-key cryptosystem, which requires at
most O(n) modular exponentiations, the user sends to the encrypted shares to corresponding
users. Finally all users send to a group manager a list of re-masked and shuffled ciphertexts.
(In CB-PWS solutions, a small group of users is created and maintained by a specific entity
called a group manager. We will explain the entity later.)

Our key technical contribution is the introduction of distributing a query term instead
of distributed private-key generation, among n users. Roughly speaking, known CB-PWS
schemes demand each user to compute only a singe ciphertext of the query term, but a col-
lection of all n ciphertexts should be shuffled in a relay manner among all users. This step
is essential to provide unlinkability between query terms and users, but leads to O(n) round
complexity. Our scheme does not require users to participate in the sequential shuffles.

1.2 Our Setting

We are working in a setting consisting of three semi-honest entities as follows:

– Users. They are the individuals who submit query terms to the search engine, and wish to
protect the search engine to build their profiles. We use u to denote a user.

– The group manager. The role of the group manager, denoted by G, is to group users
so that they execute our protocol that was introduced as above. We assume that the group
manager has fairly powerful computing resources and storage capacity compared to users.

– The search engine. The web search service provider, denoted by W , is the entity that
provides a list of best-matching web pages, usually along with a short summary and/or
sometimes parts of the document. A typical example is Google. Note that the search en-
gine has no incentives to protect users’ privacy.
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We consider that an adversary is not allowed to break current computationally secure
encryption schemes. We assume that there are at least two honest users. However, different
from [5], we allow collusions between two entities of the protocol.

1.3 A High-level Overview of Our Solution

In what follows we provide a high level description of our construction and the techniques
used therein. To obtain our construction we build on the notion of secret sharing. The basic
idea of Shamir’s (t, n)-secret sharing is that a user can use a polynomial f(X) of degree t− 1
to split a secret q into n shares, (v1, . . . , vn). Then, any collection of shares ≥ t from the
distributed n shares allows to recover the secret using the Lagrange interpolation formula.

The starting point of the design of our solution is Shamir’s secret sharing scheme: To
submit a query term q, one chooses a random polynomial f(X) of degree n−1 whose constant
term is q, and evaluates vi = f(ui) at each user’s label ui. Then he computes encryptions
v̄i = Epk(vi) for all 1 ≤ i ≤ n. Here Epk(·) is a public-key encryption algorithm and vi is
assumed to be in the message space of the encryption algorithm. Next, he sends each encrypted
share to a corresponding user.

After all users obtain a list of encrypted shares, they perform re-masking and permuting the
list and send it to a group manager. At first glance, our scheme may seem to have no differences
from existing CB-PWS schemes. However, we emphasize that in the above step of our scheme,
shuffling ciphertexts does not demand any interaction between neighbors. Completing the
first step in existing solutions, every user holds the same list of ciphertexts. Hence, every
user should join in the sequential shuffles to achieve unlinkability. We consider this as a very
legitimate reason to incur a high round complexity O(n). In contrast, our solution makes
all users to have different lists of ciphertexts so that users do not need to perform shuffles
sequentially.

Decrypting all received lists of ciphertexts, the group manager uses Lagrange interpolation
to recover users’ query terms. It then submits the recovered queries to the search engine and
broadcasts the search results to the group users.

Outline of the paper: This work is organized as follows. Section 2 introduces cryptographic
building blocks: secret sharing and public-key encryption. Section 3 provides a detailed de-
sciption of our construction. In Section 4, we continue to provide its performance and security
analysis.

2 Background

In this section, we review the concepts and notation of cryptographic building blocks. We
begin with a review of secret sharing techniques, and continue to recalling public-key cryp-
tography and its security definitions.

Notation. For n ∈ N, [n] denotes the set {1, . . . , n}. If A is a probabilistic polynomial-time
(PPT) machine, we use a← A to denote makingA produce an output according to its internal

randomness. In particular, if U is a set, then r $←− U is used to denote sampling from the
uniform distribution on U .

We denote by λ a security parameter. A function g : N → R is called negligible if for
every positive polynomial µ(·) there is an integer N such that g(n) < 1/µ(n) for all n > N .

