
On the Possibilities and Limitations of

Computational Fuzzy Extractors

Kenji Yasunaga∗ Kosuke Yuzawa†

December 22, 2016

Abstract

We present positive and negative results of fuzzy extractors with computational security. As
a negative result, we show that, under a certain computational condition, the existence of a
computational fuzzy extractor implies the existence of an information-theoretic fuzzy extractor
with slightly weaker parameters. The condition is that the generation procedure of the fuzzy
extractor is efficiently invertible by an injective function. Our result implies that to circumvent
the limitations of information-theoretic fuzzy extractors, we need to employ computational fuzzy
extractors without efficient invertibility with injective functions. As positive results, we present
constructions of computational fuzzy extractors based on a leakage-resilient key encapsulation
mechanism and a strong decisional Diffie-Hellman assumption.

Keywords: fuzzy extractor, error-correcting code, key encapsulation mechanism, leakage-
resilient cryptosystem

1 Introduction

Cryptographic primitives generally require uniformly random strings. A fuzzy extractor is a primi-
tive proposed by Dodis et al. [7] that can reliably derive uniformly random keys from noisy sources,
such as biometric data (fingerprint, iris, facial image, etc.) and long pass-phrases. More formally, a
fuzzy extractor is defined to be a pair of procedures (Gen,Rep). The key generation procedure Gen
receives a sample w from a noisy source W with some entropy, and outputs a uniformly random
key r and a helper string p. After that, the reproduction procedure Rep can be used to derive the
same key r from the helper string p and a sample w′ that is close to the original sample w. Notably,
this framework does not need secret keys other than w. The derived key r is close to uniform even
if the helper string p was given. See [8, 3] for surveys of results related to fuzzy extractors.

To construct fuzzy extractors, Dodis et al. [7] introduced a primitive, called secure sketch. On
input w, a secure sketch produces a recovery information. It enables the recovery of w from any
close value w′, but does not reveal much information about w. They show that a combination of a
secure sketch and a strong extractor gives a fuzzy extractor.

Fuzzy extractors were defined as information-theoretic primitives, and several limitations re-
garding parameters in fuzzy extractors are also studied in [7]. The entropy loss is the difference

∗Institute of Science and Engineering, Kanazawa University. Kakuma-machi, Kanazawa, 920–1192, Japan.
yasunaga@se.kanazawa-u.ac.jp

†Graduate School of Natural Science and Technology, Kanazawa University. Kakuma-machi, Kanazawa, 920-1192,
Japan. makku107@stu.kanazawa-u.ac.jp

1

between the entropy of w and the length of the extracted key r. In the setting of information-
theoretic security, the entropy loss is known to be inevitable [13]. This limitation is a major
problem for applications using low entropy sources such as biometric data.

Fuller et al. [9] considered the computational security of fuzzy extractors to construct lossless
fuzzy extractors, which circumvent the entropy loss of information-theoretic fuzzy extractors. They
gave both negative and positive results. On one hand, they show that the existence of a compu-
tational secure sketch implies the existence of an information-theoretic secure sketch with slightly
weaker parameters. This result means that lossless fuzzy extractors cannot be constructed by com-
bining a computational secure sketch and a strong extractor. On the other hand, they present a
direct construction of a lossless fuzzy extractor based on the hardness of learning with errors (LWE)
problem.

In this work, we further study the possibilities and limitations of computational fuzzy extractors.
The negative result of [9] implies that we need to avoid using computational secure sketches to
construct lossless fuzzy extractors. However, it remains unclear what properties are necessary for
fuzzy extractors to be lossless. Regarding the possibilities, a construction of [9] is only given based
on a specific computational assumption. It was not known that lossless fuzzy extractors can be
constructed based on other computational assumptions such as the decisional Diffie-Hellman (DDH)
assumption or more general assumptions such as the existence of a one-way function.

First, we observe that the negative result of [9] can be applied to computational fuzzy extractors
under some condition. The condition is that for the generation procedure Gen, there is an efficient
inverter that, on input (r, p), recovers the same w that was actually used to generate (r, p) by Gen.
It is unclear if the negative result holds for an inverter without this property. We will discuss this
observation in more detail in Section 1.1.

Regarding the limitations, we provide a similar negative result of computational fuzzy extrac-
tors under another condition. Specifically, we show that if Gen has an efficient inverter that is
almost injective, then the existence of a computational fuzzy extractor implies the existence of an
information-theoretic fuzzy extractor. This result indicates that a lossless fuzzy extractor must
have a property that the generation procedure is not efficiently invertible by injective functions. In
the process of proving the result, we fix a flaw in the proof of the negative results of [9], and obtain
a similar lemma with a slightly weaker parameter.

