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Abstract. In this work, we aim to make attribute-based encryption (ABE) more
suitable for access control to data stored in the cloud. For this purpose, we concentrate
on giving to the encryptor full control over the access rights, providing feasible key
management even in case of multiple independent authorities, and enabling viable
user revocation, which is essential in practice. Our main result is an extension of the
decentralized CP-ABE scheme of Lewko and Waters [LW11] with identity-based user
revocation. Our revocation system is made feasible by removing the computational
burden of a revocation event from the cloud service provider, at the expense of some
permanent, yet acceptable overhead of the encryption and decryption algorithms run
by the users. Thus, the computation overhead is distributed over a potentially large
number of users, instead of putting it on a single party (e.g., a proxy server), which
would easily lead to a performance bottleneck. Besides describing our scheme, we also
give a formal proof of its security in the generic bilinear group and random oracle
models.

1 Introduction

Recent trends show a shift from using companies' own data centres to outsourcing data
storage to cloud service providers. Besides cost savings, �exibility is the main driving force
for outsourcing data storage, although in the other hand it raises the issue of security,
which leads us to the necessity of encryption. Traditional cryptosystems were designed to
con�dentially encode data to a target recipient (e.g. from Alice to Bob) and this seems to
restrict the range of opportunities and �exibility o�ered by the cloud environment. Imagine
the following scenario: some companies are cooperating on a cryptography project and from
each, employees are working together on some tasks. Suppose that Alice wants to share some
data of a subtask with those who are working on it, and with the managers of the project
from the di�erent companies. We see that encrypting this data with traditional techniques,
causes that recipients must be determined formerly, moreover either they has to share the
same private key or several encrypted versions (with di�erent keys) must be stored. These
undermine the possible security, e�ciency and the �exibility which the cloud should provide.

Attribute-based encryption (ABE) proposed by Sahai and Waters [SW05] is intended for
one-to-many encryption in which ciphertexts are encrypted for those who are able to ful�l
certain requirements. The most suitable variant for �ne-grained access control in the cloud is
called ciphertext-policy (CP-)ABE, in which ciphertexts are associated with access policies,
determined by the encryptor and attributes describe the user, accordingly attributes are
embedded in the users' secret keys. A ciphertext can be decrypted by someone if and only
if, his attributes satisfy the access structure given in the ciphertext, thus data sharing is
possible without prior knowledge of who will be the receiver preserving the �exibility of the
cloud even after encryption.

Returning to the previous example, using CP-ABE Alice can encrypt with an access
policy expressed by the following Boolean formula: �CryptoProject� AND (�Subtask

? hmate@math.bme.hu
?? Budapest University of Technology and Economics Department of Networked Systems and Ser-

vices, Magyar tudosok krt 2, 1117 Budapest, Hungary. www.crysys.hu



Y� OR �Manager�). Uploading the ciphertext to the cloud, it can be easily accessed by
the employees of each company, but the data can be recovered only by those who own a set
of attributes in their secret keys which satis�es the access policy (e.g. �CryptoProject�,
�Subtask Y� ).

In spite of the promising properties, the adoption of CP-ABE requires further re�nement.
A crucial property of ABE systems is that they resist collusion attacks. In most cases (e.g.
[BSW07, Wat11]) it is achieved by binding together the attribute secret keys of a speci�c
user with a random number so that only those attributes can be used for decryption which
contains the same random value as the others. As a result private keys must be issued by one
central authority that would need to be in a position to verify all the attributes or credentials
it issued for each user in the system. However even our example shows that attributes or
credentials issued across di�erent trust domains are essential and these have to be veri�ed
inside the di�erent organisations (e.g. �Manager� attribute ). Later on we are going to
make use of the results of Lewko and Waters [LW11] about decentralising CP-ABE.

The other relevant issue is user revocation. In everyday use, a tool for changing a user's
rights is essential as unexpected events may occur and a�ect these. An occasion when some-
one has to be revoked can be dismissal or the revealing of malicious activity. Revocation is
especially hard problem in ABE, since di�erent users may hold the same functional secret
keys related with the same attribute set (aside from randomization). We emphasise that
user revocation is applied in exceptional cases like the above-mentioned, as all other cases
can be handled simpler, with the proper use of attributes (e.g. an attribute can include its
planned validity like �CryptoProject2014�).

Contribution. Based on [LW11] and [LSW10] we propose a scheme that adds identity-
based user revocation feature to distributed CP-ABE. With this extension, we achieve a
scheme with multiple, independent attribute authorities, in which revocation of speci�c users
(e.g. with IDi) from the system with all of their attributes is possible without updates of
attribute public and secret keys (neither periodically, nor after revocation event). We avoid
re-encryption of all ciphertexts the access structures of which contain a subset of attributes
of the revoked user. The revocation right is given to the encryptor, just like the right to
de�ne the access structure which �ts to the cloud computing scenario.