2.1 Secret Sharing

A secret sharing scheme is a method of distributing a secret, usually a key, among a group of
users, requiring a cooperative effort to determine the key, so the plaintext can subsequently be
decrypted. The ultimate goal of the scheme is to divide the secret being hidden into n shares,
but any subset of t shares can be used together to solve for the value of the secret. Additionally,
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any subset of t− 1 shares will prevent the secret from being reconstructed. This is defined as
a (t, n)-threshold scheme, meaning that the secret is dispersed into n overall pieces, with any
t pieces being able to recreate the original secret.

The original secret sharing scheme was proposed by Adi Shamir in 1979 [22], while
George Blakley also designed a similar scheme on his own around the same time [4]. In this
work, we use Shamir’s secret sharing scheme instead of Blakley’s scheme because the former
is relatively efficient compared to the latter. Shamir’s scheme is based on polynomial interpo-
lation, and takes t points on the Cartesian plane, and with those t points, a unique polynomial
f(X) is guaranteed to exist such that f(X) = y for each of the points given. Regardless, this
polynomial f(X) is of degree t − 1, and the coefficient for the 0th degree is equal to a given
secret q. Overall, the full equation for f(X) is given as such, with q = a0:

f(X) = a0 + a1X + · · ·+ at−1X
t−1.

For a concrete instantiation of Shamir’s scheme, however we need to to determine an
appropriate field M for the subsequent modular arithmetic. Because of this, an appropriate
prime value p is needed, so that the needed arithmetic can be performed in M = Zp, for
instance. Following that, n unique elements are chosen, either systematically, or randomly,
within the field. These values are labelled u1 through un, and are made public. Assign one of
these values to each of the participants that are to be given a share. The next step is to then
choose t − 1 random values in the field. These values are secret to all participants, and are
labelled r1 through rt−1. Once these values are all determined, give each participant a share
vi based on their corresponding ui value as such:

vi = q +

t−1∑
j=1

rj(ui)
j (mod p).

Reconstructing the secret can be done through the Lagrange interpolation that proves the so-
lution to the equation is unique.

We use K to denote a list of public values chosen for a specific Shamir’s secret sharing
instantiation, i.e., K = (t, n,MK ;u1, u2, . . . , un).

2.2 Public-key Encryption

A public-key encryption scheme E = (KG,E,D) consists of the following algorithms:

– KG is a randomized algorithm that takes a security parameter λ as input, and outputs a
secret key sk and a public key pk; pk defines a plaintext space Mpk and a ciphertext
space Cpk.

– E is a randomized algorithm that takes pk and a plaintext m ∈Mpk as input, and outputs
a ciphertext c ∈ Cpk. Especially, this process is usually randomized, using randomization
value r ∈ Rpk

c = Epk(m; r)

– D takes sk and c ∈ Cpk as input, and outputs the plaintext m.

Homomorphic public-key encryption schemes exhibit a particularly interesting algebraic
property: when two ciphertexts are combined in a specific, the resulting ciphertext encodes
the combination of the underlying plaintexts under a specific group operation, usually multi-
plication or addition. More formally, we say that a public-key cryptosystem E = (KG,E,D)
is homomorphic for binary relations (⊕,⊗) if for all (pk, sk)← KG(1λ),

– Given message domainMpk, (Mpk,⊕) forms a group.

– Given ciphertext range Cpk, (Cpk,⊗) forms a group.

– For all c1, c2 ∈ Cpk, Dsk(c1 ⊗ c2) = Dsk(c1)⊕ Dsk(c2).
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As a consequence, a cryptosystem’s homomorphic property allows it to perform reencryp-
tion: given a ciphertext c, anyone can create a different ciphertext c̃ that encodes the same
plaintext as c. Thus, given a homomorphic encryption scheme E , we can define the reencryp-
tion algorithm as follows:

REpk(c; r) = c⊗ Epk(m0; r)

where m0 is an identity message such that ∀m ∈ Mpk,m⊕m0 = m. Further, Dsk(c) = m,
then Dsk(REpk(c)) = m, too.

Security Notions for Encryption Schemes. Given such a cryptosystem, one can consider
different security definitions. Because the malleability of ciphertexts in homomorphic cryp-
tosystems limits the security of such schemes, we only discuss security of homomorphic cryp-
tosystems.