Next, as a positive result, we show that lossless fuzzy extractors can be constructed based on
various computational assumptions. Specifically, we give a construction of a lossless fuzzy extractor
from a leakage-resilient key encapsulation mechanism. A key encapsulation mechanism (KEM) is
a public-key primitive that enables two parties to share a random key without private commu-
nication. KEMs have practical and provably secure constructions under various computational
assumptions [6]. A leakage-resilient KEM is a KEM with the security against leakage-attacks to
secret keys. Such leakage-resilient cryptographic primitives have been extensively studied in recent
years. See [2, 12] for surveys of leakage-resilient primitives. In our positive result, we only need
a somewhat weak leakage-resilience, where the leakage function is determined before generating a
public key. A generic construction of secure public-key encryption in this model is provided by
Naor and Segev [11]. The construction employs only a standard KEM and a strong extractor.
We observe that a combination of a leakage-resilient KEM and a secure sketch gives a compu-
tational fuzzy extractor. Compared to existing computational extractors, our construction based
on leakage-resilient KEM has an advantage in “stretching” the key. We discuss these points in
Section 4. Finally, we give a simple construction of a computational fuzzy extractor based on a

2

stronger variant of the decisional Diffie-Hellman assumption.

1.1 On the Negative Results of [9]

Fuller et al. noted in [9, footnote 3] that, if the generation procedure Gen is efficiently invertible,
their negative results for computational secure sketches can also be applied to computational fuzzy
extractors. We observe that this is true if the inverter of Gen satisfies some condition, but it is
unclear without it. We describe the observation below in more detail.

Let (Gen,Rep) be a computational fuzzy extractor. Assume that there is an efficient algo-
rithm InvGen that, given (r, p), outputs w, where (r, p) was generated by Gen(w). One can
construct a computational secure sketch (SS,Rec) (see Definition 3 for the definition of secure
sketches) by defining SS(w) = {(r, p)← Gen(w);Output p} and Rec(w′, p) = {r ← Rep(w′, p);w ←
InvGen(r, p);Output w}. Thus, by the negative results of [9], this implies the existence of an
information-theoretic fuzzy extractor. However, the above observation can be applied only if
InvGen(r, p) outputs the same w from which (r, p) was actually generated. In general, there could
exist different w1 and w2 such that the outputs of Gen(w1) and Gen(w2) are the same. In such a
case, one of w1 and w2 may not be recovered by InvGen, and thus it may be difficult to use InvGen
for constructing secure sketches.

If we assume that Gen is injective, then there are no different w1 and w2 satisfying Gen(w1) =
Gen(w2), and thus the negative results of [9] can be applied to such computational fuzzy extractors.
However, the assumption seems too restrictive. As far as we known, there is no construction of
injective fuzzy extractors. Also, there is an intuitive reason for this fact. For a fuzzy extractor
(Gen,Rep), consider two input w1 and w2 that are close to each other. If Gen(w1) outputs (r, p),
then it must be that Rep(w1, p) = r and Rep(w2, p) = r. Then, it seems natural that the output
range of Gen(w2) also contains (r, p). If so, the extractor is not injective.

2 Preliminaries

Let X and Y be random variables over some alphabet Z. The min-entropy of X is
H∞(X) = − log(maxx Pr[X = x]). The average min-entropy of X given Y is H̃∞(X|Y) =
− log(Ey∈Z maxx∈Z Pr[X = x|Y = y]). The statistical distance between X and Y is ∆(X,Y) =
1
2

∑
z∈Z |Pr[X = z] − Pr[Y = z]|. If ∆(X,Y) ≤ ϵ, we say X and Y are ϵ-close. The support

of X is Supp(X) = {x ∈ Z : Pr[X = x] > 0}. We denote by Uℓ the uniformly distributed
random variable on {0, 1}ℓ. For a finite set S, we denote by t ← S the event that t is cho-
sen uniformly at random from S. For s ∈ N, the computational distance between X and Y is
∆s(X,Y) = maxD∈Cs |E[D(X)]−E[D(Y)]|, where Cs is the set of randomized circuits of size at most
s that output 0 or 1. A metric space is a setM with a distance function dis :M×M→ R+ = [0,∞).
We always consider finite metric spaces and distance functions with finite images. For the Hamming
metric over Zn, dis(x, y) is the number of positions in which x and y differ. For a probabilistic
experiment E and a predicate P , we denote by Pr[E : P] the probability that the predicate P is
true after the event E occurred. For a probabilistic algorithm A, we denote by A(x; r) the output
of A, given x as input and r as random coins.

We give definitions of fuzzy extractor, computational fuzzy extractor, secure sketch, and strong
extractor.