Related Work. The concept of attribute-based encryption was �rst proposed by Sahai and
Waters [SW05] as a generalization of identity-based encryption. Bethencourt et al. [BSW07]
worked out the �rst ciphertext-policy ABE scheme in which the encryptor must decide who
should or should not have access to the data that she encrypts (ciphertexts are associated
with policies, and users' keys are associated with sets of descriptive attributes). This concept
was further improved by Waters in [Wat11].

The problem of building ABE systems with multiple authorities was �rst considered by
Chase [Cha07] with a solution that introduced the concept of using a global identi�er (GID)
for tying users' keys together. Her system relied on a central authority and was limited to
expressing a strict AND policy over a pre-determined set of authorities. Decentralized ABE
of Lewko and Waters [LW11] does not require any central authority and any party can
become an authority while there is no requirement for any global coordination (di�erent
authorities need not even be aware of each other) other than the creation of an initial
set of common reference parameters. With this it avoids placing absolute trust in a single
designated entity, which must remain active and uncorrupted throughout the lifetime of the
system. [LCH+11, RNS11] shaped similar multi-authority schemes to the needs of cloud
computing, but both lack for e�cient user revocation.

Attribute revocation with the help of expiring attributes was proposed by Bethencourt et
al. [BSW07]. Ruj et al. [RNS11] and Wang et al. [WLWG11] also show traditional attribute
revocation (in multi-authority setting) causing serious computational overhead, because of
the need for key re-generation and ciphertext re-encryption. A di�erent approach is identity-
based revocation, two types of which are applied to the scheme of Waters [Wat11]. Liang et
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al. [LLLS10] gives the right of controlling the revoked set to a �system manager� while Li et
al. [LZW+13], follow [LSW10], from the �eld of broadcast encryption systems and give the
revocation right directly to the encryptor. To the best of our knowledge no multi-authority
system is integrated with this approach and our work is the �rst in this direction.

Organization. In section 2 we introduce the theoretical background that we use later and
de�ne the security of multi-authority CP-ABE schemes with ID-based revocation. In section
3 the details of our scheme can be found together with e�ciency and security analysis.
Directions for further research are proposed in the last section.

2 Background

We �rst brie�y introduce bilinear maps, give formal de�nitions for access structures and
relevant background on Linear Secret Sharing Schemes (LSSS). Then we give the algorithms
and security de�nitions of ciphertext policy attribute based encryption (CP-ABE) with
identity-based user revocation.

2.1 Bilinear maps

We present the most important fact related to groups with e�ciently computable bilinear
maps.

Let G0 and G1 be two multiplicative cyclic groups of prime order p. Let g be a generator
of G0 and e be a bilinear map (pairing), e : G0 ×G0 → G1, with the following properties:

1. Bilinearity: ∀u, v ∈ G1 and a, b ∈ Zp, we have e(ua, vb) = e(u, v)ab

2. Non-degeneracy: e(g, g) 6= 1.

We say that G0 is a bilinear group if the group operation in G0 and the bilinear map
e : G0×G0 → G1 are both e�ciently computable. Notice that the map e is symmetric since
e(ga, gb) = e(g, g)ab = e(gb, ga).

2.2 Access Structures

De�nition 1 (Access Structure [Bei96]).
Let {P1, . . . , Pn} be a set of parties. A collection A ⊆ 2{P1,...,Pn} is monotone if ∀B,C : if

B ∈ A and B ⊆ C then C ∈ A. An access structure (respectively, monotone access structure)
is a collection (respectively, monotone collection) A of non-empty subsets of {P1, . . . , Pn},
i.e., A ⊆ 2{P1,...,Pn} \ {∅}. The sets in A are called the authorized sets, and the sets not in
A are called the unauthorized sets.

In our case the access structure A will contain the authorized sets of attributes, fur-
thermore we restrict our attention to monotone access structures. However, it is possible
to (ine�ciently) realize general access structures using our techniques by having the not of
attributes as separate attributes as well.

2.3 Linear Secret Sharing Schemes (LSSS)

To express the access control policy we will make use of LSSS. Here we adopt the de�nitions
from those given in [Bei96].