Semantic security was first defined in 1982 by Goldwasser and Micali [11]. Intuitively, a
cryptosystem is said to be semantically secure if, given a ciphertext c, an adversary cannot
determine any property of the underlying plaintext m. In other words, an adversary cannot
extract any semantic information of plaintext m from an encryption of m. Formally, a public-
key cryptosystem E = (KG,E,D) is said to be semantically secure if there exists a negligible
function µ(·) such that, for all polynomial time algorithms A = (A1,A2):

Pr


(pk, sk)

$←− KG(1λ);
(m0,m1, state)← A1(pk);
cb ← Epk(mb);
b′ ← A2(m0,m1, cb, state)

∣∣∣∣∣∣∣∣ b = b′

 < 1

2
+ µ(λ).

Instantiations. We know of a number of efficient schemes that are semantically secure. El
Gamal [9] is the prime example of a semantically secure encryption scheme and Paillier [16]
is another good example with semantic security.

2.3 Compatibility of Secret-sharing and Public-key Encryption

From now on, we will simply assume that we have some secret sharing scheme with key K
and a cryptosystem with key pk. The keys may or may not overlap so that elements from one
key are also included in another key. For instance, we could imagine the cryptosystem were
an ElGamal scheme working on a group G of order q from primes p, q|p − 1 and a generator
g and the secret sharing scheme used the same message space as the encryption scheme, i.e.,
MK =Mpk.

We require that the keys be selected so that the message space to be embedded into the
group G allows field operations. In such a case, we are able to carry out polynomial arithmetic
in the message space. Sometimes we then say that two schemes are compatible.

Readers refer to [15, 12] for further details of these cryptographic primitives.

3 Our Construction for PWS

We now proceed to describe our new technique for private web search. Our scheme enjoys
computational efficiency similar to existing CB-PWS schemes but not require rounds in pro-
portional to the number of users.

3.1 The Proposed Scheme

Our scheme is logically divided into the following phases:

– Setup. The main goal of the Setup phase is to create a group of users who would like to
make searches to the search engine. Additionally, all system parameters for secret sharing
and encryption will be published to all users in the group.
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– Mixing query. Completing the Mixing Query phase, all users hold a re-encrypted and
permuted version of distributed query terms.

– Submitting query. The group manager recovers a set of queries, but it cannot know who
submitted which query. It then submits to the search engine. On receiving a set of query
results from the search engine, it broadcasts the result.

Let n be a size of group. For convenience, we simply assume that the group manager
knows the n and all users know where the group manager is and how to contact the group
manager. Further, all messages are assumed to be automatically encoded into the working
group of a public-key cryptosystem. Thus we do not use an extra notation for denoting that a
plaintext was embedded into an element in the working group.

Setup. Let E = (KG,E,D) be a semantically secure public-key cryptosystem with homomor-
phic property, and let K be a public key specifying a list of parameters for Shamir’s secret
sharing scheme. It also specifies how to efficiently perform polynomial evaluation and inter-
polation (see Section 2.1). The Setup phase is again divided into the following activities:

1. When the group manager G receives n requests for private query, it creates a group
{u1, u2, . . . , un}.

2. The group manager chooses a pair of keys (pk, sk) by invoking (pk, sk)
$←− KG(1λ) and

publishes all system parameters (pk,K) for the protocol. As mentioned before,MK =
Mpk.

Mixing Query. After obtaining system parameters fromG as a response for its query request,
each user ui∈[n] does the followings:

1. On receiving the parameters, ui chooses n− 1 random coefficients ri,j ∈MK and deter-
mines

Ri(X) = ri,n−1X
n−1 + · · ·+ ri,1X + qi

where qi ∈MK is ui’s query term.

2. Each user computes shares vi,j of his query qi for every j ∈ [n] by

Ri(j) =

n−1∑
k=1

ri,kj
k + qi.

We define vi,j := Ri(j) for all i, j ∈ [n].