3

Definition 1 (Fuzzy Extractor). An (M,m, ℓ, t, ϵ)-fuzzy extractor with error δ is a pair of ran-
domized procedures (Gen,Rep) with the following properties:

• The generation procedure Gen on input w ∈ M outputs an extracted string r ∈ {0, 1}ℓ and a
helper string p ∈ {0, 1}∗.

• The reproduction procedure Rep takes w′ ∈ M and p ∈ {0, 1}∗ as inputs. The correctness
property guarantees that for any w,w′ ∈ M with dis(w,w′) ≤ t, if (r, p) ← Gen(w), then
Rep(w′, p) = r with probability at least 1− δ, where the probability is taken over the coins of
Gen and Rep. If dis(w,w′) > t, no guarantee is provided about the output of Rep.

• The security property guarantees that for any distribution W on M of min-entropy m, if
(R,P)← Gen(W), then ∆((R,P), (Uℓ, P)) ≤ ϵ.

Definition 2 (Computational Fuzzy Extractor). An (M,m, ℓ, t, s, ϵ)-computational fuzzy extractor
with error δ is a pair of randomized procedures (Gen,Rep) that is an (M,m, ℓ, t, ϵ)-fuzzy extractor
with error δ in which the security property is replaced by the following one:

• For any distribution W on M of min-entropy m, if (R,P) ← Gen(W), then
∆s((R,P), (Uℓ, P)) ≤ ϵ.

Definition 3 (Secure Sketch). An (M,m, m̃, t)-secure sketch with error δ is a pair of randomized
procedures (SS,Rec) with the following properties:

• The sketching procedure SS on input w ∈M outputs a string s ∈ {0, 1}∗.

• The recovery procedure Rec takes w′ ∈M and s ∈ {0, 1}∗ as inputs. The correctness property
guarantees that for any w,w′ ∈ M with dis(w,w′) ≤ t, Pr[Rec(w′, SS(w)) = w] ≥ 1 − δ
where the probability is taken over the coins of SS and Rec. If dis(w,w′) > t, no guarantee is
provided about the output of Rec.

• The security property guarantees that for any distribution W on M of min-entropy m,
H̃∞(W |SS(W)) ≥ m̃.

Definition 4. We say that Ext : {0, 1}n → {0, 1}ℓ is an (n,m, ℓ, ϵ)-strong extractor if for any W
on {0, 1}n of min-entropy m, ∆((Ext(W ;X), X), (Uℓ, X)) ≤ ϵ, where X is the uniform distribution
on {0, 1}r.

3 Negative Results

In this section, we show that the existence of a computational fuzzy extractor satisfying some
computational condition implies the existence of an information-theoretic fuzzy extractor with
slightly weaker parameters. The condition is that the generation procedure of a fuzzy extractor is
efficiently invertible by an almost-injective function.

We follow a similar approach to Fuller et al. [9], who showed that a computational secure sketch
implies an information-theoretic secure sketch. They proved that the existence of a computational
secure sketch implies the existence of a code correcting random errors. The result follows by
observing that such a code is sufficient to construct an information-theoretic secure sketch [7].

4

We start from the existence of a computational fuzzy extractor (Gen,Rep). To show the existence
of an error-correcting code, we assume that the generation procedure Gen of the fuzzy extractor
is efficiently invertible. The idea for constructing a code is that the inverter of Gen can work as a
generator of a codeword from a message. Here, a sample w and an extracted string r from w are
considered a codeword and a message, respectively. By fixing the helper string p, we can see that the
inverter of Gen is an encoder and the reproduction procedure Rep is a decoder of an error-correcting
code. The injectiveness of the inverter of Gen is used to guarantee a high information-rate of the
resulting code. The structure used in our approach is slightly different from that in [9]. For a
secure sketch (SS,Rec), they used the fact that by fixing the sketch ss = SS(W), the procedure of
sampling W conditioned on ss is a random sampling of codewords and the recovery procedure Rec
can work as a decoder that outputs a corrected codeword, not message.

We give a formal definition of invertibility of the generation procedure.

Definition 5. Let (Gen,Rep) be a fuzzy extractor for a metric space M. We say Gen is (s, η)-
invertible if there exists a deterministic circuit InvGen of size at most s such that

Pr
[
W ′ ← InvGen(R′, p) : ∃ rG ∈ {0, 1}∗ s.t. Gen(W ′; rG) = (R′, p)

]
≥ 1− η

for any p that can be generated as (r, p)← Gen(w) for w ∈ M, where R′ = Uℓ. In addition, if the
inverter InvGen has the property such that |{w′ : w′ ← InvGen(Uℓ, p)}| ≥ (1 − ξ)2ℓ for any p that
can be generated as (r, p)← Gen(w), we say Gen is (s, η, ξ)-almost-injectively-invertible.