De�nition 2 (Linear Secret Sharing Scheme). A secret-sharing scheme Π over a set
of parties P is called linear (over Zp) if
i, the shares for each party form a vector over Zp,
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ii, there exists a matrix A with ` rows and n columns called the share-generating matrix for
Π. For all i = 1, . . . , `, the ith row of A let the function ρ de�ned the party, labelling row
i as ρ(i). When we consider the column vector v = (s; r2, . . . , rn), where s ∈ Zp is the
secret to be shared, and r2, . . . , rn ∈ Zp are randomly chosen, then Av = λ is the vector
of ` shares of the secret s according to Π. The share (Av)i = λi belongs to party ρ(i).

In [Bei96] it is shown that every linear secret sharing-scheme according to the above
de�nition also enjoys the linear reconstruction property, de�ned as follows. Suppose that Π is
an LSSS for the access structure A. Let S ∈ A be any authorized set, and let I ⊂ {1, 2, . . . , `}
be de�ned as I = {i|ρ(i) ∈ S}. Then, there exist constants {ωi ∈ Zp}i∈I such that, if {λi}
are valid shares of any secret s according to Π, then

∑
i∈I ωiλi = s. Furthermore, it is also

shown in [Bei96] that these constants {ωi} can be found in time polynomial in the size of
the share-generating matrix A and for unauthorized sets, no such {ωi} constants exist.

We use the convention that (1, 0, 0, . . . , 0) is the �target� vector for any linear secret
sharing scheme. For any satisfying set of rows I in A, we will have that the target vector is
in the span of I, but for any unauthorized set, it is not.

Using standard techniques (see [LW11] - Appendix G) one can convert any monotonic
boolean formula into an LSSS representation. An access tree of ` nodes will result in an
LSSS matrix of ` rows.

2.4 Revocation Scheme for Multi-Authority CP-ABE

A multi-authority Ciphertext-Policy Attribute-Based Encryption system with identity-based
user revocation is comprised of the following algorithms:

Global Setup(λ) → GP The global setup algorithm takes in the security parameter λ
and outputs global parameters GP for the system.

Central Authority Setup(GP ) → (SK∗, PK∗) The identity key generator authority
runs this algorithm with GP as input to produce its own secret key and public key pair,
SK∗, PK∗.

Identity KeyGen(GP,GID)→ K∗GID The central authority runs this algorithm upon
a user request for identity secret key. It checks whether the request is valid and if yes,
generates K∗GID

Authority Setup(GP )→ (PK,SK) Each authority runs the authority setup algorithm
with GP as input to produce its own secret key and public key pair, SK,PK.

KeyGen(PK∗GID, i, SK,GP )→ Ki,GID The key generation algorithm takes in an iden-
tity GID, the global parameters, an attribute i belonging to some authority, and the
secret key SK for this authority. It produces a key Ki,GID for this attribute, identity
pair.

Encrypt(M, (A, ρ), GP, {PK}, PK∗, RL)→ CT
The encryption algorithm takes in a message M, an access matrix (A, ρ), the set of
public keys for relevant authorities, the public key of the central authority, the revoked
user list and the global parameters. It outputs a ciphertext CT .

Decrypt(CT, (A, ρ), {Ki,GID},K∗GID, RL,GP )→M The decryption algorithm takes in
the global parameters, the revoked user list, the ciphertext, identity key and a collection
of keys corresponding to attribute, identity pairs all with the same �xed identity GID.
It outputs either the messageM when the collection of attributes i satis�es the access
matrix corresponding to the ciphertext. Otherwise, decryption fails.

2.5 Security Model

We now de�ne (chosen plaintext) security of multi-authority CP-ABE system with identity-
based revocation. Security is de�ned using the following Security Game between an attacker
algorithm A and a challenger. We assume that adversaries can corrupt authorities only
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statically, but key queries are made adaptively. The de�nition re�ects the scenario where all
users in the revoked set RL get together and collude (this is because the adversary can get
all of the private keys for the revoked set). The game is the following:

Setup. The challenger runs the Global Setup algorithm to obtain the global public param-
eters GP . The attacker speci�es a set AA′ ⊆ AA of corrupt attribute authorities. For
good (non-corrupt) authorities in AA \ AA′ and the Central ID Generator Authority,
the challenger obtains public key, private key pairs by running the Authority Setup and
Identity KeyGen algorithms, and gives the public keys to the attacker.

Key Query Phase. A adaptively issues private key queries for identities GIDk. The chal-
lenger gives A the corresponding identity keys K∗GIDk by running the Identity KeyGen
algorithm. Let UL denote the set of all queried GIDk. A also makes attribute key queries
by submitting pairs of (i, GIDk) to the challenger, where i is an attribute belonging to
a good authority. The challenger responds by giving the attacker the corresponding key,
Ki,GIDk .