3. For each j ∈ [n], ui computes v̄i,j = Epk(vi,j), and sends v̄i,j to uj 6=i.

4. After building a list of encrypted shares, V̄i = (v̄1,i, . . . , v̄n,i), each user generates a new
version of the list, Ṽi = (ṽ1,i, . . . , ṽn,i) where ṽ`,i = REpk

(
v̄πi(j),i

)
for all `, j ∈ [n] and

for a random permutation πi over [n].

5. Each user sends Ṽi to the group manager.

Submitting Query. The group manager performs the following steps:

1. The group manager constructs the following n× n matrix M by decrypting all of cipher-
texts in the n vectors:

M =


Ṽ1
Ṽ2
...
Ṽn

 =


vπ1(1),1 vπ1(2),1 · · · vπ1(n),1

vπ2(1),2 vπ2(2),2 · · · vπ2(n),2

...
...

...
...

vπn(1),n vπn(2),n · · · vπn(n),n
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2. Since G has no order information for each row, it sequentially recovers each query term
by applying the Lagrange interpolation formula to each element in M. During recovering,
the group manager just ignores all meaningless query terms.

3. The group manager submits a set of query terms to the search engine W . The group
manager broadcasts the output from W .

4 Analysis

This section analyzes the performance of our construction regarding the efficiency require-
ments. Next, we analyze the security of our protocol by examining all behaviors of the proto-
col.

4.1 Performance Analysis

Our protocol is compared to other CB-PWS solutions with respect to three efficiency measures–
computation, communication and round. For this purpose, we first analyze the performance of
our proposal. Then schemes proposed by [5] and [14] are compared to our proposal respec-
tively. Since the scheme by [20] is identical to [5] except for replacing shuffle by permutation
network, we decided to omit the scheme by [20]. Furthermore, we cannot give a fair compari-
son between the scheme proposed by [13] and our scheme because our scheme allows n times
longer than the maximum length of query terms allowed in [13].

Parameter selection. Before giving the comparisons, we fist need to determine the system
parameters: the group size (n) and the key size.

We believe that the time users must wait in order to form the group determines the group
size n. Fast creating the group makes it possible to reduce the query delay. At the same time,
the bigger size of the group, the more privacy the protocol achieves. Therefore, one way that
the members can obtain strong privacy is that a user joins a different small-sized group every
time the user submits a query. According to [5], n = 3 is the most realistic group size, in
practice. The authors in [5] stated that with overwhelming probability a group of n = 3 users
can be created in a hundredth of a second.

Regarding the key length, we take a 1024-bit key length like other solutions. Thus, a key
of 1024-bit length can encrypt up to 128 bytes at a time and so a public-key cryptosystem that
uses a 1024-bit key length can deal with queries approximately 64 characters.

Computation complexity. Now we analyze the computation cost for running the protocol.
In general, since it is widely accepted that modular exponentiations dominates the total com-
putation cost of a system, we also focus on the number of modular exponentiations that every
user must perform during executing each protocol. For a fair comparison we assume that our
construction also employes an ElGamal encryption scheme.

For this purpose, we denote by ME(`) a modular exponentiation modulo an `-bit integer
value. The scheme in [14] extensively uses a double encryption by combining ElGamal en-
cryption and Cramer & Shoup’s cryptosystem [6]. Thus, some modular exponentiations in [14]
should be carried out modulus a 2048-bit integer rather than a 1024-bit integer like [5] and our
scheme. Our experimental implementation without any optimization shows that a 1024-bit
modular exponentiation is approximately 10 times faster than a 2048-bit modular exponentia-
tion. More specifically, a 1024-bit modular exponentiation takes 18 msec on average, while a
2048-bit modular exponentiation takes 191 msec on average.

We give the comparison of schemes in Figure 1, regarding the computation complexity.
We remark that evaluation of a polynomial in a finite field of degree less than n at n points can
be performed using at most O(M(n) log n) field operations where M(n) is the number of bit
operations to multiply two n-bit integers. Similarly, Lagrange interpolation can be computed
with the asymptotically same computation.

We see that our scheme obtains the lowest computation cost. Of course, our scheme and [5]
do not provide any mechanism to protect the honest users against the malicious adversary.
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However, even if we use zero-knowledge proofs to achieve active security, our scheme still
has O(n) computation complexity such as [14].