In the definition, we consider that InvGen succeeds in inverting Gen if it outputs w′ from which
the input (r′, p) can be generated by Gen, and thus w′ is not necessarily the same as w from which
p was actually generated.

Note that, since the inverter InvGen is confined to being deterministic, InvGen has the property
of output uniqueness. That is, for any r and p, InvGen(r, p) does not output two different values
w1, w2 ∈M such that (r, p) = Gen(w1; r1) = Gen(w2; r2) for some r1, r2 ∈ {0, 1}∗.

We will prove that the existence of a computational fuzzy extractor implies the existence of an
error-correcting code. We provide some notions regarding coding theory.

Definition 6. We say a metric space (M, dis) is (s, t)-bounded-error samplable if there exists a
randomized circuit ErrSmp of size s such that for all 0 ≤ t′ ≤ t and w ∈ M, ErrSmp(w, t′) outputs
a random point w′ ∈M satisfying dis(w,w′) = t′.

Definition 7. Let C be a set over a metric spaceM. We say C is a (t, ϵ)-maximal-error Shannon
code if there exists an efficient recover procedure Rec such that for all 0 ≤ t′ ≤ t and c ∈ C,
Pr[Rec(ErrSmp(c, t′)) ̸= c] ≤ ϵ.

Definition 8. Let (M, dis) be a metric space that is (s, t)-bounded-error samplable by a cir-
cuit ErrSmp. For a distribution C over M, we say C is a (t, ϵ)-average-random-error Shan-
non code if there exists an efficient recover procedure Rec such that Pr[c ← C, t′ ← {0, . . . , t} :
Rec(ErrSmp(c, t′)) ̸= c] ≤ ϵ.

The following fact can be obtained by Markov’s inequality.1

1A similar lemma was given in [9], but the proof has a flaw, which was pointed out by an anonymous reviewer. In
their proof, a code was chosen by a probabilistic argument for every t′ ∈ {0, . . . , t}, but it was not guaranteed that
the code is the same for every t′. Instead, we consider a code that corrects random errors for “random” t′, which is
guaranteed to correct random errors for every t′ with a worse decoding error probability.

5

Lemma 1. Let C be a (t, ϵ)-average-random-error Shannon code with recovery procedure Rec such
that H∞(C) ≥ k. Then, there exists a set C ′ with |C ′| ≥ 2k−1 that is (t, 2ϵ(t + 1))-maximal-error
Shannon code with recovery procedure Rec.

Proof. Since C is a (t, ϵ)-average-random-error Shannon code, we have that∑
c∈Supp(C)

Pr[c← C] Pr
t′←{0,...,t}

[Rec(ErrSmp(c, t′)) ̸= c] ≤ ϵ.

For c ∈ Supp(C), let ϵc = Prt′←{0,...,t}[Rec(ErrSmp(c, t′)) ̸= c]. By Markov’s inequality, it holds that

Pr
c←C

[ϵc ≤ 2ϵ] = Pr
c←C

[ϵc ≤ 2Ec′←C [ϵc′]] ≥
1

2
.

Since H∞(C) ≥ k, there are at least 2k−1 codewords c ∈ Supp(C) satisfying ϵc ≤ 2ϵ. Let C ′ be the
set of such codewords. For every c ∈ C ′, we have that∑

t′∈{0,...,t}

Pr[t′ ← {0, . . . , t}] Pr[Rec(ErrSmp(c, t′)) ̸= c] ≤ 2ϵ, (1)

which implies that Pr[Rec(ErrSmp(c, t′)) ̸= c] ≤ 2ϵ(t+ 1) for every t′ ∈ {0, . . . , t}. Otherwise, there
exists t′ ∈ {0, . . . , t} such that Pr[t′ ← {0, . . . , t}] Pr[Rec(ErrSmp(c, t′)) ̸= c] > 1

t+12ϵ(t + 1) = 2ϵ,
which contradicts (1). Therefore, C ′ is a (t, 2ϵ(t+ 1))-maximal-error Shannon code.

We prove that if the generation procedure is injectively-invertible, then the existence of a
computational fuzzy extractor implies the existence of a maximal-error Shannon code.

Lemma 2. Let (M, dis) be a metric space that is (ssmp, t)-bounded-error samplable. Let (Gen,Rep)
be an (M,m, ℓ, t, ssec, ϵ)-computational fuzzy extractor with error 0. Let srep denote the size of
the circuit that computes Rep. If Gen is (sinv, η, ξ)-almost-injectively-invertible, and it holds that
ssec ≥ sinv + ssmp + srep, then there exists a value p and a set C with |C| ≥ (1 − ξ)2ℓ−1 that is a
(t, 2(ϵ+ η)(t+ 1))-maximal-error Shannon code with recovery procedure InvGen(Rep(·, p), p).