Challenge. The attacker gives the challenger two messages M0,M1, a set RL ⊆ UL of
revoked identities and an access matrix (A, ρ).
RL and A must satisfy the following constraints. Let V denote the subset of rows of A
labelled by attributes controlled by corrupt authorities. For each identity GIDk ∈ UL,
let VGIDk denote the subset of rows of A labelled by attributes i for which the attacker
has queried (i, GIDk). For each GIDk ∈ UL\RL, we require that the subspace spanned
by V ∪ VGIDk must not include (1, 0, . . . , 0) while for GIDk ∈ RL, it is allowed and we
only require that the subspace spanned by V must not include (1, 0, . . . , 0).
The attacker must also give the challenger the public keys for any corrupt authorities
whose attributes appear in the labelling ρ.
The challenger �ips a random coin β ∈ (0, 1) and sends the attacker an encryption of
Mβ under access matrix (A, ρ) with the revoked set RL.

Key Query Phase 2. The attacker may submit additional attribute key queries (i, GIDk),
as long as they do not violate the constraint on the challenge revocation list RL and
matrix (A, ρ).

Guess. A must submit a guess β′ for β. The attacker wins if β′ = β. The attacker's
advantage in this game is de�ned to be P(β′ = β)− 1

2 .

De�nition 3. We say that a multi-authority CP-ABE system with identity-based revoca-
tion is (chosen-plaintext) secure (against static corruption of attribute authorities) if, for
all revocations sets RL of size polynomial in the security parameter, all polynomial time
adversary have at most a negligible advantage in the above de�ned security game.

3 Our Construction

To build our model we will use the prime order group construction of Lewko and Waters
[LW11], because of its favourable property of having independent attribute authorities. This
scheme is proven to be secure in the generic bilinear group and random oracle models under
the restriction that attributes are used only once in the access matrix. A secure scheme
allowing reuse of attributes can be obtained by applying a simple transformation (for details,
see Appendix B in [LW11]) which also can be applied in case of our construction. We note
that this transformation does not lead to an e�cient system when the attribute universe is
large.

In order to achieve identity-based revocation we supplement the distributed system with
a Central Identity Generator Authority. However it seems to contradict with the original aim
of distributing the key generation right, this additional central authority would generate only
secret keys for global identi�ers (GIDs) of users and the attribute key generation remains
distributed. Our central authority does not possess any information that alone would give
advantage during decryption, in contrast to single authority schemes, where the authority
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is able to decrypt all ciphertexts. Regarding this, we can say that our system remains
distributed, in spite of launching a central authority.

Our Technique. We face with the challenges of identity-based revocation. To realize the
targeted features, we use some ideas from public key broadcast encryption systems [LSW10].
We use secret sharing in the exponent. Suppose an encryption algorithm needs to create an
encryption with a revocation set RL = GID∗1 , . . . , GID

∗
r of r identities. The algorithm

will create an exponent s∗ ∈ Zp and split it into r random shares s1, . . . , sr such that∑r
i=1 si = s∗. It will then create a ciphertext such that any user key with GID∗i will not be

able to incorporate the ith share and thus not decrypt the message.
This approach presents the following challenges. First, we need to make crucial that the

decryptor need to do the GID comparisons even if his attributes satisfy the access structure
of the ciphertext. Second we need to make sure that a user with revoked identity GID∗i
cannot do anything useful with share i. Third, we need to worry about collusion attacks
between multiple revoked users.

To address the �rst one we are going to take advantage of the technique of [LW11] that is
used to prevent collusion attacks. Here the secret s, used for the encryption, is divided into
shares, which are further blinded with shares of zero. This structure allows for the decryption
algorithm to both reconstruct the main secret and to �unblind� it in parallel. When we would
like to make this algorithm necessary, but not enough for decryption it is straightforward to
spoil the �unblinding� of the secret by changing the shares of zero in the exponent to shares
of an other random number, s∗ ∈ Zp. Thus we can require an other computation, namely
the comparison of the decryptor's and the revoked users' GIDs. If correspondence is found,
the algorithm stops, otherwise reveals the blinding, enabling decryption.

The second challenge is addressed by the following method. A user with GID 6= GID∗i
can obtain two linearly independent equations (in the exponent) involving the share si,
which he will use to solve for the share si. However, if GID = GID∗i he will get two linearly
dependent equations and not be able to solve the system.

The third problem is eliminated by using H(GID) as the base of the identity secret
key, such that in decryption each user recovers shares sk · loggH(GID) in the exponent,
disallowing the combination of shares from di�erent users.

3.1 Our Construction

To make the following algorithms more understandable, in Table 1 we summarize the new
(compared to [LW11]) keys and variables which we introduce in our construction.