Our Scheme

3n ·ME(1024) (3n+ 3) ·ME(1024)

(n+ 3) ·ME(1024) + 11n ·ME(2048)

The Scheme [5]

The Scheme [14]

Fig. 1. Computation Complexity

Communication & Round complexity. First of all, it is clear that our protocol incurs just
a constant number of rounds. Next, we compare the communication complexity by counting
the number of messages that every user should send in each step of the protocols. Table 1
summarizes the comparison results.

Our proposal consists of five rounds: (1) obtaining the system parameters, (2) applying
Shamir’s secret sharing and encryption to the query term and sending the resulting list, (3)
mixing the resulting set and sending it to the group manager, (4) recovering a set of query
terms and submitting to the search engine, and finally (5) broadcasting the search results to the
users. We see that all schemes have O(n) communication complexity. However, our scheme
only requires 5 rounds, while other proposals have O(n) round complexity.

Table 1. Communication & Round Complexity

Communication
Complexity

Round
Complexity

The Scheme [5] 3n− 2 n+ 6

The Scheme [14] 4n− 2 n+ 6

Our Scheme 4n 5

Remark 1 There is an interesting difference between our scheme and other two schemes. Our
scheme demands the group manager to perform heavy computations, while the group manager
in other schemes only plays a role of maintaining a group of users. However, in practice, since
n is small (e.g., n = 3 or 4), we think that these computations may affect the performance but
not considerable.

4.2 Security Analysis

Our construction achieves the following privacy requirements of the users when they submit
query terms to a search engine:

– Unlinkability among users. The users must not be able to link a certain query to a specific
user who has entered the query.

– Unlinkability between the group manager and the users. The group manager must not be
able to link a certain query with the user who have entered it.

– Unlinkability between the search engine and the users. The web search engine must not
be able to build a plausible profile of a specific user.

Unlinkability among users. Let J ⊂ [n] be a set of semi-honest users such that |J | = η < n.
For notional convenience, suppose that û ∈ J is of index α ∈ [n], but it follows all steps of the
protocol. At the end of the Mixing Query step, û receives a list of encrypted shares from other
users, (v̄1,α, v̄2,α, . . . , v̄n,α). If û would be able to decrypt these ciphertexts, it would be able
to fill in some parts of the matrix M. Nevertheless, as long as M is not completed, it cannot
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know the queries of honest users. For example, let u1, u2 be only the honest users. Denoting
by � a decrypted share, û would be able to obtain at most the following matrix:

? � � · · · �
� ? � · · · �
� � � · · · �

...
� � � · · · �


Hence, û is unable to obtain q1 and q2, and thus our solution preserves users’ privacy.

Unlinkability between the group manager and the users. Our protocol allows that two
entities (i.e., between û and G) collude. At the mid of the Submitting Query phase, a compro-
mised group manager and semi-honest users have the valid matrix, but they still do not know
the secret permutations of honest users. Therefore, even though the group manager would be
compromised, the attacker has that a random guess regarding a “link” is correct with proba-
bility that is only negligibly greater than 1

n−η .

Unlinkability between the search engine and the users. Our protocol allows the search
engine to participate in the execution of the protocol, only at the end of the last phase. For
similar reasons above, it cannot link a certain query to an honest user, and so it cannot build
profiles for honest users.

5 Concluding Remarks and Further Research

Web searches have been shown to be often sensitive. Any information leaked from search his-
tories could endanger user privacy. Search histories may contain health-related data and pos-
sibly other personal information, including, but not restricted to: political or religious views,
sexual orientation, etc. For example, Google provides signed-in users with personalized search
results based on the history of their searches and navigation. Furthermore, users typing search
queries in the Web interface are prompted with suggestions resulting from their history. To
this end, Google tracks all Web searches performed by a signed-in user, as well as the target
web pages clicked from the search result page.

In this work, we presented a constant-round CB-PWS protocol for protecting users’ pri-
vacy. Our solution can be easily deployed to the current systems because it does not require
any changes in the service provider side. However, still there are some remaining work for
further research as follows:

– We will try to provide a more rigorous security proof using the standard techniques like
simulation or game-playing proof. For this purpose, we first need to define the notion of
privacy in this setting.

– We should improve the performance of the group manager side, especially in the case that
the size of group is huge.
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