Proof. Let W be an arbitrary distribution on M of min-entropy m. By the security property of
the computational fuzzy extractor (Gen,Rep), we have that ∆ssec((R,P), (Uℓ, P)) ≤ ϵ for (R,P)←
Gen(W).

Define the following procedure D:

1. On input r ∈ {0, 1}ℓ, p ∈ {0, 1}∗, and t ∈ N, compute w ← InvGen(r, p).

2. t′ ← {0, . . . , t}.

3. w′ ← ErrSmp(w, t′).

4. If Rep(w′, p) ̸= r, output 0. Otherwise, output 1.

The procedure D “efficiently” checks whether Rep can correctly output the string r from the
corresponding p and w with random t-bounded errors. We need the efficiency of D since otherwise
the “error-correcting” property of Rep may not be taken over from the computational security of
(Gen,Rep). The procedure D can be implemented by a circuit of size sinv + ssmp + srep.

6

By the invertibility of Gen and the correctness property of (Gen,Rep), we have that
Pr[D(R,P, t) = 1] ≥ 1 − η, where (R,P) ← Gen(W). Since ∆ssec((R,P), (Uℓ, P)) ≤ ϵ, if
ssec ≥ sinv + ssmp + srep, it holds that

Pr[D(Uℓ, P, t) = 1] ≥ 1− (ϵ+ η).

By the averaging argument, there exists a value p such that Pr[D(Uℓ, p, t) = 1] ≥ 1 − (ϵ + η).
This implies that

Pr

w ← InvGen(R, p),

t′ ← {0, . . . , t},
w′ ← ErrSmp(w, t′)

: Rep(w′, p) = R

 ≥ 1− (ϵ+ η), (2)

where R = Uℓ. Thus, the distribution InvGen(Uℓ, p) is a (t, ϵ + η)-average-random-error Shannon
code with recovery procedure InvGen(Rep(·, p), p). By applying Lemma 1, we can show that there
is a set C with |C| ≥ 2k−1 that is a (t, 2(ϵ + η)(t + 1))-maximal-error Shannon code for k ≥
H∞(InvGen(Uℓ, p)).

It follows from the almost-injective invertibility of Gen that |{w′ : w′ ← InvGen(Uℓ, p)| ≥
(1− ξ)2ℓ. Thus, H∞(InvGen(Uℓ, p)) ≥ ℓ− log(1/(1− ξ)). Therefore, the statement follows.

It is known that a secure sketch can be constructed from a Shannon code, which is explicitly
presented in [9], and implicitly stated in [7, Section 8.2].

Lemma 3 ([7, 9]). For an alphabet Z, let C be a (t, δ)-maximal-error Shannon code over Zn.
Then, there exists a (Zn,m,m− (n log |Z| − log |C|), t) secure sketch with error δ for the Hamming
metric over Zn.

An information-theoretic fuzzy extractor can be constructed from a secure sketch and a strong
extractor [7]. In particular, if we use universal hashing as strong extractor, we obtain the following
result.

Lemma 4 ([7]). Let (SS,Rec) be an (M,m, m̃, t)-secure sketch with error δ, and Ext an (n, m̃, ℓ, ϵ)-
strong extractor given by universal hashing (any ℓ ≤ m̃− 2 log(1ϵ) + 2 can be achieved). Then, the
following (Gen,Rep) is an (M,m, ℓ, t, ϵ)-fuzzy extractor with error δ:

• Gen(w; r, x) : set P = (SS(w; r), x), R = Ext(w;x), and output (R,P).

• Rep(w′, (s, x)) : recover w = Rec(w′, s) and output R = Ext(w;x).

By combining Lemmas 2, 3, and 4, we obtain the following theorem.

Theorem 1. Let Z be an alphabet. Let (Gen,Rep) be a (Zn,m, ℓ, t, ssec, ϵ)-computational fuzzy
extractor with error 0. Let srep denote the size of the circuit that computes Rep. If Gen is (sinv, η, ξ)-
almost-injectively-invertible, and it holds that ssec ≥ sinv + n log |Z| + srep, then there exists a
(Zn,m, ℓ′, t, ϵ′) (information-theoretic) fuzzy extractor with error 2(ϵ + η)(t + 1) for any ℓ′ ≤ m +
ℓ− n log |Z| − log(1

1−ξ)− 2 log(1
ϵ′) + 1.