Table 1. The summary of our new notations

Notation Meaning Role

PK∗ {ga, g1/b} public key of the Central ID Generator Authority
SK∗ {a, b} secret key of the Central ID Generator Authority

K∗
GID H(GID)(GID+a)b secret Global Identity key of a user

C∗
1,k

(
gagGID∗

k

)−sk
revoked user identi�cation in the ciphertext

C∗
2,k gsk/b secret share in the ciphertext

RL {GID∗
1 , . . . , GID∗

r} list of r users, who should be revoked

Global Setup(λ)→ GP
In the global setup, a bilinear group G0 of prime order p is chosen. The global public
parameters, GP , are p and a generator g of G0, and a function H mapping global
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identities GID to elements of G0 (this is modelled as a random oracle in the security
proof).

Central Authority Setup(GP ) → (SK∗, PK∗) The algorithm chooses random expo-
nents a, b ∈ Zp, keeps them as a secret and publishes

PK∗ = (ga, g1/b).

Identity KeyGen(GP,GID)→ K∗GID
Upon the request of a user it �rst checks whether the user is on the list of revoked
users (RL) or it has been queried before, if yes refuses the request, otherwise computes
H(GID) and generates the global identity secret key:

K∗GID = H(GID)(GID+a)b.

Authority Setup(GP )→ (PK,SK)

For each attribute i belonging to the authority (these indices i are not reused between
authorities), the authority chooses two random exponents αi, yi ∈ Zp and publishes
PK = {e(g, g)αi , gy ∀i} as its public key. It keeps SK = {αi, yi ∀i} as its secret key.

KeyGen(PK∗GID, i, SK,GP )→ Ki,GID

To create a key for a GID, for attribute i belonging to an authority, the authority
computes:

Ki,GID = gαiH(GID)yi

Encrypt(M, (A, ρ), GP, {PK}, PK∗, RL)→ CT

The encryption algorithm takes in a messageM, an n×` access matrix A with ρmapping
its rows to attributes, the global parameters, the public keys of the relevant authorities,
the user identity public key and the most recent list of revoked users.

It chooses random s, s∗ ∈ Zp and a random vector v ∈ Z`p with s as its �rst entry. Let

λx denote Ax · v, where Ax is row x of A. It also chooses a random vector w ∈ Z`p with
s∗ as its �rst entry. Let ωx denote Ax · w.
For each row Ax of A, it chooses a random rx ∈ Zp and supposed that the number of
revoked users is |RL| = r it chooses si such that s∗ =

∑r
i=1 si. The CT ciphertext is

computed as

C0 =M · e(g, g)s,
C1,x = e(g, g)λxe(g, g)αρ(x)rx , C2,x = grx , C3,x = gyρ(x)rxgωx ∀x = 1, . . . , n

C∗1,k =
(
gagGID

∗
k

)−sk
, C∗2,k = gsk/b ∀k = 1, . . . , r.

Decrypt(CT, (A, ρ), {Ki,GID},K∗GID, RL,GP )→M
We assume the ciphertext is encrypted under an access matrix (A, ρ). If the decryptor
is not on the list of revoked users (RL) and has the secret keys K∗GID for his GID and
{Ki,GID} for a subset of rows Ax of A, such that (1, 0, . . . , 0) is in the span of these
rows, then the decryptor proceeds as follows. First chooses constants cx ∈ Zp such that∑
x cxAx = (1, 0, . . . , 0) and denoting r = |RL| computes:

∏
x

(
C1,x·e(H(GID),C3,x)
e(Kρ(x),GID,C2,x)

)cx
r∏

k=1

(
e(K∗GID, C

∗
2,k)e(C

∗
1,k, H(GID))

)1/(GID−GID∗
k)

= e(g, g)s

The message then can be obtained as :M = C0/e(g, g)
s.
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To see the soundness of the Decryption algorithm observe the following:

A =
∏
x

(
C1,x · e(H(GID), C3,x)

e(Kρ(x),GID, C2,x)

)cx
=
∏
x

(
e(g, g)λx+ωx logg H(GID)

)cx
= e(g, g)

∑
x λxcx · e(H(GID), g)

∑
x ωxcx = e(g, g)s+s

∗ logg H(GID)

B =

r∏
k=1

(
e(K∗GID, C

∗
2,k)e(C

∗
1,k, H(GID))

)−1/(GID−GID∗
k)

=

r∏
k=1

(
e(g, g)(GID−GID

∗
k)sk logg H(GID)

)−1/(GID−GID∗
k)

= e(g, g)−
∑r
k=1 sk logg H(GID) = e(g, g)−s

∗ logg H(GID)

Remark. We note that an almost equivalent result can be achieved, with some di�erent
modi�cations on the decentralized scheme (splitting C1,x into two parts, using e(g, g)βs for
encryption, where β is the secret of the CA, and publishing gs) and �tting it to the method
of [LZW+13]. However in this way additional modi�cations are still needed to prevent the
CA from being able to decrypt any ciphertext by computing e(gβ , gs).

3.2 E�ciency

Traditional, attribute-based user revocation (e.g. [WLWG11, RNS11]) a�ects the attributes,
thus the revocation of a user may cause the update of all the users' attribute secret keys who
had common attribute with the revoked user (a general attribute can a�ect big proportion
of the users) and the re-encryption of all ciphertext the access structure of which contain
any of the revoked user's attributes (most of these could not be decrypted by the revoked
user).

In our scheme, a revocation event does not have any e�ect on the attributes as it is
based on identity. Although it is a trade-o� and in the other hand there is some computa-
tional overhead on the encryption and decryption algorithm. In this way the necessary extra
computation of authorities is reduced and distributed between the largest set of parties,
the users, preventing a possible performance bottleneck of the system. At the same time
the extra communication is also reduced to the publication of the revoked user list. Our
revocation scheme has the following costs.

The ciphertext has 2r additional elements, if the number of revoked users is r. For the
computation of these values 3r exponentiations and r multiplications are needed in G0.
Alternatively, the revoked user list may contain gagGID

∗
i instead of the global identi�ers. In

this case the encryptor need to do only 2r additional exponentiations in G0, compared with
the scheme of [LW11], to compute the ciphertext. The overhead of the decryption algorithm
is 2r pairing operations, r multiplications and exponentiations in group G1.

Note that, as in all model that uses LSSS to express the access structure, the access
matrix and the mapping ρ must be part of the ciphertext, increasing its length. However, it
is possible to reduce this length by attaching only a formatted Boolean formula instead and
compute the necessary components of LSSS e�ciently using the algorithm of Liu and Cao
in [LC10].

3.3 Security

Before giving the formal proof we point put that from the point of view of a user, whose
attributes have never satis�ed the access structure de�ned in the ciphertext, our construction
is at least as secure as the one by [LW11], because the computation of A is equivalent to
the decryption computation given there. However in our case, it is not enough to obtain the
message. Changing the �rst entry of w from zero to a random number (as we did), causes
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that the blinding will not cancel out from A , but we need to compute B which can divide
it out. B can be computed with any GID di�erent from any GID∗k of the revocation list
and we ensure that the decryptor must use the same GID both in A and B with the help
of H(GID).

We are going to prove the security of our construction in the generic bilinear group model
previously used in [BBG05, BSW07, LW11], modelling H as a random oracle. Security in
this model assures us that an adversary cannot break our scheme with only black-box access
to the group operations and H.

We describe the generic bilinear model as in [BBG05]. We let ψ0 and ψ1 be two random
encodings of the additive group Zp. More speci�cally, each of ψ0, ψ1 is an injective map
from Zp to {0, 1}m, for m > 3 log(p). We de�ne the groups G0 = {ψ0(x) : x ∈ Zp} and
G1 = {ψ1(x) : x ∈ Zp}. We assume we have access to oracles which compute the induced
group operations in G0 and G1 and an oracle which computes a non-degenerate bilinear map
e : G0 ×G0 → G1. We refer to G0 as a generic bilinear group. To simplify our notations let
g denote ψ0(1), g

x denote ψ0(x), e(g, g) denote ψ1(1), and e(g, g)
y denote ψ1(y).

Theorem 1. For any adversary A, let q be a bound on the total number of group elements it
receives from queries it makes to the group oracles and from its interaction with the security
game, described in 2.5. The above described construction is secure according to De�nition 3
in the generic bilinear group model and the advantage of A is O(q2/p).

Proof. In our security game, A must distinguish C0 =M0e(g, g)
s from C0 =M1e(g, g)

s. We
can alternatively consider a modi�ed game, where the attacker must distinguish between
C0 = e(g, g)s or C0 = e(g, g)T , for T chosen uniformly randomly from Zp. This is the same
modi�cation employed in [BSW07, LW11], and it is justi�ed by a simple hybrid argument.

We now simulate the modi�ed security game in the generic bilinear group model where
C0 is set to be e(g, g)

T . We let S denote the set of all authorities, U the universe of attributes
and RL the Revocation List. The simulator runs the global setup algorithm, and gives g
to the attacker. A chooses a set S′ ⊂ S of corrupted authorities, and reveals these to the
simulator. The simulator randomly chooses values a, b ∈ Zp for the identity key generation
and αi, yi ∈ Zp for the attributes i ∈ U controlled by uncorrupted authorities, and it queries
the group oracles for ga, g1/b and for each gyi , e(g, g)αi and gives these to the attacker. When
the attacker requests H(GIDk) for some GIDk for the �rst time, the simulator chooses a
random value hGIDk ∈ Zp, queries the group oracle for ghGIDk , and gives this value to the
attacker as H(GIDk). It stores this value so that it can reply consistently to any subsequent
requests for H(GIDk).