In particular, in the above theorem, if we choose m = n log |Z|, then a (Zn, n log |Z|, ℓ, t, ssec, ϵ)-
computational fuzzy extractor implies a (Zn, n log |Z|, ℓ−log(1

1−ξ)−2 log(
1
ϵ′)+1, t, ϵ′)-fuzzy extractor

with error 2(ϵ+ η)(t+ 1).
As in the negative result of [9], we do not claim about the efficiency of the resulting fuzzy

extractor. In our case, the non-explicit parts are (1) fixing the value p in Lemma 2, and (2)
constructing a maximal-error Shannon code from an average-random-error one in Lemma 1.

7

4 Positive Results

4.1 A Construction based on LR-KEM

We present a construction of a computational fuzzy extractor based on a leakage-resilient key encap-
sulation mechanism. First, we give a definition of leakage-resilient key encapsulation mechanism.

Definition 9 (Leakage-Resilient Key Encapsulation Mechanism (LR-KEM)). An (n, ℓ,m, s, ϵ)-
LR-KEM scheme Π is a tuple of randomized procedures (KEM.Gen,KEM.Enc,KEM.Dec) with the
following properties.

• The key generation procedure KEM.Gen on input a random string r ∈ {0, 1}n outputs a pair
(pk, sk) of a public key and a secret key.

• The encryption procedure KEM.Enc on input a public key pk outputs a ciphertext c and a key
k ∈ {0, 1}ℓ.

• The decryption procedure KEM.Dec on input a secret key sk and a ciphertext c outputs a key
k. The correctness property guarantees that for any (pk, sk) ← KEM.Gen(1n), Pr[(c, k) ←
KEM.Enc(pk) : KEM.Dec(sk, c) = k] = 1.

• The security property guarantees that for any circuit A of size at most s and for any f :
{0, 1}n → {0, 1}ℓ satisfying H̃∞(r|f(r)) ≥ m, where r ← Un, it holds that

∆s(ExptleakΠ,A(0),Expt
leak
Π,A(1)) ≤ ϵ,

where the experiment ExptleakΠ,A(b) is defined as follows:

1. r ← Un.

2. (pk, sk)← KEM.Gen(r).

3. (c, k)← KEM.Enc(pk).

4. k0 = k, and k1 ← Uℓ.

5. b′ ← A(pk, c, kb, f(r)).

6. Output b′.

A usual (non-leakage-resilient) KEM scheme is a special case of an (n, ℓ,m, s, ϵ)-LR-KEM scheme
in which f(r) is not given to A. We call such a scheme an (n, ℓ, s, ϵ)-KEM scheme.

Definition 9 is slightly different from the corresponding security of leakage-resilient public-key
encryption considered in [1, 11] (cf. [11, Section 8]). In [1, 11], the leakage function can be applied
to the secret key sk, and the restriction on f is the output length |f(sk)|. Instead, in Definition 9,
we consider the leakage of the random string r of Gen, and the restriction on f is the residual
entropy of r. Nevertheless, the difference is not crucial. Indeed, the same construction as [11,
Section 8] gives a generic construction of a leakage-resilient KEM scheme from any KEM scheme
and a strong extractor. Although the proof is almost the same as that of [11, Theorem 8.1], we give
the proof for completeness and for a detailed analysis due to the treatment of the exact security in
this paper.

8

Lemma 5. Let Π = (KEM.Gen,KEM.Enc,KEM.Dec) be an (n, ℓ, skem, ϵkem)-KEM scheme, and Ext
an (n,m, k, ϵext)-strong extractor. Then, the following Π′ = (KEM.Gen′,KEM.Enc′,KEM.Dec′) is
an (n + t, ℓ,m, s, ϵkem + 2ϵext)-LR-KEM scheme for any s ≤ skem − sf , where t is the length of a
random string in Ext and sf is the size of the circuit for computing the leakage function f .

• KEM.Gen′ : Choose r ∈ {0, 1}n and x ∈ {0, 1}t uniformly at random, and compute r′ =
(Ext(r;x), x) and (pk, sk)← KEM.Gen(r′). Output pk′ = (pk, x) and sk′ = r.

• KEM.Enc′ : On input pk′ = (pk, x), compute (c, k) ← KEM.Enc(pk). Output c′ = (c, x) and
k.

• KEM.Dec′ : On input sk′ = r and c′ = (c, x), compute (pk, sk)← KEM.Gen(Ext(r;x), x) and
k = KEM.Dec(sk, c). Output k.

Proof. Consider the following experiment Exptleak
′

Π,A (b) for b ∈ {0, 1}:

1. r ← Un, x← Ut, and r′ ← Un+k.

2. (pk, sk)← KEM.Gen(r′). Let pk′ = (pk, x) and sk′ = r.

3. (c, k)← KEM.Enc(pk). Let c′ = (c, x).

4. k0 = k, and k1 ← Uℓ.

5. b′ ← A(pk, c, kb, f(r)).