Upon a request forK∗GIDk for some GIDk the simulator uses the group oracle to compute

g(GID
∗
k+a)bhGIDk and supplies this value to the attacker. A request for a keyKi,GIDk for some

attribute i and identity GIDk handled similarly, gαiH(GIDk)
yi is computed using the group

oracle and sent to the attacker. In both cases, if H(GIDk) has not been requested before,
it is determined as above.

At some point, the attacker speci�es an access matrix (A, ρ) for the challenge ciphertext
and additionally supplies the simulator with the gyi , e(g, g)αi values for any attributes i
controlled by corrupt authorities that appear in the image of ρ on the rows of A. The
simulator then checks that these are valid group elements by querying the group oracles.

The simulator must now produce the challenge ciphertext. To do so, it chooses ran-
dom values s, v2, . . . , v`, s

∗, w2, . . . , w` ∈ Zp, sets the sharing vector v = (s, v2, . . . , v`) and
computes the shares λx = Ax · v. Similarly it set the blinding vector w = (s∗, w2, . . . , w`)
and computes ωx = Ax · w. Random values rx ∈ Zp are chosen for each row Ax of A,
and a random value T ∈ Zp. The values of s1, . . . , sr−1 ∈ Zp are also chosen randomly,

while sr = s∗ −
∑r−1
i=1 si (where r = |RL|). Using the group oracles, the simulator can now

compute:

C0 = e(g, g)T ,
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C1,x = e(g, g)λxe(g, g)αρ(x)rx , C2,x = grx , C3,x = gyρ(x)rxgωx ∀x
C∗1,k =

(
gagGID

∗
k

)−sk
C∗2,k = gsk/b ∀k

and the challenge ciphertext is given to the attacker.
We will argue that will all but negligible probability, the attacker's view in the simulation

is identically distributed to what it's view would have been if C0 had been set to e(g, g)s

instead of e(g, g)T . This shows that the attacker cannot attain a non-negligible advantage
in the modi�ed security game, and hence in the real one.

We condition on the event that each of the attacker's queries to the group oracles have
input values that were given to the attacker during the simulation or were received from the
oracles in response to previous queries. Since each ψ0, ψ1 is a random injective map from Zp
into a set of > p3 elements, the probability of the attacker being able to guess an element
in the image of ψ0, ψ1 which it has not previously obtained is negligible.

Under this condition, we can think of each of the attacker's queries as a multi-variate
expressions in the variables T, yi, αi, λx, rx, ωx, hGIDk , a, b, sk, where i ranges over the at-
tributes controlled by uncorrupted authorities, x ranges over the rows of the challenge
access matrix, k ranges over the revoked identities. (We can also think of λ, ωx as linear
combinations of the variables s, v2, . . . , v` and s

∗, w2, . . . , w`.)
We now further condition on the event that for each pair of queries A makes correspond-

ing to di�erent polynomials, it receives di�erent answers. In other words, we are conditioning
on the event that our random assignment of values to the previous variables does not happen
to be a zero of the di�erence of two query polynomials. Since our polynomials have degree
at most 8 (see the possible polynomials later), using the Schwartz-Zippel lemma we have
that the probability of a collusion is O(1/p) and a union bound shows that the probability
of that any such collusion happens during the simulation is O(q2/p). Now suppose that it
does not happen.

Since T only appears as e(g, g)T , the only queries the attacker can make involving T are
of the form cT+ other terms, where c is a constant. The attacker's view can only di�er when
T = s if the attacker can make two queries f and f ′ into G1 where these are unequal as
polynomials but become the same when we substitute s for T . This implies f − f ′ = cs− cT
for some constant c. We may conclude that the attacker can then make the query cs.

We will now show the attacker cannot make a query of the form cs, and therefore arrive
at a contradiction. By examining the values given to the attacker during the simulation,
[LW11] showed that without a satisfying set of attributes an attacker cannot make a query
of the form c(s+0 ·hGIDk) thus has only a negligible advantage in distinguishing an encoded
message from a random group element (in their original scheme). This result implies that
in our modi�ed construction, the attacker cannot make a query of the form c(s+ s∗hGIDk)
without a satisfying set of attributes (as the �rst element of the blinding vector w is changed
to s∗ from zero) which also shows - following the their reasoning - that cs cannot be formed
either. In the other hand, in our case the possession of the necessary attributes are not
enough to make a cs query, but −c(s∗hGIDk) is also indispensable for this. From now on
we assume that GIDk ∈ RL thus the challenge access structure is satis�ed (and simulate
that all revoked users are colluding), as the case when GIDk ∈ UL \RL is equivalent to the
original scheme of [LW11]. We will prove that A cannot be successful by showing it cannot
make a query of the form −c(s∗hGIDk) and so not cs.

We see that the attacker can form queries which are linear combinations of

1, hGIDk , yi, αi + hGIDkyi, λx + αρ(x)rx, rx, yρ(x)rx + ωx,
a, 1/b, bhGIDk(GID

∗
k + a), sk(a+GID∗k), sk/b,

the product of any two of these and αi, T . (Note that GID
∗
k for all k = 1, . . . , r and αi, yi

for attributes i controlled by corrupted authorities are constants, known by the attacker.)
In these queries s∗ can appear in two di�erent forms: as ωx and sk.

In order to gain s∗hGIDk by utilizing ωx, Amust use the product hGIDkyρ(x)rx+hGIDkωx
for all rows of A, as these are the only terms which contain hGIDkωx the proper linear
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Table 2. Possible relevant query terms

ska+GID∗
ksk sk/b

sksla
2 +GID∗

kGID∗
l sksl + (GID∗

k +GID∗
l )sksla sksl/b

2

ska
2 +GID∗

kska ska/b

ska/b+GID∗
ksk/b sk/b

2

skbhGIDl(a
2 + (GID∗

k +GID∗
l )a+GID∗

kGID∗
l ) skahGIDl +GID∗

l skhGIDl

skahGIDl +GID∗
kskhGIDl skhGIDl/b

sksla/b+GID∗
ksksl/b

combination of which leads to s∗hGIDk . To cancel out hGIDkyρ(x)rx the attacker should
form this product, which is possible only if yρ(x) or rx are known constants as otherwise
the needed elements appear alone in the above list and besides those, A can only form
the product of any two but not three. However if yρ(x) or rx are constants for all x, that
contradicts with the rules of the security game as only corrupted attributes would satisfy
the access structure.

On sk, we can make the following observations. (1) In each term, sk appears as multiplier
either in all monads or in none of them. (2) To form c · skhGIDl (for a chosen l and all k) as
linear combination of di�erent terms, these must contain sk as multiplier, so terms without
sk are useless (see Table 2 for the possible query terms). (3) In the linear combination there
must be a term which contains skhGIDl maybe multiplied with some constant.

As it can be seen in Table 2, there are two terms which contain the necessary monad:

skahGIDl +GID∗kskhGIDl and skahGIDl +GID∗l skhGIDl ,

multiplied each by c/(GID∗k −GID∗l ) it is possible to gain c · skhGIDl , if k 6= l. However in
case of k = l the two terms are equal, and skahGIDl cannot be cancelled out, as no other
terms contain this product. We conclude that it is possible to gain skhGIDl for all k (thus
−c
∑r
k=1 skhGIDl) if and only if there exists l which is not from the same set, as k. Here

we arrive at a contradiction as both k, l ∈ 1, . . . , r, otherwise the attacker would have used
some GIDl /∈ RL.

Hence, we have shown that the attacker cannot construct a query of the form cs for
a constant c. Therefore, under conditions that hold with all but O(q2/p) probability, the
attacker cannot distinguish between the cases when T is random or T = s thus the advantage
of A in the security game is at most O(q2/p). ut

4 Future Work

We proposed a scheme for e�cient identity-based user revocation in multi-authority CP-
ABE. In the future, our work can be continued in several directions.

As the original work of [LW11] allows to use each attribute only once in the row labelling ρ
of the access matrix, the same applies for our extended scheme. However applying a simple
transformation (detailed in [LW11], Appendix B) in our case also leads to a system that
allows the use of attributes k times, but this transformation does not lead to an e�cient
system when the attribute universe is large. The elimination of this weakness would lead to
a more usable system in practice together with our extension.

The method of identity-based user revocation can be the foundation of a future method
that allows non monotonic access structures in multi-authority setting. However our scheme
cannot be applied directly for this purpose it may be used to develop ideas in this �eld.

The security of our construction is proved in the generic bilinear group model, although
we believe it would be possible to achieve some stronger assumptions with the use of the
Boneh-Boyen-Goh framework [BBG05], analogously to the method of [LSW10]. This type
of work would be interesting even if it resulted in a moderate loss of e�ciency from our
existing system.
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