6. Output b′.

It follows from the triangle inequality that for any s ∈ N,

∆s(ExptleakΠ,A(0),Expt
leak
Π,A(1)) ≤ ∆s(ExptleakΠ,A(0),Expt

leak′

Π,A (0)) (3)

+ ∆s(Exptleak
′

Π,A (0),Exptleak
′

Π,A (1)) (4)

+ ∆s(Exptleak
′

Π,A (1),ExptleakΠ,A(1)). (5)

The experiment Exptleak
′

Π,A (b) is different from ExptleakΠ,A(b) only in the key generation phase, in
which the uniformly random string r′ is used instead of the output of the strong extractor Ext.
Thus, for any s ∈ N, equations (3) and (5) are upper-bounded by ϵext.

The experiment Exptleak
′

Π,A (b) is almost the same as the experiment for non-leakage-resilient KEM.
The only difference is in the guessing phase, where A is given f(r). Thus, for any s ∈ N, equation (4)
is upper-bounded by ϵkem if skem ≥ s+ sf .

Therefore, for any s ≤ skem − sf , ∆
s(ExptleakΠ,A(0),Expt

leak
Π,A(1)) is upper-bounded by ϵkem + 2ϵext.

We give a construction of a computational fuzzy extractor based on a leakage-resilient KEM
scheme.

Theorem 2. Let (KEM.Gen,KEM.Enc,KEM.Dec) be an (n, ℓ, m̃, ssec, ϵ)-LR-KEM scheme, and
(SS,Rec) be an (M,m, m̃, t)-secure sketch with error δ. Let sgen, senc, and sss denote the
sizes of circuits that computes KEM.Gen, KEM.Enc, and SS, respectively. Then, for any s ≤
ssec − (sgen + senc + sss), the following (Gen,Rep) is a ({0, 1}n,m, ℓ, t, s, ϵ)-computational fuzzy
extractor with error δ:

9

• Gen(w; r1, r2) : compute (pk, sk) ← KEM.Gen(w) and (c, k) ← KEM.Enc(pk; r1), set p =
(c,SS(w; r2)) and r = k, and output (r, p).

• Rep(w′, (c, ss)) : recover w = Rec(w′, ss), compute (pk, sk) ← KEM.Gen(w) and K ←
KEM.Dec(sk, c), and output K.

Proof. The correctness property immediately follows from the correctness of the LR-KEM scheme
and the secure sketch.

For the security property, we know that H̃∞(W |SS(W)) ≥ m̃ from the security of the se-
cure sketch, where W is any random variable of min-entropy m. Thus, from the security of
the LR-KEM scheme, for any s ≤ ssec − (sgen + senc + sss), we have that ∆s((R,P), (Uℓ, P)) =
∆s((K,C, SS(W)), (Uℓ, C, SS(W))) ≤ ϵ.

As for the LWE-based construction in [9], the above KEM-and-sketch construction does not
require the entropy of W conditioned on P = (C,SS(W)). Indeed, W may have no information-
theoretic entropy conditioned on P .

Note that the above construction can be instantiated by a secret-key KEM scheme, in which
the secret key is used for encryption.

Another approach to constructing computational fuzzy extractor is to apply a pseudorandom
generator to the output of (information-theoretic) fuzzy extractor. We say this approach FE-
then-PRG. Compared to the LWE-based construction [9] and the FE-then-PRG construction, our
construction has an advantage in “stretching” the key. In the LWE-based construction, it seems
necessary also to stretch the input W to stretch the key, which is undesirable if the length of W
cannot be stretched (e.g., biometric data). In the FE-then-PRG construction, a straightforward
way of stretching the key is to use a PRG multiple times. To stretch the output length, we need to
apply the PRG in a nested manner. Namely, for a PRG G : {0, 1}ℓ → {0, 1}2ℓ, we can obtain the key
with length 4ℓ by computing (G(x0),G(x1)), where G(x) = (x0, x1) and x, x0, x1 ∈ {0, 1}ℓ. Thus,
we need sequential computation to obtain the final output. In the KEM-and-sketch construction,
in order to stretch the key, we can use the same public key to generate multiple ciphertexts. Hence,
the computation of encrypting keys and decrypting ciphertexts can be done in parallel.

4.2 A Construction based on Strong DDH

We give a simple construction of a computational fuzzy extractor based on a stronger variant of the
Decisional Diffie-Hellman (DDH) assumption. Several stronger variants of the DDH assumption
have been proposed in the literature (e.g., [4, 10]). We use a weaker variant of the strong DDH
assumption used in [10].

The strong DDH assumption. For any polynomial s(n), ∆s(n)((g, ga, gb, gab), (g, ga, bb, gc)) is
upper-bounded by a negligible function, where g is a random generator of a group G, G is a group
of an n-bit prime order q, a ∈ Zq and c ∈ Zq are chosen uniformly at random, and b ∈ Zq is chosen
from a source of min-entropy αn for some constant α > 0.

Theorem 3. Assume that the strong DDH assumption holds. Let (SS,Rec) be a (Zq,m, βn, t)-
secure sketch with error δ. Then, the following (Gen,Rep) is a (G,m, log q, t, s, ϵ) computational
fuzzy extractor with error δ for any polynomial s and a negligible function ϵ in n:

10

• Gen(w) : Choose a random generator g ∈ G and a random element a ∈ Zq, set P =
(g, ga, SS(w)) and R = gaw, and output (R,P).

• Rep(w′, (g, ga, ss)) : recover w = Rec(w′, ss) and output gaw.

Proof. The correctness property immediately follows from the correctness of the secure sketch.
For the security property, we know that H̃∞(W |P) ≥ βn from the security of the secure sketch,

where W is a random variable of min-entropy m. Then, we have that, for a sufficiently large
polynomial s,

∆s((R,P), (Ulog q, P)) = ∆s((gaW , g, ga, SS(W)), (UG, g, g
a, SS(W)))

≤ ∆s(gc, g, ga, SS(W)), (UG, g, g
a,SS(W))) + ϵ(n)

= ϵ(n),

where UG is the uniform distribution over G, c ∈ Zq is chosen uniformly at random, and ϵ(·) is a
negligible function. The inequality follows from the strong DDH assumption.

Acknowledgments

The authors are grateful to Masahiro Mambo for his helpful comments.
This work was supported in part by JSPS/MEXT Grant-in-Aid for Scientific Research Numbers

23500010, 23700010, 24240001, 25106509, 15H00851, and 16H01705

References

[1] A. Akavia, S. Goldwasser, and V. Vaikuntanathan. Simultaneous hardcore bits and cryptog-
raphy against memory attacks. In O. Reingold, editor, TCC, volume 5444 of Lecture Notes in
Computer Science, pages 474–495. Springer, 2009.

[2] J. Alwen, Y. Dodis, and D. Wichs. Survey: Leakage resilience and the bounded retrieval
model. In ICITS, pages 1–18, 2009.

[3] X. Boyen. Robust and reusable fuzzy extractor. In P. Tuyls, B. Skoric, and T. Kevenaar,
editors, Security with Noisy Data, pages 101–112. Springer, 2007.

[4] R. Canetti. Towards realizing random oracles: Hash functions that hide all partial information.
In CRYPTO, pages 455–469, 1997.

[5] M. Cheraghchi, F. Didier, and A. Shokrollahi. Invertible extractors and wiretap protocols.
IEEE Transactions on Information Theory, 58(2):1254–1274, 2012.

[6] R. Cramer and V. Shoup. Design and analysis of practical public-key encryption schemes
secure against adaptive chosen ciphertext attack. SIAM J. Comput., 33(1):167–226, 2003.

[7] Y. Dodis, R. Ostrovsky, L. Reyzin, and A. Smith. Fuzzy extractors: How to generate strong
keys from biometrics and other noisy data. SIAM J. Comput., 38(1):97–139, 2008.

11

[8] Y. Dodis, L. Reyzin, and A. Smith. Fuzzy extractors. In P. Tuyls, B. Skoric, and T. Kevenaar,
editors, Security with Noisy Data, pages 79–99. Springer, 2007. An updated version is available
at http://www.cs.bu.edu/~reyzin/fuzzysurvey.html.

[9] B. Fuller, X. Meng, and L. Reyzin. Computational fuzzy extractors. In K. Sako and P. Sarkar,
editors, ASIACRYPT (1), volume 8269 of Lecture Notes in Computer Science, pages 174–193.
Springer, 2013.

[10] Y. T. Kalai, X. Li, A. Rao, and D. Zuckerman. Network extractor protocols. In FOCS, pages
654–663. IEEE Computer Society, 2008.

[11] M. Naor and G. Segev. Public-key cryptosystems resilient to key leakage. SIAM J. Comput.,
41(4):772–814, 2012.

[12] K. Pietrzak. Provable security for physical cryptography. In Western European Workshop on
Research in Cryptology - WEWoRC 2009, 2009.

[13] J. Radhakrishnan and A. Ta-Shma. Bounds for dispersers, extractors, and depth-two super-
concentrators. SIAM J. Discrete Math., 13(1):2–24, 2000.

12

http://www.cs.bu.edu/~reyzin/fuzzysurvey.html

	1 Introduction
	1.1 On the Negative Results of FMR13

	2 Preliminaries
	3 Negative Results
	4 Positive Results
	4.1 A Construction based on LR-KEM
	4.2 A Construction based on Strong DDH

